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Abstract

We study the problem {
∆u + λ f (u) � 0,
u � 0 when |x | � 1.

(1)

when f (0) ≤ 0, f increasesmonotonically, and limu→∞
f (u)

u � ∞. Specifically,
we provide a nonexistence result for a particular choice of f , a nonexistence
result for large λ, and an existence result for the case f (u) � eu − 1.

We make use of Pohozaev identities, energy arguments, and bifurcation
from a simple eigenvalue.
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Chapter 1

Historical Notes

We are interested in positive solutions u to a Dirichlet problem on the unit
disc in Rn . We study the problem{

∆u + λ f (u) � 0, |x | < 1,
u � 0 when |x | � 1.

(1.1)

We say that a solution to (1.1) is radial if, for each r ≥ 0, u is constant on the
surface of the ball of radius r centered at the origin. In Gidas et al. (1979), it
is proved that if u is a positive solution to (1.1), then u is radial. So it suffices
to study radial solutions u(r) of (1.1). This allows us to convert (1.1) to an
ordinary differential equation using hyper-spherical coordinates. Assuming
u is radial, we have the formula

∂2u
∂x2

i

�
∂2u
∂r2

(
∂r
∂xi

)2

+
∂u
∂r

∂2r
∂x2

i

,

since ∂u
∂φi

� 0 for each of the angular variables φi . Thus

∆u �

n∑
i�1

∂2u
∂x2

i

�

n∑
i�1

∂2u
∂r2

(
∂r
∂xi

)2

+
∂u
∂r

∂2r
∂x2

i

�
∂2u
∂r2

n∑
i�1

(
∂r
∂xi

)2

+
∂u
∂r

n∑
i�1

∂2r
∂x2

i

�
∂2u
∂r2 +

n − 1
r

∂u
∂r
.



2 Historical Notes

Since the new differential equation has no dependence on the angular
variables φi , the problem becomes an ordinary differential equation with
boundary condtion u(1) � 0; concretely, we have{

(rn−1u′)′ + λrn−1 f (u) � 0,
u(1) � u′(0) � 0.

(1.2)

In Castro and Shivaji (1989), Castro and Shivaji extended the result of Gidas,
Ni, and Nirenberg to nonnegative solutions to (1.1), by establishing in par-
ticular that a nonnegative solution is in fact a positive solution, arguing that
nonnegative solutions may not have zeros on the interior of the region.

A solution to (1.2) is an ordered pair (u , λ)which satisfies the above equa-
tions for a given function f . This function f is called the nonlinearity of the
Dirichlet problem.

Joseph and Lundgren Joseph and Lundgren (1970) studied (1.2) for f (u) �
(1 + αu)β with α, β real numbers and f (u) � eu . They proved the following
existence and uniqueness results. When f (u) � eu , there exists λ∗ > 0 such
that (1.1) has

1. no solutions when λ > λ∗ (n ≥ 1)
2. one solution when λ � λ∗ (n ≥ 1)
3. two solutions when 0 < λ < λ∗ (n � 1, 2),
4. an infinite number of solutions when λ � 2(n � 3),
5. a finite but large number of solutions when |λ − 2| , 0 is small (n � 3),
6. an infinite number of solutions when λ � 2(n − 2)(n < 10)
7. a finite but large number of solutions when |λ − 2(n − 2)| , 0 is small
(n < 10), and

8. one solution for each λ < 2(n − 2) (n ≥ 10).

Similar properties are proved for when f (u) � (1 + αu)β.

In Jacobsen and Schmitt (2002), the problem (1.1) was considered for a
larger class of partial differential operators. They provided existence and
multiplicity results for these problems. They also motivated the study of
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(1.1) as a limiting case of the problem{
vt � ∆v + λ(1 − εv)m ev(1 + εv), x ∈ Ω,
v � 0, x ∈ ∂Ω.

(1.3)

Per Jacobsen and Schmitt (2002), (1.3) is the solid fuel ignition model which
arises in combustion theory. Nontrivial solutions to (1.1) are uthe steady-
state solutions to (1.3). A detailed exposition of the existence and uniqueness
results for (1.1) established in Joseph and Lundgren (1970) may be found in
Bebernes and Eberly (1989), entitled Mathematical Problems from Combustion
Theory.

Cohen and Keller (1967) defined a positone Dirichlet problem to be one
where the nonlinearity f (u) is positive-valued, continuous, and monotoni-
cally increasing. For example, the problem{

∆u + λeu � 0, |x | < 1,
u � 0 when |r | � 1.

(1.4)

is positone. We are particularly interested in the case where f (u) is contin-
uous and monotonically increasing, but not necessarily positive at 0. For
example, we study the case where f (u) � eu − 1 − ε for ε > 0. Such a
Dirichlet problem is called semipositone. We restrict our investigation to f (u)
with the property limu→∞ f (u)/u � ∞. Such a function is called superlinear.





Chapter 2

A Nonexistence Result

Joseph and Lundgren studied problem (1.1) for the nonlinearity f (u) �
(1 + α)β. We are interested in an example of a similar semipositone problem
which in fact has no solutions. We study the nonlinearity f (u) � | − 1 +

αu |β−1(−1 + αu), α, β > 0, in the supercritical case
(
β > N+2

N−2
)
. This function

f is monotonically increasing, yet satisfies f (0) � −1 < 0. Thus the problem{
(rn−1u′)′ + λrn−1 | − 1 + αu |β−1(−1 + αu) � 0
u(1) � u′(0) � 0

(2.1)

is semipositone. Under the change of variables v � −1 + αu, x � r, (2,.1)
becomes {

(xn−1v′)′ + αλxn−1 |v |β−1v � 0
v(1) � −1, v′(0) � 0

(2.2)

This form is advantageous since for a function v(x) satisfying the differential
equation

(xN−1v′)′ + τ̂xN−1vβ � 0, (2.3)

we may apply a convenient form of Pohozaev’s identity.

Lemma 1 (Pohozaev’s Identity): If v(x) satisfies,

(xN−1v′)′ + τ̂xN−1vβ � 0,

then v(x) satisfies the integral identity

xN
(
(v′(x))2

2 +
τ̂vβ+1

β + 1

)
+

N − 2
2 xN−1vv′ � τ̂

∫ x

0
sN−1

(
N
β + 1 −

N − 2
2

)
vβ+1 dt .
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Proof. We first multiply the differential equation on both sides by v, and
integrate by parts on [0, x]. This yields

vv′xN−1 −
∫ x

0
tN−1(v′)2dt +

∫ x

0
tN−1τ̂vβ+1 dt � 0.

We next multiply the differential equation on both sides by xv′, and
again integrate by parts on [0, x]. This yields

xN(v′)2
2 +

N − 2
2

∫ x

0
tN−1(v′)2dt +

∫ x

0
v′tN τ̂vβ dt � 0.

Multiplying the first equation by N−2
2 and adding it to the second, we get

(moving integral terms to the right)

xN(v′)2
2 +

N − 2
2 vv′xN−1

� −
∫ x

0
τ̂tN vβv′ dt − N − 2

2

∫ x

0
τ̂tN−1vβ+1 dt .

(2.4)
The first integral on the right may be integrated by parts with λ � tN ,
du � vβv′dt. We have

−
∫ x

0
τ̂tN vβv′ dt � − τ̂xN vβ+1

β + 1 +
N
β + 1

∫ x

0
τ̂tN−1vβ+1dt . (2.5)

Substituting (2.5) into (2.4) yields

xN(v′)2
2 +

N − 2
2 vv′xN−1

� − τ̂xN vβ+1

β + 1 + τ̂

∫ x

0
tN−1

(
N
β + 1 −

N − 2
2

)
vβ+1 dt .

Rearranging yields Pohozaev’s identity, that is,

xN
(
(v′(x))2

2 +
τ̂vβ+1

β + 1

)
+

N − 2
2 xN−1vv′ � τ̂

∫ x

0
sN−1

(
N
β + 1 −

N − 2
2

)
vβ+1 dt .

(2.6)
We can only apply Pohozaev’s identity to (2.2) in a region in which v � |v |;
that is, v is nonnegative. Suppose u is a positive solution to (2.1) satisfying
−1 + αu(0) > 0. Then v(0) > 0, while v(1) � −1 < 0, ensuring that there is
some x0 ∈ (0, 1) where v(x0) � 0 by the continuity of v, and v(x) ≥ 0 for
0 ≤ x ≤ x0. Then v satisfies (2.3) for x ∈ [0, x0), and we can apply the lemma.

Put x � x0 in (2.6). We have v′(x0)2 ≥ 0, while v(x0) � 0, so the left
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side is nonnegative. In the supercritical case the integrand is strictly neg-
ative on [0, x0), therefore the right hand side is strictly negative. This is a
contradiction, so it must be that −1 + αu(0) ≤ 0. In this case, (2.2) implies

xv′′ + (N − 1)v′ � τ̂ |v |β (2.7)

while integrating (2.2) implies

v′(x) � − αλ

xN−1

∫ x

0
tN−1 |v |β dt . (2.8)

(2.8) demonstrates that v′ is always negative, unless v is the constant function,
which is not a solution. Therefore at any point x0 where v is nonzero,
v′(x0) < 0. The right hand side of (2.7) is always nonnegative. Therefore
v′′(x) ≥ 0. So v′(0) � 0, v′(x0) < 0, while v′′(x) ≥ 0, a contradiction. So there
are no solutions.





Chapter 3

Large λ Solutions to a
Semipositone Problem

3.1 Definitions

We consider the semipositone problem{
(rn−1u′)′ + λrn−1(eu − (1 + ε)) � 0,
u(1) � u′(0) � 0.

(3.1)

for ε > 0. We are interested in the existence of solutions to (3.1) for large λ.
Define g(u) � eu − (1 + ε) and

G(u) �
∫ u

0
(e t − (1 + ε)dt � eu − u(1 + ε) − 1.

Since g(u) is monotonically increasing and negative at u � 0, there are real
numbers α, β such that α < β and g(α) � G(β) � 0. Define d � u(0) and an
energy function

E(r) � (u
′)2
2 + λG(u).

Then
E′(r) � u′(r)u′′(r) + λg(u(r))u′(r) � −n − 1

r
(u′(r))2

by the differential equation in (3.1). For all r ∈ (0, 1), − n−1
r (u′(r))2 ≤ 0, thus

E′(r) ≤ 0 for all r ∈ (0, 1].
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3.2 Useful Lemmas

Lemma 1: If u is a solution to (3.1), u decreases montonically.

Suppose u is a solution to (1) which does not decrease monotonically.
Then there are r1 , r2 so that r1 < r2 and u(r1) < u(r2). Suppose u(0) < u(r2).
Then E(0) � λG(u(0)) < λG(u(r2)) ≤ E(r2), a contradiction since E′(r) ≤ 0,
therefore u(0) ≥ u(r2).

Since u is continuous, the extremal value theorem says that u must attain its
minimum on [0, r2]. We have u(0) ≥ u(r2) > u(r1), so the minimum is not ei-
ther of the endpoints. Thus since u is differentiable, there exists r0 < r2 where
u(r0) < u(r2) and u′(r0) � 0. Yet E(r0) � λG(u(r0)) < λG(u(r2)) � E(r2), a
contradiction since E′(r) ≤ 0. So u decreases monotonically.

Happily, we can immediately eliminate solutions with u(0) < β from
consideration.

Lemma 2: If u is a solution to (3.1), u(0) ≥ β.

Suppose that d ∈ [0, β). we have E(0) � λG(d) < 0. Since E′(r) ≤ 0
for r ∈ [0, 1], we expect E(1) ≤ E(0) < 0. But

E(1) � u′(1)2
2 + λG(0) � u′(1)2

2 ≥ 0.

This is a contradiction. Thus no solutions exist for d ∈ [0, β).

3.3 Bounding r0

The above shows that if u is a solution to (3.1), u(0) � d ≥ β. We now seek
to obtain bounds, depending on λ, on the point r0 at which u(r0) � α+β

2 .
Integrating the differential equation in (3.1), we get

− rn−1u′(r) � λ
∫ r

0
sn−1 g(u(s)) ds . (3.2)
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Since u decreases monotonically, we may exchange the integral above for an
inequality:

− rn−1u′(r) � λ
∫ r

0
sn−1 g(u(s)) ds ≥ λg

(
α + β

2

)
rn

n
. (3.3)

Dividing through and integrating from 0 to r,

d − u(r) ≥
λg

(
α+β

2

)
r2

2n
, (3.4)

thus

u(r) ≤ d −
λg

(
α+β

2

)
r2

2n
. (3.5)

The equation above is an upper bound for u(r) on the interval where
u(r) ≥ α+β

2 . This upper bound is a monotonically decreasing function.
Setting

d −
λg

(
α+β

2

)
r2

2n
�
α + β

2 ,

we obtain

r �

√
N(2d − (α + β))

λg( α+β2 )
� C1/

√
λ,

So we have a positive constants C1 satisfying

r0 <
C1√
λ
.

3.4 Energy Arguments

Let r1 satisfy u(r1) � α, and let r2 satisfy u(r2) � α
2 . We proceed with energy

arguments to show that no solutions exist for large λ. We have

E(1) � (u
′(1))2
2 + λG(0) � (u

′(1))2
2 ≥ 0.

Since E′(r) ≥ 0, E(r) ≥ 0 for all r. It follows that

(u′)2
2 ≥ −λG(u) (3.6)



12 Large λ Solutions to a Semipositone Problem

for all r. Now suppose r ∈ [r0 , r2]. The maximum value of G(u(r)) on this
interval is at an endpoint since G is concave up, so

G(u(r)) ≤ G(u(r0)) � G
(
α + β

2

)
or

G(u(r)) ≤ G(u(r2)) � G
(α

2

)
.

In either case, G(r) ≤ −M1 for some M1 > 0 on the interval [r0 , r2]. Therefore
on this interval, (3.6) becomes

(u′)2
2 ≥ λM1.

It follows that
−u′ ≥

√
λ
√

2M1

on this interval, where we take the negative square root since u decreases
monotonically. Integrating from r0 to r2, we get

u(r0) − u(r2) �
α + β

2 − α2 �
β

2 ≥
√
λ
√

2M1(r2 − r0)

therefore
r2 − r0 ≤

M2√
λ

for a positive constant M2. From above we have that r0 ≤ C1/
√
λ; it follows

that for some M3 > 0, we have

r2 ≤
M3√
λ
.

So as λ → ∞, r2 → 0. We now aim to show, toward a contradiction, as
λ→∞, r2 → 1. Consider the interval [r2 , 1]. Define the positive constant

M4 � −
g
(
α
2
)

2 .

Then define a new function

h(x) � G(x) + M4x � ex − x(1 + ε) − 1 + M4x � ex
+ (M4 − 1 − ε)x − 1.
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Then h(0) � 0, and for x ≤ α/2, we have

h′(x) � g(x) + M4 ≤ g
(α

2

)
+ M4 �

g
(
α
2
)

2 < 0.

Thus h(u(r)) ≤ 0 on [r2 , 1]. It follows that

G(u) ≤ −M4u

and therefore (3.6) becomes

(u′)2
2 ≥ λuM4.

Thus
−u′ ≥

√
λ
√

u
√

2M4.

We can separate variables and integrate from r2 to 1; this yields

−
∫ 1

r2

du√
u
≥

∫ 1

r2

√
λ
√

2M4 dr

thus

−2
√

u |1r2 � 2
√
α
2 ≥
√
λ
√

2M4(1 − r2)

and finally
r2 ≥ 1 −M5/

√
λ.

for some positive constant M5. Since we expect r2 ≤ M3√
λ
, there are no

solutions when
1 − M5√

λ
>

M3√
λ
,

that is to say, there are no solutions for

λ > (M3 + M5)2.





Chapter 4

An Existence Result

4.1 Setup

We study the problem{
(rn−1u′)′ + λrn−1(eu − 1) � 0,
u(1) � u′(0) � 0.

(4.1)

Since e0 − 1 � 0, this problem is neither positone nor semipositone. This
unique property will allow us to study the existence of solutions to (4.1)
with help from Crandall and Rabinowitz (1971).

Specifically, we apply Theorem 1 of the above paper to demonstrate the
existence of a branch of nontrivial solutions. The theorem is stated with a
high degree of generality and thus will require extensive setup to be useful
in the context of our Dirichlet problem.

Theorem 4.1 (Crandall and Rabinowitz (1971)). Let W and Y be Banach
spaces,Ω an open subset of W and G : Ω→ Y be twice continuously differentiable.
Let w : [−1, 1] → Ω be a simple continuously differentiable arc in Ω such that
G(w(t)) � 0 for |t | ≤ 1. Suppose

a) w′(0) , 0,

b) dimN(G′(w(0)) � 2, codim(R(G′(w(0)))) � 1,

c) N(G′(w(0))) is spanned by w′(0) and v, and

d) G′′(w(0))(w′(0), v) < R(G′(w(0))).
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Then w(0) is a bifurcation point of G(w) � 0 with respect to C � {w(t) : t ∈
[−1, 1]} and in some neighborhood of w(0) the totality of solutions of G(w) � 0
form two continuous curves intersecting only at w(0).

Let U be the open unit ball in Rn . Then (4.1) is equivalent to{
−∆u � λ(eu − 1) � 0, in U,
u � 0 on δU.

(4.2)

Suppose u is a solution to (4.2). Then from Evans (1998), we have the
following theorem.

Theorem 4.2 (Evans (1998)). (Representation formula using Green’s func-
tion.) If u ∈ C2(U) solves problem{

−∆u � f , in U,
u � g on δU.

(4.3)

then

u(x) � −
∫
δU

g(y)∂G
∂ν
(x , y) dS(y) +

∫
U

f (y)G(x , y)dy , x ∈ U.

Here, again referencing Evans (1998), G is Green’s function and ∂G
∂ν (x , y) is

the outer normal derivative of G with respect to the variable y; the latter
will be irrelevant in our final calculation.

We see u satisfies the preconditions of Theorem 4.2 with f � λ(eu − 1)
and g � 0. So for solutions of (4.2), we have

u(x) � λ
∫

U
G(x , y)(eu(y) − 1)dy.

Define a new function T : C2(U) ×R→ C2(U) by

T(u , λ) � u(x) − λ
∫

U
G(x , y)(eu(y) − 1)dy.

We are now ready to discuss the theorem. Let Y � C2(U) be the Banach
space of twice continuously differentiable functions, and let W be the subset
of C2(U) × R where the continuous function in the first slot satisfies the
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Dirichlet boundary condition. Ω is simply all of W , and T takes the place
of G in the theorem, to avoid confusion with Green’s function. Let λ1 be
the first Dirichlet eigenvalue of U. Define w(t) � (0, t + λ1), the element of
C2(U) ×R where the first slot is the constant function 0. Then for all t,

T(w(t)) � T(0, λ1 + t) � 0 − (λ1 + t)
∫

U
G(x , y)(e0 − 1) dy � 0.

4.2 T is Twice Continuously Differentiable

We begin by showing that T is twice continuously differentiable in the sense
of the Fréchet derivative. We begin with a guess for the Fréchet derivative
and will prove it. Define

T′(u , λ)(h , γ) � h − λ
∫

U
G(x , y)eu h(y) dy − γ

∫
U

G(x , y)(eu − 1).

We must prove that for each (h , γ), the above defines a bounded linear
operator satisfying

lim
s ,t→0

1
|t | + |s |

(
T(u + th , λ + sγ) − T(u , λ) − T′(u)(th , sγ)

)
� 0.

The above equals

lim
s ,t→0

1
|t | + |s |

(
λ

∫
U

G(x , y)eu(1 − e th(y)
+ h(y)) dy + sγ

∫
U

G(x , y)eu(1 − e th(y)) dy
)
.

In the first term we have

lim
s ,t→0

1
|t | + |s |λ

∫
U

G(x , y)eu(1 − e th(y)
+ h(y)) dy

� lim
s ,t→0

1
t
λ

∫
U

G(x , y)eu
(
h(y)1 − e th(y)

th(y) + h(y)
)

dy

The fraction in the integrand approaches the derivative of −ex at x � 0, that
is −1, as t → 0, so that the above tends to 0 with t. In the second term we
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have ���� lim
s ,t→0

1
|t | + |s | sγ

∫
U

G(x , y)eu(1 − e th(y)) dy
����

≤|sγ |
���� lim

s ,t→0

1
t

∫
U

G(x , y)eu(1 − e th(y))
����

≤|sγ |
���� lim

s ,t→0

∫
U

G(x , y)eu h(y)
(
1 − e th(y)

th(y)

) ����
� lim

s ,t→0
|sγ |

���� ∫
U

G(x , y)eu h(y)h(y)
����

�0

(4.4)

so the second term tends to zero as well. T′(u , λ)(h , γ) We see that
T′(u , λ)(h , γ) is linear in h and γ. Furthermore, it is bounded; to see
this, note that

‖(T′(u , λ))(h , γ)‖∞
‖h‖∞ + |γ | �

‖h − λ
∫

U G(x , y)eu h(y) dy − γ
∫

U G(x , y)(eu − 1)‖∞
(|h‖∞ + |γ | .

By the triangle inequality, the above is

≤ 1 + λ

∫
U

G(x , y)eu dy

∞
+

∫
U

G(x , y)(eu − 1) dy

∞
,

therefore since u is continuous on U, ‖T′(u , λ)‖op is bounded above. Thus
(T′(u , λ))(h , γ) is the the Fréchet derivative of T at (u , λ) in the direction of
(h , γ). Since we must show T(u , λ) is twice continuously differentiable, we
must now repeat this process with T′(u , λ) in place of T(u , λ). We consider

lim
s ,t→0

1
|t | + |s |

(
T′(u + tξ, λ + sν)(h , γ) − T′(u , λ)(h , γ)

)
� lim

s ,t→0

1
|s | + |t |

(
(h − (λ + sν)

∫
U

G(x , y)eu+tξh(y) dy − γ
∫

U
G(x , y)(eu+tξ − 1) dy

−h + λ

∫
U

G(x , y)eu h(y) dy
)
+ γ

∫
U

G(x , y)(eu − 1).

� lim
s ,t→0

1
|s | + |t |

(
λ

∫
U

G(x , y)eu h(y)(1 − e tξ) dy − sν
∫

U
G(x , y)eu+tξh(y)dy

+γ

∫
U

G(x , y)eu(1 − e tξ) dy
)

� − λ
∫

U
G(x , y)eu h(y)ξ(y) dy − ν

∫
u

G(x , y)eu h(y)dy − γ
∫

U
G(x , y)euξ(y) dy
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which is linear in both (h , γ) and (ξ, ν), and bounded by a similar argument
to the one above. Thus T′′(u) is a bilinear operator from (C2(U) × R) ×
(C2(U) ×R) → C2(U) and takes the form

(T′′(u))[(h , γ), (ξ, ν)] � − λ
∫

U
G(x , y)eu h(y)ξ(y) dy

− ν
∫

u
G(x , y)eu h(y)dy − γ

∫
U

G(x , y)euξ(y) dy.

and we have proven that T is twice continuously differentiable in the sense
of the the Fréchet Derivative.

4.3 Applying the Theorem

We proceed to prove the four criteria for w(0) � (0, λ1) to be a bifurcation
point.

a) w′(0) , 0.

By inspection, the Frechet derivative of w(t) in the direction δ is
w′(t)(δ) � (0, δ). Thus w′(0)(δ) � (0, δ)which is not identically 0.

b) dimN(T′(w(0)) � 2, codim(R(T′(w(0)))) � 1.

Note

T′(w(0)) � T′(0, λ1)(h , γ) � h − λ1

∫
U

G(x , y)h(y)dy

(0, 1) is one vector in the kernel, so the dimension is at least 1. Now
pick h1 to be the eigenfunction corresponding to λ1; since λ1 is simple
as the first Dirichlet eigenvalue, it has exactly one eigenfunction. So
the vector (h1 , 0) is an additional vector in the null space, orthogonal
to (0, 1), so the null space has dimension exactly 2, since there are no
other eigenfunctions.

Since the cokernel contains exactly one linearly independent func-
tion h1, codim(R(G′(w(0)))) � 1. The cokernel may have no more since
this would contradict the simplicty of λ1.

c) N(T′(w(0))) is spanned by w′(0) and v.
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With v � (h1 , 0), this follows directly from the above. Strictly speaking,
w′(0) is a linear map from [−1, 1] to L(R, C2 × R), not an element of
(C2 ×R), so we take δ � 1 at which w′(0) � (0, 1).

d) T′′(w(0))(w′(0), v) < R(T′(w(0))).

With reference to (4.5), we have

(T′′(0, λ1))[(0, 1), (h1 , 0)] � −
∫

U
G(x , y)h1(y) dy.

We aim to show this is not contained in R(T′(w(0))); that is, for h ∈ W ,
it is not a function of the form

h − λ1

∫
U

G(x , y)h(y) dy.

Suppose it were. Then there exists some h where

−
∫

U
G(x , y)h1(y) dy � h − λ1

∫
U

G(x , y)h(y) dy

and therefore

h � λ1

∫
U

G(x , y)(h(y) − h1(y)/λ1) dy

so that by the converse of (4.2), we have

∆h � −λ1(h(y) − h1(y)/λ1) � λ1h(y) − h1(y) dy.

Multiply on both sides by h1 and integrate over U to get the identity∫
U

(
h1(y)∆h(y) + λ1h1(y)h(y)

)
dy � −

∫
U

h2
1(y) (4.5)

We can simplify the above. First note that∫
δU

h
∂h1
∂ν
− h1

∂h
∂ν

� 0,

since h and h1 are 0 on the boundary of U, the former because it is
an element of W and the latter because it is a solution to the Dirichlet
problem {

∆h � λh in U
h � 0 on ∂U.

(4.6)
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Then by the statement in Evans (1998) of Green’s third identity,∫
U
(h∆h1 − h1∆h) �

∫
δU

h
∂h1
∂ν
− h1

∂h
∂ν

� 0

so that (4.6) becomes∫
U

h(y)∆h1(y) + λ1

∫
U

h1(y)h(y) dy

� − λ1

∫
U

h1(y)h(y) dy + λ1

∫
U

h1(y)h(y) dy

�0 � −
∫

U
h2

1(y) dy < 0,

(4.7)

a contradiction. So the preconditions of the theorem are satisfied.
Then (0, λ1) is a bifurcation point of w(t) and a second curve of
solutions intersects w(t) at only this point, therefore this second curve
is composed of nontrivial solutions since w(t) is the trivial curve. The
properties of the nontrivial curve are a topic for further study.
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