
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2019

Randomized Algorithms for Preconditioner Selection with Randomized Algorithms for Preconditioner Selection with

Applications to Kernel Regression Applications to Kernel Regression

Conner DiPaolo

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

 Part of the Numerical Analysis and Computation Commons, Numerical Analysis and Scientific

Computing Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
DiPaolo, Conner, "Randomized Algorithms for Preconditioner Selection with Applications to Kernel
Regression" (2019). HMC Senior Theses. 230.
https://scholarship.claremont.edu/hmc_theses/230

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator of
Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/230?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Randomized Algorithms for Preconditioner

Selection, with Applications to Kernel

Regression

Conner DiPaolo

Weiqing Gu, Advisor

Nicholas Pippenger, Reader

Department of Mathematics

May, 2019

Copyright © 2019 Conner DiPaolo.

The author grants Harvey Mudd College and the Claremont Colleges Library the

nonexclusive right to make this work available for noncommercial, educational

purposes, provided that this copyright statement appears on the reproduced

materials and notice is given that the copying is by permission of the author. To

disseminate otherwise or to republish requires written permission from the author.

Abstract

The task of choosing a preconditioner M to use when solving a linear system

Ax � b with iterative methods is often tedious and most methods remain

ad-hoc. This thesis presents a randomized algorithm to make this chore

less painful through use of randomized algorithms for estimating traces. In

particular, we show that the preconditioner stability ‖I −M−1A‖F, known

to forecast preconditioner quality, can be computed in the time it takes to

run a constant number of iterations of conjugate gradients through use of

sketching methods. This is in spite of folklore which suggests the quantity is

impractical to compute, and a proof we give that ensures the quantity could

not possibly be approximated in a useful amount of time by a deterministic

algorithm. Using our estimator, we provide a method which can provably

select a quality preconditioner among n candidates using floating operations

commensurate with running about n log n steps of the conjugate gradients

algorithm. In the absence of such a preconditioner among the candidates,

our method can advise the practitioner to use no preconditioner at all. The

algorithm is extremely easy to implement and trivially parallelizable, and

along the way we provide theoretical improvements to the literature on trace

estimation. In empirical experiments, we show the selection method can be

quite helpful. For example, it allows us to create to the best of our knowledge

the first preconditioning method for kernel regression which never uses

more iterations over the non-preconditioned analog in standard settings.

Contents

Abstract iii

Acknowledgments xi

1 Introduction 1

2 Results on Trace Estimation 5
2.1 Why Deterministic Algorithms Can’t Work 7

2.2 Preliminary Results on Trace Estimation 8

2.3 Upper Bounds on Sample Complexity 11

2.3.1 Application To Schatten-p Norm Computations . . . 18

2.4 Lower Bounds for Hutchinson-Type Estimators 19

2.4.1 Applications to Specific Estimators 21

2.4.2 Related Work: Generic Trace Estimation Lower Bounds 23

2.5 Experimental Results . 24

3 Results on Preconditioner Selection 29
3.1 The Algorithm . 32

3.1.1 Randomization is Necessary to Compute Precondi-

tioner Stability . 32

3.1.2 Computing Preconditioner Stability via Randomization 34

3.1.3 Randomized Algorithm for Selecting the ‘Best’ Pre-

conditioner . 36

3.1.4 Approximation Guarantees and Runtime Bounds . . 38

3.2 Experiments . 44

3.2.1 Experiments with Sparse Systems 44

3.2.2 Experiments with Kernel Regression Preconditioners 48

4 Conclusion 55

vi Contents

Bibliography 57

List of Figures

3.1 This figure presents the relative improvement of using our

proposed preconditioners, or the one automatically chosen

by Algorithm 4, with respect to using no preconditioner at

all. Each individual matrix corresponds to a specific precon-

ditioner and dataset pair. Each row gives the value of log σ2

n
used in the experiment, whereas each column corresponds

to log `. The absence of red cells in the result matrices corre-

sponding to ‘Our Method’ indicates significant improvement

over the results in (Cutajar et al., 2016). 52

List of Tables

2.1 Table summary of sample complexity bounds for Hutchinson-

type trace estimators using random vectors where each el-

ement is identically and independently distributed as the

given x i j . Note that while the result for x i j as ±
√

3 with

probability 1/3 and zero otherwise is evident from the proof

of Roosta-Khorasani and Ascher (2015), neither the result nor

this distribution are mentioned, hence the parenthesis. Here,

Z ∼ N(0, 1) and k � 1, 2, . . . ranges over all positive integers. 12

2.2 Empirical computation of expected relative error for vari-

ous estimators computing the trace of A as a pentadiagonal

matrix constructed as the product A � B∗B where B is a

tridiagonal matrix with independent standard Gaussian en-

tries. Here, we fix our desired failure probability δ � 0.5 and

vary ε ∈ {0.5, 0.2, 0.1}. We use Theorem 2.5 to calculate a

recommended number of samples to achieve the given error

bound with at least 1 − δ � 0.5 probability, and report the

empirical expected relative error in this case. Each element

of this table is independently calculated using n � 1, 000 tri-

als. The estimators sphalf and spthird are the trace estimators

from Table 2.1 which are half- and third-sparse in expectation,

respectively. 25

2.3 Empirical computation of expected relative error for various

estimators computing the trace of A � 11∗. Remaining setup

is the same as Table 2.2. 26

2.4 Empirical computation of expected relative error for various

estimators computing the trace of A � BB∗ where B ∈ Rd×100

has independent standard Gaussian entries. Remaining setup

is the same as Table 2.2. 26

x List of Tables

2.5 Empirical computation of expected relative error for various

trace estimators. We use all matrices from the GHS_psdef
group of the UF Sparse Matrix Collection (see Davis and

Hu (2011)) which have less than a million nonzero entries

and are strictly positive definite. We fix our desired failure

probability δ � 0.5 and ε � 0.2, using Theorem 2.5 to calculate

a recommended number of samples to achieve the given error

bound with at least 1 − δ � 0.5 probability. We report the

empirical expected relative error in this case, computed over

n � 150 independent trials for each element of the table. . . . 27

2.6 Empirical computation of expected relative error for various

estimators computing the Schatten-2 norm by Algorithm 1.

Remaining setup is the same as Table 2.5, though the relative

error reported is in terms of the squared Schatten-2 norm

instead of the actual norm, as reflected in Algorithm 1. . . . 28

3.1 This table reports the number of iterations taken by the conju-

gate gradients algorithm to report an approximate solution

x̃ to the linear system Ax � b for specified test matrices A, a

constant sampled standard normally distributed b ∼ N(0, I),
and various candidate preconditioners. 45

3.2 This table summarizes the performance of Algorithm 4 for

each matrix in Table 3.1, reporting statistics of the empirical

number of iterations given by the algorithm compared to

picking theworst-possible preconditioner (in terms of number

of CG iterations) or choosing arbitrarily at random. Since

the conjugate gradients algorithm did not converge for the

matrix msc10848 with no preconditioner, the ‘Worst-Case’

and ‘Random’ columns are lower bounds for their true values
in that row only. 47

Acknowledgments

Thank you, Professor Gu, for constantly believing in my ability through all

these years. I don’t think I’d be where I am now without your help. I’d

also like to thank Nicholas Pippenger for an extremely fruitful discussion

early in my progress, and Karl Wimmer for helping me to understand the

main result in Wimmer et al. (2014). And of course, I couldn’t be where I am

today without the continued and extreme support and happiness given by

my friends and family.

Chapter 1

Introduction

For a minute, pretend you are a data scientist working for an insurance

company. Due to an increase in the incidence of fire on California’s coast,

more people are looking to buy home insurance. Unfortunately, the current

system relies on humans to estimate the value of each property before

individuals can be insured, and as a result thousands of people are being

asked to wait months before they can feel safe about their homes. To resolve

this issue, your boss asks you to build a model to predict the value of a

home, which can get people in the systemmuch quicker before any potential

fine tuning is needed. You have access to a collection of 500 features about

previous customers’ homes (the number of bedrooms, the distance to the

nearest school, sale price of nearby homes, etc.), as well as how much the

human valued the home at previously, adjusted for inflation and other

economic factors. For each customer i of all 15, 000, 000 previous valuations,

you concatenate these features into a vector x i ∈ R500
, and aim to predict

the logarithm yi ∈ R of the value, in hundreds of thousands of dollars, of

the house.

The task at hand is known as ‘machine learning,’ the act1 of taking in

a large amount of historical data to create a model that can predict the

outcome of new, unseen situations. This is intimately related to statistics,

where we aim to infer the structure of the world through historical data. Of

course, sometimes these goals align but for the purposes of this thesis we

will ignore a philosophical exposition of machine learning as it related to

statistics, optimization, and other similar fields and treat it on a case-by-case

1This encompasses a largemajority ofmachine learning problems, anyway. Other common

tasks appear more statistical in nature, like clustering.

2 Introduction

basis.

A common way to treat this housing valuation problem is to create a

linear model. That is, we wish to find some weights w1 , w2 , . . . ,w500 ∈ R

(that we can concatenate into a vector w ∈ R500
) so that

yi ≈ w1(x i)1 + w2(x i)2 + · · · + w500(x i)500 � w∗x i

for all i from 1 to 15, 000, 000. Finding the ‘best’ weights w that make this

approximation property hold all comes down to how we define best. We

could, for example, choose w to minimize the worst-case error between our

predicted house price and the truth:

max |yi − w∗x i |.

This is known as `∞ regression and reduces quite directly to a linear program.

Another practitioner might decide that the ‘best’ weights minimize the

expected deviation over our training set:

1

15, 000, 000

15,000,000∑
i�1

|yi − w∗x i |.

This is known as `1
regression, and again reduces to a linear program. While

this last procedure is quite resilient to outliers, the most common approach

is to minimize the expected squared deviation (the standard deviation of our

error):

1

15, 000, 000

15,000,000∑
i�1

|yi − w∗x i |2.

If we construct a matrix A ∈ R15,000,000×500
which has rows x i , and create a

vector y with entries yi , this is equivalent to minimizing the Euclidean norm

of the residual vector

‖Aw − y‖2
2

across w. This approach is known as least-squares or `2
regression, and

fortunately the solution can be found in closed form as the solution to the

positive semi-definite linear system A∗Aw � A∗y.
What we just observed is exceedingly common: a machine learning

problem, a question about predicting the future based on historical data,

reduced itself to a numerical linear algebra problemof solving a linear system.

Indeed, even if we wanted to consider the `1
or `∞ version of these problems,

3

the resulting linear programs can be efficiently solved using interior point

methods which at the end of day are just a sequence of solutions to a linear

system.

After this common reduction, the real question becomes one of numerics.

How do we efficiently solve the so-called normal-equations A∗Aw � A∗y
for w when even forming A∗A exactly takes 7, 499, 999, 750, 000 floating

point operations (flops)? (Fast computers today can only compute about

a hundredth of these operations in a second, while in reality computation

would take a whole lot longer since the data wouldn’t fit into memory at

around 30 terabytes.) This ignores the numerical issues associated with

computing least squares solutions via the normal equations, which involves

severe floating point error when the condition number of the matrix A is

on the order of one over the square root of the floating point precision, as

opposed to other methods involving a QR-factorization with much better

stability bounds but higher computational cost.

The field of randomized numerical linear algebra was reborn in the last

decade to solve problems just like this. For example, instead of solving

the least squares problem exactly, we allow some approximation error, and

through this subsample our data from 15, 000, 000 initial points to, say,

10, 000 with which to do the actual computation. Such an algorithm has the

possibility to fail (see Section 2.1 and Section 3.1.1), but these randomized

approaches often allow the user to explicitly control this failure probability

to be vanishingly small. The common subsampling approach is known as

leverage score sampling in the literature (see Ma et al. (2015)), while a related

generalization known as sketching (see Woodruff (2014)) allows the user to

make a single pass over the dataset when computing a least squares solution.

Sketching is the paradigm we will use most in this thesis, so we’ll intro-

duce it before outlining the organization of this report. If S ∈ R10,000×15,000,000

is a matrix with entries which are independent and distributed so that

Si j � ±1/
√

15, 000, 000 with equal probability, then one can show (see

Woodruff (2014)) that ‖SAw − Sy‖2
2
� (1 ± ε)‖Aw − y‖2

2
for all w with high

probability, where ε < 1/2 is some small constant. Computing SA and Sy
can be done in an online fashion as we pass over the dataset, potentially in

parallel. At this point the solution to the much smaller least squares problem

min ‖SAw − Sy‖2
2
gives us a 1 + ε approximation to the original problem

(with high probability), with a much smaller computational cost. One can

make these algorithms useful in practice by changing the sketching matrix

S to make the computation of SA possible in about 2 nnz(A) floating point

operations.

4 Introduction

This thesis in general will consider using techniques like the above,

though instead of solving optimization problems we will compute scalar

quantities which are impractical to compute via traditional means. Chapter

2 will discuss the theory and practice of computing traces of matrices

which are most easily accessed via matrix-vector products instead of their

individual elements. Using this theory, Chapter 3 will create the first

practical algorithms for computing the so-called ‘preconditioner stability,’

which generalizes to the problem of selecting a preconditioner to use in the

preconditioned conjugate gradients algorithm. As a corollary of this work,

we create state-of-the-art preconditioned solvers for the kernel/Gaussian

Process regression problem, illustrating again how this theory is applicable

to the world of statistics/machine learning.

Notation

Boldface letters like x , y , b denote vectors while their upper-case analogues

such as A,P ,Q denote matrices. Such matrices and vectors can be either

random or deterministic. The underlying scalar field F is either the real

numbers R or the complex numbers C unless otherwise specified. The

adjoint of a matrix is denoted by A∗. The inner product of two vectors x and

y is denoted as x∗y. The expectation of a random variable will be denotes

by E, and the probability of an event E is written P(E). The norms ‖A‖F
and ‖x‖2 represent the Frobenius and Euclidean norms, respectively. The

Schatten p-norm of a matrix will be denoted as ‖A‖p when necessary. In

particular, ‖A‖F � ‖A‖2.

Chapter 2

Results on Trace Estimation

The trace of a matrix A ∈ Rd×d
is a fundamental quantity of interest

when working with data. For example, state-of-the-art matrix completion

algorithms rely on minimizing the so-called trace norm (Schatten-1 norm)

of a matrix (see Candès and Recht (2009)), and as a result even being able to

compute the resulting error in approximation requires the ability to compute

the trace. If we have access to the matrix A in memory, computing the trace

is easy:

tr A �

d∑
i�1

Aii ,

which we can complete in d − 1 floating point operations.

As soon as the individual elements of A aren’t easily accessible, the

trace becomes surprisingly difficult to examine. For example, suppose that

A is symmetric, and we wish to compute the common squared Frobenius

norm ‖A‖2
2
� tr A∗A � tr A2

. Since the trace of a matrix is the sum of its

eigenvalues, we could perhaps eigendecompose A � UΛU ∗ for orthogonal
U and diagonal Λ, at which point we could compute tr A2

�
∑d

i�1
Λ2

ii
exactly. This takes on the order d3

floating point operations (see Section

2.3.1 for related analysis). A simpler solution with the same computational

complexity would be to compute A2
exactly using 2d3 − d2

floating point

operations, and then compute the trace of this matrix with an additional

d − 1 floating point operations. This isn’t an improvement, but suggests a

significantly easier procedure by realizing that we don’t actually need to

6 Results on Trace Estimation

compute most elements of A2
, we only need to consider

(A2)ii �
d∑

j�1

Ai jA ji �

d∑
j�1

A2

i j .

Thus

‖A‖2
2
� tr A2

�

d∑
i�1

(A2)ii �
d∑

i�1

d∑
j�1

A2

i j �
∑

i j

A2

i j

can be computed exactly in 2d2 − 1 floating point operations.

While this suggested algorithm for computing tr A2
runs in input sparsity

time – taking on the order of nnz(A) floating point operations – once we try

to compute ‖A‖4
4
� tr A4

exactly this exhaustive list of practical algorithms

will take d3
floating point operations, and d3

time algorithms don’t scale

well with large datasets. The pain point in computing these traces practically

is that computing Aii � e∗i (Ae i) is about as slow as computing a generic

matrix-vector product Ax for any input vector x, whence

tr A �

d∑
i�1

e∗i (Ae i) �
1

d

d∑
i�1

(
√

de i)∗A(
√

de i) � E x∗Ax

where in the last expression x ∼ Uniform{
√

de1 ,
√

de2 , . . . ,
√

den}. If Ax
takes on the order of d2

floating point operations to compute (which is quite

often the case, including when A is a power of some givenmatrix; see Section

2.3.1), the resulting Monte-Carlo estimate of the trace

tr A ≈ Tm �
1

m

m∑
i�1

x∗i Ax i

where the k vectors x i ∼ Uniform{
√

de1 ,
√

de2 , . . . ,
√

ded} are independently
and identically distirbuted will give an increasingly accurate estimate of tr A
as k →∞ using on the order of md2

floating point operations of work, less

than the seemingly necessary d3
if m is significantly less than d.

This chapter considers these stochastic estimators of the trace, largely

dating back to the seminal work of Hutchinson (1990), in serious detail.

We characterize precisely which distributions on vectors x can give rise

to Monte-Carlo style estimators like Tn above. Restricting consideration

to positive definite matrices A, we further provide asymptotically optimal

Why Deterministic Algorithms Can’t Work 7

upper and lower bounds on the performance of these Monte-Carlo style

estimators. Since these asymptotic bounds are a bit unwieldy when actually

choosing constants in practice, we show that these lower bounds reflect

refined, explicit upper bounds bounds on the sample complexity m needed

to achieve with-high-probability relative error bounds we construct for

suitably sub-Gaussian distributions on x that improve upon the current

state-of-the-art bounds given in Roosta-Khorasani and Ascher (2015). Finally,

we conclude by verifying our theoretical results with empirical evidence.

2.1 Why Deterministic Algorithms Can’t Work

Themost important consideration when creating trace estimation algorithms

for matrices where computing an element of A is as hard as computing a

matrix-vector product Ax is determining how many matrix-vector products

Ax we’d need to compute to accurately estimate the trace of a given matrix.

This notion requires a definition of “accuracy.” Relying on the convention in

the numerics community, (see Golub and Van Loan (2012)) for a given ε > 0

we will say that a trace estimator Tm satisfies ε-relative error if

|Tm − tr A| ≤ ε tr A.

Naturally, numerical algorithms ought to work – satisfy a given relative

error – for all inputs of a certain class. In this chapter, for instance, we

will consider mostly positive definite matrices A. Unfortunately, we can

show that any deterministic algorithm – even if it uses infinite computation

power and only works for rank at-most-one positive semi-definite matrices –

used to compute the trace of A via a series of possibly adaptive queries to

a matrix-vector multiply oracle O(x) : x 7→ Ax needs at least d queries to

achieve any ε < 1 relative error. Since we can always compute

tr A �

d∑
i�1

e∗i (Ae i) �
n∑

i�1

e∗i O(e i)

exactly using d queries, thismeans that complicated deterministic algorithms

of this type can never give speedups over conventional computations. As a

result, we have strong motivation to consider randomized procedures which

can give such speedups.

Definition 2.1 (Deterministic Trace Estimator). Fix a given matrix A and

define the function Tm as follows. For some deterministic function f1 :

8 Results on Trace Estimation

Rd×d → Rd
, we compute x1 � O(f1(A)). Inductively, we then compute

xk � O(fk(A, x1 , . . . , xk−1
)) for some deterministic function fk : Rd×d ×Rd ×

· · · ×Rd → Rd
for k � 2, 3, . . . ,m before returning Tm as some deterministic

function of A, x1 , . . . , xm . Such a function Tm is called a deterministic trace

estimator.

Again, note that the above definition allows for Tm to take potentially

infinite computation time.

Theorem 2.1. Fix 0 < ε < 1. Any deterministic trace estimator Tm satisfying

|Tm − tr A| ≤ ε tr A

for all positive semi-definite matrices A ∈ F d×d
of rank at most one requires

m ≥ n.

Proof. We will follow via a resisting oracle. In particular, let’s suppose that

O returns O(x i) � 0 for the first d−1 queries x1 , x2 , . . . , xd−1
. Take v ∈ Rd

to

be orthogonal to x1 , x2 , . . . , xd−1
. At this point, both the zero matrix A1 � 0

and the orthogonal projection A2 onto the span of v would return the 0 for

these queries. (Note moreover that A1 and A2 have rank at most one.) If we

output an estimator Tm � Td−1
which satisfied

|Tm − tr A| ≤ ε tr A

for all positive semi-definite matrices A ∈ F d×d
, then since A1 is positive

semi-definite this series of responses by O would ensure

|Tm | � |Tm − tr A1 | ≤ ε tr A1 � 0,

so Tm � 0. On the other hand, the matrix A2 would give the same sequence

of responses by O and so by determinism

tr A2 � | tr A2 | � |Tm − tr A2 | ≤ ε tr A2 < tr A2 ,

a contradiction. It follows that at least n queries to O are needed to guarantee

this uniform error bound deterministically. �

2.2 Preliminary Results on Trace Estimation

We’ve shown that determinism is necessary for any accurate trace estimator

using the matrix-vector product oracle, but which distributions on x i allow

Preliminary Results on Trace Estimation 9

for the estimator

Tm �
1

m

m∑
i�1

x∗i Ax i

to quickly converge to the trace of A? Taking the limit as m goes to∞, the
law of large numbers tells us Tm → E x∗i Ax i almost surely if each x i are

independent and identically distributed. Thus, it is necessary and sufficient

that E x∗i Ax i � tr A for these Monte-Carlo estimators to converge. The

following Theorem says that even if we allow our algorithm to only work

for positive semi-definite matrices of rank at most two, asking whether a

Hutchinson-type estimator with identically and independently distributed

x i converges to tr A is equivalent to asking whether E x i x∗i � I.

Theorem 2.2. E x∗Ax � tr A for all positive semi-definite A ∈ F d×d
of rank

at most two if and only if E xx∗ � I.

Proof. By linearity and the cyclic properties of the trace,

E x∗Ax � E tr(x∗Ax) � E tr(Axx∗) � tr

(
A(E xx∗)

)
Let Σ � E xx∗. If Σ � I then clearly E x∗Ax � tr(AΣ) � tr(A) for all A ∈ F d×d

.

On the other hand, if

tr(AΣ) � tr(A)
for all positive semi-definite A ∈ F d×d

then in particular

Σii � e∗iΣe i � tr(e i e∗iΣ) � tr(e i e∗i) � 1.

But then

2 + 2Σi j � Σii +Σ j j + 2Σi j � tr

(
(e i + e j)(e i + e j)∗Σ

)
� tr(e i + e j)(e i + e j)∗ � 2

by the same logic so Σi j � 0 for i , j. In sum Σ � I if E x∗Ax � tr A for all

positive semi-definite A. �

By constructing positive semi-definite matrices as a limit of strictly

positive definite matrices (e.g. by adding I/k and letting k →∞) this result

also holds if the class of positive semi-definite matrices of rank at most two

is replaced with the class of positive definite matrices.

In light of the above Theorem and the seminal work of Hutchinson

(1990), we will define a Hutchinson-type estimator to be a Monte-Carlo trace

estimator using independent and identically distributed queries which is

guaranteed to converge in the large-query limit.

10 Results on Trace Estimation

Definition 2.2 (Hutchinson-Type Estimator). If x1 , x2 , . . . are a sequence of
independent and identically distributed copies of some real random vector

x satisfying E xx∗ � I, then for all m � 1, 2, . . . we call the random variable

Tm �
1

m

m∑
i�1

x∗i Ax i

a Hutchinson-type estimator for the trace of A.

We follow this definition with a couple examples of distributions on x i
which give rise to Hutchinson-type estimators. Some of these have special

names and as a result will be given special notation like Hd or Gd instead of

Td .

Example 2.1 (Hutchinson Estimator). Consider a Rademacher vector x ∼
Uniform{±1}d . We can compute E x2

i � E 1 � 1 for any i � 1, 2, . . . , d, so the

diagonal elements of E xx∗ are all one. On the other hand, by independence

of the elements E x i x j � E x i E x j � 0 · 0 � 0 for i , j and hence E xx∗ � I.
The resulting Hutchinson-type estimator is called the Hutchinson estimator,

named after the seminal work of Hutchinson (1990), and will be denoted

Hm .

Example 2.2 (Gaussian Estimator). If x ∼ N(0, I) is a standard Gaussian

vector then E xx∗ � E(x − E x)(x − E x)∗ � I as desired. The resulting

Hutchinson-type trace estimator is called the Gaussian estimator, and is

denoted Gm .

Example 2.3 (SparseTraceEstimators). Suppose thevector x has independent

elements distributed so that

x j ∼

−
√

c with prob.
1

2c√
c with prob.

1

2c

0 otherwise.

for some c > 0. Computations just as in the Hutchinson case show that

E xx∗ � I. This estimator is not commonly used, but conveniently it results in

query vectors which in expectation are n c−1

c -sparse. That is, in expectation

x has n c−1

c nonzero entries. Since we will see that taking c ≤ 3 preserves the

upper bound on convergence of the Gaussian and Hutchinson estimators

exactly for this class, these input vectors give simple-to-construct queries

which are sparse enough to ignore up to 2/3 of the matrix in some settings.

Upper Bounds on Sample Complexity 11

The following result says further that such a Hutchinson-type estimator

cannot exactly compute the trace of all positive definite matrices. We will

rely on this simple sounding result when coming up with extremely tight

asymptotic lower bounds for certain common trace estimators in Section 2.4.

The proof is similar to Theorem 2.2 above.

Theorem2.3. If the real randomvector x satisfiesE xx∗ � I, thenVar(x∗Ax) >
0 for some positive semi-definite A ∈ Rn×n

of rank at most two.

Proof. In light of Theorem 2.2, suppose to the contrary that x∗Ax � tr A
almost surely for every positive semi-definite A ∈ Rn×n

. In particular,

x2

i � x∗e i e∗i x � tr e i e∗i � 1

almost surely for all i � 1, 2, . . . , n, so x ∈ {−1, 1}d almost surely. On the

other hand, if x i , x j with positive probability for some i , j we would have

0 � (x i + x j)2 � x∗(e i + e j)(e i + e j)∗x � tr(e i + e j)(e i + e j)∗ � 2

with positive probability, a contradiction, so almost surely every component

of x is the same. But then 0 � E x i x j � E x2

i � 1, contradicting our assumption

that E xx∗ � I. �

2.3 Upper Bounds on Sample Complexity

Even though we understand how to construct trace estimators Tm which

can estimate traces accurately in a limiting sense with m →∞, as of yet we

don’t have any concrete evidence to suggest that this mode of computation

is quicker than other methods. In Section 2, for example, stochastic trace

estimation would only help us compute ‖A‖4
4
� tr A4

for a positive definite

matrix A if m is sublinear in n. (For example, if m ≥ log n or m ≥ 100 gave us

some desired accuracy, then we would achieve asymptotic superiority over

the other obvious algorithms by using these trace estimates.) This section

guarantees this is the case: indeed the necessary m to achieve an ε < 1/2
relative error trace estimate with probability at least 1 − δ is just 6

ε2
log

2

δ for

all the example Hutchinson-type estimators referenced in Section 2.2.

The ideaof analysing thenon-asymptotic concentrationof theseHutchinson-

type trace estimators Tm started with Avron and Toledo (2011) after Avron

(2010) realized that such bounds would be useful in achieving error bounds

in novel algorithms for computing the number of triangles in large graphs.

12 Results on Trace Estimation

x i j Distribution Sample Complexity

This Work [RoostaAscher] [AvronToledo]

N(0, 1) 6

ε2
log

2

δ
8

ε2
log

2

δ
20

ε2
log

2

δ

Uniform{±1} 6

ε2
log

2

δ
6

ε2
log

2

δ
6

ε2
log

2 rank(A)
δ

±
√

3 wp
1

3
, 0 ow

6

ε2
log

2

δ (
6

ε2
log

2

δ) —–

±
√

2 wp
1

2
, 0 ow

6

ε2
log

2

δ —– —–

x i j
dist

� −x i j , E xk
i j ≤ E Zk 6

ε2
log

2

δ —– —–

Table 2.1 Table summary of sample complexity bounds for Hutchinson-type
trace estimators using random vectors where each element is identically and
independently distributed as the given x i j . Note that while the result for x i j

as ±
√

3 with probability 1/3 and zero otherwise is evident from the proof of
Roosta-Khorasani and Ascher (2015), neither the result nor this distribution are
mentioned, hence the parenthesis. Here, Z ∼ N(0, 1) and k � 1, 2, . . . ranges
over all positive integers.

Originally, error analysis for the trace estimation procedures starting with

Hutchinson (1990) relied solely on controlling the variance of the (unbiased)

estimator Tm of tr A. This is a reasonable request, and motivated Hutchinson

to use Rademacher queries in the first place since it results in minimal

variance for identically and independently distributed inputs. That said,

answering the natural question “How many matrix-vector products do I

need to be 90% confident that my approximation to tr A is within 1/5-relative
error of the true value?” directly makes much more sense for algorithmic

problems where this is often the question of interest. As a result, we will

ignore the variance and focus largely on these concentration guarantees.

This sectionwill extend the state-of-the-art results fromRoosta-Khorasani

and Ascher (2015), which in turn built on the seminal work of Avron and

Toledo (2011) to give tight bounds on the sample complexity1 of the Gaussian

and Hutchinson estimators Gm and Hm . The original sample complexity

bound for the Hutchinson estimator Hm given by Avron and Toledo (2011)

depended logarithmically on n in the worst case, which was tightened to

match the dimension-independent complexity of the Gaussian estimator

by Roosta-Khorasani and Ascher (2015). Roosta-Khorasani and Ascher

(2015) rely strongly on results from Achlioptas (2001) detailing finite-sample

1This is the minimal m needed for ε relative error and 1 − δ confidence that this error

bound is satisfied for any fixed positive definite input matrix A ∈ Rn×n

Upper Bounds on Sample Complexity 13

guarantees for Rademacher Johnson-Lindenstrauss embeddings. Potentially

unknown to Roosta-Khorasani and Ascher (2015) is that by outsourcing the

heavy lifting of their proof of Hutchinson estimator concentration they also

proved the same sample complexity for the sparse queries used in Example

2.3 when c � 3. Our work extends this to any 0 < c ≤ 3, allowing half-zero

query vector Hutchinson-type estimators with fast convergence guarantees

and only twice as many bits of randomness needed as in the Hutchinson

case (for c � 2). A summary of this contribution is given in Table 2.1. As we

will show in Section 2.4, these upper bounds (in their full form) on sample

complexity are tight even up to the leading constant.

We start with our complexity bound for the Gaussian estimator. This

proof is modeled after the complexity bound for the Hutchinson estimator

from Roosta-Khorasani and Ascher (2015), though it does improve on their

result for the Gaussian estimator. This is the first time that the main result

from Roosta-Khorasani and Ascher (2015) has been presented in complete

on it’s own, without outsourcing to another text. As a result we have been a

tad more pedantic than necessary.

Theorem 2.4. If A ∈ Rd×d
is positive semi-definite, then

P
(
|Gm − tr A| > ε tr A

)
< 2e−

m
2

(
ε2

2
− ε

3

3

)
.

In other words, if m ≥ 12 log(2δ)
ε2(3−2ε) then the relative error |Gm − tr A| ≤ ε tr A

with probability at least 1 − δ. Moreover, if ε < 1

2
, then m ≥ 6

ε2
log

2

δ implies

the relative error |Gm − tr A| ≤ ε tr A with probability at least 1 − δ.

Proof. Diagonalize A � UΛU ∗ where U is unitary and Λ is diagonal. Let

14 Results on Trace Estimation

z i � U ∗g i so that

P
(
Gm > (1 + ε) tr A

)
� P

(m∑
i�1

g∗i Ag i > m(1 + ε) tr A
)

� P
(m∑

i�1

z∗iΛz i > m(1 + ε) tr A
)

� P
(m∑

i�1

n∑
j�1

λ j z2

i j > m(1 + ε) tr A
)

� P
(n∑

j�1

λ j

tr A

m∑
i�1

z2

i j > m(1 + ε)
)

� P
(
exp

(
t

n∑
j�1

λ j

tr A

m∑
i�1

z2

i j

)
> e(1+ε)mt

)
≤ e−(1+ε)mt E exp

(n∑
j�1

λ j

tr A

m∑
i�1

tz2

i j

)
for t > 0 by Markov’s inequality. (Wasserman, 2013: Thm4.1) Now by

convexity of the exponential and linearity of expectation

E exp

(n∑
j�1

λ j

tr A

m∑
i�1

tz2

i j

)
≤

n∑
j�1

λ j

tr A
E exp

(m∑
i�1

tz2

i j

)
�

n∑
j�1

λ j

tr A

m∏
i�1

E e tz2

i j

since λi ≥ 0 and

∑n
i�1
λi � tr A, and for a fixed j, z i j are independent and

identically distributed. Now, to bound the moment generating function,

observe that z i are just independent standard normal vectors by the rotation

invariance of the Gaussian and unitary nature of U . This implies that

z i j ∼ N(0, 1) and hence z2

i j is just a χ
2
random variable with one degree of

freedom. We then know (see Wasserman (2013)) that

E e tz2

i j �
1√

1 − 2t

so long as t < 1/2. This implies that

E exp

(n∑
j�1

λ j

tr A

m∑
i�1

tz2

i j

)
≤

(
1√

1 − 2t

)m

Upper Bounds on Sample Complexity 15

for these 0 < t < 1/2 and hence taking t � 1

2

ε
1+ε < 1/2 we have

P
(
Gm > (1+ε) tr A

)
≤

(
1√

1 − 2t

)m

e−(1+ε)mt
�

(
(1+ε)e−ε

)m/2
< e−

m
2

(
ε2

2
− ε

3

3

)
,

(2.1)

relying on the fact that (1 + ε)e−ε < e
ε3

3
− ε

2

2 for all ε > 0, verifiable by simple

calculus. Now we perform largely the same argument for the lower tail.

P
(
Gm < (1 − ε) tr A

)
� P

(m∑
i�1

g∗i Ag i < m(1 − ε) tr A
)

� P
(m∑

i�1

z∗iΛz i < m(1 − ε) tr A
)

� P
(m∑

i�1

n∑
j�1

λ j z2

i j < m(1 − ε) tr A
)

� P
(n∑

j�1

λ j

tr A

m∑
i�1

z2

i j < m(1 − ε)
)

� P
(
−t

n∑
j�1

λ j

tr A

m∑
i�1

z2

i j > −(1 − ε)mt
)

� P
(
exp

(
−t

n∑
j�1

λ j

tr A

m∑
i�1

z2

i j

)
> e−(1−ε)mt

)
≤ e(1−ε)mt E exp

(n∑
j�1

λ j

tr A

m∑
i�1

−tz2

i j

)
Let t > 0. By the same argument as before,

E exp

(n∑
j�1

λ j

tr A

m∑
i�1

−tz2

i j

)
≤

n∑
j�1

λ j

tr A
E exp

(m∑
i�1

−tz2

i j

)
�

n∑
j�1

λ j

tr A

m∏
i�1

E e−tz2

i j .

Since

E e−tz2

i j �
1√

1 + 2t
for any t > −1/2, these reductions say that

P
(
Gm < (1 − ε) tr A

)
≤

(
1√

1 + 2t

)m

e(1−ε)mt
�

(
(1 − ε)eε

)m/2
< e−

m
2

(
ε2

2
− ε

3

3

)
(2.2)

16 Results on Trace Estimation

by plugging in t � 1

2

ε
1−ε > 0. The last inequality relies on the scalar estimate

(1− ε)eε < e−
ε2

2
+
ε3

3 as with the upper tail. Combining Equation 2.1 with this

lower tail bound gives

P(|Gm − tr A| > ε tr A) < 2e−
m
2

(
ε2

2
− ε

3

3

)
.

�

We note that the only property of the Gaussian distribution used to get

the upper tail concentration is that the projection of a Gaussian vector g
onto an arbitrary subspace spanned by a unit vector µ satisfies

E e t(µ∗g)2 ≤ 1√
1 − 2t

for 0 < t < 1/2. It so happens that equality holds in this case, but this isn’t

necessary for the result. In particular let’s suppose that for some random

vector x the moments satisfy E(µ∗x)k ≤ E(µ∗g)k for all k � 1, 2, Then

E e t(µ∗x)2
� 1 +

∞∑
k�1

tk

k!

E(µ∗x)2k ≤ 1 +

∞∑
k�1

tk

k!

E(µ∗g)2k
� E e t(µ∗g)2

�
1√

1 − 2t

for 0 < t < 1/2, and so the same bound fromTheorem2.4 holds for estimators

Gd using vectors x i instead of g i . This argument will allow us to prove

that the bound in Theorem 2.4 holds for a much larger class of suitably

sub-Gaussian vectors.

Theorem 2.5. Let Z be a standard normal variable. For i � 1, 2, . . . ,m
suppose that x i are symmetric, independent, and identically distributed ran-

dom vectors with independent components x i j satisfying the sub-Gaussian

moment growth condition E xm
ij ≤ E Zm

. Moreover, we assume that each x i j

have unit variance: E x2

i j � 1. Then if A is positive semidefinite and

Tm �
1

m

m∑
i�1

x∗i Ax i ,

we know that

P
(
|Tm − tr A| > ε tr A

)
< 2e−

m
2

(
ε2

2
− ε

3

3

)
for all ε > 0. In particular, m ≥ 12 log(2δ)

ε2(3−2ε) ensures that the relative error

|Tm − tr A| < ε tr A with probability at least 1 − δ. For simplicity, if we know

0 < ε < 1/2 taking a larger m ≥ 6

ε2
log

2

δ gives the same guarantee.

Upper Bounds on Sample Complexity 17

Proof. By the proof of Theorem 2.4, it suffices to show that the moment

growth condition implies that E e t(µ∗x i)2 ≤ E e tZ2

for any fixed unit vector

µ ∈ Rn
. Let z i j ∼ N(0, 1) be independent standard normal variables. Then

if

Im �

{
(i1 , i2 , . . . , in) ∈ Zn

: i j ≥ 0 is even,

n∑
j�1

i j � m
}

we can expand using independence

E(µ∗x i)m �

∑
i1 ,...,in∈Im

µi1
1
µi2

2
· · · µin

n E x i1
i1 E x i2

i2 · · ·E x in
in

≤
∑

i1 ,...,in∈Im

µi1
1
µi2

2
· · · µin

n E z i1
i1 E z i2

i2 · · ·E z in
in � E(µ∗z i)m

� E Zm

for all m � 2, 4, 6, We can ignore the odd powers since if i j was odd we

would have the summand including E x
i j

i j � 0 drop by symmetry. It follows

that the moment generating function

E e t(µ∗x i)2 � 1 +

∞∑
k�1

tk

k!

E(µ∗x i)2k ≤ 1 +

∞∑
k�1

tk

k!

E Z2k
� E e tZ2

�
1√

1 − 2t

for 0 ≤ t < 1/2. The proof of Theorem 2.4 then tells us that

P
(
Tm > (1 + ε) tr A

)
< e−

m
2

(
ε2

2
− ε

3

3

)
for all ε > 0. For the lower tail, the same proof tells us

P
(
Tm < (1 − ε) tr A

)
≤ e(1−ε)mt

n∑
j�1

λ j

tr A

m∏
i�1

E e−tx2

i j ,

so it remains to bound E e−tx2

i j
. Following the suggestion of Achlioptas (2001),

we can use the numerical estimate e−t ≤ 1 − t + t2/2 for t > 0 to give

E e−tx2

i j ≤ 1 − t E x2

i j +
t2

2

E x4

i j ≤ 1 − t +
t2

2

E Z4

� 1 − t +
3

2

t2

for t > 0. Plugging in t � 1

2

ε
1+ε > 0 we have

P
(
Tm < (1 − ε) tr A

)
< e−

m
2

(
ε2

2
− ε

3

3

)
.

18 Results on Trace Estimation

The last inequality (1 − t + 3

2
t2)e(1−ε)t ≤ e−

1

2
(ε

2

2
− ε

3

3
)
can be verified via series

expansion and the assistance of a computer algebra system. A union bound

gives the result. �

2.3.1 Application To Schatten-p Norm Computations

Many common computations involving matrices ask in some detail about

the size of the matrices involved, usually in the form of a norm. For example,

matrix completion problems like those presented in Candès and Recht (2009)

rely on minimizing the Schatten-1 norm of a matrix, which is also known as

the nuclear norm. The ubiquitous truncated singular value decomposition

finds the closest low rankmatrix under the Schatten-2 and Schatten-∞ norms,

also known as the Frobenius and operator/spectral norms, respectively.

Simply computing these quantities is therefore fundamental, yet as we will

see for largematrices this is challenging. Before we can talk about computing

these norms, it is necessary to define them.

Definition 2.3. Let A ∈ Rd×d
be positive semi-definite and λ1 ≥ λ2 ≥ · · · ≥

λd be the eigenvalues (which are the same as the singular values) of the

matrix A. For p > 1 the Schatten-p norm of A is defined as

‖A‖p �
(d∑

i�1

λ
p
d

)
1/p
.

For p � ∞, a point-wise limit gives the spectral norm

‖A‖∞ � max

1≤i≤d
λd .

The normal procedure for computing ‖A‖p can be seen in Algorithm

1. Note that for simplicity’s sake all algorithms will compute ‖A‖pp instead

of ‖A‖p ; to find the Schatten norm from this quantity one can just spend

∼ 17 flops computing the p-th root. The eigenvalue computation can be

completed using (Golub and Van Loan, 2012: Alg 8.3.3), for example. This

n3
dependence is too slow for large matrices; on a 1.4GHz computer the

computation time for an arbitrary A is at least a day for n � 50, 000 and

p � 4.

Luckily, our trace estimation schemes present an easy way to drop this

dependence from n3
to n2p. SeeAlgorithm 2 for details. Note that (Woodruff,

2014: Thm69) (relayed from Li et al. (2014)) gives a less-precise bound for this

Lower Bounds for Hutchinson-Type Estimators 19

Algorithm 1: Naive Schatten norm computation.

Data: A positive semi-definite matrix A ∈ Rd×d
and an integer

p � 1, 2, . . . < ∞.

Result: The Schatten-p norm ‖A‖pp using ∼ 4

3
d3 + dp flops.

Overwrite A with diag(λ1 , . . . , λd) using ∼ 4n3/3 flops.

Compute A← Ap
using d(p − 1) flops.

Compute tr A �
∑n

i�1
Aii using d − 1 flops.

Return ‖A‖pp � tr A.

same algorithm. In particular, Li et al. (2014) doesn’t allow for variable failure

probability δ without resorting to multiple runs of the algorithms, and the

constant is much looser at 40 instead of 18 for the failure probability they

specify. Also, this version of the algorithm uses far fewer bits of randomness

than the Gaussian probing vectors used in Li et al. (2014). Experimental

results are given in Section 2.5.

Note that if we wish to get relative error in terms of ‖A‖p instead of

‖A‖pp , the fact that (1 + ε)1/p � 1 +
ε
p effectively removes the dependence

on p. Indeed, as p increases, fewer floating point oprations are needed

asymptotically. This makes intuitive sense because of the success of the

power method in computing ‖A‖p .

2.4 Lower Bounds for Hutchinson-Type Estimators

As promised repeatedly, we can exhibit lower bounds which show that

our results from Section 2.3 regarding Hutchinson-type estimators are

exceedingly tight. The following theorem relies weakly on Theorem 2.3 to

say that any Hutchinson-type estimator needs Ω(1

ε2
log

1

δ) queries to A in

order to achieve an ε-relative error approximation to tr A with probability

at least 1 − δ. Recall that W is the Lambert-W function, satisfying W(x) �
log x − log log x + o(1) � Θ(log x) as x →∞. (Hoorfar and Hassani, 2007)

Theorem 2.6. Fix 0 < δ < 1

10
. For every Hutchinson-type estimator Tm and

every positive semi-definite matrix A ∈ Rd×d
there exists an ε0 > 0 so that

P
(
|Tm − tr A| > ε tr A

)
> δ

whenever 0 < ε < ε0 and m � bVar(x∗Ax)
tr(A)2

1

ε2
W(2/π

δ2
)c � Θ(1

ε2
log

1

δ). Since there
exists an A with Var(x∗Ax) > 0, this sample complexity dependence on δ

20 Results on Trace Estimation

Algorithm 2: Randomized Schatten norm computation.

Data: A positive semi-definite matrix A ∈ Rd×d
and an integer

p � 1, 2, . . . < ∞. User-supplied accuracy parameter

0 < ε < 1/2 and failure probability 0 < δ < 1.

Result: The Schatten-p norm ‖A‖pp up to ε-relative error using

∼ 6

p
ε2

d2
log

2

δ flops. If A is sparse, ∼ 6

p
ε2

nnz(A) log
2

δ flops

are used. dd 6

ε2
log

2

δ e bits of randomness are used.

Compute m ← d 6

ε2
log

2

δ e using ∼ 20 flops.

Sample R ∈ {−1, 1}d×m
so that Ri j � ±1 with equal probability.

foreach 1 ≤ i ≤ bp/2c do
Compute R← AR using 2d2m − md flops.

end
if p is odd then

Compute S← AR using 2d2m − md flops.

Return
1

m
∑d

i�1

∑m
j�1

Si jRi j using 2md flops.

else
Return

1

m
∑d

i�1

∑m
j�1

R2

i j using 2md flops.

end

and ε is uniform across all Hutchinson-type estimators.

Proof. If Z ∼ N(0, 1) is a standard normal random variable then

P
(
|Z | > t

)
� 2 P(Z > t) >

√
2

π
t

t2 + 1

e−t2 ≥ 1√
2π

1

t
e−t2

when t ≥ 1. (Cook, 2009) Setting the right hand side to 2δ and solving gives

P
(
|Z | > 2

−1/2
√

W(π−1δ−2)
)
> 2δ

whenever 2
−1/2

√
W(π−1δ−2) ≥ 1 or 0 < δ ≤ (e

√
2π)−1

. This is satisfied when

0 < δ < 1

10
. If we fix m � bVar(x∗Ax)

tr(A)2
1

ε2
W(2/π

δ2
)c and write σ2 � Var(x∗Ax) > 0,

P
(
|Tm − tr A| > ε tr A

)
� P

(√
m
σ
|Tm − tr A| >

√
m
σ
ε tr A

)
≥ P

(√
m
σ
|Tm − tr A| > 1√

2

√
W(π−1δ−2)

)
.

Lower Bounds for Hutchinson-Type Estimators 21

Conveniently, the latter expression converges to P(|Z | ≥ 2
−1/2

√
W(π−1δ−2))

as m →∞, (Wasserman, 2013: Thm5.10) and so

lim

ε→0

P
(
|Tm − tr A| > ε tr A

)
> 2δ.

This implies the existence of an ε0 > 0 so that 0 < ε < ε0 ensures P(|Tm −
tr A| > ε tr A) > δ under our relation defining m. �

2.4.1 Applications to Specific Estimators

For any input vector with sufficiently sub-Gaussian entries, Theorem 2.5

ensures that m ≥ 12

ε2(3−2ε) log
2

δ matrix-vector products are needed to ensure

that the corresponding trace estimate Tm satisfies ε-relative error with

probability at least 1 − δ. Theorem 2.6 guarantees that this dependence

on ε and δ is optimal for the class of Hutchinson-type estimators. (See

Section 2.4.2 for extensions to more generic trace estimators.) By restricting

ε to be smaller and smaller, the leading constant results in an asymptotic

upper bound on m of
4

ε2
log

2

δ . The following application of Theorem 2.6

ensures that this leading 4 is indeed optimal for all our example estimators;

even though the 2 in the log
2

δ term could be closer to

√
2/π ≈ 0.79788, this

constant could be factored into a lower order term and hence we ignore it.

Corollary 2.1. There exists a rank-one positive semi-definitematrix A ∈ Rd×d

and ε0 > 0 so that the Gaussian estimator Gm needs m ≥ b 2

ε2
W(2/π

δ2
)c to

achieve

P
(
|Gm − tr A| > ε tr A

)
< δ

for any 0 < ε < ε0. If we know δ < 1/66 this means that we need

m ≥ 4

ε2
log

√
2/π
δ − 2

ε2
log log

2/π
δ2
− 1.

Proof. Let Z be a standard normal random variable, µ be any unit vector,

and A � µµ∗. This result follows simply from applying Theorem 2.6 by

realizing that

Var(g∗Ag) � Var((µ∗g)2) � Var(Z2) � 2, tr A � tr(µ∗µ) � ‖µ‖2
2
� 1,

and looking up the lower bound on the Lambert-W function from Hoorfar

and Hassani (2007). �

Theproof for the classicalHutchinson estimator is a tadmore complicated,

but is easily generalizable to the other sparser vectors we saw applicable to

Theorem 2.5.

22 Results on Trace Estimation

Corollary 2.2. There exists a rank-one positive semi-definitematrix A ∈ Rd×d

and ε0 > 0 so that the classical Hutchinson estimator Hm with Rademacher

probing vectors needs m ≥ b 2− 2

d
ε2

W(2/π
δ2
)c to achieve

P
(
|Hm − tr A| > ε tr A

)
< δ

for any 0 < ε < ε0. If we know δ < 1/66 this means that we need

m ≥ 4− 4

d
ε2

log

√
2/π
δ − 2− 2

d
ε2

log log
2/π
δ2
− 1.

Proof. Let µ � 1/
√

d ∈ Rd
be the constant unit vector and A � µµ∗. Then for

the Rademacher vector x ∼ Uniform{±1}d

x∗Ax �

(n∑
i�1

x i√
d

)
2

�
1

d

∑
i j

x i x j .

We already know E x∗Ax � 1, but a simple counting argument can show us

that

E(x∗Ax)2 �
1

d2

∑
i jk`

E x i x j xk x`

�
1

d2

����{i , j, k , ` :

i� j,k�`
i�k, j�`
i�`,k� j

}���� + E x4

1

d

��{i , j, k , ` : i � j � k � `
}��

� 3 − 3−E x4

1

d

so

Var(x∗Ax) � 3 −
3 − E x4

1

d
− 1 � 2 −

3 − E x4

1

d
� 2 − 2

d
.

Since tr A � 1, the result follows from applying Theorem 2.6 and the

Lambert-W lower bound from Hoorfar and Hassani (2007). �

Essentially the same argument gives the tight lower boundon the constant

for our sparse trace estimators as well.

Corollary 2.3. There exists a rank-one positive semi-definitematrix A ∈ Rd×d

and ε0 > 0 so that the sparse Hutchinson estimator Hm with probing

vectors taking values ±
√

3 with probability 1/3 and zero otherwise needs

m ≥ b 2

ε2
W(2/π

δ2
)c to achieve

P
(
|Hm − tr A| > ε tr A

)
< δ

Lower Bounds for Hutchinson-Type Estimators 23

for any 0 < ε < ε0. If we know δ < 1/66 this means that we need

m ≥ 4

ε2
log

√
2/π
δ − 2

ε2
log log

2/π
δ2
− 1.

Corollary 2.4. There exists a rank-one positive semi-definitematrix A ∈ Rd×d

and ε0 > 0 so that the sparse Hutchinson estimator Hm with probing

vectors taking values ±
√

2 with probability 1/2 and zero otherwise needs

m ≥ b 2− 1

d
ε2

W(2/π
δ2
)c to achieve

P
(
|Hm − tr A| > ε tr A

)
< δ

for any 0 < ε < ε0. If we know δ < 1/66 this means that we need

m ≥ 4− 2

d
ε2

log

√
2/π
δ − 2− 1

d
ε2

log log
2/π
δ2
− 1.

2.4.2 Related Work: Generic Trace Estimation Lower Bounds

While we won’t delve into this in detail, it’s important to recognize that we

haven’t closed the book on trace estimation just yet. We have presented

Hutchinson-type estimation schemeswhich are the best one could reasonably

hope for among this class of estimators. There is a natural question of whether

there exists some (potentially adaptive and terribly difficult to compute)

procedure to estimate the trace of a matrix which only needs on the order

of
1

ε log
1

δ or
1

ε2
log log

1

δ queries of a matrix A in the form of matrix-vector

products to compute an ε-relative error trace estimate with probability at

least 1 − δ. Such a procedure would need to be randomized, as evidenced

by Section 2.1, but our lower bounds from Section 2.4 don’t eliminate this

possibility.

It is open whether this is the case for the generic matrix-vector product

oracle O : x 7→ Ax we have considered thus far, but Wimmer et al. (2014)

showed that all estimators in Table 2.1 are optimal in their dependence

on ε and δ among all estimation procedures which have access to a more

restricted quadratic form oracle O : x 7→ x∗Ax. Their results are as follows.

Theorem 2.7 (Wimmer et al. Thm1). If we consider estimators for tr A that

pre-decide a distribution over queries (r1 , r2 , . . . , rm) as well as weights

(w1 ,w2 , . . . ,wn) and output

Tm �

m∑
i�1

wiO(r i) �
m∑

i�1

wi r∗i Ar i ,

24 Results on Trace Estimation

the minimum variance estimator for which E Tm � tr A uniformly on M n is

achieved by sampling {r i} as a collection of m orthogonal unit vectors and

outputting

T?m �
n
m

m∑
i�1

O(r i)

Theorem 2.8 (Wimmer et al. Thm2). Any possibly nonlinear or adaptive

estimator for the trace of amatrix A that sequentially submits randomqueries

r i to O : r i 7→ r∗i Ar i after seeing the previous i − 1 queries needs Ω(1/ε)
queries to achieve ε mean squared error uniformly across all matrices with

Frobenius norm 1.

Theorem 2.9 (Wimmer et al. Thm3). Any possibly nonlinear or adaptive

estimator for the trace of a matrix A that sequentially submits random

queries r i to O : r i 7→ r∗i Ar i after seeing the previous i − 1 queries needs

Ω(1

ε2
log

1

δ) queries to output an estimator Tm that satisfies

P
(
|T − tr A| > ε tr A

)
≤ δ

for any rank-one positive definite matrix A.

The proofs of these theorems are tedious and extending them to the

generic matrix-vector product oracle will be left as future work. The main

insight Wimmer et al. (2014) use is that the trace of a matrix A is always the

same as the trace of a matrix UAU ∗ where U is orthogonal. As a result, they

exchange the randomness-provided problem of estimating the trace of A
to the statistical problem of estimating the trace of a random matrix UAU ∗

where U is sampled according to the Haar measure. The decades of work

proving minimax lower bounds in the statistics community then becomes

helpful and gives the desired results.

2.5 Experimental Results

Now we put the algorithms for estimating traces and Schatten norms to the

test in a series of empirical trial. Tables 2.2, 2.3, and 2.4 compare all the trace

estimators referenced in Table 2.1 for a couple different artificial matrices.

Table 2.2 uses a random pentadiagonal matrix generated as an inner product

B∗B of a tridiagonal matrix B with independent standard normal entries;

this matrix is the sparsest of all those evaluated against. Table 2.3 uses the

all-ones matrix that was used as to create lower bounds for the estimators

Experimental Results 25

Estimator d nnz(A) Expected Relative Error

ε � 0.5 ε � 0.2 ε � 0.1

hutch 1,000 4,994 0.0050 0.0024 0.0012
gauss 1,000 4,994 0.0097 0.0043 0.0022

sphalf 1,000 4,994 0.0078 0.0033 0.0018

spthird 1,000 4,994 0.0093 0.0043 0.0023

Table 2.2 Empirical computation of expected relative error for various esti-
mators computing the trace ofA as a pentadiagonal matrix constructed as the
productA � B∗B where B is a tridiagonal matrix with independent standard
Gaussian entries. Here, we fix our desired failure probability δ � 0.5 and vary
ε ∈ {0.5, 0.2, 0.1}. We use Theorem 2.5 to calculate a recommended number of
samples to achieve the given error bound with at least 1 − δ � 0.5 probability,
and report the empirical expected relative error in this case. Each element of
this table is independently calculated using n � 1, 000 trials. The estimators
sphalf and spthird are the trace estimators from Table 2.1 which are half- and
third-sparse in expectation, respectively.

in Section 2.4.1. Finally, Table 2.4 considers a rank-100 randomly generated

matrix as an outer product of Gaussianmatrices. For all of these experiments

we fix the desired failure probability to δ � 0.5 and consider the expected

relative error as we vary ε from 0.5 to 0.2 and then to 0.1. For more details

see the description of Table 2.2.

This bound ensures that the median relative error is less than ε. These
experiments validate whether the distribution of relative errors from these

estimators is skewed towards zero, indicating a good estimate or conservative

bound, or whether the error is skewed past ε, indicating a bad estimator

to use in practice. Indeed, the latter case would show that failure of the

estimator (which can occur half of the time here) would result in severely

poor computational estimate of the trace. The former would say that any

failure of these estimators would seldom return an estimate that was grossly
inaccurate.

Luckily, our computational evidence suggests across the board that when

using the parameter guidance of Theorem 2.5 in the artificial situations

considered, all sub-Gaussian trace estimators won’t return wildly inaccurate

estimates when they fail. The empirical estimated relative error was never

more than 50% of our bound on the median of the relative error. This

tightness is achieved in Table 2.3, by the same matrix we used to construct

26 Results on Trace Estimation

Estimator d nnz(A) Expected Relative Error

ε � 0.5 ε � 0.2 ε � 0.1

hutch 1,000 1,000,000 0.1897 0.0902 0.0454

gauss 1,000 1,000,000 0.1911 0.0887 0.0460

sphalf 1,000 1,000,000 0.1956 0.0897 0.0453

spthird 1,000 1,000,000 0.1961 0.0839 0.0450

Table 2.3 Empirical computation of expected relative error for various esti-
mators computing the trace ofA � 11∗. Remaining setup is the same as Table
2.2.

Estimator d nnz(A) Expected Relative Error

ε � 0.5 ε � 0.2 ε � 0.1

hutch 1,000 1,000,000 0.0193 0.0089 0.0049

gauss 1,000 1,000,000 0.0220 0.0094 0.0049

sphalf 1,000 1,000,000 0.0203 0.0091 0.0048
spthird 1,000 1,000,000 0.0205 0.0096 0.0048

Table 2.4 Empirical computation of expected relative error for various esti-
mators computing the trace ofA � BB∗ where B ∈ Rd×100 has independent
standard Gaussian entries. Remaining setup is the same as Table 2.2.

the lower bounds in Section 2.4.1.

From the proof of Theorem 2.5, it is natural to ask whether specific input

distributions result in better computational results on average across certain

types ofmatrices. Indeed, by reducing to the Gaussian case, wewould expect

query distributions using Rademacher entries with much smaller higher

moments to give tighter concentration in practice. It turns out that this

intuition is evident throughout our results; the Hutchinson estimator of the

trace performed the best in six of the nine artificial experiments. Most of the

time, performance ranking was dictated precisely by how fast the moments

of the query distribution grows: Rademacher entries have the smallest

moments, then the half-sparse {−
√

2, 0,
√

2} distribution, then the third-

sparse {−
√

3, 0,
√

3}, before we reach the bounding Gaussian case. What’s

more, the Hutchinson estimator performs best for sparse matrices, while the

Gaussian estimator tends to perform best for the dense, higher rank matrices

of Table 2.4. These differences are seen with the more nuanced bounds

Experimental Results 27

Matrix d nnz(A) Expected tr A Error

hutch gauss sphalf spthird

apache1 80,800 542,184 0.0004 0.0007 0.0005 0.0006

cvxbqp1 50,000 349,968 0.0004 0.0006 0.0005 0.0006

gridgena 48,962 512,084 0.0002 0.0005 0.0004 0.0005

jnlbrng1 40,000 199,200 0.0003 0.0006 0.0004 0.0006

minsurfo 40,806 203,622 0.0003 0.0006 0.0005 0.0006

obstclae 40,000 197,608 0.0002 0.0005 0.0004 0.0005

torsion1 40,000 197,608 0.0002 0.0005 0.0003 0.0004

wathen100 30,401 471,601 0.0005 0.0008 0.0007 0.0008

wathen120 36,441 565,761 0.0005 0.0008 0.0007 0.0008

Table 2.5 Empirical computation of expected relative error for various trace
estimators. We use all matrices from the GHS_psdef group of the UF Sparse
MatrixCollection (seeDavis andHu (2011))whichhave less thanamillionnonzero
entries and are strictly positive definite. We fix our desired failure probability
δ � 0.5 and ε � 0.2, using Theorem 2.5 to calculate a recommended number of
samples to achieve the given error bound with at least 1 − δ � 0.5 probability.
We report the empirical expected relative error in this case, computed over
n � 150 independent trials for each element of the table.

explored in Roosta-Khorasani and Ascher (2015) in Theorem 2 and Theorem

3, where the diagonal dominance can theoretically improve Hutchinson

estimator convergence while high stable rank improves convergence for the

Gaussian estimator.

To ensure that these results for artificial matrices aremaintainedwhenwe

apply these algorithms to real world data, we also tested the four estimators

against a collection of relatively large, sparse matrices from the UF Sparse

Matrix Collection (see Davis and Hu (2011)). These positive definite matrices

are collected from real world examples of finite element modeling. See Table

2.5 for details. For computational simplicity, we set δ � 0.5 as before but left

ε � 0.2 uniformly. As we could suspect from our artificial results above, we

can see that the Hutchinson estimator performs uniformly better than the

other matrices, probably due to the sparsity in this collection. Interestingly,

though, all four estimators return extremely strong empirical relative error

– all below 1/1000 even though the desired relative error bound gives a

median relative error 200 times larger than this.

To sanity-check the performance of the almost-equivalent Algorithm 1

28 Results on Trace Estimation

Matrix d nnz(A) Expected ‖A‖2
2
Error

hutch gauss sphalf spthird

apache1 80,800 542,184 0.0005 0.0009 0.0007 0.0008

cvxbqp1 50,000 349,968 0.0007 0.0009 0.0007 0.0009

gridgena 48,962 512,084 0.0003 0.0006 0.0004 0.0005

jnlbrng1 40,000 199,200 0.0005 0.0007 0.0005 0.0007

minsurfo 40,806 203,622 0.0006 0.0008 0.0007 0.0008

obstclae 40,000 197,608 0.0003 0.0006 0.0005 0.0006

torsion1 40,000 197,608 0.0004 0.0005 0.0004 0.0005

wathen100 30,401 471,601 0.0011 0.0014 0.0011 0.0013

wathen120 36,441 565,761 0.0011 0.0012 0.0012 0.0012

Table 2.6 Empirical computation of expected relative error for various esti-
mators computing the Schatten-2 norm by Algorithm 1. Remaining setup is the
same as Table 2.5, though the relative error reported is in terms of the squared
Schatten-2 norm instead of the actual norm, as reflected in Algorithm 1.

for Schatten-p norm computation, we test that algorithm against the same

UF Sparse Matrix Collection group for computing the Schatten-2 norm. That

prognosis is exceptional as well, with all estimators furnishing empirical

relative error in the squared Schatten-2 norm that is at most 2/1000. The

Hutchinson estimator again performs uniformly the best, though this time

the half-sparse queries meet the same empirical performance for about half

of the matrices. This might be because the matrix we are estimating the trace

of, A2
, is potentially much less sparse than A and as a result the associated

benefits of the Hutchinson estimator may be lost.

Chapter 3

Results on Preconditioner
Selection

Direct algorithms like Gaussian elimination are reliable and standard when

one is trying to solve a generic system Ax � b to machine precision (Golub

and Van Loan, 2012: Ch. 3). When the system becomes large and sparse, or

if one is willing to accept an approximate solution, iterative methods like the

conjugate gradients algorithm can become attractive. With iterativemethods,

our algorithm constructs a sequence of vectors x1 , x2 , . . . which converge

(hopefully, quickly) to the vector x. For example (Trefethen and Bau III,

1997: Thm. 38.5), the conjugate gradients algorithm works for systems with

positive definite A and can produce a vector xt after t iterations with

‖xt − x‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

) t

‖x‖A .

Here, ‖z‖A �
√

z∗Az is the norm induced by A, and κ(A) � λmax(A)
λmin(A) ≥ 1 is

the condition number of A. The number of iterations to achieve some fixed

accuracy is then O(
√
κ(A)) and each iteration takes time about equal to the

time it takes to compute Az for a vector z.
Even though the conjugate gradients method can appear attractive at

first, many applications have poor conditioning which makes the method

useless on a practical level. To resolve this issue, one can construct a

cheap approximation M to the matrix A, called a preconditioner, and

instead solve the system M−1Ax � M−1b. If M is a faithful approximation,

M−1A should be close to the identity and hence have good conditioning.

In the context of conjugate gradients, the equivalent system is in reality

30 Results on Preconditioner Selection

(M−1/2AM−1/2)(M1/2x) � M−1/2b, but the same intuition carries through.

This technique is heavily used, for example resulting in the celebrated nearly-

linear time solvers for Laplacian systems (seeVishnoi et al. (2013).) See (Golub

and Van Loan, 2012: Sec. 11.5) for more background on preconditioning.

A preconditioner M is helpful if it reduces the number of conjugate gra-

dients iterations enough to offset the cost of constructing the preconditioner

plus the additional cost of taking the iterations (effectively an extra computa-

tion of the form M−1z per iteration.) That framing makes preconditioner

selection seem straightforward, but in reality finding suitable precondition-

ers is a challenging problem and an open research area as seen in Benzi

(2002). For instance, even if we have a couple candidate preconditioners

M1 ,M2 , . . . ,M n for our problem ready to use and assume that they add

the same amount of time to compute each iteration, it is unclear how one

would go about estimating which preconditioner would reduce the iteration

count the most without actually solving a system with each preconditioner

or doing a comparable amount of work. This task is the focus of the present

work.

Prior Art

Current methods used for forecasting preconditioner quality are not robust

across all situations of interest and as a result cannot be used in an automated

manner. The simplest criterion is that a preconditioner M ought to be an

‘accurate’ approximation, in the sense that ‖M−A‖F is small. It turns out that

for symmetric M-matrices, this accuracy criterion is a useful proxy for the

number of conjugate gradient iterations necessary to solve thepreconditioned

system inA. This pointwas theoretically confirmedbyAxelsson andEĳkhout

(1990), who noticed that the condition number κ(M−1A) can be bounded in

terms of ‖M−1‖F‖M − A‖F. The accuracy criterion was heavily tested on an

empirical level in Duff and Meurant (1989).

Even in this setting, though, there exist accurate real-world precondition-

ers that give a poor iteration count because ‖M−1‖F is very large (Benzi et al.,

1999). Since ‖M−1‖F presumably1 requires computing M−1
even though in

general we only have access to M−1
via matrix-vector products, this was

deemed impractical (Benzi, 2002). To detect this so-called instability in M−1
,

Chow and Saad (Chow and Saad, 1997) proposed estimating the `∞ operator

norm of M−1
as ‖M−1e‖∞, where e is the vector of all-ones. For incomplete

1One can rephrase Algorithm 3 to create a practical algorithm for computing ‖M−1‖F.

31

LU factorization preconditioners, if this is is large relative to the size of the

smallest pivot, it can predict instability in the conjugate gradients method.

The quantity known as ‘preconditioner stability,’ ‖I − M−1A‖F, is in

general the most reliable indicator of preconditioner performance. This is

especially true among many non-symmetric problems or problems which

are far from diagonally dominant (Benzi et al., 1999). Unfortunately, prior

work has suggested that computing preconditioner stability is ‘impractical’

(Benzi, 2002) for effectively the same reason as why ‖M−1‖F was deemed

impractical to compute.

Contributions

The core contribution of this chapter is the realization that randomized

sketching methods make completely practical the computation of a quantity

previously thought to be infeasible to compute. In addition to this primary

method for computing preconditioner stability, we have provided a number

of other results which are also deserving of note:

• We prove that no practical deterministic algorithm, in a meaningful

sense, could possibly be used to estimate preconditioner stability.

• We provide an algorithmwhich can provably select a preconditioner of

approximately minimal stability among n candidate preconditioners

using computational resources equivalent to computing about n log n
steps of the conjugate gradients algorithm.

• By making an anti-concentration assumption about the candidate

preconditioners, we are able to provide a theoretical speedup to the

initial preconditioner selection method which largely decouples the

runtime dependence between the number of preconditioners n and

the desired accuracy.

• Using our initial preconditioner selection algorithm, we create the first

(to the best of our knowledge) method for preconditioning in kernel

regression which never gives a worse number of iterations than using

no preconditioner in standard tests.

It is important to point out that while our motivation for this method

and experiments consider positive definite systems and preconditioners, our

methods work equally well with arbitrary matrices A and preconditioners

M .

32 Results on Preconditioner Selection

Overview

Section 3.1 motivates the need for a randomized algorithm for stability

estimation with theory, responds with a sketching-based solution, and

uses it to create and analyze a method for preconditioner selection. This

theory is empirically confirmed in Section 3.2 where we apply the primary

preconditioner selection algorithm from Section 3.1 to solving generic real-

world systems (Section 3.2.1) and creating more robust preconditioning

methods for kernel regression (Section 3.2.2.)

3.1 The Algorithm

This section forms the meat of this chapter. In Section 3.1.1 we show that the

only algorithms which can possibly estimate preconditioner stability must

be randomized. The natural follow-up question of whether randomization

can indeed work is answered in the affirmative in Section 3.1.2, where we

show that a slight adaptation of a well-known sketching-based algorithm

for computing Schatten norms perfectly fits our realistic access model to

our preconditioner M and matrix A. Once we have a good estimator

of preconditioner stability, a natural method for selecting the candidate

preconditioner with minimal stability criterion presents itself in Section 3.1.3.

It turns our that our algorithm can be trivially parallelized, and a testament to

this fact is given in Section 3.1.3. In Section 3.1.4 we take advantage of highly

informative results from the literature on trace estimation to provide useful

approximation guarantees and runtime bounds for the previously presented

algorithms. Using these bounds, we include a theoretical speedup on our

preconditioner selection algorithm which helps when there is a somewhat

clear winner in Section 3.1.4. Section 3.1.4 wraps up our conversation in this

area by proving that the bounds included in our preconditioner estimation

and initial preconditioner selection algorithms are tight even to their leading

order constants. We also prove that no randomized algorithm for estimating

preconditioner stability could possibly do better asymptotically by relying

on similar results from the trace estimation literature.

3.1.1 Randomization isNecessary toCompute Preconditioner Sta-
bility

This paper provides a simple randomized algorithm which can accurately

estimate the preconditioner stability ‖I−M−1A‖F in time faster than running

The Algorithm 33

a constant number of iterations of preconditioned conjugate gradients with

the matrix A and preconditioner M . Through incorporating randomness,

however, we must accept that the algorithm fails with some probability.

This failure probability can be made arbitrarily small, but it would still be

advantageous (for example, in mission-critical applications) to provide a

deterministic algorithm for the same task, so long as it attained the same

approximation guarantees. The purpose of this section is to crush that

latter hope, and the following theorem does just that. Note that the proof is

analogous to that of Theorem 2.1 in Chapter 2.

Theorem3.1. Fix some 0 ≤ ε < 1. Supposewehave adeterministic algorithm

Alg(A,M)which takes as input an arbitrary positive semi-definite matrix

A ∈ F d×d
and positive definite matrix M ∈ F d×d

, and returns an estimate

(1 − ε)‖I −M−1A‖F ≤ Alg(A,M) ≤ (1 + ε)‖I −M−1A‖F

after sequentially querying and observing matrix vector multiplies of the

form (I −M−1A)q i � q i −M−1(Aq i) for i � 1, 2, . . . , k where k is a universal

constant depending only on d and ε. Then k ≥ d.

Proof. Take M � I for the remainder of the proof. Suppose to the contrary

that k � d − 1 suffices to compute Alg(A,M). Let q
1
, q

2
, . . . , qd−1

be the

query vectors used by the algorithm in the case that (I −M−1A)q i always

returns 0. Write P for the orthogonal projection onto span{q
1
, q

2
, . . . , qd−1

}.
Both of the positive semi-definite matrices A � I and A � P will return

(I −M−1I)q i � (I −M−1P)q i � 0 uniformly over i � 1, 2, . . . , d − 1, and thus

since the algorithm is deterministic the estimated stabilities Alg(I ,M) �
Alg(P ,M) are equal. But P , I since P was an orthogonal projection onto a

subspace of dimension strictly less than d, and hence

0 < (1 − ε)‖I − P‖F ≤ Alg(P ,M) � Alg(I ,M) ≤ (1 + ε)‖I − I‖F � 0

by our approximation guarantee. This contradiction ensures that we must

take k ≥ d. �

Of course, using k � d queries suffices to achieve no error at all, and so

the above lower bound is tight:

‖I −M−1A‖F �
(d∑

i�1

‖(I −M−1A)e i ‖2
2

)
1/2

(3.1)

34 Results on Preconditioner Selection

where e1 , e2 , . . . , ed is any orthonormal basis for F d
. Also, note that the

condition that A and M be positive semi-definite gives a stronger result than

if they were allowed to be arbitrary matrices.

In order to put Theorem 3.1 into better context, though, recall that the

dominant cost of an iteration of preconditioned conjugate gradients (Golub

and Van Loan, 2012: Alg. 11.5.1) is (a) computing Ay for a vector y, and (b)

computing M−1z for a vector z. To leading order, this is the same number of

floating point operations as computing (I −M−1A)q via q −M−1(Aq) for a
vector q, and so Theorem 3.1 says roughly that in the time it takes to even

approximate ‖I −M−1A‖F deterministically, one can solve a system Ax � b
exactly (at least in exact arithmetic) by running the conjugate gradients

algorithm for d iterations. Since our whole goal of computing ‖I−M−1A‖F is
to forecast how well M would do as a preconditioner for solving the system

Ax � b, this means that any deterministic algorithm for this task is effectively

useless. To tie loose ends, we conclude by noting that matrix-vector product

access to I −M−1A is indeed a reasonable computational model to prove

lower bounds on algorithm performance because preconditioners M are in

some sense defined by the fact we only have access to M−1
via matrix-vector

products. Similarly, the conjugate gradients method would only be practical

because computing matrix vector multiplies Ay are practical.

The above qualitative corollary gives a strong theoretical backing to

the common refrain that preconditioner stability is impractical to compute

(Benzi, 2002: Sec. 3.2.2). Moreover, it shows that the only possible schemes

for computing preconditioner stability in a practical manner must be ran-

domized. Such a reasonable randomized method is presented in the next

section.

3.1.2 Computing Preconditioner Stability via Randomization

Now we will show that, unlike the deterministic case, randomization makes

it entirely practical to compute preconditioner stability. To see why this is

intuitive, let q ∼ N(0, I) be a standard Gaussian vector. Then

‖I −M−1A‖2F � tr

(
(I −M−1A)∗(I −M−1A)

)
(3.2)

� tr

(
(I −M−1A)∗(I −M−1A)E qq∗

)
(3.3)

� E tr

(
q∗(I −M−1A)∗(I −M−1A)q

)
(3.4)

� E ‖(I −M−1A)q‖2
2

(3.5)

The Algorithm 35

Algorithm 3: Stab(A,M , k): Estimates the stability of the precon-

ditioner M in ∼ 3dk + kTm + 2k nnz(A) floating point operations

when F � R or ∼ 6dk + kTm + 4 nnz(A) flops when F � C, where

Tm is the number of flops needed to compute M−1b for an arbitrary

b ∈ F d
.

Data: A matrix A ∈ F d×d
, preconditioner M ∈ F d×d

, and an accuracy

parameter k ∈ {1, 2, . . .}.
Result: A estimate of the preconditioner stability ‖I −M−1A‖F.
Form a matrix Q � [q

1
, . . . , qk]with independent columns

q i ∼ N(0, 1

k Id).
Construct the sketch S � (I −M−1A)Q via its columns

q i −M−1(Aq i).
Return ‖S‖F.

by the linearity of expectation, the cyclic property of the trace, and the fact

that E qq∗ � I. Thus, if q i are independent standard normal vectors for all

i � 1, 2, . . . , k, the Monte-Carlo squared stability estimate

S2

�
1

k

k∑
i�1

‖(I −M−1A)q i ‖22 → ‖I −M−1A‖2F (3.6)

almost surely as k →∞ by the strong law of large numbers. We can rewrite

the above estimator as

S2

�

k∑
i�1

‖(I −M−1A) q i√
k
‖2

2
� ‖(I −M−1A)Q‖2F (3.7)

where Q is a matrix with independent and identically distributed elements

Q ii ∼ N(0, 1

k). This stability estimation algorithm for S �
√

S2 ≈ ‖I−M−1A‖F
is given as Algorithm 3.

It is important to note that the foundations of the above algorithm are

not novel. It is mathematically equivalent to applying the trace estimators in

(Roosta-Khorasani and Ascher, 2015) to the matrix (I −M−1A)∗(I −M−1A)
and then taking the square root. It is also a simplification of the Schatten-2

norm estimator in (Woodruff, 2014: Thm. 69) (relayed from (Li et al., 2014))

applied to I −M−1A. The reason we include Algorithm 3 is not because of

its mathematical novelty but because of its observational novelty: sketching

algorithms using the matrix-vector multiply access model are a perfect fit for

36 Results on Preconditioner Selection

interrogating the matrices M−1
and A in the context of conjugate gradients,

since this kind of access to M−1
and A are precisely what make the conjugate

gradients algorithm practical.

Of course, the presentation thus far does not help us choose how large

the accuracy parameter k should be. If the variance of the estimate S is large,

for example, we would reasonably expect k to necessarily be very large to get

a decent stability estimate. By construction, though, the standard deviation

σ(S) �
√

Var(S2) ≤
√

E S2 �
1√
k
‖I −M−1A‖F , (3.8)

and so as long as E S is quite close to

√
E S2 � ‖I −M−1A‖F then k � O(1

ε2
)

will ensure that the algorithm returns an estimate for ‖I −M−1A‖F within a

multiplicative factor 1 ± ε by Chebyshev’s inequality (Vershynin, 2018: Cor.

1.25). A rigorous bound will be shown in Section 3.1.4, tightening an

analogous result presented in (Roosta-Khorasani and Ascher, 2015) in the

constant factor.

3.1.3 Randomized Algorithm for Selecting the ‘Best’ Precondi-
tioner

Ignoring the issue of selecting k, once we have a practical way to compute

preconditioner stability, a trivial algorithm for picking the preconditioner

among n candidates M1 ,M2 , . . . ,M n presents itself. Namely, we can com-

pute estimates Si ≈ ‖I −M−1

i A‖F for i � 1, 2, . . . , n and then just return the

preconditioner M i for which Si is minimized. This is presented as Algorithm

4. As we mentioned in the previous section, theoretical advice on how to

pick k will be given in Section 3.1.4. An improvement to this algorithm in the

case there is a clear winner, relying on those analytical bounds, is included

in Section 3.1.4.

We note that the sketching matrix Q can be re-used when computing the

stability estimates S j in Algorithm 3. This is done in all our computational

experiments in Section 3.2, and reduces the number of normal variables

one needs to simulate from n2k to nk. Reuse does not affect our theoretical
upper bound presented in Section 3.1.4.

Parallelization

A convenient aspect of sketching based algorithms like Algorithm 4 is that

they can be parallelized extremely easily. For instance, suppose we are

The Algorithm 37

Algorithm 4: Returns an approximately optimal preconditioner

in the Tyrtyshkinov sense among n candidates with strictly fewer

floatingpoint operations than running k iterations of preconditioned
conjugate gradients (Golub and Van Loan, 2012: Alg. 11.5.1) with

each of the n preconditioners.

Data: A matrix A ∈ F d×d
, n candidate preconditioners M1,

M2,. . .,M n ∈ F d×d
, and an accuracy parameter k ∈ {1, 2, . . .}.

Result: A preconditioner M i which approximately minimizes the

stability criterion ‖I −M−1

j A‖F over j � 1, . . . , n.
Compute a stability estimate S j � Stab(A,M j , k) for each

j � 1, 2, . . . , n.
Return an arbitrary M i with Si � min

1≤ j≤n
S j .

trying to pick the Tyrtyshkinov optimal preconditioner among n candidates

M1 ,M2 , . . . ,M n , and have n processors P j , j � 1, 2, . . . , n, which have access

to A and M j , respectively. Then we can compute each stability estimate S j in

parallel at processor P j . Ignoring communication costs (which are a genuine

concern in practice,) this would bring the runtime of the algorithm down to

computing k steps of preconditioned conjugate gradients with A and the

most computation-intensive (in terms of matrix-vector multiply access to

M−1
) preconditioner M j .

Taken to the extreme, one could similarly parallelize Algorithm 4 over

nk processors Pi j , i � 1, 2, . . . , n and j � 1, 2, . . . , k, assuming each Pi j
had access to A and the candidate preconditioner M j . Each processor

Pi j would need to compute and return si j � ‖(I −M−1

j A)q i ‖22 where q i is

an independently sampled standard normal vector. Then in parallel for

all i � 1, 2, . . . , n processor Pi1 could compute S2

i �
1

k
∑k

j�1
si j , at which

point we could use processor P11 to compute i such that S2

i is minimal and

return the corresponding M i . Ignoring communication costs again, this

algorithm take fewer floating point operations than running one iteration
of preconditioned conjugate gradients with A and the most computation-

intensive preconditioner M j , plus k flops that were used for computing the

Si .

38 Results on Preconditioner Selection

3.1.4 Approximation Guarantees and Runtime Bounds

In the above exposition, we have largely ignored the choice of the accuracy

parameter k. In this section we will fill that gap in knowledge. To start, we

will relay the following theorem, which says that to estimate preconditioner

stability up to a 1 ± ε multiplicative factor with failure probability at most

δ, one may take k � O(1

ε2
log

1

δ) in Algorithm 3, which is (in contrast to the

deterministic case) completely independent of the underlying dimension.

Theorem3.2. Let M andA be arbitrarymatrices in F d×d
where M is invertible.

If ε and δ are positive and less than one, taking k ≥ 12

ε2(3−2ε) log
2

δ ensures

that the estimate Stab(A,M , k) satisfies
√

1 − ε ‖I −M−1A‖F ≤ Stab(A,M , k) ≤
√

1 + ε ‖I −M−1A‖F.

with probability at least 1 − δ. In particular, if ε ≤ 1/2, then the simpler

condition k ≥ 6

ε2
log

1

δ ensures this same approximation guarantee.

Proof. Follows directly from Theorem 2.4 in Chapter 2. �

Using Theorem 3.2 we are able to prove an approximation guarantee for

Algorithm 4 via a union bound. In particular, to achieve an ε-multiplicative

approximation to the best of n candidate preconditioners with probability at

least 1 − δ we can take k � O(1

ε2
log

n
δ). This dependence on n is quite weak

and since in realistic applications we would only expect to have at most,

say, twenty candidate preconditioners the necessary k is effectively constant,

again independent of the underlying dimensionality.

Theorem 3.3. Let A ∈ F d×d
be an arbitrary matrix, and M1 ,M2 , . . . ,M n ∈

F d×d
be invertible candidate preconditioners for A. If ε and δ are positive

and less than one, taking k ≥ 12

ε2(3−2ε) log
2n
δ ensures that the preconditioner

M i returned by Algorithm 4 satisfies

‖I −M−1

i A‖F ≤
√

1 + ε
1 − ε min

1≤ j≤n
‖I −M−1

j A‖F.

In particular, if ε < 1/2 the simpler condition k ≥ 11

ε2
log

2n
δ ensures

‖I −M−1

i A‖F ≤ (1 + ε) min

1≤ j≤n
‖I −M−1

j A‖F.

The Algorithm 39

Proof. Start by fixing any j ∈ {1, 2, . . . , n}. If we take k ≥ 12

ε2(3−2ε) log
2n
δ ,

Theorem 3.2 ensures that

√
1 − ε ‖I −M−1

j A‖F ≤ Stab(A,M j , k) ≤
√

1 + ε ‖I −M−1

j A‖F , (3.9)

except with probability at most
δ
n . In particular, if we unfix j the probability

at least one of the Stab(A,M j , k) does not satisfy Equation 3.9 is at most∑n
j�1

δ
n � δ by a union bound. (Note that we did not need independence of

the estimates Stab(A,M j , k) here; this is why reusing the sketching matrix

Q is valid.) Thus with probability at least 1 − δ all estimates Stab(A,M j , k)
satisfy Equation 3.9 simultaneously.

Write M i for the candidate preconditioner returned by Algorithm 4, and

write M? for a candidate preconditioner which satisfies

‖I −M−1

? A‖F � min

1≤ j≤n
‖I −M−1

j A‖F. (3.10)

Then since the estimate of the stability of M i was at most that of M? by

minimality, the simultaneous bounds of Equation 3.9 give

√
1 − ε‖I−M−1

i A‖F ≤ Stab(A,M i , k) ≤ Stab(A,M?, k) ≤
√

1 + ε‖I−M−1

? A‖F

except with probability at most δ. Rearranging the inequality gives the

desired result after substituting Equation 3.10.

Thefinal simplifiedbound results from the scalar inequality

√
1+ε
1−ε ≤ 1+

4

3
ε

when 0 ≤ ε < 2/5 and simple algebraic manipulation. �

The Constant in Theorem 3.2 is Tight

Most of the theory presented in this chapter relies on Theorem 3.2 to create

more sophisticated bounds. Since Algorithm 3 is at its core a repurposing

of a trace estimator using only matrix vector products, the work (Wimmer

et al., 2014) applies and ensures that no randomized, adaptive algorithm

for estimating the stability ‖I − M−1A‖2F � (I − M−1A)∗(I − M−1A) could
possibly use asymptotically fewer matrix-vector multiplies so long as the

algorithm only has access to ‖(I −M−1A)q‖2 for query vectors q. In this

sense, Algorithm 3 is optimal.

The theoretically-inclinedpractitioner, however, also cares about knowing

the optimality of our analysis in Theorem 3.2. The following Theorem says

that our analysis in Theorem 3.2 is asymptotically tight even up to the

40 Results on Preconditioner Selection

leading effective constant 12/(3 − 2ε) which tends to 4 for small ε. In the

proof, W(x) � log x − log log x + o(1) � Θ(log x) as x →∞ is the Lambert-W
function (Hoorfar and Hassani, 2007) as in Chapter 2. Note that the proof is

analogous to Theorem 2.6.

Theorem 3.4. Fix some 0 < δ < 1/10. For any underlying dimension

d, there exists a positive semi-definite matrix A ∈ F d×d
, positive definite

matrix M ∈ F d×d
, and some ε0 > 0 so that for any 0 < ε < ε0, taking k �

b 4

ε2
log

1√
8πδ
− 2

ε2
log log

1√
8πδ
c guarantees the stability estimate Stab(A,M , k)

returned by Algorithm 3 fails to satisfy the equation

√
1 − ε‖I −M−1A‖F ≤ Stab(A,M , k) ≤

√
1 + ε‖I −M−1A‖F

with probability at least δ.

Proof. If Z ∼ N(0, 1) is a standard normal random variable then

P(|Z | ≥ t) � 2 P(Z > t) >
√

2

π
t

t2 + 1

e−t2/2 ≥ 1√
2π

1

t
e−t2/2

(3.11)

by (Gordon, 1941) for all t ≥ 1. Setting the right hand side of Inequality 3.11

to 2δ and solving gives

P
(
|Z | ≥

√
W(8−1π−1δ−2)

)
> 2δ (3.12)

whenever

√
W(8−1π−1δ−2) ≥ 1, which is satisfied when 0 < δ ≤ 1/10.

Now let A � I − e1e∗
1
and M � I, where e1 is the first standard basis

vector. We can observe that

‖(I −M−1A)q‖2
2
� ‖e1(e∗

1
q)‖2

2
� q2

1
∼ χ2

(3.13)

if q is a standard Gaussian vector. In particular, the standard deviation of

‖(I − M−1A)q‖2
2
is σ �

√
2. Thus since Stab(A,M , k) is a sample average

of independent copies of these random variables, fixing k � b 2

ε2
W(1

8πδ2
)c

ensures

P(| Stab(A,M , k)2 − 1| > ε) (3.14)

� P(
√

k
σ | Stab(A,M , k)2 − 1| ≥

√
kε
σ) (3.15)

≥ P
(√k
σ | Stab(A,M , k)2 − 1| ≥

√
W(8−1π−1δ−2)

)
(3.16)

→ P
(
|Z | ≥

√
W(8−1π−1δ−2)

)
> 2δ (3.17)

The Algorithm 41

by (Vershynin, 2018: Thm. 1.3.2) and Equation 3.12 as k →∞. This implies

the existence of an ε0 so that 0 < ε < ε0 ensures the relation

√
1 − ε‖I −M−1A‖F ≤ Stab(A,M , k) ≤

√
1 + ε‖I −M−1A‖F (3.18)

fails with probability at least δ under our relation defining k. The simpler

condition on k given in the statement of this result follows from the bound

W(x) ≥ log(x)−log log(x) for all x ≥ e from (Hoorfar andHassani, 2007: Thm.

2). �

An Improvement in the Presence of a Clear Winner

Algorithm 4 is extremely easy to implement and works well in practice,

as we shall see in Section 3.2. Nevertheless, if we are selecting between

preconditioners where some are clearly worse than the optimal precondi-

tioner in terms of stability, our method seems excessive. Intuitively, we

should be able to tell that terrible preconditioners will not be optimal with

very rudimentary information. Algorithm 5 presents such a revision to

Algorithm 4, iteratively refining the stability estimates we have and filtering

out any preconditioners as soon as we can be confident they will not be

optimal. Note that the algorithm crucially relies on the bounds from Section

3.1.4.

We canprove thatAlgorithm5 is actually an improvement overAlgorithm

4 by making an anti-concentration assumption about the input stabilities.

Theorem 3.5. Let A ∈ F d×d
be an arbitrary matrix, M1 ,M2 , . . . ,M n ∈ F d×d

be invertible candidate preconditioners for A, 0 < ε < 1/2, and 0 < δ < 1.

Denoting i? ∈ arg min
1≤ j≤n ‖I −M−1

j A‖F, we will write

F(t) � 1

n

����{ j : j ∈ {1, 2, . . . , n} and
‖I −M−1

j A‖F
‖I −M−1

i? A‖F
≤ 1 + t

}����
for the (shifted) cumulative distribution function of the input relative sta-

bilities. If F(t) ≤ ct uniformly over t ∈ [ε/2, 2] for some positive constant c,
then Algorithm 5 returns a preconditioner M i satisfying

‖I −M−1

i A‖F ≤
√

1 + ε
1 − ε min

1≤ j≤n
‖I −M−1

j A‖F.

with probability at least 1 − δ using strictly fewer floating point operations

than running 24n(1 +
2c
ε) log

2n
δ + 24n(1 +

2c
ε) log log

2

2

ε iterations of the

42 Results on Preconditioner Selection

Algorithm 5: An improvement to Algorithm 4 when there is a

relatively clear winner among the candidate preconditioners.

Data: A matrix A ∈ F d×d
, n candidate preconditioners M1,

M2,. . .,M n ∈ F d×d
, an accuracy parameter 0 < ε < 1

2
and an

acceptable failure probability 0 < δ < 1.

Result: A preconditioner M i for which the stability criterion

‖I −M−1

i A‖F is an ε-multiplicative approximation to the

minimum possible among the candidate preconditioners,

except with probability at most δ.
εcur ← 1

P ← {1, 2, . . . , n}
T ← dlog

2

1

ε e
for t � 1, 2, . . . , T do

εcur ← εcur/2
k ← 6

ε2

cur
log

2T |P |
δ

Si ← Stab(A,M i , k) for all i ∈ P
i? � arg mini∈P Si

P ←
{

i ∈ P : Si ≤ Si?

√
1+εcur
1−εcur

}
end
Return M i?

preconditioned conjugate gradients algorithm in A with the most expensive

preconditioner M j in terms of the number of floating point operations

required to compute M−1

j y for input vectors y.

Proof. The same Bonferroni-correction argument from the proof of Theorem

3.3 ensures that√
1 − εcur ‖I −M−1

i A‖F ≤ Si ≤
√

1 + εcur ‖I −M−1

i A‖F , (3.19)

simultaneously for all i ∈ P over the course of the algorithm, except with

probability at most δ. The rest of the proof will only rely on property 3.19,

so everything we say will hold with this same probability.

If i?t is the i? set in step t of the algorithm and i? ∈ arg min
1≤i≤n ‖I −

M−1

i A‖F is in P before the filtering at the end of step t, Equation 3.19 implies

Si? ≤
√

1 + εcur‖I−M−1

i? A‖F ≤
√

1 + εcur
1 − εcur

√
1 − εcur‖I−M−1

i?t
A‖F ≤

√
1 + εcur
1 − εcur

Si?t
.

The Algorithm 43

Thus, since i? ∈ P initially, we know by induction that i? ∈ P throughout

the process of the entire algorithm. Now consider P in the final step t � T
of Algorithm 5. Since i? ∈ P,√

1 − εcur‖I −M−1

i?T
A‖F ≤ Si?T

≤ Si? ≤
√

1 + εcur‖I −M−1

i? A‖F. (3.20)

Rearranging and realizing that εcur � 2
−dlog

2

1

ε e ≤ 2
− log

2

1

ε � ε at t � T gives

our desired approximation guarantee.

Now we will exhibit the runtime bound by bounding |P | at each step of

Algorithm 5. We claim that |P | ≤ 4cn2
−t

for all t � 1, 2, . . . , T. To see this,

note that if a candidate preconditioner M j is retained after filtering in any

step t of the algorithm,

‖I −M−1

j A‖F ≤
S j√

1 − εcur
≤
√

1 + εcur
1 − εcur

Si?t
≤ 1 + εcur

1 − εcur
‖I −M−1

i? A‖F. (3.21)

Thus the number of elements in P just after step t in the algorithm is at most

nF(4εcur) ≤ 4cn2
−t

since
1+x
1−x ≤ 1 + 4x for 0 ≤ x ≤ 1/2. Our runtime bound

follows from the sum

T−1∑
t�1

|Pt |
6

(2−t)2 log

2T |Pt |
δ
≤

T−1∑
t�1

4cn2
−t 6

(2−t)2 log
2nT
δ ≤ 24cn2

T
log

2nT
δ

(3.22)

where Pt is the set P during iteration t of the algorithm. This gives the

number of matrix-vector multiplies of the form (I −M−1A)q used by the

algorithm after the first step. To see the final form, add on the 24n log
2nT
δ

multiplies done during the first iteration t � 1 and plug in T � dlog
2

1

ε e ≤
log

2

1

ε + 1 � log
2

2

ε . �

The anti-concentration condition in Theorem 3.5 intuitively asserts that

the stabilities of the preconditioners do not cluster around theminimal stabil-

ity. This is satisfied, for example, if at most some number d of the candidate

preconditioners have stability within a multiplicative factor 3 of the optimal

stability. The resulting constant c �
2d
nε gives an asymptotic runtime bound

forAlgorithm 5 ofO(n log
n
δ +n log log

1

ε+
d
ε2

log
n
δ +

d
ε2

log log
1

ε), decoupling
the linear dependence in n with the polynomial accuracy dependence on

1/ε2
. Such an improvement is serious when n is moderately large; while

this example is contrived many other distributions on input data satisfy the

assumptions of Theorem 3.5 with the same constant c.

44 Results on Preconditioner Selection

Of course, one would hope that Algorithm 5 does not perform terribly

when the input data assumptions made in Theorem 3.5 are not satisfied. For

example, this would happenwhen all preconditioners have extremely similar

performance, to the point that even our target accuracy ε cannot distinguish
their stabilities. Luckily, a constant c �

2

ε always works in Theorem 3.5, so

Algorithm 5 never suffers more than a multiplicative O(log log
1

ε) increase
over Algorithm 4 in number of floating point operations needed to select a

preconditioner.

3.2 Experiments

This paper takes the working hypothesis that preconditioner stability is a

good proxy for the performance of the preconditioned conjugate gradients

algorithm, and runs with it to create and theoretically verify algorithms to

select optimal preconditioners under this metric. The present section will

jointly test the good-proxy hypothesis and our algorithms by evaluating

Algorithm 4 empirically in a number of realistic settings. In particular, we

will see how well Algorithm 4 can select the candidate preconditioner which

minimizes the number of conjugate gradients iterations required to achieve

some fixed approximation quality.

3.2.1 Experiments with Sparse Systems

First we attempt a generic experiment on a collection of real-world sparse

linear systems and simple preconditioners. For the target system Ax � b,
we fix a sampled b ∼ N(0, I) for the entire experiment. The positive definite

matrices A are taken from the SuiteSparse/University of Florida Sparse

Matrix Collection (Davis and Hu, 2011). We include all matrices from the

Boeing and GHS_psdef groups which have between 100,000 and 2,250,000

non-zero entries and are strictly positive definite.

We include nine candidate preconditioners for Algorithm 4 to select

between. All of the candidate preconditioners are block diagonal. This

choice was made to get around some existence and algorithmic issues

that accompany other common preconditioners like incomplete Cholesky

factorizations (Benzi, 2002). The first candidate preconditioner is the trivial

preconditioner I, which is equivalent to using no preconditioner at all.

The preconditioner D` denotes a block-diagonal pinching/truncation of

the matrix A with block size `. The preconditioner R` is the same block-

diagonal pinching, but performed after a Reverse Cuthill-McKee ordering

Experiments 45

Matrix Conjugate Gradients Iterations With Various Preconditioners

apache1 3,538 3,513 3,286 3,283 3,270 3,265 3,269 3,710 3,693

crystm01 122 54 39 34 30 27 27 24 21

crystm02 138 54 38 35 34 29 30 24 24

crystm03 143 54 38 34 33 30 29 25 24

cvxbqp1 16,424 11,337 11,338 11,332 11,331 11,330 11,328 10,148 10,353

gridgena 3,658 3,542 2,659 2,572 2,504 2,504 2,479 2,892 2,863

jnlbrng1 139 131 126 126 125 125 125 130 130

minsurfo 94 88 64 63 63 62 62 88 88

msc10848 — 5,659 3,791 3,028 2,793 2,656 2,628 2,192 2,092

obstclae 66 65 49 48 47 47 47 65 65

oilpan 48,291 28,065 12,804 8,167 5,476 4,992 4,127 4,757 4,433

torsion1 66 65 49 48 47 47 47 65 65

wathen100 327 45 44 44 44 44 44 42 42

wathen120 378 45 45 45 44 44 44 43 43

Table 3.1 This table reports the number of iterations taken by the conjugate
gradients algorithm to report an approximate solution x̃ to the linear system
Ax � b for specified test matrices A, a constant sampled standard normally
distributed b ∼ N(0, I), and various candidate preconditioners.

of the matrix (Cuthill and McKee, 1969). To ensure uniqueness and clarity,

blocking is performed by taking thematrix A ∈ F d×d
and constructing a block

diagonal matrix M with blocks of the form A(m` : min{d , (m + 1)`},m` :

min{d , (m+1)`}) for m � 0, 1, 2, Since A is positive definite, the resulting

preconditioners M are also positive definite (Bhatia, 2009: Ex. 2.2.1.(viii)).

In Table 3.1 we present the number of iterations the preconditioned

conjugate gradients algorithm took for each test matrix and preconditioner

pair. The algorithm was run until the approximate solution x̃ satisfied

‖Ax̃ − b‖2 ≤ 10
−9‖b‖2. The number of iterations was capped 50,000. Entries

in Table 3.1 achieving this artificial stopping criterion are overwritten with

‘—’. The conjugate gradients algorithm applied to the matrices bcsstk36,
bcsstk38, msc23052, and vanbody did not converge with any candidate

preconditioner, so they are omitted in Table 3.1.

Observe that even though larger block sizes ` ought to create better

approximations of the original matrix, there are situations when smaller

block sizes result in fewer conjugate gradients iterations. Similarly, there are

some situations when the original ordering of the data is preferable over the

Reverse Cuthill-McKee ordering, and vice-versa. As a result, it is unclear

46 Results on Preconditioner Selection

a-priori which preconditioner one should choose to solve the linear system,

and this is why someone might wish to use Algorithm 4 to automate that

choice.

We test this use of Algorithm 4 under two parameter settings k � 10

and k � 50. Algorithm 4 is run for 1,000 independent trials for each matrix-

preconditioner-k pairing. After the fact, we compare the number of iterations

of preconditioned conjugate gradients would be necessary when using the

recommendation of Algorithm 4 relative to the minimal number of iterations

possible if we knew in advance how many iterations each preconditioner

would use.

Results

The results of our generic real-world-use experiment are presented in Table

3.2. Every cell is an approximation ratio, i.e. the number of iterations

an algorithm for selecting preconditioners took divided by the minimal

number of iterations possible using our set of candidate preconditioners.

As such, an entry of 1.00 is optimal and represents the minimal-number-

of-iterations preconditioner being correctly selected. The column ‘Worst-

Case’ reports the approximation ratio if one deterministically selected the

maximal-number-of-iterations preconditioner in each setting. The column

‘Random’ reports the expected approximation ratio if one were to select a

candidate preconditioner from Table 3.1 uniformly at random. The columns

corresponding to Algorithm 4 gives statistics of the empirical distribution

of approximation ratios seen over the 1,000 independent trial runs of the

method.

A clear take-away from Table 3.2 is that Algorithm 4 performs admirably

in practice for selecting preconditioners. For 10 of the 14 test matrices

reported, setting k � 10 always picks the optimal preconditioner for the

problemacross every one of the 1,000 trials. Ifwe take k � 50, this happens for

11 of the 14 testmatrices. Moreover, evenwhen the accuracyparameter k � 10

the returned preconditioner never needs more than 15% more iterations

than the optimal choice. For the practitioner, such a 15% increase in iteration

count in a trade for robustness would in most cases be completely acceptable.

As such, Algorithm 4 appears to be useful for real-world problems when

selecting preconditioners.

Of course, one might wonder if taking k to be even larger would result in

approximation ratios concentrating more uniformly at the ideal 1.00 mark.

Unfortunately, this won’t happen in general, and is where the good-proxy

Experiments 47

Matrix Worst-Case Random Algorithm 4 Approximation Ratio

k � 10 k � 50

Min Mean Max Min Mean Max

apache1 1.14 1.05 1.00 1.00 1.00 1.00 1.00 1.00

crystm01 5.81 2.00 1.00 1.00 1.00 1.00 1.00 1.00

crystm02 5.75 1.88 1.00 1.00 1.00 1.00 1.00 1.00

crystm03 5.96 1.90 1.00 1.00 1.00 1.00 1.00 1.00

cvxbqp1 1.62 1.15 1.12 1.12 1.12 1.12 1.12 1.12

gridgena 1.48 1.15 1.00 1.00 1.01 1.00 1.00 1.00

jnlbrng1 1.11 1.03 1.04 1.04 1.04 1.04 1.04 1.04

minsurfo 1.52 1.20 1.00 1.00 1.00 1.00 1.00 1.00

msc10848 23.90 3.97 1.00 1.00 1.00 1.00 1.00 1.00

obstclae 1.40 1.18 1.00 1.00 1.00 1.00 1.00 1.00

oilpan 11.70 3.26 1.00 1.09 1.15 1.07 1.08 1.15

torsion1 1.40 1.18 1.00 1.00 1.00 1.00 1.00 1.00

wathen100 7.79 1.79 1.00 1.00 1.00 1.00 1.00 1.00

wathen120 8.79 1.89 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.2 This table summarizes the performance of Algorithm 4 for each
matrix in Table 3.1, reporting statistics of the empirical number of iterations
given by the algorithm compared to picking the worst-possible preconditioner
(in terms of number of CG iterations) or choosing arbitrarily at random. Since the
conjugate gradients algorithm did not converge for the matrix msc10848with
no preconditioner, the ‘Worst-Case’ and ‘Random’ columns are lower bounds
for their true values in that row only.

hypothesis is put to the test. For the oilpanmatrix, increasing k from 10 to

50 raises the best-seen approximation ratio given by Algorithm 4 from 1.00

to 1.07. Increasing k causes the preconditioner returned by Algorithm 4 to

concentrate further around the true minimal-stability preconditioner (see

Theorem 3.3), and so this implies that the preconditioner stability criterion

itself is not perfect and will not in general forecast the exact preconditioner

resulting in the minimal number of conjugate gradients iterations. As

the previous paragraph details, though, stability is quite a good proxy for

iteration count in spite of this flaw.

48 Results on Preconditioner Selection

3.2.2 Experiments with Kernel Regression Preconditioners

This section will show that Algorithm 4 can turn two simple preconditioners

for the standard kernel regression problem into a robust, state-of-the-art

preconditioning method. As a corollary of this investigation, we exhibit

how Algorithm 4 performs well in situations when the ‘minimal accuracy’

criterion for selecting preconditioners fails, something left unanswered in

the previous experiment.

A Quick Review

Kernel regression is a common statistical technique for nonlinear regression.

In this setting, we have a dataset {(x1 , y1), (x2 , y2), . . . , (xd , yd)} consisting
of x i 7→ yi mappings from Euclidean space Rd

to the real line R. We wish

to find coefficients α ∈ Rd
so that the functional mapping

x 7→ f (x) �
d∑

i�1

αi k(x , x i) (3.23)

faithfully represents the empirical mapping in the sense that f (x i) ≈ yi . In

general, k(x , y) is just required to be a positive definite function (kernel),

but in our experiment, we will only use the squared exponential kernel

k(x , y) � exp(− ‖x−y‖2
2

2`2
), parametrized by the length-scale ` which controls

the derivative of the model f (x). The coefficients α are found by solving the

system

α � (K + σ2

nI)−1 y (3.24)

where the positive definite Gram matrix K i j � k(x i , x j), the output vector
y � (y1 , y2 , . . . , yd), and the noise standarad deviation σn > 0 is used for

regularization so that the model f (x) fits well on out-of-sample data. In

almost all kernel regression problems, K and hence K + σ2

nI are dense. We

will ignore the issue of actually selecting the parameters σn and ` in this

experiment. See (Williams and Rasmussen, 2006) for more background on

this model and associated inference procedure.

Related Work

This experiment will test a preconditioning procedure for solving the linear

system (K + σ2

nI)α � y via conjugate gradients. There has been a recent

interest in this general iterative framework for kernel regression (Avron et al.,

Experiments 49

2017; Cutajar et al., 2016; Rudi et al., 2017). Much of the work has focused on

developing viable preconditioners since in general Gram matrices K can be

poorely conditioned, which results in poor conditioning for the raw system

in K + σ2

nI unless the noise standard deviation σn is unnaturally large.

The work of Cutajar et al. (Cutajar et al., 2016) does some initial leg-work

in this area, proposing eight candidate preconditioners. These precondi-

tioners include a block-diagonal approximation of K + σ2

nI, adding a larger

regularizer σ2

n and solving recursively, a Nyström approximation of the

Gram matrix using

√
n datapoints as inducing points chosen uniformly at

random, a coupling of the Nyström approximation with a block-diagonal

approximation, or replacing K with an optimal low-rank factorization which

can be computed via a randomized SVD (Halko et al., 2011) or the Lanczos

method (Golub and Van Loan, 2012: Sec. 10.1). Both (Cutajar et al., 2016)

and the work (Avron et al., 2017) of Avron et al. use the the Fourier features

method of Rahimi and Recht (Rahimi and Recht, 2008) to create a precondi-

tioner which replaces K with a sketched version
˜K. The latter paper (Avron

et al., 2017) also proposes using the TensorSketch method of (Pagh, 2013)

for creating a sketched preconditioner when using the polynomial kernel

k(x , y) � (x∗y)q , though unfortunately the necessary sketching dimension

is exponential in q. The work of Rudi et al. (Rudi et al., 2017) also uses the

Nyström-based preconditioner like (Cutajar et al., 2016), combining it with

other computational tricks.

The problem with the above works is illustrated perfectly in Figure 1

of (Cutajar et al., 2016). For every known preconditioner among the works

who report this statistic, there exist parameter settings for which using no

preconditioner results in fewer iterations than using the preconditioner

when solving for α via conjugate gradients. As such, these schemes are not

robust, and it is unclear how one would choose a performant preconditioner

in practice.

Two Simple Geometrically Driven Preconditioners

Here we detail the two candidate preconditioners which we will use in our

experiments. They both utilize a geometrically-motivated reordering of the

data to achieve superior performance to the preconditioners of (Cutajar et al.,

2016) in certain areas of the parameter space.

The first preconditioner is a simple block diagonal pinching of a re-

ordering of the data. The kernel regression model under the squared

exponential kernel effectively asserts that points nearby in `2
ought to

50 Results on Preconditioner Selection

have similar outputs y. If the input data is highly clustered in `2
, our

model then ought to largely ignore points from different clusters when

considering a point in some cluster. The first preconditioning algorithm

turns this ‘ought to’ statement directly into an approximation of the Gram

matrix K. We first cluster the data {x1 , x2 , . . . , xd} in `2
via the k-means

or k-means++ (Arthur and Vassilvitskii, 2007) algorithm with c � d
√

de
clusters, constructing a permutation matrix P that places points in the same

cluster next to each other. At this point, we precondition the re-ordered

system (PKP∗ + σ2

nI)Pα � P y by creating a block-diagonal pinching of the

re-ordered matrix PKP∗ where each block corresponds to the points within

a cluster. The resulting preconditioner is that pinching K̂ plus the true noise

term σ2

nI.
Assuming the clusters are approximately equal in size, computing the

Cholesky factorization of the preconditioner takes O(n2) floating point

operations and computing M−1z for a vector z takes O(n1.5) floating point

operations. Computing a matrix-vector product of the form Kz takes Θ(n2)
floating point operations since K is dense, so this preconditioner won’t

raise the per-iteration complexity over regular conjugate gradients. Of

course, usability assumes the k-means algorithm converges quickly, but in

practice this is not an issue. Moreover, if we fix the resulting sparsity pattern

of the preconditioner, this preconditioner exactly minimizes the accuracy

‖M − PKP∗ + σ2

nI‖F over all matrices with the same sparsity pattern. Since

the identity matrix I also has this sparsity pattern, we would always choose

this preconditioner over the identity matrix if using the accuracy criterion.

The second preconditioner is a slightly more complex version of the first.

After computing the permuted matrix PKP∗, we compute a truncated rank-r
approximation UΛU ∗ of PKP∗ where Λ ∈ Rr×r

is diagonal and U ∈ Rd×r

has orthonormal columns. At this point we compute the same block diagonal

pinching
˜E of the error in approximation E � PKP∗ −UΛU ∗. The resulting

preconditioner is then UΛU ∗ + ˜E + σ2

nI. If r is a constant, we can solve

systems in this preconditioner using the Woodbury identity (Golub and

Van Loan, 2012: Sec. 2.1.4) in O(n2) floating point operations under the same

assumption that the cluster sizes are approximately equal. Computing the

low-rank factorization takes O(n2) floating point operations using either the

Implicitly-Restarted Lanczos method (Sorensen, 1997) or a Randomized SVD

(Halko et al., 2011), though for higher ranks r the latter method is preferable.

In sum, then, this more sophisticated preconditioner does not raise the

per-iteration asymptotic complexity of conjugate gradients so long as r is

constant. Like the first preconditioner with no low-rank approximation term,

Experiments 51

the low-rank approximation-based preconditioner is always more accurate

than the identity matrix I, and so the accuracy criterion would always pick

this preconditioner over no preconditioner.

Observe that our approaches to these two preconditioners combines

some intuition from (Cutajar et al., 2016) with geometric insight to create pre-

conditioners that should intuitively be more representative of the underlying

problem.

Experimental Design

We consider three datasets Concrete, Power, and Protein, which are

identically the same as in (Cutajar et al., 2016). The Concrete dataset

consists of d � 1,029 data points in R8
. The Power dataset consists of d �

9,567 data points in R4
. The Protein dataset consists of d � 45,729 data

points in R9
.

For each of these datasets, and each pair of parameters chosen from

` ∈ {10
−3 , 10

−2 , . . . , 10
2} and σ2

n ∈ {10
−2 , 10

−4 , 10
−6}, we construct a kernel

system (K+σ2

nI)α � y. This system is solved using conjugate gradients with

(a) no preconditioner, (b) the geometric preconditioner with no low-rank

approximation, and (c) the geometric preconditioner with a rank r � 25

low-rank approximation. We also solve the system using the preconditioner

chosen by one run of Algorithm 4 among (a) no preconditioner, (b) the

purely block-diagonal geometric preconditioner, and (c) the rank r � 25

low-rank approximation-based geometric preconditioner, using an accuracy

parameter k � 10. We also attempt using Algorithm 4 with the same k � 10

if we restrict the choice to the two geometric preconditioners, ruling out the

use of no preconditioner. In solving these systems, we record the number of

conjugate gradients iterations needed to achieve an residual norm of 10
−5

√
d

as in (Cutajar et al., 2016); a relative tolerance of 10
−15‖y‖2 is also specified,

though this is vacuous in comparison to the absolute tolerance. The solver is

stopped after 10,000 iterations if the residual has not converged to within

tolerance by then. The low-rank approximations are computed via ARPACK
(Lehoucq et al., 1998) with a tolerance parameter of 10

−5
.

Results

Figure 3.1 illustrates the relative improvement different preconditioning

schemes have over using no preconditioner for each dataset and parameter

combination. Each cell gives the logarithm of the ratio of the preconditioned

52 Results on Preconditioner Selection

-3 -2 -1 0 1 2
Block Diagonal

-6

-4

-2

+ +

+ +

+ +

Concrete

-3 -2 -1 0 1 2
Block Diagonal

-6

-4

-2

o + +

+ + +

+ + +

Power

-3 -2 -1 0 1 2
Block Diagonal

-6

-4

-2

o o +

o + +

+ + +

Protein

-3 -2 -1 0 1 2
Rank = 25

-6

-4

-2

-3 -2 -1 0 1 2
Rank = 25

-6

-4

-2

+ o

+

+

-3 -2 -1 0 1 2
Rank = 25

-6

-4

-2

o o

o

-3 -2 -1 0 1 2
Our Method (Include Identity)

-6

-4

-2

o

o

-3 -2 -1 0 1 2
Our Method (Include Identity)

-6

-4

-2

o

o

-3 -2 -1 0 1 2
Our Method (Include Identity)

-6

-4

-2

o o o

o

-3 -2 -1 0 1 2
Our Method (No Identity)

-6

-4

-2

-3 -2 -1 0 1 2
Our Method (No Identity)

-6

-4

-2

o

-3 -2 -1 0 1 2
Our Method (No Identity)

-6

-4

-2

o o

o

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

log10
Precond. Iters

NoPrecond. Iters Using Geometric Preconditioners

Figure 3.1 This figure presents the relative improvement of using our pro-
posed preconditioners, or the one automatically chosen by Algorithm 4, with
respect to using no preconditioner at all. Each individual matrix corresponds to
a specific preconditioner and dataset pair. Each row gives the value of log σ2

n
used in the experiment, whereas each column corresponds to log `. The ab-
sence of red cells in the result matrices corresponding to ‘Our Method’ indicates
significant improvement over the results in (Cutajar et al., 2016).

conjugate gradients iterations to the non-preconditioned conjugate gradients

iterations, i.e. the order of magnitude of the improvement granted by using

the preconditioner. Accordingly, negative values (blue or ‘–’) represent

improvement through using the preconditioner, while positive values (red

or ‘+’) correspond to the preconditioned system requiring more iterations
than using no preconditioner at all. Five of the cells for the Protein
dataset with the purely block diagonal geometric preconditioner have

relative improvements of more than two orders of magnitude. Another

three preconditioners using a low-rank approximation with the Protein
dataset have this property. In spite of this, we restrict the visual range of the

Experiments 53

plot from −2 to 2 to allow Figure 3.1 to be compared easily to the identical

presentation in Figure 1 of (Cutajar et al., 2016). No cell values exceed 2.

First we comment purely on the performance of the two geometrically

motivated preconditioners. The main take-away is that the geometric

permutation based on the k-means algorithm appears to truly help in

creating a faithful preconditioner. As evidence, we can point to the fact that

the simple geometric block-diagonal preconditioner gives, for five different

parameter settings with the Protein dataset, a relative improvement better

than every single preconditioner-parameters-dataset pair in (Cutajar et al.,

2016). Phrased differently, at these parameter settings the number of

iterations drops from 189, 111, 2,345, 618, and 10,000 (did not converge)

to 1, 1, 3, 3, and 94 iterations, respectively. Moreover, the geometric

preconditioner using a low-rank approximation for the Concrete dataset

always outperforms using no preconditioner, something no preconditioner

proposed in (Cutajar et al., 2016) can do. These improvements are genuine

and stark, and again achieved by an extremely simple method just by relying

on geometry.

Of course, one can rightfully point out that the block diagonal pinching

is not robust as a preconditioner, just like many methods from (Cutajar et al.,

2016). This is true; the block diagonal approximation works well for small

length scales `, as in these circumstances dependencies K i j between far away

data points x i and x j are shrunk, resulting in a genuine clustering of the

underlying data where the intuition we used in justifying the preconditioner

carries through. For large `, the block diagonal preconditioner performs

poorly because the matrix K looks more uniform and doesn’t have a genuine

clustered structure. Luckily, the more sophisticated preconditioners with

added rank-25 terms perform well in precisely this regime, as the low-rank

term can capture uniform structure in the Gram matrix K. While this

complicated preconditioner is not perfect, it is more robust to parameter

changes than the analogous SVD-based preconditioner from (Cutajar et al.,

2016). Between our two candidate preconditioners, at least one provides a

performance boost over non-preconditioned conjugate gradients for every

dataset and parameter setting chosen. Such a claim cannot be said about

any pair of preconditioners in (Cutajar et al., 2016).

Since we have two quality preconditioners, each performing admirably

in opposing parameter regimes, we might hope to get the best of both worlds

by forecasting via Algorithm 4 which one will perform better than using no

preconditioner and solving the system with that resulting preconditioner.

This approach does quite well, as we can see in Figure 3.1. While Algorithm

54 Results on Preconditioner Selection

4 does not always pick the best preconditioner in terms of minimizing the

number of conjugate gradients iterations, it never selects a preconditioner

which performs worse than using no preconditioner. That said, a precondi-

tioner resulting in an exactly minimal number of iterations is chosen over

80% of the time if the ‘use no preconditioner’ option is included, and over

40% of the time the preconditioner ranking induced by our stability estimates

exactly corresponds to the ranking induced by the true iteration count. If we

exclude the ‘use no preconditioner’ option, which corresponds to an a-priori

understanding that at least one of the geometric preconditioners works well,

the former statistic jumps from 80% to an impressive 98.1%. This ‘all blue’

plot which represents a robust preconditioner regime can not be found using

the techniques of (Cutajar et al., 2016). Moreover, the algorithm was able to

return the advice ‘use no preconditioner’ in the face of uncertainty instead

of suggesting the use of a poor preconditioner. This fact alone is highly

desirable for the practitioner.

To confirm the importance of this chapter, it is necessary to show that

our method performs well when the computationally simple accuracy

method does not. As mentioned when detailing the construction of these

preconditioners, the accuracy criterion would never choose the ‘use no

preconditioner’ option over one of the geometric preconditioner. If we were

just looking at the purely block-diagonal geometric preconditioner versus

the ‘use no preconditioner option’, the accuracy criterion would result in

a poor preconditioner (higher number of iterations than possible) exactly

a third of the time with the Concrete dataset. Of these times that the

accuracy method fails, the estimated stability criterion succeeds exactly half

of the time. For the Power dataset, the accuracy method fails 44.4% of the

time, but our estimated stability criterion succeeds in a quarter of these cases.

While this behavior is not universal, it indicates that our method can be a

crucial help when standard tools fail.

Finally, it is important to point out that in this setting, Algorithm 4

performed computation commensurate with taking 30 steps of conjugate

gradients in total. Since in over half of the parameter-dataset pairs the

non-preconditioned conjugate gradients algorithm tookmore than five times

this number of iterations, and our method can in most situations reduce that

full-solution cost significantly, this initial cost is acceptable.

Chapter 4

Conclusion

We have dived deep into the specific task of computing the trace of large,

implicit matrices by using randomized algorithms, and outlined a number

of incremental and novel contributions to the field. Our most important

contributions in this area are:

• Showing that the best known sample complexity for trace estimation

extends to any sub-Gaussian query distribution,

• Proving extremely tight lower bounds for the sample complexity of

Hutchinson-type estimators, which tell us the constants in our current

upper bounds are essentially optimal, and

• Proving why deterministic algorithms can’t estimate traces.

By utilizing those results, we are able to create the first known feasible algo-

rithms for computing preconditioner stability in the realm of the conjugate

gradients algorithm. Our primary contributions here are:

• Proving that the preconditioner stability ‖I −M−1A‖F is impractical to

even approximate deterministically,

• Showing that, nevertheless, sketching based randomized algorithms

are entirely practical for computing this quantity,

• Building upon our stability estimation algorithm to give an easy-to-

implement randomized algorithm which provably finds the ‘best’ of n
candidate preconditioners in the time it takes to compute about n log n
steps of conjugate gradients,

56 Conclusion

• Creating a theoretical improvement when there is a clearly optimal pre-

conditioner by taking advantage of an anti-concentration assumption

about the candidate stabilities, and, finally,

• Using our preconditioner selection algorithm to create a state-of-the-art

preconditioned solver for kernel regression systems with relatively

little leg-work.

Thus, our thesis is both practically helpful and of theoretical importance to

both the scientific computing and machine learning/statistics communities.

Our work raises some important theoretical questions which would be

ripe for future work. Most notably, it would be helpful if one could prove that

preconditioner stability is truly a good proxy for the number of iterations the

conjugate gradients algorithmwill use. Such an analysis could take the form

of a convergence guarantee for conjugate gradients which depends on the

stability criterion instead of the usual condition number criterion. We can

imagine proceeding towards this goal by analytically relating the stability to

the condition number. On the other hand, it would be interesting to see if

one could find a concrete example of a matrix and preconditioner for which

the stability criterion fails wildly at predicting the number of iterations the

conjugate gradients algorithm will take.

Bibliography

Dimitris Achlioptas. Database-friendly random projections. In Proceedings
of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 274–281. ACM, 2001.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of

careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied

Mathematics, 2007.

Haim Avron. Counting triangles in large graphs using randomized matrix

trace estimation. In Workshop on Large-scale Data Mining: Theory and
Applications, volume 10, pages 10–9, 2010.

Haim Avron and Sivan Toledo. Randomized algorithms for estimating the

trace of an implicit symmetric positive semi-definite matrix. Journal of the
ACM (JACM), 58(2):8, 2011.

Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel

ridge regression using sketching and preconditioning. SIAM Journal on
Matrix Analysis and Applications, 38(4):1116–1138, 2017.

Owe Axelsson and Victor Eĳkhout. Vectorizable preconditioners for elliptic

difference equations in three space dimensions. In Advances in Parallel
Computing, volume 1, pages 299–321. Elsevier, 1990.

Michele Benzi. Preconditioning techniques for large linear systems: a

survey. Journal of computational Physics, 182(2):418–477, 2002.

Michele Benzi, Daniel B Szyld, and Arno Van Duin. Orderings for in-

complete factorization preconditioning of nonsymmetric problems. SIAM
Journal on Scientific Computing, 20(5):1652–1670, 1999.

58 Bibliography

Rajendra Bhatia. Positive definite matrices, volume 16. Princeton university

press, 2009.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via

convex optimization. Foundations of Computational mathematics, 9(6):717,
2009.

Edmond Chow and Yousef Saad. Experimental study of ilu preconditioners

for indefinite matrices. Journal of Computational and Applied Mathematics, 86
(2):387–414, 1997.

John D Cook. Upper and lower bounds for the normal distribution function,

2009.

Kurt Cutajar, Michael Osborne, John Cunningham, andMaurizio Filippone.

Preconditioning kernel matrices. In International Conference on Machine
Learning, pages 2529–2538, 2016.

Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse

symmetric matrices. In Proceedings of the 1969 24th national conference, pages
157–172. ACM, 1969.

Timothy A Davis and Yifan Hu. The University of Florida sparse matrix

collection. ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

Iain S Duff andGerard AMeurant. The effect of ordering on preconditioned

conjugate gradients. BIT Numerical Mathematics, 29(4):635–657, 1989.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3.

JHU Press, 2012.

Robert D Gordon. Values of mills’ ratio of area to bounding ordinate and

of the normal probability integral for large values of the argument. The
Annals of Mathematical Statistics, 12(3):364–366, 1941.

NathanHalko, Per-GunnarMartinsson, and Joel A Tropp. Finding structure

with randomness: Probabilistic algorithms for constructing approximate

matrix decompositions. SIAM review, 53(2):217–288, 2011.

Abdolhossein Hoorfar and Mehdi Hassani. Approximation of the Lambert-

W function and hyperpower function. Research report collection, 10(2),
2007.

Bibliography 59

Michael FHutchinson. A stochastic estimator of the trace of the influencema-

trix for laplacian smoothing splines. Communications in Statistics-Simulation
and Computation, 19(2):433–450, 1990.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods, volume 6. Siam, 1998.

Yi Li, Huy L Nguyen, and David P Woodruff. On sketching matrix

norms and the top singular vector. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms, pages 1562–1581. Society for

Industrial and Applied Mathematics, 2014.

Ping Ma, Michael W Mahoney, and Bin Yu. A statistical perspective on

algorithmic leveraging. The Journal of Machine Learning Research, 16(1):
861–911, 2015.

Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on
Computation Theory (TOCT), 5(3):9, 2013.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel

machines. In Advances in neural information processing systems, pages 1177–
1184, 2008.

Farbod Roosta-Khorasani and Uri Ascher. Improved bounds on sample size

for implicitmatrix trace estimators. Foundations of ComputationalMathematics,
15(5):1187–1212, 2015.

AlessandroRudi, LuigiCarratino, andLorenzoRosasco. Falkon: Anoptimal

large scale kernel method. In Advances in Neural Information Processing
Systems, pages 3888–3898, 2017.

Danny C Sorensen. Implicitly restarted arnoldi/lanczos methods for large

scale eigenvalue calculations. InParallel Numerical Algorithms, pages 119–165.
Springer, 1997.

Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.

Siam, 1997.

Roman Vershynin. High-dimensional probability: An introduction with applica-
tions in data science, volume 47. Cambridge University Press, 2018.

60 Bibliography

Nisheeth K Vishnoi et al. Lx � b. Foundations and Trends® in Theoretical
Computer Science, 8(1–2):1–141, 2013.

Larry Wasserman. All of statistics: a concise course in statistical inference.
Springer Science & Business Media, 2013.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes
for machine learning, volume 2. MIT Press Cambridge, MA, 2006.

Karl Wimmer, Yi Wu, and Peng Zhang. Optimal query complexity for

estimating the trace of a matrix. In International Colloquium on Automata,
Languages, and Programming, pages 1051–1062. Springer, 2014.

David P Woodruff. Sketching as a tool for numerical linear algebra. Founda-
tions and Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

	Randomized Algorithms for Preconditioner Selection with Applications to Kernel Regression
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Results on Trace Estimation
	Why Deterministic Algorithms Can't Work
	Preliminary Results on Trace Estimation
	Upper Bounds on Sample Complexity
	Application To Schatten-p Norm Computations

	Lower Bounds for Hutchinson-Type Estimators
	Applications to Specific Estimators
	Related Work: Generic Trace Estimation Lower Bounds

	Experimental Results

	Results on Preconditioner Selection
	The Algorithm
	Randomization is Necessary to Compute Preconditioner Stability
	Computing Preconditioner Stability via Randomization
	Randomized Algorithm for Selecting the `Best' Preconditioner
	Approximation Guarantees and Runtime Bounds

	Experiments
	Experiments with Sparse Systems
	Experiments with Kernel Regression Preconditioners

	Conclusion
	Bibliography

