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Abstract

An exploratory study on instructional design for classroom activities that
encourage algebraic reasoning at the elementary-school level. Assistance
with the activities was provided as students needed further scaffolding,
and multiple solutions were encouraged. An analysis of student responses
to the activities is discussed.
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Chapter 1

Introduction

Some of the earliest known practices of any type of algebraic reasoning can
be found about four thousand years ago (Katz and Barton, 2007). At this
point, mathematics was communicated almost entirely in spoken language,
with little or no form of symbolization. Examples were generally offered as
methodologies using specific quantities rather than variables. While there
was much development of the type of problems that could be solved in this
era, the presentation style remained fairly static.

Fast-forward to twelfth-century Europe, and we begin to see the early
emergence of symbolic algebra and more sophisticated enumeration sys-
tems. However, in this era, answers less than zero and answers containing
complex numbers were not accepted, so many problems were considered
unsolvable.

Eventually, as a result of the work of François Viète (1540–1603) and
Réne Descartes (1596–1650), a completely symbolic mathematical language
has been established. From then on, math could be both reasoned symbol-
ically as well as logically. Why is this important? Historically, it has taken
thousands of years to get to a symbolic approach for solving mathematical
problems. Some researchers believe this leap in representation to be related
to why younger students may not automatically reach for algebraic meth-
ods to solve problems, and may have trouble when they first encounter
algebra in school (Carraher et al., 2006).

For the better part of the twentieth century algebra has been thought of
as the next level after arithmetic. As such, many curricula delay introduc-
ing students to algebraic concepts until later in their academic lives (middle
or high school). The jump to using abstract symbolic notation and other
forms of functional thinking was large enough to warrant a transitional
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prealgebraic course (Carraher et al., 2006), but a growing body of research
shows that students as early as the first grade can grasp these concepts
(Blanton and Kaput, 2007). Furthermore, these studies indicate that con-
currently introducing both arithmetic and algebra during the elementary
school levels assists the necessary jump required to master algebra (Schlie-
mann et al., 2007; Carraher et al., 2006).

Algebraic thinking is an umbrella term that encompasses many differ-
ent types of thought. Most of these types of thinking can be divided into
one of two forms: relational thinking and functional thinking (Blanton and
Kaput, 2005).

Relational thinking, termed generalized arithmetic, deals with properties of
numbers or expressions. These propeties includes relationships of parity,
ideas of equality, and properties of inverses. For example, 2

5 x = 2x
5 .

Functional thinking involves understanding, utilizing, or synthesizing
relationships in any of a number of forms, including symbolically, graphi-
cally, or as a table. For example, given y = 2x + 1, then if x + 3, y = 7.

In this study, I will be focusing primarily on functional thinking in fifth-
grade students who have not been formally introduced to algebra. My ex-
pectation, based on previous studies, was that the students would demon-
strate a good level of algebraic intuition. From personal experience, many
students around the fifth-grade level can demonstrate relational thinking.
In this study I also wanted to explore the degree or the level of functional
thinking that students could engage in.
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Sycamore Elementary School

The school where I conducted my study was Sycamore Elementary School
in the small college town of Claremont, California. Qualities that make
Sycamore unique include

Multiaged Classrooms Unlike most traditional schools, where most of the
students in a classroom are around the same age, classrooms at Syc-
amore will often have students spanning two to three grade levels.
For example, all the students from this study come from classes hav-
ing students from grades four through six. The classroom structure
provides the possibility for multiaged social interactions in the entire
population.

Individualized Learning Levels Because there are multiple levels in a class,
students can join the group working at their level. This pace allows
students who need to spend a longer on certain areas the time to catch
up, and those who are excelling to move ahead or to help those in
need.

Cooperative Group Learning Many of the activities that take place encour-
age working with others and sharing ideas openly.

Emphasis on Community Being a small town school, many students live
in the surrounding neighborhood and walk or ride a bike to school.
Also, many members of the community, including some from the lo-
cal colleges, volunteer at the school. These visits give the students
more focused attention as well as opportunities to view the material
from a perspective other than that of the primary teacher.
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I chose Sycamore as the site for this research because I had worked at
the site as part of a service component for a mathematics for teachers course
and continued volunteering after the course ended. I had thus established
a relationship with some of the students and teachers at the school prior
to the study. However, none of the students I had worked with in prior
years were a part of this study. It is notable that during the year of the
study a new curriculum was adopted, Everyday Mathematics, and a new
principal, Amy Stanger, was hired.
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Methodology

A good portion of my research time was spent obtaining school, institu-
tional review board (IRB) and school district approval for this study. Dur-
ing this time, I developed lesson plans, met with the principal, reviewed
mathematics education literature, and developed forms to satisfy the re-
quirements of the Claremont Colleges’ IRB. These forms can be reviewed
in Appendix A.

In the spring, two groups of six students were chosen from fifth-grade
classes at Sycamore Elementary school by their teachers. One group met
on Tuesdays and the other on Thursdays for six weeks. The groups par-
ticipated in weekly activities lasting about 45 minutes. Each student was
asked to keep all their work in a composition notebook, and was asked to
write down their thoughts on a problem before discussing their answers.
At the end of each lesson, I asked the students to take a moment to write
down what they learned. All the sessions were videotaped with the par-
ticipants’ knowledge. This structure is influenced by the work of Elizabeth
Warren (2006).

Originally, the purpose of having two cohorts was to allow the use of a
different teaching style in each. One cohort would have me acting as an in-
structor, directly leading the students to their findings, while still attempt-
ing to present as many opportunities to learn as possible. For the other, I
would use a more hands-off, Socratic, methodology. To determine the ef-
fectiveness of each, I planned to see how quickly students would solve the
problems and how many different solution strategies they would generate.
I would also see how well they could articulate their findings, and to what
degree they were able to recollect techniques and reapply their knowledge.

My original plan proved to be more difficult then expected. After I gave
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students a particular set of instructions, they were only able to push though
the problem so far. I had to step in occasionally or progress would stall and
I would feel as though I was wasting the students’ and school’s time. At
other times the students would become less attentive. Thus I focused more
on how far each student could go based on my scaffolding of the problems
or based on their own revelations. Also, I noted the subtle differences in my
own instructions between the groups to see if their understanding could
have been influenced by a different phrasing or presentation I may have
used between the two groups.

To keep student identities as anonymous as possible, students in group
one (Tuesday), will be referred to using letters. Students in the second
group (Thursday), will be referred to with numbers. I will describe each
weekly activity and provide an overview and analysis of selected responses
in Chapter 4.



Chapter 4

Activities and Notes

This chapter contains a detailed description of the activities that the student
groups completed. Following the general descriptions are the responses of
the individual groups and examples of student work.

4.1 Lesson 1: Math Magic Tricks

The first activity was a set of mathematical magic tricks. I chose this activity
mainly to gauge the students’ understanding of algebraic relationships. I
also thought it would pique their interest in the weekly groups. The magic
tricks were sets of instructions that the students followed line-by-line start-
ing with a number they chose.

The first algorithm was a simple one in which, regardless of what num-
ber a student initially picks, the output is five. The instructions were

Pick a number, double it, add ten, divide by two, then subtract
your original number.

I originally suggested picking a number from one through twenty to
keep their calculations simple. When the students all tried their numbers
and got five, I asked them why they thought they all got the same answer.

After the groups had presented their original thoughts on how the pro-
cedures might work, I proceeded to model the algorithm using different
sized crayons as the manipulatives. Figure 4.1 shows responses to the var-
ious parts of this activity by Student D. Student D demonstrated his use of
the model for the second algorithm I presented: pick a number, triple it,
add nine, divide by three, subtract original number.
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Figure 4.1: Work from Student D’s notebook.

The manipulatives were useful, but they could have been more effec-
tive if there had been more than one type: different shapes and colors
rather than simply two sizes of crayons. Because the manipulatives were
distinguished by size and not necessarily by color, it was hard for some
students to distinguish between what represented their variable and what
represented their unit-number counters.

With the remaining time, I had the students try to develop their own
math tricks and see if they could explain why their tricks worked.
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4.1.1 Tuesday

After I showed them the first magic trick, I asked the students to model or
try to explain why it worked. Perhaps because I did not give any examples
on how to do so, most students could not come up with any explanation or
model for the trick. Some responses included, “someone came up with a
theory,” by Student A; or simply a restatement of the steps, as shown in Fig-
ure 4.1 by Student D. A few of the students, because they were instructed
to choose a number between one and twenty, thought that the limit was
a necessary condition to have an output of five, but that idea was quickly
overturned once they were asked to try larger numbers.

After I presented a way of modeling with the crayons, I gave the stu-
dents a new problem and asked them to break the second problem into
algebraic steps and analyze why it worked. Then they attempted to create
their own math tricks. Many followed similar schemes to the problems I
had previously presented. For example, Students A and C used quadru-
pling instead of doubling and tripling, whereas Student D, Figure 4.1, cre-
ated one with an extra dividing step. Student B created her own trick with
the form a + b + c − b − c = a.

4.1.2 Thursday

I again began by showing them the first trick and then giving them some
time to explore why it worked. During their individual discussions, each
group began to try to pick apart the steps to see what was going on. In
one group, the discussion initially revolved around the parity of their new
number after each step. At one point or another, both groups tried focusing
on the range of values and the effects of doubling and adding ten. Eventu-
ally Student 1 realized that dividing by two was the key, in that it halved
both the recently doubled original number and the added ten, which is
where the five came from at the end. However, it seemed that the other
group might have overheard this insight, which shifted their own conver-
sation towards this idea almost immediately.

When creating their own algorithms, Student 1 used the fact that n/ n
2 =

2, forcing a two and allowing her free range on what happened thereafter.
“Pick an even number and divide it by half that number.” She added the
restriction that n had to be even, although this method would work without
it. Student 6 devised an unfinished algorithm that at best led to a range of
possible values given a specific domain.

Overall, most students in both groups demonstrated some degree of
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relational-thinking capability, mostly in terms of parity and additive or
multiplicative inverses. As that was the goal, the results were a success.

4.2 Lesson 2: Popsicle Sticks and Squares

The next activity was one using an arrangement of Popsicle sticks in ad-
jacent squares that share a side (see Figure 4.2). The problem is set by ar-
ranging three groups of sticks horizontally, one group making one square,
one with two squares, and the last with three. I asked the students how
many sticks were necessary to make each shape. Then I asked “How many
sticks would be needed if I wanted four squares? What about six? One
hundred?” I gave the students time to think about the problem to see what
they would come up with.

I expected the students to notice the recursive additive property for
the number of sticks quite readily. One of the things I hoped the students
would be able to do was to represent the situation in a table with the num-
ber of squares in one column and the number or sticks in the other column.
One thing I had to suggest to the students was to write the number of sticks
as an unexecuted sum; see Figure 4.3. With or without the table, I wanted
them to eventually be able to identify one of the many equivalent repre-
sentations of the number of sticks in terms of the number of squares. Some
examples include

Sn = Sn−1 + 3
P1 = 3S + 1
P2 = 3(S − 1) + 4
P3 = 4S − (S − 1)
P4 = S + S + S + 1.

From this, I observed where the discussion led.

4.2.1 Tuesday

I began by asking, “How many sticks for one track? Two? Three?” and so
on.

Almost immediately, some students quickly assumed that the relation-
ship would be four times the number of squares, so would answer 4, 8, 12,
respectively. However, they quickly realized that these answers were not
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Figure 4.2: Initial arrangement of Popsicle sticks.

correct when another student directly counted. Student E quickly recog-
nized the relationship as

the number of sticks = 1 + 3 × the number of squares,

showing great functional thinking. The other students did not hear his
explanation, so the relationship was not given away, which allowed them
to further explore the task for themselves.

It wasn’t long until the students realized the recurrence of adding three
to the previous number of sticks. Thus, one response to, “How many sticks
are needed for one hundred squares?” was, “Don’t you have to know what
99 is? ’Cause aren’t you just adding three the whole time?” by Student C.
My task at this point was to get the rest of the students to make the connec-
tion between repeated addition and multiplication, as Student E had done
earlier.

My next instruction was to construct a table with one side having the
number of squares and the other side the number of sticks. Also, I wanted
them to write the number of sticks as a sum based on the previous result.
Not everyone was experienced with this type of representation, but we still
made some progress. After explicitly showing the repeated addition by
means of a table, the link to multiplication was quickly realized by most
students.

The next task involved tracks that had double the height. I asked a
similar set of questions.
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Figure 4.3: Student C’s work on the Popsicle-stick problem, including her
table with unexecuted sums.

There was some interesting talk about the best way to count the con-
structions in the beginning. One method that came to light was that, after
we have two sticks in a line, for each length of track we add an E shape
made of five sticks, so the formula that everyone determined was

2 + 5 × number of squares.

As a final question, I asked, “Keeping this same construction, suppose
we only had 52 sticks. How many tracks could we make?”

One student continued his table, using a form of repeated addition. He
continued until he had 52 on the number of sticks side, thus determining
his answer was ten. Many of the others divided 52 by five, getting ten
with a remainder of two, to which Student C commented, “You need the
two to close up the shape.” Her comment was interesting because it also
demonstrated some ability to manipulate a formula.

4.2.2 Thursday

Recalling some of the possible solutions for this problem I expected to see.
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Sn = Sn−1 + 3
P1 = 3S + 1
P2 = 3(S − 1) + 4
P3 = 4S − (S − 1)
P4 = S + S + S + 1

Again, I began by asking, “How many sticks for one track? Two? Three?”
and so on.

Student 5 quickly answered four for one track. For two tracks, Student 3
initially thought the answer was eight, but quickly said, “Wait, nope!” and
Student 6 corrected with seven, as Student 3 pointed out, “Because they
share the middle one.” For three tracks, I asked for a volunteer to recon-
struct the three track case; Student 5 did so by appending three more sticks
to the two-track construction, answering ten sticks needed for three tracks.
For four, five, and six tracks, I quickly got the correct answers without need-
ing to construct them.

I asked, “What kind of patterns are you guys seeing?” Student 3 ver-
bally, and Students 5 and 6 in writing, all pointed out the add-three recur-
rence.

Students 1, 3, and 4 all came up with strategies similar to Equation
P3 above. For example, Student 4 explains, “If you make three tracks like
that,” pointing to the three-track construction, “you would subtract two
because these two are sharing,” pointing specifically to the center sticks.
“Umm, they are put together to make one.”

Both Students 5 and 6 used strategies modeled by Equation P2. As Stu-
dent 5 explains, “To make one you use four, and then after that you just
add three each time.”

I then asked each of them to determine how many Popsicle sticks were
necessary to make one hundred tracks. Everyone was able to get the correct
answer of 301 with their individual methods.

I wrote the two methods that were used on the board, and included two
other methods that they did not come up with, Equations P1 and P4. I then
asked them to try to explain if and why the various methods gave the same
answer, regardless of the inputs.

In general, most explanations consisted of taking particular values for
the number of squares and verifying that the different formulas gave the
same answers.
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Student 6, when comparing Equations P2 through P4, explained, “Be-
cause, when you’re adding three times S minus one, when you’re adding
the four you’re adding back the three and just adding one, and when you
do it that way, you’re just adding one because you’re not taking anything
away.”

4.2.3 Afterthoughts

An interesting divergence occurred between the two groups in terms of tra-
jectory. In one group, they got a bit more practice with creating connections
between inputs and outputs, having done two examples instead of one. In
the other group, the students demonstrated a model of how to write out a
function using symbolic notation. This divergence actually created an op-
portunity to test out each group’s ability to model a problem, which was
continued with the next session.

4.3 Lesson 3: Table-Seating Problems

For this activity, the students were asked to to determine a relationship
between the number of trapezoidal tables in a particular arrangement to
the number of people who could comfortably sit around such a table ar-
rangement. For this activity, to help the students physically represent the
situation, I had them use trapezoidal pattern blocks for the tables and unit
cubes to represent the people.

4.3.1 Tuesday

Again, I began by asking the students for a few initial cases, and then asked
them directly what pattern they recognized. Initially, there was some argu-
ment about whether the pattern was plus four or plus three. As Student D
explains, “You’re basically adding four [chairs], but taking away one from
the other [tables].”

When all the students were in agreement what the recursive pattern
was, I next asked them about the case of one-hundred tables. Student C
went first, stating that the answer would be “five plus ninety-nine threes,”
which got her to the correct answer of 302. I proceeded to write down
5 + 3(T − 1) on the board, although I used a trapezoid instead of T. Next,
Student E offered his counting method of counting the number of tables at
the end first, followed by three times the number of tables in the middle,
and so I wrote 4 + 4 + 3(T − 2).
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Figure 4.4: First three arrangements of table-seating problem.
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Most students had some idea of getting at least one closed form of the
problem, so for the rest of the hour, Professor Levy and I led them through
other possible ways of counting the tables. For example, Professor Levy led
them through the 3 × T + 2 by “fixing the answer.” This strategy involves
assuming that the formula uses multiplication, say, 3 × T, and adds to it
how much it is off from the actual problem, in this case two.

4.3.2 Thursday

Student 1 was the first to explicitly state how similar this activity was to
the Popsicle-stick problem, but was a bit confused as to why. When asked
how many people can sit around one hundred tables, there was a tentative
answer of three hundred, to which I asked them, “Why?” The first expla-
nation was one similar to Student D’s revelation, which led to the form
3 × T + 2. Student 3 tried to explain a different method that took into ac-
count all the chairs that would be lost once the tables were stuck together;
in other words 5 × T − 2 × (T − 1). She seemed to realize that her solu-
tion simplified to the previous method, and adopted the simpler method
thereafter.

I spent time trying to connect the different methods by trying to point
out some simplification methods, without making much headway in terms
of the students’ understanding. Because we had some time left, I changed
to using hexagonal tables and followed the same instructional steps used
before.

4.3.3 Afterthoughts

This activity was very similar to the previous one, and it seemed that more
students moved towards a functional relationship more readily then in the
previous task. At this point, it seemed most students were getting a hold
of generating closed-form formulas for linear relationships. It would be
some time before we returned to linear problems, but my hope was that
they would be able to retain these ideas until then.

4.4 Lesson 4: Handshake Problem

The students were asked to determine the relationship between the num-
ber of people and the number of handshakes necessary so that every one
of them would shake each other’s hand exactly one time. Seeing that the
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Figure 4.5: A possible way of representing the handshake problem.
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Figure 4.6: Excerpt of student’s work showing a closed formula.

function is quadratic, h = p(p−1)
2 , the students were expected to identify

the recurrence relationship, but not necessarily the closed-form expression
right away. I could then lead the students to different trajectories, such as
connections to triangle numbers or connections between their own varied
responses.

4.4.1 Tuesday

As usual, I began with asking “How many handshakes for two people?
Three people? Four people?”

For two people, everyone quickly answered one. For three people, there
was a quick guess of two handshakes by some, three by others. After sug-
gesting for them to simulate the situation, an consensuses of three came
quickly. When I asked for four people, there was an initial guess of four.
Then the answers of five and six were jumping around. Again, I had the
students simulate the situation, arriving at six. Just to have all cases cov-
ered, I also asked the situation for one person, which everyone quickly
answered zero.
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Then I asked, “What is the pattern you are seeing?”
Some initial guesses included, “Is it just plus three every time?” and,

“There is no pattern.” However, Student D excitedly exclaimed, “It’s one,
plus two, plus three, plus 4. . . !” Some more experimentation helped every-
one arrive at the same conclusion. When asked why this pattern was the
case, Student 5, after some false starts, answered, “Because there is already
five people here, and one more person, and those five people have to shake
his hand one time. . . .”

I next had them work to find some formula to describe the situation,
with no real progress. So instead I led them through a discussion of the tri-
angle numbers, Tn = n(n+1)

2 , which has a similar solution to the handshake
problem.

4.4.2 Thursday

To start off with the general case, after describing the handshake problem,
I asked, “How many handshakes for a given number of people?”

The first question the students wanted answered was exactly how many
people were shaking hands. I refused to give them a definite answer. Most
quickly settled on six people, presumably because that was the size of the
group. An initial guess was the number times itself, but then Student 5 sug-
gested the answer would be the number of people times itself minus one,
a response somewhat closer to a valid solution. The Student 5’s reasoning
was, “They don’t shake their own hand.” Most others quickly anchored
onto solutions similar to this one.

Next I asked them if they could model or demonstrate the situation.
Student 3 originally modeled this situation by having hexagons rep-

resent people, and stacking squares on top representing the handshakes,
implying a entirely multiplicative solution. As Student 1 described it, “Ev-
erybody shakes five hands because they wouldn’t shake themselves.”

I simplified the problem by asking them to solve the handshake prob-
lem with only three people. Student 3 quickly answered “Fifteen! No
wait. . . .” Soon, most participants, including Student 3, came up with six.
In other words; they still believed their original method was working. To
clarify for them, I asked, “If I shook your hand, and you shook mine, how
many total handshakes are there?” everyone who replied answered one,
so they seemed to understand the problem vaguely, but they were not yet
taking this same answer into account in their calculations for the case with
three people.
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Figure 4.7: Example of Student 3’s counting method for the handshake
problem.
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Student 2 was one of the first to get a different answer: “I got three.”
Looking at his notebook, I noticed that his method was assigning each per-
son a letter, then connecting each person to each other with a line once,
keeping track of the connections.

I next had some volunteers demonstrate the five-person handshake prob-
lem. After some trouble in both bookkeeping and double handshaking, the
group eventually came up with ten handshakes, the correct value. Stu-
dent 5 asked, “Why is ten the answer?” still unsatisfied that his method
was not working. Here, I did something I probably should not have, prac-
tically giving him the solution; namely that he always had double the actual
answer due to double counting, and all he had to do was divide his answer
by two. From this point on, Student 5 would cling to this method, ignoring
the recursive element of the problem entirely.

After some experimentation, many of the students (as demonstrated
through a variety of different methods) realized that they were adding the
integers from one to the total number of people less one.

I asked the students to write their strategies up on the board.
Student 5 wrote formulas for both the generic situation and the specific

case of five people. Almost everyone else had some variation of adding up
the numbers one through four. An interesting note was that Student 4 was
the only one to add up the numbers in different orders.

4.5 Lesson 5: Regions on the Plane

The object is to determine the amount of regions created by a certain num-
ber of intersecting lines. The lines must all intersect each other and no more
the two lines can intersect at any point. I began by showing them the first
four cases, including the case with zero lines, and let them explore from
there.

I expected that the students would discover the recursive pattern, namely
that the number of regions for N lines is N plus the number of regions
for N − 1 lines, or something to that effect. A more advanced response
would have been the students being able to recognize a connection to the
handshake problem or triangle numbers, maybe even suggesting that the
closed form would be one plus the closed form of the triangle number,
N(N + 1)/2 + 1.
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Figure 4.8: First several iterations of the region-on-the-plane problem.
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4.5.1 Tuesday

After describing the problem and showing them how the cases of one, two,
and three lines appeared, I let the students explore on their own.

Student C guessed at the pattern by the fourth case, not wanting to
check any other situation. I asked her directly to compare the number of
regions to the number of handshakes. She responded, “They’re different
numbers.” Then she flipped pages back and forth and said, “They’re one
less,” referring to the number of handshakes. I then asked her, “If you had a
formula for the handshake problem, what would you add to make it work
for the new situation?” to which she responded, “Add one to each one.”
She appeared a bit frustrated so I moved on to the other students.

Many discrepancies between the students’ theories arose from the dif-
ficulty with constructing a valid depiction of the regions; either because
some of the lines ended up being parallel or making intersections too close
to one another. Because of these differences, many of the other students had
reservations about suggesting a pattern. For example, Student D thought
the pattern began by adding one and two for the first two lines, respec-
tively, and three for the rest. Later, he got the general pattern, but was off
by one on the three-line case, so the number of regions he got continued to
be off by one for four lines and on.

To try to get everyone on the same page, I decided to create my own ta-
ble for everyone to see. I put up a table with the correct number of regions
based on lines up to the case of five lines. I then had everyone compare
these values to those found during our exploration of the handshake prob-
lem and triangle numbers.

4.5.2 Thursday

This group had many of the same troubles that the first group had. I tried
not to coach them as much as the first, but still ended up having to provide
the table with the correct answers. There were no significant differences
between this group and the previous one. We ran out of time before we
were able to make the comparison to the handshake problem.

4.6 Lesson 6: Name that Rule

This was an activity all the students were familiar with. It involved show-
ing them a flashcard containing a table of values and challenging the stu-
dents to determine what was “the rule” to get from the values on the left



24 Activities and Notes

Figure 4.9: Example of a name that rule card. The rule is y = 2x + 7.
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to the values on the right. The rules began with only addition or multipli-
cation of a single constant, sometimes the generic constant a. The last few
cards contained linear functions with nonzero constant terms, much like
the activities the students had worked on before. In essence, this activity
was an abstraction of what the students had been previously working on.

4.6.1 Tuesday

I did not remind everyone to write down their responses before the dis-
cussion, so many students shared their initial thoughts or guesses, which
probably influenced their responses. Everyone was easily able to deter-
mine the rules for additive rules. There were slightly more trouble from
multiplication-only rules, but still no real difficulties. I also made the sug-
gestion at this point to phrase their answers as, “Y equals something,”
which they were all able to do. When the constant was just the general
a itself, the students did well.

When the rule was of the form y = ax+ b, we hit a bit of a snag. The stu-
dents initially tried to find patterns within a quantity. For example, when
the rule was y = 2x + 7, the students first commented that the rule was,
“Plus eight, plus nine, plus ten. . . ,” but with a bit of struggling managed
to come up with a proper answer (although some peeked inadvertently.)
As the problems included increasingly larger numbers and subtraction, the
students were lost until I suggested that they consider the patterns they
saw within quantities before and compare the rules for across the patterns,
similar to “fixing the answer” introduced earlier in the table-seating prob-
lem. After this suggestion, they were able to solve all of the remaining
problems quite easily.

4.6.2 Thursday

I made sure that everyone wrote down their responses before I would allow
them to answer aloud. However, I didn’t insist on the students stating their
answers in the form, “Y equals something,” so many of the answers were
simply, “Times 3,” or “Plus 2”. There was some confusion when adding
(or multiplying) by the general constant a. While Student 5 wrote “Plus a,”
many of the other students either wrote nothing or wrote “plus 0.” It took
a little while for me to notice this misconception. When I asked them for
their answers, Student 5 was the only one to respond. Even after continued
discussion, there was still some confusion, settling that there were multiple
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correct answers, one of them being zero. I was unsatisfied with this result,
but still had to move on.

This group had the same problems as Tuesday’s group, but after some
struggling, they had a response for the card, y = 2x + 7. After suggesting
the “fix the answer” approach, they, too, were able to breeze through the
rest of the responses.



Chapter 5

Teacher Debriefing

At the end of my study, I met with the principal and the participating
students’ teachers so I could discuss my findings. I focused my discus-
sion on the students’ various abilities when it came to generating relation-
ships between and among quantities, as well as some conceptual difficul-
ties that they had with symbolization. But the most valuable information
exchanged was what I learned from the teachers.

One of the first questions I asked was why they had chosen these stu-
dents. Their general response was that most of these students were more
than capable of quickly finishing any assignment in their new fifth-grade
curriculum. However, the students were not quite ready for the sixth-grade
material. As such they all felt that the students would get a good amount
of engagement from my proposed activities.

Next, I wanted to know what sort of background the students had in
topic related to algebra. From my understanding, the students all had some
experience solving problems with one unknown; for example, 3x + 9 =
2x − 5. These problems were generally introduced as a literal balance prob-
lem in the new curriculum. The teachers went on to explain that while bal-
ancing both sides of a balance was understandable to the students, they
had trouble transitioning to the symbolic manipulations of an equation.

Another aspect related to relational thinking that we discussed was the
students’ exposure to scientific notation. Specifically, many of the students
were having difficulties intuitively understanding 100 = 1. One possible
way of alleviating this difficulty, as suggested by my advisor, is explaining
that a number raised to the zeroth power being one is a convention that
most mathematicians had adopted, and introducing the students to the in-
determinate quantity 00. Because the students were introduced to negative
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exponents and multiplying by fractions, my suggestion was to try teaching
additive exponential rules; that is, 100 = 101 × 10−1 = 1, but the teachers
thought this approach might go over their heads.



Chapter 6

Conclusions

As expected, students were usually able to identify recursive patterns with
far less difficulty than functional relationships. However, given the right
hints or revelations, finding a functional relationship was always within
their grasp.

A common misconception was the difference between unknowns and
variables. These terms are usually used interchangeably by both instructors
and students, and both are often represented by a letter. However, there is
a key difference between these concepts. An unknown refers to something
with a value (or set of values) that have yet to be identified. For example,
in the problem, “Solve for x in x + 2 = 5,” x is an unknown. Variables can
take on any of a range of values, such as both x and y in y = 2x + 3. Of-
ten, this distinction is not made, which causes confusion when students are
tasked with finding a symbolic representation of the relationship between
two variables when many previous activities before hand had treated let-
ters as unknowns.

One way to address these misconceptions is to develop a student’s un-
derstanding of unknowns and variables before developing their functional
thinking. For example, there has been success in developing the idea of a
variable through the exploration of number lines (Carraher et al., 2006).





Appendix A

Permission Forms for the Study

Before I was able to conduct this study, I had to obtain parental consent for
each student. To do so, I created the following forms, all of which where
approved by the Claremont Colleges’ Institutional Review Board prior to
the start of my investigation. Within the forms, I included a brief descrip-
tion of how my study would be structures, plus the reasons for having the
study video recorded. Some of the forms contain some errors, but these
were the final versions I sent out to the parents, so I have reproduced them
as distributed for historical accuracy.



32 Permission Forms for the Study

Permission Form: Early Algebraic Reasoning of Elementary School Students 
 

You are being asked to allow the participation of your child in a research project conducted by 
Ivan Hernandez at Harvey Mudd College as part of his senior thesis in mathematics education, 
under the direction of Rachel Levy, a mathematics professor at Harvey Mudd College and a 
former Sycamore parent. Your child was selected because he/she was recommended by his/her 
classroom teacher. 
 
 
Please return this form to your child’s teacher by _________________________. 
 
What will your child do?   Your child will participate in a weekly mathematics program during 
which the students will engage in advanced problem solving activities.  These enrichment 
activities align with Sycamore’s new mathematics curriculum, Everyday Mathematics. The 45 
minute sessions will be conducted by Ivan Hernandez and video recorded. A staff member or 
parent volunteer from Sycamore Elementary will always be present during the meetings as a 
silent observer. The study will take place during normal school hours in place of their usual math 
lesson over a six (6) week period. 
 
PURPOSE:   The purpose of this studying is to explore various teaching methods and examine 
the student’s early algebraic thinking. 
 
VOLUNTARY PARTICIPATION:   Please understand that your consent and your child’s 
participation are completely voluntary.  At any time, you may, or your child may choose to 
withdraw from the study. This will not affect any relationship between you, Sycamore, or the 
Claremont Colleges. 
 
VIDEO RECODINGS:   During the study, your child will be video recorded. This is to ensure 
that the investigator does not miss any action that may provide some insight to the study. The 
raw video footage will only be available to the investigator and his advisors. 
Selected excerpts from the recordings may be used during a professional presentation. Those that 
are chosen will be available for your review and approval before the presentation. 
 
CONFIDENTIALITY:   All consent forms and raw data will be secured and accessible only by 
Hernandez and his advisors. Pseudonyms will be used in all written reports and in presentations. 
All video footage not selected for professional presentations will be destroyed following the end 
of my research. 
 
RISK/BENEFITS OF PARTICIPATION:   Risks related to participation are minimal.  The 
study is conducted at the students’ regular campus with children they will interact with on a 
usual basis.  Activities will resemble normal classroom activities.  Benefits include exposure to 
interesting mathematical topics in a small group setting.  No monetary compensation will be 
provided fro participation. 
 
 
 

Figure A.1: Parental consent form.
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Assent Form for Early Algebraic Reasoning of Elementary School Students 
 
My name is Ivan Hernandez, and I go to Harvey Mudd College. I am asking for your 
participation in my study because I am really interested in how you learn. 
 
PURPOSE:     In this study, I want to learn how you think about mathematics.  I will 
give you some lessons in mathematics that you may not have seen before and videotape 
how you solve the problems in a group.  This study will take place during normal school 
hours. 
 
RISKS & BENEFITS:     Since this will be similar to your normal classrooms, there 
should not be anything dangerous. 
 
I am hoping the activities will be challenging but very fun. Hopefully you will learn 
something new! 
 
PARTICIPATION:     You have been recommended by your teacher. I will also ask 
your parents for permission. However, you do not have to participate if you do not want 
to. No one will be upset if you say no, and you can always change your mind and leave 
the study at any time if you wish to stop. 
 
VIDEO RECORDING:     I will have a video camera recording the lessons. This is to 
make sure I hear and see what everyone has said to help me with my study.  I may use a 
video clip in a professional presentation.  Your parent/guardian will have a chance to see 
the clips and decide whether or not I can show them. 
 
 

--------------------------------------------------------------------------------------------- 
If you want to take part of this study, sign below. 

 
 
 
Student’s Name ________________________________________ 
 
Student’s Signature______________________________________  Date _____________ 
 
 
 
 
Signature of Researcher _________________________________   Date _____________ 

Figure A.2: Student assent form.
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Video Release Form: 
Early Algebraic Reasoning of Elementary School Students 

 
During the study, your child will be video recorded. This is to ensure that the 

investigator, Ivan Hernandez, will not lose any actions that may provide insights to how 
the students are interpreting the assignment. The raw video footage will only be available 
to the investigator and his advisors.  
 With your permission, some material may be selected to be shown during 
professional presentations at the end of the study. Prior to the presentation, the selected 
footage will be available for your approval. 
 All footage that is not to be used for presentations will be deleted/destroyed at the 
conclusion of the thesis. 
 
 
------------------------------------------------------------------------------------------------------------ 

 
 

I voluntarily release the videotaping and use of __________________________ image  
         Printed Name of Participating Child  

for the use during this study. I understand that I will be allowed to view and approve any  
 
material that will be shown in professional presentations. 
 
 
Printed Name of Parent or Guardian  ________________________________ 
 
Signature of Parent or Guardian ____________________________________ 
 
Date __________________ 
 
Signature of Researcher  ___________________________________   

Figure A.3: Video release form.
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