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Abstract

Quandles, which are algebraic structures related to knots, can be used
to color knot diagrams, and the number of these colorings is called the
quandle coloring invariant. We strengthen the quandle coloring invariant
by considering a graph structure on the space of quandle colorings of a
knot, and we call our graph the quandle coloring quiver. This structure is
a categorification of the quandle coloring invariant. Then, we strengthen
the quiver by decorating it with Boltzmann weights. Explicit examples of
links that show that our enhancements are proper are provided, as well as
background information in quandle theory.
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Chapter 1

Introduction

How can we tell when two knots are fundamentally different? This is the
primary question in knot theory. Knots are defined to be equivalent if we
can move one into the other without breaking and re-gluing the strand.

Reidemeister (1927) showed that knots are equivalent precisely when we
can move from the diagram of one to the diagram of the other by a sequence
of Reidemeister moves (or R-moves for short), which are shown below.

III

I II

Figure 1



2 Introduction

For example, consider the following three knot diagrams:

Figure 2
The left two knots can be deformed into one another, while the knot on

the right (which is called the trefoil knot) is distinct. We can prove that the
left two are equivalent by using R-moves:

I II

Figure 3
However, we won’t be able to prove that the trefoil is distinct from the

unknot (circle) using R-moves since those can only be used to show knot
equivalence. This brings us back to the original question of how we can
show nonequivalence of knots. The answer: knot invariants.

A knot invariant is a value that we can ascribe to any knot such that
that value will be the same for equivalent knots. This value could be an
integer, a polynomial, or anything else as long as it obeys that condition.
One way to show that something is a knot invariant is to show that the value
is unchanged by R-moves. In other words, we would want to show that for
any knot, the value before and after performing any R-move is the same.

We are interested in a particular knot invariant known as the quandle
coloring invariant. A quandle is an algebraic structure motivated by knots,
much like how a group is an algebraic structure motivated by symmetry. It
is defined in such a way that the fundamental quandle of a knot (discussed
in Section 2.2) is an invariant. Suppose we have a quandle Q with finitely
many elements. We can think of each quandle element as a color. Given
some knot diagram K, we can assign colors from Q to arcs of K in a way
that "respects the quandle structure" (this will be made precise in the next
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chapter). Then there will be some finite number of ways we can validly color
K by elements of Q. We call this number the quandle coloring invariant of
K with respect to Q, which is denoted by ΦZ

Q(K).
Quandle colorings can be nicely visualized:

Figure 4

Above, we have the colorings of the trefoil by a particular 3 element
quandle Q. Since there are 9 colorings, ΦZ

Q(trefoil) � 9. We will discuss this
particular case in more detail in Example 4.

In this thesis, we are interested in improving the quandle coloring
invariant. Note that ΦZ

Q(K) is an integer-valued invariant, which means each
coloring is essentially considered as an individual and counted up. As we
will discuss in the next chapter, quandle colorings actually represent quandle
homomorphisms, which are maps the respect the quandle structure. The
importance of this is that the colorings are inherently algebraic, which begs
the question: is there a way to impose a structure on the space of colorings?

The answer is yes! We will define the quandle coloring quiver (see
Section 2.3) as an enhancement ofΦZ

Q(K) that takes into account the structure
of the coloring space, which yields a whole family of knot invariants. The
quandle coloring quiver allows us to visualize relationships betweendifferent
colored knot diagrams in a way that is useful in telling knots apart.



4 Introduction

It turns out that not all knot invariants are helpful in distinguishing knots.
In fact, assigning the value 0 to every knot satisfies the definition of a knot
invariant, but it cannot tell any two knots apart. Thus, it is important to
provide examples of knots that are distinguishable by a given invariant, and,
in the case of enhancements, to distinguish knots with the enhancement that
cannot be distinguished by the original invariant.

In the rest of the thesis, we will present such examples that prove that our
enhancements are strict and derive further enhancements from the quandle
coloring quiver.



Chapter 2

Quandles and Knot Colorings

Here, we will introduce some relevant definitions and examples. We’ll start
with the fundamentals of knot theory, and work our way through quandle
theory, with the aim of understanding the quandle coloring invariant.
Sections 2.2 and onward will be best appreciated by readers with some
experience with first semester abstract algebra and group theory. We will
end the chapter by discussing our enhancement of the quandle coloring
invariant: the quandle coloring quiver.

2.1 Knot Basics

Imagine you have a long piece of thread. You take your thread and twist and
tie it around itself as much as you’d like. Then you light a match, melt the
two ends of the thread and weld them together. Maybe it looks something
like this (where the gaps indicate the strands passing over one another):

Figure 5

You have just created a knot! In math terminology, we can describe what
a knot is in the following definition.
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Definition 1. A knot is a simple closed curve embedded in R3.

Although the knot is embedded in R3, we can nearly flatten the knot
and imagine it laying in R2 × [0, 1], a "thickened" plane. As mentioned in
Chapter 1, we can describe a knot by drawing its knot diagram. The knot
diagram is essentially a visualization of what the knot would look like from
an aerial view of the thickened plane.

We will not be considering the geometry of the knot. It may be helpful
to think of the knot as a long elastic strand that can be stretched and moved,
as long as it is not cut or glued at any point. This intuition can be made into
something more precise in the following definition:

Definition 2. We say that two knots K, K′ are equivalent if there exists an
ambient isotopy from K to K′.

We may imagine an isotopy from K to K′ as a continuous animation
where at time t � 0, we have K and at time t � 1, we have K′.

Thankfully, we don’t need to worry about the details of isotopies, because
Reidemeister (1927) established the following theorem:

Theorem 1. Two knot diagrams K, K′ represent equivalent knots if and only if they
are related by a sequence of Reidemeister moves (R-moves).

III

I II

Figure 6

The fact that the three R-moves fully characterize equivalence of knots is
very useful in that it turns the continuous problem of dealing with knots (can
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we push around knot K and eventually get to knot K′?) into a discretized one
(which sequence of R-moves takes us from K to K′? Does such a sequence
exist?). Thus, for the rest of this thesis, whenwe say two knots are equivalent,
we mean that the knot diagram of one can be altered by these R-moves and
made into the other.

We will refer to each R-move by its number. For example, the first box
depicts the R1 move. Observe that each number matches the number of
strands involved.

The fundamental question in knot theory is the following: given two
knots, how can we tell if they are equivalent or not? This motivates the next
definition.

Definition 3. Let K be the set of all knots, and S be a set. A function
I : K → S is a knot invariant if I is constant on equivalence classes of knots.
In other words, if K is ambient isotopic to K′, then I(K) � I(K′).

Thus, as Reidemeister’s theorem classifies equivalences of knots, it gives
us a way to determine whether or not a function is a knot invariant. In
order to establish a function defined from a knot diagram as a knot invariant,
one only needs to show that the function value is locally unchanged by
R-moves. This is one reason why the knot diagram is the most commonly
used representation of a knot (as opposed to another representation, like a
Gauss code). See Kauffman (1999) for more about Gauss codes.

It will be useful for us to consider the oriented knot, in which we pick
some direction for an arc (an uninterrupted line in the knot diagram), which
we indicate with an arrow, and follow that through the rest of the knot.

Figure 7

We will also be dealing with links, which are multiple component knots
(two ormore knots interlocked). A knot is just a linkwith a single component.
We will refer to knots and links somewhat interchangeably.

For more on knots and links, see Elhamdadi and Nelson (2015).
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2.2 Quandles

Just as groups are an algebraic structure motivated by the symmetries,
quandles are algebraic structures motivated by knots. A specific case of this
structure was studied by Takasaki (1943), who called it kei, which translates
to "square jewel." We get the term quandle from Joyce (1982).

Definition 4. A set X equipped with a binary operation B is a quandle if it
satisfies

1. x B x � x for all x ∈ X,

2. for each y ∈ X, the map fy : X → X defined by fy(x) � x B y is a
bĳection, and

3. (x B y) B z � (x B z) B (y B z) for all x , y , z ∈ X.

We will provide motivation for the quizzical quandle axioms in a bit.
First we will draw a connection between quandles and knots. Say we have
an oriented link diagram L with n arcs. Assign each arc some label, like
a , b , c , . . . Then, we obtain a set of relations from the crossings of L by
requiring the following relation to hold at each crossing:

Figure 8

Note that only the orientation of the overarc matters. In words, if we
assigned the label y to the overarc at a crossing, view the crossing with the
y strand pointing up. Then if we have an arc labeled x on the right and an
arc labeled z on the left, we require z � x B y.

Definition 5. The fundamental quandle Q(L) is the set of equivalence
classes of quandle words generated by the arc labels under the equivalence
relations given by the crossings and the quandle axioms.

Example 1. Let us compute the fundamental quandle Q(K3,1) for the trefoil
knot. Here the arcs are labelled a , b , c.
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Figure 9

Each crossing yields a relationship between a , b and c, as shown in Fig-
ure 9. Then the fundamental quandle has presentation Q(K3,1) � 〈a , b , c | b �

c B a , a � b B c , c � a B b〉. Note that the fundamental quandle is infinite,
since elements like a B c cannot be expressed as one of a , b ,or c. Just as
in this example, by construction, any knot or link with finitely many arcs
in its diagram (which is called a tame knot) will have a finitely generated
fundamental quandle.

Now, how does the fundamental quandle relate to the quandle axioms?
Well, wewant the axioms to be defined in such away that Q(L) is an invariant
of L. In other words, we need Q(L) to be locally invariant under the R-moves!
Let’s look at each of the three R-moves and their relationships to the axioms.

First we have R1. Let’s say the strand on the left is labelled x.

I

Figure 10

If we follow the quandle crossing rule after performing the R1 move,
since x is passing under x, the bottom arc must be labelled x B x. If we want
Q(L) to be invariant under R1, we need the labels at the bottom on either
side of the R1 move to match. Since x is on the left and x B x is on the right,
this means that x B x � x. Note that x was arbitrary, so this must hold for
all labels. Hence we should require x B x � x for all x ∈ Q(L). Compare
this to axiom 1 of the quandle definition.
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Next, let’s take a look at R2 in a similar manner.

II

Figure 11

Comparing the left and right sides of the R2 move, we require y � z B x.
Looking at the right side first, we see that given any z , x ∈ Q(L) there
should be a unique y ∈ Q(L) such that y � z B x. This means that the
map fx(z) : Q(L) → Q(L) defined fx(z) :� z B x is injective. Since the blue
strand on the left could have been given any label in Q(L), this map fx(z) is
surjective. Thus, it is bĳective, which is precisely the condition we have in
quandle axiom 2.

Finally, let’s talk about R3.

III

Figure 12

As before, we require that the labels at the top and bottom match on
either side of the R3 move. At the top we start with x , y , z from left to right.
On the bottom, note that the left and middle strand labels match already.
All that’s left is to require (x B y) B z � (x B z) B (y B z), which is the
right distributive condition required in quandle axiom 3. It is interesting to
note that this axiom tells us that quandles are a non-associative algebraic
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structure.
This shows that the quandle axioms are motivated by the R-moves, and

that they are defined in such a way that allows the fundamental quandle of a
knot to truly be fundamental to that knot! More precisely, the fundamental
quandle is a knot invariant.

Remark 1. The fundamental quandle is a complete invariant up to mirror
image for non-split links, which was proved by Fenn and Rourke (1992). This
means that for non-equivalent knots K, K′, the fundamental quandles Q(K),
Q(K′)will not be isomorphic. If K and K′ are mirror images of each other,
their fundamental quandles may or may not be isomorphic. Although Q(K)
is a strong invariant, by itself it is not so helpful in distinguishing knots, since
showing whether or not two presentations for fundamental quandles are
isomorphic is just as difficult as dealing with the knot diagrams themselves.
As we will see in a bit, the quandle coloring invariant uses the fundamental
quandle in a way that is useful.

Remark 2. We just saw how knots are related to quandles, but it is not
always the case that a quandle has a knot associated to it, as we will see in
the following examples.

Example 2. Let G be a group where the B operation is n-fold conjugation:
x B y � yn x y−n . Then (G,B) is a quandle.

Example 3. Let X � Z/nZwhere theB operation is defined by x B y ≡ 2y−x
(mod n). Then (X,B) is a quandle called the dihedral quandle.

Note that the dihedral quandle is an example of a finite quandle. Finite
quandles can be fully represented by operation tables. The operation table
for the dihedral quandle with n � 3 is shown below.

B 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Definition 6. Let X,Y be quandles with multiplication operations indicated
by BX and BY respectively. A map f : X → Y is a quandle homomorphism
given that f (a BX b) � f (a) BY f (b) for any a , b ∈ X.

Definition 7. Let X,Y be quandles. The hom-set Hom(X,Y) is the set of all
quandle homomorphisms φ : X → Y.
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Quandle homomorphisms are defined the in same way as group ho-
momorphisms. Since we will be working with quandles, unless otherwise
stated, homomorphisms will refer to quandle homomorphisms.

We are finally ready to discuss the quandle coloring invariant, which is a
central point of interest in this thesis.

Definition 8. Let L be an oriented link with fundamental quandle Q(L) and
X be a finite quandle called the coloring quandle. Wewill call Hom(Q(L),X)
the coloring space. The quandle coloring invariant is the cardinality of the
coloring space, |Hom(Q(L),X)|, denoted ΦZ

X(L).

Remark 3. Combinatorially, each element φ ∈ Hom(Q(L),X) can be repre-
sented as a “coloring” of the diagram of L by colors from X, as we will see in
the following example. Using this analogy, a valid coloring is an assignment
of an element from X to each arc in L’s link diagram in a way that respects
the quandle operation of X at each crossing. I like to think of the coloring
quandle X as our crayon box, with the elements of X being crayons. Then
we color the arcs of L with the crayons, making sure we follow the crossing
rule to get a valid coloring.

How does a coloring correspond to a homomorphism? Recall that the
arc labels of L generate the fundamental quandle Q(L). For a coloring of
L by X, each arc is assigned an element of X, so we can associate to that
coloring a map φ : Q(L) → X where if an arc is labeled a in the fundamental
quandle and is assigned the color x ∈ X, then φ maps a 7→ x. This map is
a homomorphism due to the fact that the coloring must obey the crossing
relation. Let’s see why.

Figure 13

Suppose we have some knot diagram K colored by X with a crossing, as
shown in Figure 13. Let the arcs be labelled a , b , a B b in the fundamental
quandle of K and suppose they are colored x , y , z ∈ X respectively, so the
corresponding map φ takes a 7→ x, b 7→ y, and (a B b) 7→ z. Since the
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coloring must obey the crossing relation, we require z � x B y. Thus,

φ(a B b) � z � x B y � φ(a) B φ(b),

which is the homomorphism condition. The situation at each crossing must
also work out the same way, so we have φ(a B b) � φ(a) B φ(b) for any two
generators a and b. Then, since a homomorphism from the finitely generated
quandle Q(K) is uniquely determined by where the generators are mapped,
the map φ corresponding to the coloring is a homomorphism.

Example 4. Let us compute the quandle coloring invariant ΦZ
X(L)where L

is the trefoil as orientied in example 1 and X is the dihedral quandle on 3
elements. Recall that Q(L) has presentation Q(L) � 〈a , b , c | b � c B a , a �

b B c , c � a B b〉 and X has the multiplication table shown below.

B 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

To count the homomorphisms, we need to count the different ways we
can validly map the generators a , b , c to elements of X. As seen in example 1,
we must satisfy c � a B b, so once colors for a and b are chosen, the color for
c is determined by the multiplication table. There are 3 choices each for a
and b, so we see that ΦZ

X(L) � |Hom(Q(L),X)| � 3 · 3 � 9. These 9 colorings
are depicted below where 0 is green, 1 is blue, and 2 is pink.

Figure 14
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For example, the coloring in the center of the grid represents the homo-
morphism that maps a 7→ 0, b 7→ 1, c 7→ 2.
Remark 4. Because of the first quandle axiom, which requires x B x � x
for all x ∈ X, the constant map φx : Q(L) → X mapping a 7→ x for all
a ∈ Q(L) will always be a homomorphism for any x, so it is included in
Hom(Q(L),X). Thus, for a quandle X with n elements, any link L will have
at least n X-colorings (the constant colorings).

2.3 The Quandle Coloring Quiver

Given any link diagram, we can pick any finite quandle X and compute
ΦZ

X to get some integer value invariant. So if we have two links L, L′ where
ΦZ

X(L) , ΦZ
X(L′), then we can distinguish L and L′ from one another, and

each finite quandle gives us a different invariant!
However, it ignores some potentially useful information since ΦZ

X(L) �
|Hom(Q(L),X)|, the number of elements in the coloring space. Note that
the set Hom(Q(L),X) is an invariant of L since Q(L) is an invariant and
Hom(Q(L),X) is just the set of homomorphisms from Q(L) to a fixed quandle
X. Also, the coloring space itself contains more information than the number
of elements in the coloring space, although comparing two coloring spaces
could be pretty cumbersome.

This is our motivation for this thesis project: How can we enhance
the quandle coloring invariant? When we say a knot invariant E is an
"enhancement" of another knot invariant I, we mean that evaluating E of a
link L will give us at least as much information as evaluating I of L. Or that
given E(L) we can extract the information contained in I(L). For example,
Hom(Q(L),X) is an enhancement of ΦZ

X .
We approached our research question by considering a quiver structure.

A quiver is a directed graph that allows multiple edges and loops. The
following definition is adapted from Cho and Nelson (2019b).
Definition 9. Let X be a finite quandle and L an oriented link. For any set of
quandle endomorphims S ⊂ Hom(X,X), the associated quandle coloring
quiver, denoted QS

X(L), is the directed graph with a vertex for every element
f ∈ Hom(Q(L),X) and an edge directed from f to g when g � φ f for an
element φ ∈ S. Important special cases include the case S � Hom(X,X),
which we call the full quandle coloring quiver of L with respect to X,
denoted QX(L), and the case when S � {φ} is a singleton, which we will
denote by QφX(L).
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Theorem 2. For X, L, and S as described above, QS
X(L) is an invariant of L.

Proof. Q(L) is an invariant of L and Hom(Q(L),X) is fixed for L, X. �

Let’s unpack this definition. As with the quandle coloring invariant, our
ingredients include a link L and a finite coloring quandle X. The vertices
correspond to elements of Hom(Q(L),X), which we know to be colorings of
L by X. Thus, we know that QS

X(L) is an enhancement of ΦZ
X(L), since the

cardinality of the vertex set of QS
X(L)will be equal to ΦZ

X(L) by definition.
The significance of considering endomorphisms is that these endomor-

phisms will reveal something about the structure of the coloring space.
Recall that an endomorphism is simply a homomorphism from X to it-
self. Suppose we have a vertex v1 ∈ Hom(Q(L),X) and an endomorphism
e ∈ Hom(X,X). Note that v1 and e are both homomorphisms, and the
codomain of v1 matches the domain of e, so we can compose them. Since
the composition of homomorphisms is a homomorphism, ev1 : Q(L) → X
is also a homomorphism, so since each element of Hom(Q(L),X) is a vertex,
we must have v2 ∈ Hom(Q(L),X) so that ev1 � v2.

Figure 15

Whenever we have an endomorphism e ∈ S as in definition 9, and v1 , v2
as described, we will draw a directed edge from v1 to v2.

Example 5. Let’s solidify our understanding with an example. Consider L
to be the Hopf link, which is the link consisting of two interlocking unknots
(circles). Let X be the quandle given below.

B 1 2 3
1 1 1 2
2 2 2 1
3 3 3 3
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Let S be the singleton consisting of the endomorphism φ that maps 1 7→
2, 2 7→ 1, 3 7→ 3. Then we can compute the quandle coloring quiver QφX(L).

or

Figure 16

The five colorings of L are drawn in Figure 16. We find the edges by
applying φ to each coloring and seeing what vertex we get sent to. φ swaps
1 and 2 while fixing 3, so for instance, the coloring involving 1 and 2 gets
mapped to the coloring involving 2 and 1 and vice versa. This is represented
by the teal arrows. Then we can shrink each Hopf link to a vertex to obtain
the visualization on the right, which is a more traditional depiction of a
directed graph.

In total, there are 7 endomorphisms of X,

φ1 : [1, 1, 1]
φ2 : [2, 2, 2]
φ3 : [3, 3, 3]
φ4 : [2, 1, 3]
φ5 : [1, 2, 3]
φ6 : [2, 2, 1]
φ7 : [1, 1, 2]

where the bracketed values represent [φi(1), φi(2), φi(3)] for each i. Note
that since we are dealing with finite quandles, the set of all endomorphisms
can be computed exhaustively. If we let S be any subset of those, we would
potentially get a quandle coloring quiver with different arrows. Note that we
get arrows by applying each endomorphism to each vertex, so the out-degree
of each vertex will be |S |, the number of endomorphisms.

The full quandle coloring quiver QX(L) is shown below, where the
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numbers represent multiplicities of edges.

Figure 17

Remark 5. The full quiver QX(L) is a categorification of the quandle coloring
invariant, with X-colorings of L as objects and elements of Hom(X,X) as
morphisms. We will briefly discuss why.

Definition 10. Let C consist of objects and morphisms, which are maps
between objects. If the following conditions hold, then C is a category:

1. For each object a, there exists an identity morphism 1a : a → a so that
for any morphisms f : a → b and g : c → a, we have f ◦ 1a � f and
1a ◦ g � g.

2. For any pair of morphisms f : a → b, g : b → c, there exists a
composition morphism g ◦ f : a → c, and composition of morphisms
is associative. In other words, h ◦ (g ◦ f ) � (h ◦ g) ◦ f for morphisms
h , g , f with appropriate domain and codomain.

Figure 18
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Consider the set S � Hom(X,X) of all endomorphisms of X. Note that
the identity map Ix ∈ S for any x ∈ X is an endomorphism, which satisfies
the first axiom. Then since composition of endomorphisms always results
in another endomorphism, and the composition is associative, QX(L) is a
category.

Recall that the goal of this project is to differentiate links. It turns out
that we do not necessarily need to set S � Hom(X,X) to be able to achieve
this goal. In fact, we may only need to use a single endomorphism.

We know that the quiver is an enhancement of the quandle coloring
invariant. In the next example, we will demonstrate that the quiver is strictly
stronger than the coloring invariant.

Example 6. Let X be the quandle given below.

B 1 2 3 4
1 1 3 1 3
2 4 2 4 2
3 3 1 3 1
4 2 4 2 4

Let φ : X → X be the endomorphism mapping 1, 3 7→ 4 and 2, 4 7→ 2. Then
consider the links L6a1 and L6a5, whose labels come from Bar-Natan et al.
(2014), which are shown below.

Figure 19

L6a1 and L6a5 cannot be distinguished by the quandle coloring invariant,
as ΦZ

X(L6a5) � ΦZ
X(L6a5) � 16, so they both have 16 X-colorings. However,

consider their quandle coloring quivers, shown below.



The In-degree Polynomial 19

QφX(L6a1) QφX(L6a5)
Figure 20

As the two graphs are not isomorphic, the quiver structure is enough to
distinguish the links even when the quandle coloring invariant could not.
This is a proof by example for the superiority of the quandle coloring quiver.

2.4 The In-degree Polynomial

As we just learned, the quandle coloring quiver is a graph valued invariant
of links. Graphs can be nicely visualized, but there can be drawbacks to
working with a graph valued invariant. For instance, it may be cumbersome
to have to compare graphs to each other, especially if they are large.

Traditionally, polynomial valued invariants, such as the Jones polynomial
due to Jones (1985), have been popular in knot theory. Thus, it was natural
to try to encapsulate some information from the quandle coloring quiver
into a condensed polynomial form.

We noticed from looking at several quandle coloring quivers that the
out-degree of every vertex is always the same. The explanation for this is
that since we get edges by applying each endomorphism in S to each vertex
and seeing where the vertex gets mapped to, the out-degree of every vertex
will be |S |. However, the out-degree varies from vertex to vertex; some
colorings are more common as images of endomorphisms than others. This
is what led us to create the following.

Definition 11. Let X be a finite quandle, S ⊂ Hom(X,X) a set of quandle
endomorphisms, L an oriented link and QS

X(L) the associated quandle
coloring quiver with set of vertices V(QS

X(L)). Then the in-degree quiver
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polynomial of L with respect to X is

Φ
deg+ ,S
X (L) �

∑
f ∈V(QS

X(L))

udeg+( f ).

If S � {φ} is a singleton we will write Φdeg+ ,S
X (L) as Φdeg+ ,φ

X (L) and if
S � Hom(X,X)we will write Φdeg+ ,S

X (L) as Φdeg+

X (L).

Remark 6. Since Φdeg+ ,S
X (L) is computed by summing over all of the vertices

of QS
X(L), which represent the X-colorings of L, evaluating the 1

|S |Q
S
X(L) at

u � 1 yields the quandle coloring invariant. This means that Φdeg+ ,S
X (L) is an

enhancement of ΦZ
X(L).

Example 7. Using the links L6a1 and L6a2 with the same quandle X and
endomorphism φ as in Example 6, we have

Φ
deg+ ,φ
X (L6a1) � u9

+ u7
+ 14 ,

Φ
deg+ ,φ
X (L6a2) � 4u4

+ 12.

Since these in-degree quiver polynomials are not equal, we are able to
distinguish these links even though they have the same number of colorings
(evaluating the polynomials at u � 1 yields 16 in both cases), which shows
that the in-degree quiver polynomial is strictly stronger than the quandle
coloring invariant.

Example 8. To demonstrate the effectiveness of Φdeg+ ,S
X (L), the following

example has been adapted from our paper, Cho and Nelson (2019b). Let X
be the quandle with operation table

B 1 2 3 4 5 6 7 8
1 1 4 2 3 3 2 1 4
2 3 2 4 1 4 1 2 3
3 4 1 3 2 1 4 3 2
4 2 3 1 4 2 3 4 1
5 8 8 8 8 5 5 5 5
6 5 5 5 5 6 6 6 6
7 7 7 7 7 7 7 7 7
8 6 6 6 6 8 8 8 8
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and let φ : X → X be given by φ(1) � φ(2) � φ(3) � φ(4) � 7, φ(5) � φ(6) �
φ(8) � 5 and φ(7) � 6. Below, we have a table of the in-degree polynomial
for prime links with up to 7 crossings.

L Φ
deg+ ,φ
X (L)

L2a1 u9 + 3u4 + 2u3 + u + 21
L4a1 u16 + u9 + 2u4 + 2u3 + u + 33
L5a1 2u12 + u9 + 3u4 + 2u3 + u + 43
L6a1 u9 + 3u4 + 2u3 + u + 21
L6a2 2u12 + u9 + 3u4 + 2u3 + u + 43
L6a3 u16 + 2u12 + u9 + 2u4 + 2u3 + u + 55
L6a4 u27 + 3u12 + 3u9 + 7u4 + 3u3 + u + 110
L6a5 u27 + 3u9 + 7u4 + 3u3 + u + 77
L6n1 u27 + u16 + 3u9 + 6u4 + 3u3 + u + 89
L7a1 u16 + 2u12 + u9 + 2u4 + 2u3 + u + 55
L7a2 u16 + u9 + 2u4 + 2u3 + u + 33
L7a3 u16 + u12 + u9 + 2u4 + 2u3 + u + 44
L7a4 u16 + 2u12 + u9 + 2u4 + 2u3 + u + 55
L7a5 u9 + 3u4 + 2u3 + u + 21
L7a6 u9 + 3u4 + 2u3 + u + 21
L7a7 u27 + u16 + 2u12 + 3u9 + 6u4 + 3u3 + u + 111
L7n1 u16 + u9 + 2u4 + 2u3 + u + 33
L7n2 u16 + u12 + u9 + 2u4 + 2u3 + u + 44

Remark 7. In this case, the polynomial is unable to distinguish certain links,
such as L5a1 and L6a1. The invariant is very flexible in that choosing a
different coloring quandle or set of endomorphisms will yield whole new
class of invariant polynomials that could potentially distinguish different
links, so there is likely a different choice of X and φ that we could pick that
could distinguish L5a1 and L6a1.





Chapter 3

Boltzmann Weights and
Quandle Cohomology

Recall that our quandle coloring quiver requires three inputs: a link L, a
coloring quandle X, and a set of endomorphisms S ⊂ Hom(X,X). We
showed in the previous chapter that the quandle coloring quiver is strictly
stronger than the quandle coloring invariant ΦZ

X(L), which is somewhat
intuitive as ΦZ

X(L) only takes in two inputs, L and X.
Can we make the quandle coloring quiver even stronger by considering

a fourth input? This is the question we will explore in this chapter. We
will show that considering a function called a Boltzmann weight for this
fourth input enhances our quiver. In Section 3.1 wewill introduce Boltzmann
weights and in Section 3.2wewill discuss the relationshipbetweenBoltzmann
weights and quandle cohomology.

3.1 Boltzmann Weights

Definition 12. Let A be an abelian group (usuallyZ orZn). For a quandle X,
a function φ : X × X → A is a rack Boltzmann weight if for all x , y , z ∈ X
we have

φ(x , z) + φ(x B z , y B z) � φ(x , y) + φ(x B y , z).

If we also have φ(x , x) � 0 for all x ∈ X then φ is a quandle Boltzmann
weight.
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Remark 8. We can assign Boltzmannweights to crossings of quandle colored
knots by the following relations:

Figure 21

The left crossing is positively oriented, and the right crossing is negatively
oriented. We want φ to behave so that for a given quandle colored knot
diagram, the sum of the Boltzmann weights over all crossings is invariant
under R-moves.

To show that the state sum is locally invariant under R-moves, we must
show that for each quandle colored move, the sums on both sides are the
same.

For the R2 move, the left side consists of two uncrossed strands, so the
state sum is 0 since there are no crossings. We can get the state sum of the
right side of the R2 move by stacking the images in Figure 21 on top of
each other, which gives us a state sum of φ(x , y) + (−φ(x , y)) � 0, so the
invariance under R2 is satisfied by the way we defined the Boltzmann weight
of a crossing.

Next, we can look at R1.

φ(x,x)
x xI

Figure 22

On the left, there are no crossings, so the state sum will be 0. On the
right, we have one crossing whose Boltzmann weight is φ(x , x). Thus, we
want φ(x , x) � 0, which is the condition for a Boltzmann weight to be a
quandle Boltzmann weight.
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The situation occurring in the R3 move is the most interesting.

III

Figure 23

Note that there are three crossings on either side. The corresponding
Boltzmann weights are shown, and we want the sums on either side to be
equal. Note that φ(y , z) appears on both sides, so those will cancel in the
sums. Then the requirement is that

φ(x , y) + φ(x B y , z) � φ(x , z) + φ(x B z , y B z),

which is precisely the condition appearing in the definition of a Boltzmann
weight.

What all of this demonstrates is that given a knot diagram L and coloring
quandle X, a quandle Boltzmann weight φ will give us an integer valued
invariant for each X-coloring of L, which can be evaluated by computing the
state sum of φ over all the crossings of an X-coloring of L.

Since Boltzmann weights involve quandle colored knot diagrams, they
seem related enough to the quandle coloring quiver to be potentially useful.
But how exactly can we determine a function that satisfies the Boltzmann
weight conditions? This is where cohomology comes in handy. In the next
section, we will introduce some relevant background.
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3.2 Quandle Cohomology

Homology and cohomology groups of topological spaces are invariants that
are commonly studied in algebraic topology. Here, we will introduce the
basics of (co)homology and specifically discuss quandle (co)homology, which
was defined and studied by Carter et al. (2003). Then we will bring it back to
how it connects to Boltzmann weights and the rest of the project. As a note,
this section provides a theoretical framework and motivation for a certain
tool used in the project (namely quandle 2-cocycles), but understanding this
framework is not necessary for understanding the rest of the project.

Definition 13. For k ∈ N, let Ck be an abelian group and ∂k : Ck → Ck−1 be
a group homomorphism such that ∂k∂k+1 � 0 for all k ≥ 0.

0
∂0←− C0

∂1←− C1
∂2←− C2

∂3←− · · · ∂n−1←−−− Cn−1
∂n←− Cn

∂n+1←−−− · · ·

Then the sequence of Ck and ∂k is called a chain complex. An element of
Ck is called a k-chains and the map ∂k is called a boundary map. Then the
k-th homology module is Hk � ker ∂k/Im ∂k−1.

Note that if Im ∂k+1 � ker ∂k for all k, then our sequence is exact, so
homology captures how "far from exact" our chain complex is.

For some intuition about the condition that ∂k∂k+1 � 0, it may be helpful
to contemplate the following image, which attempts to illustrate that "the
boundary of a boundary is empty."

Figure 24

To get a grasp of what is going on, let us consider an example (quandle
homology). For this, we will need to know what a free abelian group is.

Remark 9. The free abelian group generated by n-tuples of elements of a
set X has elements that are formal sums of such n-tuples. For example, for
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X � {a , b}, the free abelian group generated by 3-tuples would contain the
element 3(a , b , b) + 5(a , a , b) − 2(b , b , b). The general form of an element is a
finite sum of n-tuples whose coefficients are in Z.

Definition 14. For a finite quandle X, let CR
n (X) be the free abelian group

generated by (x1 , ..., xn) for xi ∈ X. We define the boundary map ∂n :
CR

n (X) → CR
n−1(X) as the following group homomorphism:

∂n(x1 , . . . , xn) �
n∑

i�2
(−1)i[(x1 , . . . , xi−1 , xi+1 , . . . , xn)

− (x1 B xi , x2 B xi , . . . , xi−1 B xi , xi+1 , . . . , xn)]
(3.1)

for n ≥ 2 and ∂n � 0 for n < 2, then we extend linearly. Our chain complex
is CR

∗ (X) � {CR
n (X), ∂n}. (As an aside, the R stands for "rack." Racks are a

generalization of quandles where the first quandle axiom (x B x � x for all
x ∈ X) is ignored. This structure can be useful for studying framed knots.
See Fenn and Rourke (1992) for more about racks.)

Let CD
n (X) be the subgroup of CR

n (X) generated by elements (x1 , . . . , xn)
where xi � xi+1 for some i. (The D stands for "degeneration.")

Let CQ
n (X) � CR

n (X)/CD
n (X). (The Q stands for "quandle." Taking the

quotient by CD
n (X) allows us to satisfy the first quandle axiom that is ignored

by the rack structure. This will be discussed further in Remark 12.) Then the
quandle chain complex is CQ

∗ (X) � {CQ
n (X), ∂Q

n } where ∂Q
n is the induced

homomorphism onto the quotient.

Remark 10. The boundary map defined by equation (3.1) seems pretty
mysterious at first glance. To gain some intuition as to where this comes
from, let’s look at n � 2. We have

∂2(x , y) � [(y) − (y)] − [(x) − (x B y)] � y − y − x + (x B y).

Suppose we have some positively oriented crossing in a link diagram with
the over-strand colored y and under-strand colored x on the right. We
would compute the boundary of that crossing as ∂(x , y), which corresponds
to adding up the colors of the strands, with sign indicated by direction ("+"
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for head and "-" for tail), as in the figure below.

Figure 25

This intuition holds for higher dimensions, such as quandle colored
knotted surfaces.

Next, we dualize to get a cochain complex.

Definition 15. Let A be a fixed abelian group. For all abelian groups B, we
define HomZ(B,A) to be the group of homomorphisms from B to A.

For abelian groups A, B, C and group homomorphism f : B → C, we
define HomZ(f,A) : Hom(C,A) → Hom(B,A) to be the homomorphism
mapping φ 7→ φ ◦ f for all φ ∈ Hom(C,A).

Figure 26

Remark 11. The map HomZ(−,A), where the input can be a abelian group
or group homomorphism as in Definition 15, is a contravariant functor from
the category of chain complexes to the category of cochain complexes.

Definition 16. For an abelian group A (we will be using A � Z or Zn), let
Cn

Q(X; A) � Hom(CQ
n (X),A) and δn : Cn

Q(X; A) → Cn+1
Q (X; A) be defined by

(δn f )(x1 , . . . , xn+1) � f ◦ ∂n+1(x1 , . . . , xn+1).

The quandle cochain complex is C∗Q(X; A) � {Cn
Q(X; A), δn}.

Thek-th cohomologymodule isHk � ker δk/Im δk−1. Elements ofker δk

are called k-cocycles and elements of Im δk are called k-coboundaries.
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Remark 12. As we are dealing with knots, which are 2 dimensional, we will
be most interested in quandle 2-cocycles. Then a quandle 2-cocycle is a map
X × X → Z that satisfies

φ ◦ ∂(x , y , z) � 0

for any x , y , z ∈ X. Expanding the sum for ∂(x , y , z) yields

[φ(x , z) − φ(x B y , z)] − [φ(x , y) − φ(x B z , y B z)] � 0. (3.2)

Note that Equation 3.2 can be rearranged to obtain the same condition for φ
to be a rack Boltzmann weight from Definition 12. The additional condition
needed for φ to be a quandle Boltzmann weight is φ(x , x) � 0 for all x ∈ X,
and this condition holds for quandle 2-cocycles as well. This is because
by definition, the degeneration subgroup is CD

2 (X) � 〈(x , x)|x ∈ X〉. Thus,
since (x , x) ∈ CD

2 (X), and the quandle chain complex contains the quotient
group CQ

2 (X) � CR
2 (X)/CD

2 (X), the elements of the form (x , x) are in the zero
set of CQ

2 (X). Then, as φ must be a homomorphism CQ
2 (X) → A, it must

map group identities to each other, so it follows that φ(x , x) � 0.
In summary, φ is a quandle 2-cocycle if and only if it is a quandle

Boltzmann weight. Thus, we can define the evaluation of quandle 2-cocycles
on colored knot diagrams in the same way we did for Boltzmann weights
in Remark 8. We will refer to quandle 2-cocycles and Boltzmann weights
interchangeably from this point forward.

Boltzmann weights can be written as linear combinations of elementary
functions χi , j : X × X → A where

χi , j(x1 , x2) �
{

1, for i � x1 and j � x2

0, otherwise.

Remark 13. Note that if a quandle 2-cocycle φ is also a 1-coboundary, then
for a colored knot v, we must have φ(v) � 0. To prove this, recall that φ is a
1-coboundary if there exists some homomorphism f such that δ1( f ) � φ, so

φ(x , y) � δ1( f )(x , y) � f ◦ ∂2(x , y) � f ((x) − (x B y)).

We will reproduce and modify the Boltzmann weight of a crossing from
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Section 8 below.

Figure 27
At a positive crossing, we have x going in ("+x"), x B y going out

("−x B y"), and y going in and out (doesn’t contribute to the "flux" of the
crossing) and the crossing is assigned the value of φ(x , y), which equals
f ((x) − (x B y)) since it is a coboundary. Similarly, for the negative crossing,
we have x going out ("−x"), x B y going in ("+x B y") and the weight is
−φ(x , y) � − f ((x)−(x B y)) � f (−(x)+ (x B y)) since f is a homomorphism.

Notice in either case, the inputs of f corresponding to the weighted value
of φ for the crossing record which colors are going in and out of a crossing.
If we consider the entire colored knot v, note that any arc colored x in v
must interact with two crossings, and it will be exiting one and entering the
other. Then, since φ(v) equals the sum of the φ’s over all of the crossings,
the inputs of the corresponding f ’s will all cancel each other out, so we end
up with

φ(v) � f (0) � 0,
since f is a homomorphism.

For this reason, we can consider the cocycles that are not coboundaries
by taking the quotient with Im δ1 if we want to ignore some of the cocycles
that will always evaluate trivially on colored knots. Recall that

ker δ2/Im δ1
� H2

Q ,

the second quandle cohomology group. Thus, picking φ ∈ H2
Q will yield

more interesting Boltzmann weights. In general, however, finding cobound-
aries is difficult, so we will just say φ ∈ C3

Q .

Example 9. Let’s try to find the possible Boltzmann weights for the quandle
X into Z with operation table shown below.

B 1 2 3
1 1 1 2
2 2 2 1
3 3 3 3
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Then we need to require φ ◦ ∂(x , y , z) � 0 for each (x , y , z) ∈ CQ
3 . Since

we have taken the quotient with the degeneracy chain, these are triples in
X3 where we don’t have consecutive repeated elements. We can compute
the image of ∂ for each such (x , y , z) ∈ CQ

3 .

∂(1, 2, 1), ∂(2, 1, 2), ∂(3, 1, 2), ∂(3, 2, 1) � 0
∂(1, 2, 3) � −(1, 2) + (2, 1)
∂(1, 3, 1) � −(1, 1) + (2, 1)
∂(1, 3, 2) � (1, 2) + (2, 2)
∂(2, 1, 3) � −(2, 1) + (1, 2)
∂(2, 3, 1) � (1, 2) − (1, 1)
∂(2, 3, 2) � (2, 2) − (1, 2)
∂(3, 1, 3) � −(3, 1) + (3, 2)
∂(3, 2, 3) � −(3, 2) + (3, 1)

Note that we require φ(1, 1) � 0, so since we want φ(∂(1, 3, 1)) �

φ(−(1, 1) + (2, 1)) � −φ(1, 1) + φ(2, 1) � 0, this forces φ(1, 2) � 0. Similarly,
φ(2, 1) � 0. Also, φ(∂(3, 1, 3)) � φ(−(3, 1) + (3, 2)) requires φ(3, 1) � φ(3, 2).
The image of ∂ doesn’t give us information on how φ maps (1, 3) or (2, 3), so
those parts are free. Hence, any quandle Boltzmann weight for X must be of
the form

φ � aχ1,3 + bχ2,3 + c(χ3,1 + χ3,2)

for a , b , c ∈ Z. If we had instead chosen to work over Zn , we would have
some finite number of Boltzmann weights. In this case, we would have had
n3 Boltzmann weights.

3.3 Enhancing the Enhancement

In the previous section, we showed that the quandle Boltzmann weights
introduced in Section 3.1 are equivalent to quandle 2-cocycles. Now, we will
use these quandle 2-cocycles to enhance our quandle coloring quiver even
further.

We take the following definition from our paper, Cho and Nelson (2019a).

Definition 17. Let L be an oriented link, X be a finite quandle, S a set of
quandle endomorphisms of X, and φ a quandle 2-cocycle in C2

Q(X; A) for
abelian group A. Then the quandle cocycle quiver QS,φ

X (L) is the directed
graph with vertices corresponding to X-colorings of L, edges from v j to
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vk whenever vk � f (v j) for some f ∈ S, and weights φ(v j) at each vertex.
When S � { f } is a singleton we will write f instead of { f } for simplicity.

This is almost the same as our definition for the quandle coloring quiver
with the addition of the quandle 2-cocycle. For practicality, we will set A � Z

or Zn . Since the cocycles give us a way to assign integers to colored knot
diagrams, which are the vertices of our quiver, we can decorate the vertices
with the values of the cocycle evaluated on the colorings.

Example 10. In this example, which is adapted from our paper Cho and
Nelson (2019a), we show that cocycles give us information that allows us to
differentiate knots even better than before.

L7n1 L7n2

Figure 28

Consider links L7n1 and L7n2 as shown above. Both have 16 X-colorings
with respect to the coloring quandle given below.

X �

B 1 2 3 4
1 1 1 1 1
2 4 2 2 2
3 3 3 3 3
4 2 4 4 4

Using the single endomorphism f (1) � 4, f (2) � f (3) � f (4) � 3, the
quandle colorings quivers for L7n1 and L7n2 are isomorphic, so neither the
quandle coloring invariant nor the quandle coloring quiver are powerful
enough to distinguish these links. However, we can use the quandle 2-cocycle

φ � χ1,2 + 2χ1,3 + χ1,4 + 2χ2,1 + 3χ3,2 + 3χ3,4 + χ4.1 ∈ C2
Q(X;Z4)

in order to obtain the quandle cocycle quivers shown below, with the
cocycle weights in pink.
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Q f ,φ
X (L7n1) Q f ,φ

X (L7n2)
Figure 29

Since the vertex decorations differ between the two, the cocycle quivers
are not equivalent, so the additional information we gain from the 2−cocycle
φ was enough to distinguish L7n1 from L7n2. This example proves that
the quandle cocycle quiver is a strict enhancement of the quandle coloring
quiver.

As before, we can compress some of the information of the quandle
cocycle quiver into a polynomial, this time in two variables, in a way that
takes the cocycle information into account.

Definition 18. Let L be a link, X a finite quandle, S ⊂ Hom(X,X), and
φ ∈ C2

Q(X; A). We define the quiver enhanced cocycle polynomial to be
the polynomial

Φ
S,φ
X (L) �

∑
e∈E(QS

X(L))

sφ(v j)tφ(vk )

where the edge e is directed from vertex v j to vertex vk in the quandle
coloring quiver QS

X(L).

Example 11. We can compute the quiver enhanced cocycle polynomial for
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the same inputs as in Example 10.

Q f ,φ
X (L7n1) Q f ,φ

X (L7n2)
Figure 30

Φ
f ,φ
X (L7n1) � 6 + 4s2

+ 2t2
+ 4st2

, Φ
f ,φ
X (L7n2) � 6 + 4s2

+ 4t2
+ 2s2t2

In the figure above, edges with the same head and tail weights are given a
particular color, which are then tallied up in the polynomials. For instance,
the orange edges in Q f ,φ

X (L7n1) point from vertices weighted 1 to vertices
weighted 2. These contribute s1t2 in the polynomial, so since there are 4 of
them, the coefficient is 4. Since these polynomials are not equal, we see that
in this case, the cocycle polynomial is strong enough to distinguish the links.
This helps tell us that the quiver enhanced cocycle polynomial encapsulates
useful information from the cocycle quiver.

Next, we will discuss a connection between the quiver enhanced cocycle
polynomial and existing literature.

Remark 14. In a paper by Carter et al. (2003), the authors define the partition
function as follows: For an abelian group A, a finite quandle X, a 2-cocycle
φ ∈ Z2

Q(X; A), the partition function (associated with φ) for a link L is∑
v j

∏
τ

B(τ, v j)
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where B(τ, v j) is the Boltzmann weight of the crossing τ for an X-coloring
v j of L, as discussed in Remark 8.

If we set A � Z and treat Z as the multiplicative cyclic group Z � 〈s〉,
then notice that for a given crossing τ of a coloring v j , we have

B(τ, v j) � s±φ(x ,y).

where x and y are the colors of the appropriate strands and the ± sign
indicates the orientation of the crossing. Then taking the product over all of
the crossings for a given coloring v j yields∏

τ

B(τ, v j) � sφ(vk )

since φ(vk) is just the sum over all the colored crossings of a link. Then, the
partition function is ∑

v j

∏
τ

B(τ, v j) �
∑

v j

sφ(v j).

Recall that in the quandle coloring quiver, the out-degree of each vertex is
|S |, the number of endomorphisms used, so we see that∑

v j

sφ(v j) �
1
|S |

∑
e∈E(QS

X(L))

sφ(v j) ,

which is equivalent to 1
|S |Φ

S,φ
X (L) evaluated at t � 1.

Thus, the quiver enhanced cocycle polynomial is a generalization of the
partition function defined by Carter et al. (2003)!





Chapter 4

Conclusion

4.1 The Structure of the Coloring Space

We started off by considering the quandle coloring invariant, ΦX
Z
(L) �

|Hom(Q(L),X)|, which counts the X-colorings of a knot L. Then, we
removed the absolute value bars, setting the coloring space free, and began
to explore the relationships between colored knot diagrams. Since the
colorings are homomorphisms, these relationships came in the form of
endomorphisms of the coloring quandle X, the maps that preserve the
algebraic structure of the quandle.

The endomorphisms gave the colored knots, whom the quandle coloring
invariant considered in isolation, a way to interact with each another. We
defined the quandle coloring quiver as a way to visualize these interactions.

Let’s look at the dihedral quandle on 3 elements one last time:

X �

B 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Let the endomorphism φ map 0 7→ 2, 1 7→ 0, 2 7→ 1. Then the quandle
coloring quiver shows us how the 9 X-colorings of the trefoil map onto each
other:
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Figure 31

The image above displays the ways in which homomorphisms from the
fundamental quandle of the trefoil into the coloring quandle are related
by a particular endomorphism. I find this is interesting on its own, but
throughout this thesis, we’ve gone through examples that prove that looking
at these relationships are more than just beautiful, they are meaningful
in a knot theoretic sense. In other words, these relationships help us
distinguish knots that we could not distinguish by looking at colored knots
as individuals.

In a very broad sense, this project points to the fact that relationships
are powerful, and the metaphorical implication is encouraging to me.

4.2 Questions for Future Work

Clark et al. (2014) conjectured that for any nonequivalent links L1, L2, there
exists a finite quandleX so that L1 and L2 can bedistinguished by the quandle
coloring invariant with respect to X. This has been verified computationally
for prime knots with up to 12 crossings.

This seems very plausible. Due to the fact that the fundamental quandle
Q(L) is a complete invariant up to mirror image of the knot, intuitively, there
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should exist coloring quandles X for which looking at the homomorphisms
into X gives us useful information. Thus, here are some questions of interest:

• Given a link L, which kinds of coloring quandles X will produce the
most interesting results?

To motivate this question, we can think about the case of the trefoil and
the dihedral quandle X. As we saw earlier, there are 9 different colorings. In
fact, the quandle X works particularly nicely with the trefoil, as the trefoil
and the dihedral quandle both have a predictable structure: the trefoil has
three-fold rotational symmetry, and the dihedral quandle always follows
the relation x B y � 2y − x(mod3). If we picked another 3 element quandle,
like

X′ �

B 1 2 3
1 1 1 2
2 2 2 1
3 3 3 3

we would see that there are only 3 X′-colorings of the trefoil, the constant
colorings. However L4a1, also called "Solomon’s knot" according to the Knot
Atlas, has 9 X′-colorings as shown below:

Figure 32

On the other hand, L4a1 only has the 3 trivial constant colorings with
respect to the dihedral quandle X.
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It seems that some coloring quandles produce non-trivial colorings for
certain knots, but not others. Thus, it would be enlightening to find criteria
for determining what kinds of quandles work well with a given knot.

In a similar manner, I am curious about the following:

• Given links L1 , L2 with the same number of X-colorings, which en-
domorphisms of X will tend to be useful in distinguishing L1 , L2 in
the quandle coloring quivers? How about quandle 2-cocycles in the
quandle cocycle quivers?

Perhaps we have a case where we have nontrivial colorings of L1 and L2
by X, but the same number for both. Is there a way to determine what kinds
of endomorphisms will be effective in producing non-isomorphic quandle
coloring quivers? For instance, if we picked φ to be the constant map that
sends all elements of X to a particular x, then both quivers will be "star"
projections, where all colorings map onto the constant coloring where the
knot has been dunked into a paint bucket of color x. Thus, we know that the
constant endomorphisms will never be helpful in distinguishing L1 from L2.
The same goes for the identity endomorphism.

Similarly, if we are also considering 2-cocycles, it would be useful to
know what which ones are good at producing useful values. We know that
we only get trivial values for cocycles that are also coboundaries, but it is
hard to determine whether a function is a coboundary. Is there an effective
computational way to generate coboundaries? Are there other conditions
that make cocycles evaluate trivially on colored knots?

Overall, our newly defined invariants are very flexible in that they can
produce different results based on different choices of coloring quandles,
endomorphisms, or quandle 2-cocycles. Knowing what kinds of choices
are good to make would be helpful in navigating the vast space of possible
outcomes.

Perhaps most importantly, this project has made me consider this ques-
tion:

• Are there other knot invariants that could be enhanced by study-
ing (algebraic) relationships that have previously been ignored? In
other areas of math, how can we use relationships between objects to
understand mathematical structures more deeply?

All of this began from the simple idea of paying attention to endomor-
phisms. I wonder if there are other counting invariants that can be improved
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in the same way, by taking advantage of the algebraic structure that is
already there, waiting to be uncovered. For instance, since our quivers form
small categories, can we gain even more insight into the nature of knots
by looking at the relationships between quandle coloring quivers, in other
words, functors between the categories of quandle colored knots?

The general idea of studying relationships (maps) is one that is prominent
in math. In the case of knot colorings, we learn things about the mysterious
fundamental quandle Q(L) by looking at the homomorphisms into a finite
coloring quandle X, where the homomorphisms are called colorings. Anal-
ogously, we can study a finite group G by looking at the homomorphisms
into the general linear group GLn , where those homomorphisms are called
representations.

In any case, I look forward to exploring the potential of mathematical
relationships wherever I go.
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