
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2019

Using Neural Networks to Classify Discrete Circular Probability Using Neural Networks to Classify Discrete Circular Probability

Distributions Distributions

Madelyn Gaumer

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

 Part of the Artificial Intelligence and Robotics Commons, Categorical Data Analysis Commons, and

the Other Statistics and Probability Commons

Recommended Citation Recommended Citation
Gaumer, Madelyn, "Using Neural Networks to Classify Discrete Circular Probability Distributions" (2019).
HMC Senior Theses. 226.
https://scholarship.claremont.edu/hmc_theses/226

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator of
Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/817?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/226?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Using Neural Networks to Classify Discrete
Circular Probability Distributions

Madelyn Gaumer

Michael Orrison, Advisor
Neil Rhodes, Advisor

Department of Mathematics

May, 2019

Copyright © 2019 Madelyn Gaumer.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of the author. To
disseminate otherwise or to republish requires written permission from the author.

Abstract

Given the rise in the application of neural networks to all sorts of interesting
problems, it seems natural to apply them to statistical tests. This senior
thesis studies whether neural networks built to classify discrete circular
probability distributions can outperform a class ofwell-known statistical tests
for uniformity for discrete circular data that includes the Rayleigh Test (1), the
Watson Test (2), and the Ajne Test (3). Each neural network used is relatively
small with no more than 3 layers: an input layer taking in discrete data sets
on a circle, a hidden layer, and an output layer outputting probability values
between 0 and 1, with 0 mapping to uniform and 1 mapping to nonuniform.
In evaluating performances, I compare the accuracy, type I error, and type
II error of this class of statistical tests and of the neural networks built to
compete with them.

Acknowledgments

To Michael Orrison, Neil Rhodes, Alex Smith, Cat Ngo, Karina Cho, and
Nina Brown without whom this document would not exist in its present
form.

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

2 What is a Neural Network? 3
2.1 Perceptrons . 3
2.2 Sigmoid Neurons . 5
2.3 A Simple Model for Decision Making 10
2.4 Layers . 12
2.5 Gradient Descent and Learning 13

3 Generating Data 17
3.1 Training and Validation Data 17
3.2 Uniform Distribution . 18
3.3 Linear Distribution . 18
3.4 von Mises Distribution . 19
3.5 Semicircular Distribution . 20
3.6 Duplicates . 21

4 Tests for Uniformity 23
4.1 Beran’s Test for Uniformity . 23

5 Creating the Network 27
5.1 Initial Network Structure . 27
5.2 Mimicking Beran’s Test . 29
5.3 Network Structure . 31

viii Contents

6 Results 35
6.1 Running Statistical Tests on Data Instances Sample from

Uniform and Nonuniform Distributions 35
6.2 Training and Validating Neural Networks on Data Without

Preprocessing . 38
6.3 Data Preprocessing: Discrete Cosine Transform 45
6.4 Data Preprocessing: Discrete Sine Transform 54
6.5 Data Preprocessing: Fast Fourier Transform 62
6.6 Four Distribution Classifier 70

7 Conclusion 73
7.1 Summary of Results . 73
7.2 Future Work . 75

Bibliography 77

List of Figures

2.1 Neuron with four inputs and one output 3
2.2 Perceptron with weights and bias 4
2.3 Neural network built with perceptrons 5
2.4 A slight change in weights in perceptron network results in a

different output . 6
2.5 Neural network built with sigmoid neurons 7
2.6 A slight change in weights in sigmoid neuron network results

in a similar output . 8
2.7 An input that fails to trigger the activation function of a network 9
2.8 An input that triggers the activation function of a network . 10
2.9 Modeling the majority function with a perceptron neural

network . 11
2.10 Adjusting the weights of a neural network 12
2.11 Feedforward, fully connected neural network 13
2.12 Log loss (4) . 16

3.1 Example of a sample of points coming from a uniform distri-
bution of circular data . 18

3.2 Example of a sample of points coming from a linear distribu-
tion of circular data . 18

3.3 Example of a sample of points coming from a unimodal
distribution of circular data 19

3.4 von Mises probability density function for a range of κ values
(5) . 20

3.5 Example of a sample of points coming from a semicircular
distribution on circular data 21

3.6 Two similar data instances sampled from different distributions 21

4.1 Function on the cyclic group on N elements 24

x List of Figures

4.2 Before and after rotating by a group element 24

5.1 Initial neural network structure 27
5.2 Training loss of a small neural network 29
5.3 Computing Beran’s statistic 30

6.1 Accuracy for von Mises and uniform distribution classifier . 38
6.2 Loss for von Mises and uniform distribution classifier 39
6.3 Type I and II error for von Mises and uniform distribution

classifier . 39
6.4 Accuracy for linear and uniform distribution classifier 41
6.5 Loss for linear and uniform distribution classifier 41
6.6 Type I and II error for linear and uniform distribution classifier 42
6.7 Accuracy for semicircular and uniform distribution classifier 43
6.8 Loss for semicircular and uniform distribution classifier . . . 44
6.9 Type I and II error for semicircular and uniform distribution

classifier . 45
6.10 Accuracy for DCT preprocessed von Mises and uniform dis-

tribution classifier . 47
6.11 Loss for DCT preprocessed von Mises and uniform distribu-

tion classifier . 48
6.12 Type I and II error for DCT preprocessed von Mises and

uniform distribution classifier 49
6.13 Accuracy for DCT preprocessed linear and uniform distribu-

tion classifier . 50
6.14 Loss for DCT preprocessed linear and uniform distribution

classifier . 51
6.15 Type I and II error for DCT preprocessed linear and uniform

distribution classifier . 51
6.16 Accuracy for DCT preprocessed semicircular and uniform

distribution classifier . 52
6.17 Loss for DCT preprocessed semicircular and uniform distri-

bution classifier . 53
6.18 Type I and II error for DCT preprocessed semicircular and

uniform distribution classifier 53
6.19 Accuracy for DST preprocessed von Mises and uniform dis-

tribution classifier . 55
6.20 Loss forDSTpreprocessedvonMises anduniformdistribution

classifier . 56

List of Figures xi

6.21 Type I and II error for DST preprocessed von Mises and
uniform distribution classifier 56

6.22 Accuracy for DST preprocessed linear and uniform distribu-
tion classifier . 57

6.23 Loss for DST preprocessed linear and uniform distribution
classifier . 58

6.24 Type I and II error for DST preprocessed linear and uniform
distribution classifier . 59

6.25 Accuracy for DST preprocessed semicircular and uniform
distribution classifier . 60

6.26 Loss for DST preprocessed semicircular and uniform distri-
bution classifier . 61

6.27 Type I and II error for DST preprocessed semicircular and
uniform distribution classifier 61

6.28 Accuracy for FFT preprocessed von Mises and uniform distri-
bution classifier . 63

6.29 Loss for FFT preprocessed vonMises and uniformdistribution
classifier . 64

6.30 Type I and II error for FFT preprocessed von Mises and
uniform distribution classifier 64

6.31 Accuracy for FFT preprocessed linear and uniform distribu-
tion classifier . 65

6.32 Loss for FFT preprocessed linear and uniform distribution
classifier . 66

6.33 Type I and II error for FFT preprocessed linear and uniform
distribution classifier . 67

6.34 Accuracy for FFT preprocessed semicircular and uniform
distribution classifier . 68

6.35 Loss for FFT preprocessed semicircular and uniform distribu-
tion classifier . 69

6.36 Type I and II error for FFT preprocessed semicircular and
uniform distribution classifier 69

6.37 Accuracy for four distribution classifier 71
6.38 Loss for a 4 distribution classifier 71

List of Tables

5.1 Loss for a small neural network 28

6.1 vonMises and uniform distribution through Rayleigh w/ 0.01
confidence level. 36

6.2 Linear and uniform distribution through Watson w/ 0.01
confidence level . 37

6.3 Semicircular and uniform distribution through Ajne w/ 0.03
confidence level. 37

6.4 Summary of statistical test results. 38
6.5 Accuracy comparison of the Rayleigh test and the network

trained on von Mises and uniform distributions 40
6.6 Accuracy comparison of the Watson test and the network

trained on linear and uniform distributions 42
6.7 Accuracy comparison of the Ajne test and the network trained

on semicircular and uniform distributions 45
6.8 Accuracy comparison of the Rayleigh test, no preprocessing,

and DCT . 49
6.9 Accuracy comparison of the Watson test, no preprocessing,

DCT . 52
6.10 Accuracy comparison of the Ajne test, no preprocessing, DCT 54
6.11 Accuracy comparison of the Rayleigh test, no preprocessing,

DCT, DST . 57
6.12 Accuracy comparison of the Watson test, no preprocessing,

DCT, DST . 59
6.13 Accuracy comparison of the Ajne test, no preprocessing, DCT,

DST . 62
6.14 Accuracy comparison of the Rayleigh test, no preprocessing,

DCT, DST, FFT . 65

xiv List of Tables

6.15 Accuracy comparison of the Watson test, no preprocessing,
DCT, DST, FFT . 67

6.16 Accuracy comparison of the Ajne test, no preprocessing, DCT,
DST, FFT . 70

7.1 Summary of statistical test results. 73
7.2 Accuracy comparison of the Rayleigh test, no preprocessing,

DCT, DST, FFT . 74
7.3 Accuracy comparison of the Ajne test, no preprocessing, DCT,

DST, FFT . 74
7.4 Accuracy comparison of the Watson test, no preprocessing,

DCT, DST, FFT . 74

Chapter 1

Introduction

This thesis attempts to discover if neural networks built to test for uniformity
on circular data can outperform a class of well-known statistical tests for
uniformity. Each neural network used in this paper is relatively small with
no more than 3 layers: an input layer taking in discrete data sets on a circle,
a hidden layer, and an output layer outputting a number between 0 and 1
with 0 mapping to uniform and 1 mapping to nonuniform.

In his 1968 and 1969 papers (6; 7), Beran constructs a test statistic for
uniformity of circular data that takes into account an alternative density, a
density for the data to be tested against. Beran’s explicit use of an alternative
density in his statistic helped him identify the implicit use of a specific
alternative density in other test statistics for uniformity of circular data
including the Rayleigh Test (1), the Watson Test (2), and the Ajne Test (3).
The fact that this class of tests works to pick up on the presence of an
alternative density in an instance of circular data allows for an interesting
comparison between this class of tests and binary classifiers.

In the last few years neural networks have been used for tasks as simple
as differentiating between an image of a dog and a cat and for tasks as
complicated as furthering the capabilities of autonomous driving vehicles.
There are lots of places, in the field of mathematics alone, where even simple
neural networks can be used to improve the status quo.

In this thesis, I compare the accuracy, type I, and type II error of this class
of statistical tests and of the neural networks built to compete with them. I
also discuss how data sets were generated for training and testing and my
process for developing the final structure of the neural networks.

Chapter 2

What is a Neural Network?

2.1 Perceptrons

Many people think of a neural network as a mysterious black box that takes
in some input and gives some output based on something it has "learned".
However, a neural network actually functions in a much more concrete way.

The overall goal of a neural network is to "learn" something about an
input that helps it determine the correct corresponding output. The two
major components of the structure of a neural network are neurons and
layers. A neuron takes in input and emits an output in the network. Figure
2.1 shows an example of a neuron taking in four inputs and emitting an
output. The perceptron was the first kind of artificial neuron that was
developed. Frank Rosenblatt developed the perceptron in 1957 at the Cornell
Aeronautical Laboratory (8). It takes a set of binary inputs and produces a
binary output.

Figure 2.1 Neuron with four inputs and one output.

4 What is a Neural Network?

The overall output of an individual perceptron is determined by whether
the weighted sum of all its inputs is less than or greater than some threshold.
A weight is a number that scales a particular input to a neuron indicating
how important that particular input is to that particular neuron’s output.
It’s also important to note that because you can make a NAND logic gate
entirely out of perceptrons, perceptrons can be as powerful as any other
computing device (9).

Figure 2.2 Perceptron with weights and bias.

Each perceptron in a network has a corresponding bias that is added to
the output of that perceptron before the output gets passed as input to the
next layer. If the sum of all the weighted inputs into a perceptron plus the
bias of that perceptron is greater than or equal to 0, then that perceptron will
output a 1. Otherwise, that perceptron will output a 0. As a result of this,
the negative bias of a perceptron is sometimes referred to as the threshold.
Figure 2.2 shows an example of a perceptron with four inputs where the
output is 0. This is because

[1(0.5) + 1(−0.2) + 0(1) + 1(0.01)] − 0.5 � −0.19 < 0.

When we bring the concepts of both weights and biases together, it gives us
the ability to start thinking about how to tune a neural network to help us
make decisions.

Sigmoid Neurons 5

2.2 Sigmoid Neurons

The main problem with perceptrons is that making subtle changes to the
weights and biases can sometimes result in massive changes to the output,
which is not ideal. For example, let’s build a networkwith 3 input perceptrons
and 1 output perceptron. The starting weights and the bias of the output
perceptron can be initialized randomly. Figure 2.3 shows that the output of
this neural network is 1 for the input 1, 0, 1. This is because

[1(0.9) + 0(0.4) + 1(−0.5)] + (−0.4) � 0 ≥ 0.

Figure 2.3 Neural network built with perceptrons.

Let’s now consider this same network, but with slightly different weights.
Let’s change the weight of the edge from the topmost input perceptron to
the output perceptron from 0.9 to 0.8 in Figure 2.4. With the same input of
1, 0, 1, the network now outputs 0. This is because

[1(0.8) + 0(0.4) + 1(−0.5)] + (−0.4) � −0.1 < 0.

6 What is a Neural Network?

Figure 2.4 A slight change in weights in perceptron network results in a di�er-
ent output.

Subtle changes in the network’s weights and biases should ideally result
in subtle changes in the network’s output, allowing the network’s weights
and biases to be tuned. The second type of artificial neuron, the sigmoid
neuron, has this property.

The sigmoid neuron is the main neuron model that is used today in
neural networks. Its function is similar to that of perceptrons, but when
there are subtle changes to the weights and biases, there are not massive
changes to the output. The inputs to a sigmoid neuron can be anywhere
between 0 and 1, and the output is determined by the weights of the inputs
and the bias along with the sigmoid function σ, where

σ(z) ≡ 1
1 + e−z .

This sigmoid function is what prevents massive changes in the output when
the network is tuned. This is because

lim
x→−∞

σ(z) � 0

and
lim
x→∞

σ(z) � 1.

Sigmoid Neurons 7

This means that a sigmoid neuron’s output will always be contained in [0, 1].
Let’s consider the two networks built with perceptrons in Figure 2.3

and Figure 2.4, but let’s use sigmoid neurons in the networks instead of
perceptrons. Using the same weights and bias as in Figure 2.3, this sigmoid
neuron network in Figure 2.5 outputs 0.5 with the input 1, 0, 1. This is
because

σ([1(0.9) + 0(0.4) + 1(−0.5)] + (−0.4)) � σ(0) � 1
1 + e−0 � 0.5.

Figure 2.5 Neural network built with sigmoid neurons.

Changing the weights in the same way as in Figure 2.4 gives us a new
network in Figure 2.6. This network outputs 0.475 with the input 1, 0, 1. This
is because

σ([1(0.8) + 0(0.4) + 1(−0.5)] + (−0.4)) � σ(−0.1) � 1
1 + e0.1 � 0.475.

This shows that a subtle change in the weights of a sigmoid neuron network
resulted in a subtle change in its output.

8 What is a Neural Network?

Figure 2.6 A slight change in weights in sigmoid neuron network results in a
similar output.

The sigmoid function is an example of an activation function. An
activation function is a function applied to the outputs of a layer in a neural
network to introduce nonlinearities before this output is used as input in the
next layer. Without activation functions, a neural network would just be one
large affine transformation. In the context of activation functions, biases are
used to shift an activation function left or right depending on at what inputs
the activation function is triggered. For example, one popular activation
function is the ReLU function, defined as

f (x) � max(0, x).

Consider the networks in Figure 2.7 and Figure 2.8.

Sigmoid Neurons 9

Figure 2.7 An input that fails to trigger the activation function of a network.

In Figure 2.7, the network computes

ReLU([1(0.5) + 0(0.4) + 1(−0.5)] + 1) � ReLU(1) � 1.

In this case, the ReLU function wasn’t really used since ReLU(1) � 1. This
is the same output the network would’ve given if there was no activation
function on the output neuron at all.

10 What is a Neural Network?

Figure 2.8 An input that triggers the activation function of a network.

In Figure 2.8, the network computes

ReLU([1(0.5) + 0(0.4) + 1(−0.5)] + (−0.4)) � ReLU(−0.4) � 0.

In this case, the Relu function is used since ReLU(−0.4) , −0.4. This
is different from the output the network would’ve given if there was no
activation function on the output neuron at all. Thus, changing the bias
shifted the activation function to the right, allowing it to have an impact on
the output of the network.

2.3 A Simple Model for Decision Making

The same process used to change the weights and biases of a perceptron
network is also used for a sigmoid network. However, for the sake of
simplicity, this section will demonstrate how a neural network made of
perceptrons changes its weights and biases. The mathematics behind this
will be discussed more in Section 2.5.

Let’s build a network that models the majority function (10). If the
majority of inputs are 1, the correct output is 1. If the majority of inputs

A Simple Model for Decision Making 11

are 0, the correct output is 0. This network has 3 input perceptrons and 1
output perceptron. Let’s say we randomize the network’s weights and the
output perceptron’s bias. Figure 2.9 shows a diagram of this network. With
an input of 1, 0, 1, the network computes

[1(−0.5) + 0(.4) + 1(−0.5)] + (0) � −1 < 0.

The network then outputs 0, which is incorrect in this case. The correct
answer was 1, giving an error of 2.

Figure 2.9 Modeling the majority function with a perceptron neural network.

This error of 2 now gets split up between the perceptron weights that
contributed to the network’s output. Because the input perceptron with
an input of 0 didn’t contribute to the output at all, only two of the weights
change. Figure 2.10 shows the result of adding 1 to each of the weights of
the two perceptrons that contribute to the output.

12 What is a Neural Network?

Figure 2.10 Adjusting the weights of a neural network.

After adjusting these weights, with the same input of 1, 0, 1, the network
compute

1(0.5) + 0(0.4) + 1(0.5) � 1 ≥ 0.

This gives an output of 1, which is correct for this input.

2.4 Layers

The overall architecture of a neural network includes 3 main types of layers.
The first layer of a neural network is known as the input layer and is where
the input data is recorded. The dimension of the instance of input data
corresponds to the number of input neurons in the network. For example, if
the data is a set of 5 by 5 matrices, then there will be 25 input neurons, each
encoding a number in our matrix.

The second type of layer is called a hidden layer. There can be multiple
hidden layers in a neural network, and the number of neurons in each layer is
something to be experimented with depending on what the neural network
is built to accomplish.

The output layer is the final type of layer. If the network needs to have
3 outputs, each with its own meaning, there should be 3 different output

Gradient Descent and Learning 13

neurons, one for each output.
Some machine learners have different terms for different types of neural

networks. One of the most common terms is deep neural network. A deep
neural network has a certain number of hidden layers. This number has
changed over time as computation has improved. Currently, a deep neural
network might contain at least 5-10 hidden layers. A feedforward neural
network is a network that only passes outputs from individual neurons
forward from the input layer to the output layer. A fully connected neural
network is a network in which there is a weighted edge passing output from
every neuron in a given layer to every neuron in the next layer as input. The
neural networks built and used for this thesis are all feedforward networks
that are fully connected. Figure 2.11 is an example of a small feedforward,
fully connected network.

Figure 2.11 Feedforward, fully connected neural network.

2.5 Gradient Descent and Learning

Learning algorithms are themethod bywhich a network can tune itsweights
and biases according to training data. Training data is a set of data that is
run through a neural network repeatedly to adjust the network’s weights
and biases. After running a particular data instance through a network, the
network adjusts its weights and biases based on how far away its output is
from the correct output.

Gradient Descent is a method used to help a network "learn" or adjust

14 What is a Neural Network?

its weights and biases in an optimal way for a particular type of input
and output. Two different data sets are used when learning with gradient
descent. The first is a training data set, which will be inputted into the
network multiple times in order to adjust the network’s weights and biases.
The second is the validation set. The validation set tests the neural network’s
knowledge after it is trained. The general rule of thumb if there is a limited
amount of data to work with is sometimes known as the "80/20 Rule". The
rule is to split the data so that 80% is training data and 20% is validation
data.

When training a network using gradient descent, let y(x) be the desired
output. Gradient descent uses a loss function to compare y(x) to p(x), the
network’s actual output. A loss function is a function that describes how
far the network’s actual output is from the expected or desired output.

Let’s define a loss function, L, that gradient descent will try to minimize:

L(w , b) ≡ 1
2n

∑
x

| |y(x) − a(x)| |2

where

• w is the set of weights in the network

• b is the set of biases

• n is the total number of training inputs

• a(x) is the vector of outputs from the network when x is the input

• y(x) is the correct or desired output from the network when x is the
input

• x is a particular training input.

The value of the loss function L should ideally be as small as possible
since it represents the difference between the neural network’s actual output
and desired output. In order to find this minimum, the algorithm needs to
make small changes in w and b, denoted ∆w and ∆b. These small changes
∆w and ∆b correspond to ∆L, the small change in L:

∆L ≈ ∂L
∂w
∆w +

∂L
∂b
∆b.

Gradient Descent and Learning 15

Notice that ∇L, the gradient of L, is

∇L ≡ (∂L
∂w

,
∂L
∂b
)T .

Rewriting ∆L using ∇L yields

∆L ≈ ∇L · ∆v

where v � [w , b]. Gradient descent is a way of taking small steps in the
direction which does the most to immediately decrease L, so ∆L should be
negative. In order to make ∆L negative, the learning algorithm needs to
choose ∆w and ∆b accordingly. Let’s choose

∆v � −η∇L

where η is small and positive. The parameter η is known as the learning
rate and represents the size of the step the algorithm takes during gradient
descent. This equation is then used to repeatedly compute v each time the
algorithm takes a new step towards the minimum of L such that

∆v � v f − vi � η∇L.

Because learning requires the computation of many derivatives, it can
sometimes be a slow process. Stochastic gradient descent is meant to be a
quicker version of gradient descent because instead of calculating ∇L for
all of the training inputs, in stochastic gradient descent, the algorithm just
calculates ∇L for a small sample of randomly chosen inputs. This greatly
improves the speed of the gradient descent since it is no longer necessary to
calculate ∇L for every data instance in the training set.

There aremanydifferent types of loss functions used throughoutmachine
learning, but the one I use in my binary classification neural networks is
called a binary cross entropy function. A binary cross entropy function
is a function that measures the performance of a model whose output
is a probability value between 0 and 1. A binary cross entropy function
B(x , y(x), a(x)) can be written as

B(x , y(x), a(x)) � −[y(x) log(p(x)) + (1 − y(x)) log(1 − p(x))]

where

• x is a particular training input

16 What is a Neural Network?

• y(x) is the correct or desired output from the network when x is the
input

• p(x) is the predicted probability of that classification.

A binary cross entropy function is also sometimes referred to as a log
loss function. Figure 2.12 shows the log loss function when y(x) � 1 for a
particular input x, meaning the correct labeling of an input x is 1. If a neural
network predicts a label of 0, the log loss function in Figure 2.12 gives a
large loss. This is desirable since 0 was not the correct labeling. If a neural
network predicts a label of 1, the log loss function in Figure 2.12 gives a
small loss. Again, this is desirable since 1 is the correct labeling.

Figure 2.12 Log loss (4).

Chapter 3

Generating Data

3.1 Training and Validation Data

I used MATLAB (11) to generate large amounts of data for training and
validation of the neural networks I created for this thesis. Each of the training
sets and validation sets I generated contained 20, 000 data instances. I then
took the csv files outputted by my MATLAB code and used a Python (12)
package called Pandas (13) to create data structures called dataframes, which
are essentially large matrices with labels.

Since I am considering data on a circle, it is useful to consider binning
the data so that there is a finite number of points on the circle. In this case, I
always generated data instances with a total of 128 total points. I did this
by having my MATLAB code pick a bin on the circle according to some
probability distribution and then increase that bin value by 1. I would then
repeat this process 128 times, where 128 is the total number of points on the
circle.

I generated data for the uniform distribution, the von Mises distribution,
the semicircular distribution (where each half of the circle has a different
probability), and the linear distribution (where the probability of picking a
bin increases linearly around the circle) using 128 bins on the circle. I chose
128 purely because it is a power of 2. In addition, for each data instance I
generated, I chose a random number between 1 and 128 and rotated the data
instance that number of bins so that every data instance wouldn’t have a
high number of points in the same general area. Failing to do this would
have made it easier for a neural network to distinguish between uniform
and nonuniform distributions.

18 Generating Data

3.2 Uniform Distribution

In generating the uniform distribution, each bin has an equal probability of
being chosen, meaning for n bins each bin has probability 1

n of being chosen.
In this case, since there are 128 bins, each bin has probability 1

128 of being
chosen. Figure 3.1 shows an example of a sample of points coming from
uniform distribution on a circle.

Figure 3.1 Example of a sample of points coming from a uniform distribution
of circular data.

3.3 Linear Distribution

To understand the linear distribution on circular data, imagine a line of slope
m wrapped around a circle. Figure 3.2 shows an example of a sample of
points coming from a linear distribution on a circle.

Figure 3.2 Example of a sample of points coming from a linear distribution of
circular data.

In order to generate this data, I randomly chose a slope m between 0.1
and 0.2. This range of slopes was chosen because the values are small and

von Mises Distribution 19

can work for circles that don’t have a large number of points, but the values
are not so big that it visually gives away the fact there is a linear distribution
on the circle. Then, in order to randomly sample from the distribution
to choose bins, I calculated the area, A, under a line with slope m and
x-length equivalent to the number of bins on our circle n, in this case 128, by
calculating

A �
1
2 · n · (m · n).

Then I calculated the area, Y, under a line with slope m and x-length
equivalent to a number, x, between 1 and n by calculating

Y �
1
2 · x · (m · x).

Thus, the probability of choosing the xth bin or less is

P(X ≤ x) � Y
A

�
x2

1282 .

I found the probability of choosing the xth bin exactly using

P(X � x) �
Y − (12 · (x − 1) · (m · (x − 1)))

A
�

2x−1
2
A

�
2x − 1
mn2 .

3.4 von Mises Distribution

The von Mises distribution is a type of unimodal distribution on circular
data controlled by two parameters µ and κ. The parameter µ controls the
location of where the majority of the points are concentrated on the circle,
and the parameter κ is a measure of how concentrated the points are around
the chosen location. Figure 3.3 shows an example of a sample of points
coming from a unimodal distribution on a circle.

Figure3.3 Example of a sample of points coming fromaunimodal distribution
of circular data.

20 Generating Data

The probability density function for the von Mises distribution for an
angle x ranging between 0 and 2π is given by

f (x |µ, κ) � eκcos(x−µ)

2πI0(κ)

where I0(κ) is the modified Bessel function of order 0 (5). Figure 3.4 shows
the von Mises probability distribution for a range of κ values.

Figure 3.4 von Mises probability density function for a range of κ values (5).

When generating von Mises distributions, I did not take into account
the denominator of the probability density function since it is only used for
scaling.

3.5 Semicircular Distribution

To generate data coming from the semicircular distribution, it is useful to
think about having two uniform distributions, one on some half of the circle
and one on the other. One of these uniform distributions is sampled with
higher probability than the other. Figure 3.5 shows an example of a sample
of points coming from a semicircular distribution on a circle. The top portion
of the circle has a uniform distribution that is being sampled with higher
probability than the bottom portion.

Duplicates 21

Figure 3.5 Example of a sample of points coming from a semicircular distri-
bution on circular data.

3.6 Duplicates

After generating data for the training set, I generated data for the validation
set. In doing so, I noticed that there were occasionally duplicate data
instances between the two sets. At first, this seemed like a bad thing.
In many online examples of neural networks, this would be undesirable,
especially if a network was doing something like image processing. It is not
desirable to train a network on a particular image multiple times, meaning a
particular instance or image is in the training set more than once. This would
bias the network towards that image. However, in the context of classifying
probability distributions on a circle, having duplicates in the training data
and validation data makes sense as long as they are generated by different
distributions.

Figure 3.6 Two similar data instances sampled from di�erent distributions.

The two data instances in Figure 3.6 are extremely similar and could
both be classified as uniform. However, they could each also be classified

22 Generating Data

as instances of the semicircular distribution with each half of the circle
having an almost equal probability. Thus, because a given data instance can
be generated using multiple distributions, the network needs to take into
account those that are more likely to occur (i.e. generated more frequently).
Because some data instances can be classified in multiple ways, the network
needs to learn for itself that it shouldn’t be too certain about its classification
of one of these frequently generated data instances.

Chapter 4

Tests for Uniformity

4.1 Beran’s Test for Uniformity

In his 1968 and 1969 papers (6; 7), Beran constructs a test statistic for discrete
circular data to test for uniformity that implicitly uses Fourier coefficients of
the data. I will use this section to outline his test statistic.

Let’s view an instance of discrete circular data as a function on the cyclic
group G � Z/NZwhere the bins on the circle correspond to group elements.
Let f , another function on this same cyclic group, be some nonuniform
alternative density where

∑
g∈G f (g) � |G | � N. Consider the following

statistic

Tn �
1

nN

∑
g∈G

[
n∑

i�1
f (g gi) − N]2

where

• n is the total number of data points in the data instance

• N is the dimension of the data instance

• G is the cyclic group on N elements

• g gi is the data instance on the ith group element moved by another
group element g.

Figure 4.1 shows a function a on the cyclic group G � Z/NZ.

24 Tests for Uniformity

Figure 4.1 Function on the cyclic group on N elements.

Let’s write a as a vector

a �

a0
a1
...

an−1

.

The function on the 0th element, 0̄, is a0. The function on the 1st element, 1̄,
is a1 and so on.

Figure 4.2 Before and a�er rotating by a group element.

Figure 4.2 shows the before and after of rotating a by one bin on the circle
when a1 � 4. This is equivalent to a group element acting on a, causing a to
shift on the circle. The g gi term in Beran’s statistic represents shifting the
group element gi by a group action using g ∈ G and enables the statistic
to take into account rotated versions of a. This is how Beran accounts for
the rotational symmetry of a circle in his statistic. The

∑n
i�1 f (g gi) term

represents taking the inner product of the alternative density f with one
rotated version of the data instance a to get a measure of how similar f and

Beran’s Test for Uniformity 25

that version of a are. The−N part of Beran’s statistic represents removing the
pieces of both f and a that contribute to the uniform distribution. Essentially,
Beran’s statistic considers the pieces of f and a that are orthogonal to the
all-ones density and then uses inner products to compare how similar this
piece of f is to all the rotated versions of this piece of a. He measures how
similar they are by summing up all of the squares.

Cross correlation is exactly the idea of taking an inner product of one
function with a shifted version of another function. In fact, because f and a
in this context are both real-valued, cross correlation can be computed using
convolution, and the convolution of two functions in the time domain is
just the product of their Fourier transforms in the frequency domain. This
means that in his statistic, Beran is using Fourier coefficients of the data
instance and the alternative density (7).

Chapter 5

Creating the Network

5.1 Initial Network Structure

When I was learning how to actually code up a neural network, I started with
a very small network. It had the same structure as the network in Figure 5.1.

Figure 5.1 Initial neural network structure.

This network has 8 input neurons, 1 hidden layer with 8 neurons, and
1 output neuron. Each neuron in a particular layer is connected to every

28 Creating the Network

neuron in the next layer, making this network fully-connected. This network
is also feedforward.

Training Epoch Loss
0 0.4598
1 0.4886
2 0.5058
3 0.5149
4 0.5186
5 0.5189
6 0.5168
7 0.5134
8 0.5090
9 0.4989
10 0.4935
11 0.4880
12 0.4825
13 0.4768
14 0.4768
15 0.4712
16 0.4657
17 0.4601
18 0.4546
19 0.4492

Table 5.1 Loss for a small neural network.

Mimicking Beran’s Test 29

Figure 5.2 Training loss of a small neural network.

Table 5.1 and Figure 5.2 show that while the loss of this small network
does decrease after 20 training epochs, it decreases only a small amount and
increases a good amount in the middle of training. This sort of output is not
ideal and signals that a larger network is needed to get better results.

5.2 Mimicking Beran’s Test

Remember Beran’s statistic (6; 7) is

Tn �
1

nN

∑
g∈G

[
n∑

i�1
f (g gi) − N]2

where

• n is the total number of data points in the data instance

• N is the dimension of the data instance

• G is the cyclic group on N elements

• g gi is the data instance on the ith group element moved by another
group element g.

30 Creating the Network

Let an example input vector be

a �

3
5
9
7

such that n � 24 and N � 4. Let our alternative density f be the semicircular
distribution with probability 0.33 on one semicircle and probability 0.67 on
the other semicircle. Remember that since this is a density all of the entires
in f must sum to N .

f �

2
3
2
3
4
3
4
3

 .
Wecan compute the innerportionof the statistic,meaning the

∑
g∈G

∑n
i�1 f (g gi)

portion, very easily with a simple neural network in Figure 5.3.

Figure 5.3 Computing Beran’s statistic.

Network Structure 31

In terms of squaring the outputs from the hidden layer like Beran does
in his statistic, there is the possibility of using a special activation function
between layers. However, squaring doesn’t seem to be an activation function
that is commonly used among the neural network community. However,
the ReLU function is quite commonly used. Since the ReLU function is 0
when the input is less than 0 and is equal to the value of the input otherwise,
it almost acts as an absolute value. While the ReLU function does not have
the same utility as squaring the input, for the purposes of trying to measure
the largeness of something, taking something similar to the absolute value
has meaning.

The main problem with this network once it was created and tested was
that it was too small both in the number of nodes in all of the non-output
layers and in the number of layers itself, meaning it didn’t do a great job of
classifying the inputted probability distributions.

While a such a small neural networkwas not powerful enough to compute
Beran’s statistic, it is known that a neural network can approximate Beran’s
statistic arbitrarily well (14).

5.3 Network Structure

In playing around with network size, I tried a much larger network of 5
layers. However, when training this network, the network was able to reach
100% training accuracy way too quickly while the validation accuracy was
still quite low, signaling the network was big enough to memorize the inputs
and outputs in the data. Eventually, I found that a network with 1 input layer,
1 smaller hidden layer, and 1 output layer is able to differentiate between
uniform and nonuniform probability distributions on circular data quite
well.

Below, I provide some snippets of code in Python (12) used to construct
the neural networks used for this thesis. There are many different Python
libraries people like to take advantage of when trying to build neural
networks. This thesis uses PyTorch (15) and Pandas (13).

After importing the necessary tools and importing the data as Pandas
dataframes, I separated the training data from the validation data. Note that
data is the name of the Pandas dataframe containing the training data and
val is the name of the Pandas dataframe containing our validation data.
Because I generated my own data, I was not restricted to the 80/20 rule and
had training sets and validation sets of equal size. Both the training set and

32 Creating the Network

validation set contained 20, 000 data instances each.

f = data.as_matrix(columns=[List of Column Names])
g = val.as_matrix(columns=[List of Column Names])

After separating out the validation set from the training set, I separated the
labels for a data instance as to whether it is uniform or nonuniform from
the data instances themselves. In this case, these answers are contained in a
column denoted with the name U.

x_train = torch.Tensor(f)
y_train = torch.Tensor(data.as_matrix(columns=[’U’]))
x_val = torch.Tensor(g)
y_val = torch.Tensor(val.as_matrix(columns=[’U’]))

Then I created a TensorDataset, which I used to load the data and split into
groups. Each of these groups is called a batch. Each batch is run through
the network once during each period of training and validation, called an
epoch. Over one epoch, the whole training data set and validation data set
will have been run through the network once in batches.

train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=1024, shuffle=True)
val_ds = TensorDataset(x_val, y_val)
val_dl = DataLoader(val_ds, batch_size=1024, shuffle=True)
#batch size: how many samples per batch to load (default: 1)

After creating the TensorDataset, I named and created the model and set
the learning rate. This learning rate has to do with how large of a step is
taken during gradient descent.

def get_model():
model = UniformPredictor()
return model, optim.SGD(model.parameters(), lr=0.01)

Here the input layer has 128 neurons, the hidden layer has 4 neurons, and
the output layer has 1 neuron.

class UniformPredictor(nn.Module):
def __init__(self):

super().__init__()
self.fc1 = nn.Linear(128,4)

Network Structure 33

self.fc2 = nn.Linear(4,1)
self.m = torch.nn.Sigmoid()

def forward(self, xb):
return self.m(self.fc2(F.relu(self.fc1(xb))))

model,opt = get_model()

The training loop loops over the training data 10 times since epochs = 10.
Within this loop, the model is trained on sets of data instances that are of the
chosen batch size set above. This means the model makes a prediction using
an instance of training data, measures how well that prediction matches the
correct answer, and adjusts its weights and biases accordingly.

epochs = 10
loss_func = F.binary_cross_entropy
for epoch in range(epochs):

#train
for xb,yb in train_dl:

pred = model(xb)
loss = loss_func(pred, yb)
loss.backward()
opt.step()
opt.zero_grad()

Here is the validation loop. Note that here the model makes a prediction
and then later compares that to the correct answer. However, the model
does not adjust its weights and biases at all based on these predictions.

for epoch in range(epochs):
for xv,yv in val_dl:

predVal = model(xv)

Chapter 6

Results

In this section, I share the results of running the Rayleigh Test (1), theWatson
Test (2), and the Ajne Test (3) on discrete circular data instances sampled
from uniform and nonuniform distributions, and I also describe the results
of training and validating neural networks to differentiate between these
same data instances. These data instances each contain 128 data points
distributed over 128 bins based on which distribution is being sampled. In
addition to comparing the accuracy, type I error, and type II error of this set
of statistical tests and the networks trained on data instances without any
preprocessing, I also compare the effects of training and validating networks
on preprocessed data.

6.1 Running Statistical Tests on Data Instances Sam-
ple from Uniform and Nonuniform Distributions

This section contains the results of running the Rayleigh Test (1), the Watson
Test (2), and the Ajne Test (3) on discrete circular data instances sampled
from uniform and nonuniform distributions. In running these three tests,
I empirically calculated p-values by comparing test statistics obtained by
running the training and validation data of the networks I created through
this set of statistical tests with the test statistics for a separate group of
data instances sampled from a uniform distribution. Because I calculated
p-values empirically, I needed to choose a significance level for each test. I
did so by calculating accuracy using a wide range of significance levels and
then picked the significance level for which a test had the highest accuracy.

A type I error is when the null hypothesis is incorrectly rejected. In

36 Results

this case, the null hypothesis is that a data instance is being sampled from
a uniform distribution, so a type I error is when a data instance sampled
from a uniform distribution is incorrectly classified as being sampled from
a nonuniform distribution. A type II error is when the null hypothesis is
incorrectly not rejected. In this case, a type II error is when a data instance
being sampled from a nonuniform distribution is incorrectly classified as
being sampled from a uniform distribution.

Beran identifies the alternative density in the Rayleigh Test (1) as the
unimodal distribution. Table 6.1 shows the accuracy percentage, type I error
as percentage of total error, and type II error as a percentage of total error
from running 20, 000 data instances sampled from a uniformdistribution and
20, 000 data instances sampled from the von Mises distribution through the
Rayleigh Test (1) using a confidence level of 0.01. The von Mises distribution
is a type of unimodal distribution.

von Mises and uniform distribution through
Rayleigh w/ 0.01 confidence level

Correct% 99.6%
Type I Error as % of all Error 100%
Type II Error as % of all Error 0%

Table 6.1 von Mises and uniform distribution through Rayleigh w/ 0.01 confi-
dence level.

Beran identifies the alternative density in the Watson Test (2) as the
linear distribution. Table 6.2 shows the accuracy percentage, type I error as
percentage of total error, and type II error as a percentage of total error from
running 20, 000 data instances sampled from a uniform distribution and
20, 000 data instances sampled from a linear distribution with a randomly
chosen slope ranging from 0.1 to 0.2 through the Watson Test (2) using a
confidence level of 0.1.

Running Statistical Tests on Data Instances Sample from Uniform and Nonuniform
Distributions 37

Linear and uniform distribution through
Watson w/ 0.01 confidence level

Correct% 99.5%
Type I Error as % of all Error 91.4%
Type II Error as % of all Error 8.6%

Table 6.2 Linear and uniform distribution through Watson w/ 0.01 confidence
level

Beran identifies the alternative density in the Ajne Test (3) as the semicir-
cular distribution. Table 6.3 shows the accuracy percentage, type I error as
percentage of total error, and type II error as a percentage of total error from
running 20, 000 data instances sampled from a uniform distribution and
20, 000data instances sampled from the semicircular distribution through the
Ajne Test (3) using a confidence level of 0.03. This semicircular distribution
has a random number of points uniformly distributed on a randomly chosen
half of the circle and then has 128 minus the random number of points on
the chosen first half uniformly distributed on the remaining second half.

Semicircular and uniform distribution through
Ajne w/ 0.03 confidence level

Correct% 86.82%
Type I Error as % of all Error 10.8%
Type II Error as % of all Error 89.2%

Table 6.3 Semicircular and uniform distribution through Ajne w/ 0.03 confi-
dence level.

Table 6.4 contains the accuracy percentage, type I error as percentage
of total error, and type II error as a percentage of total error from running
20, 000 data instances sampled from a uniform distribution and 20, 000
data instances sampled from a nonuniform distribution through a set of
statistical tests for uniformity. Each test in the table was run on the data
instances sampled from the nonuniform distributions that come from the
corresponding alternative densities. Table 6.4 shows that the Rayleigh Test
(1) had the best accuracy out of all the tests shown.

38 Results

Test Confidence Level Correct% Type I Error Type II Error
Ajne 0.03 86.82% 10.76% 89.24%

Watson 0.01 99.5% 91.4% 8.6%
Rayleigh 0.01 99.57% 100% 0%

Table 6.4 Summary of statistical test results.

6.2 Training and Validating Neural Networks on Data
Without Preprocessing

In this section, I give results for the accuracy, type I, and type II errors for
training and validating specific neural networks trained on data instances
that were not preprocessed.

6.2.1 Network Trained to Compete with the Rayleigh Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the von Mises distribution.
Even with very little training time, this network was able to achieve an
extremely high accuracy and was able to outperform the Rayleigh Test (1).

Figure 6.1 Accuracy for von Mises and uniform distribution classifier.

Training and Validating Neural Networks on Data Without Preprocessing 39

The validation accuracy rose very quickly to 100% in Figure 6.1, and the
loss dropped very quickly in Figure 6.2.

Figure 6.2 Loss for von Mises and uniform distribution classifier.

In addition, since the accuracy rose so quickly, the type I and type II
error dropped very quickly to 0 in Figure 6.3.

Figure 6.3 Type I and II error for von Mises and uniform distribution classifier.

40 Results

There are many reasons why this network might have been able to do
so well. One worth noting is that even to the human eye, a unimodal
distribution is easier to pick out from a group of uniform distributions since
themajority of points are concentrated in one region on the circle. Remember
that the Rayleigh test was able to achieve 99.6% accuracy, but this network
was able to achieve 100% validation accuracy. Table 6.5 gives an accuracy
comparison between the Rayleigh Test (1) and this network.

Rayleigh Test Network
99.6% 100%

Table 6.5 Accuracy comparison of the Rayleigh test and the network trained
on von Mises and uniform distributions

6.2.2 Network Trained to Compete with the Watson Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the linear distribution. While
this network was trained for a much longer training period of 200 training
epochs as opposed to the 70 epoch training period for the network in Section
6.2.1, most of the increase in accuracy happens within the first 60 epochs in
Figure 6.4.

Training and Validating Neural Networks on Data Without Preprocessing 41

Figure 6.4 Accuracy for linear and uniform distribution classifier.

This network was able to achieve a validation accuracy of 98.9%, which
is slightly lower than the Watson Test’s (2) accuracy of 99.5%. In Figure 6.5,
the loss drops slightly slower than the accuracy rises in Figure 6.4.

Figure 6.5 Loss for linear and uniform distribution classifier.

42 Results

Figure 6.6 shows the type I and type II error as a fraction of the total error.
This is interesting in comparison to Table 6.2. Most of the Watson Test’s (2)
and this network’s errors are coming from type I errors, meaning they are
more likely to incorrectly classify a uniform distribution as a nonuniform
distribution.

Figure 6.6 Type I and II error for linear and uniform distribution classifier.

Table 6.6 gives an accuracy comparison between the Watson Test (2) and
this network.

Watson Test Network
99.5% 98.9%

Table 6.6 Accuracy comparison of the Watson test and the network trained
on linear and uniform distributions

6.2.3 Network Trained to Compete with the Ajne Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the semicircular distribution.
Similarly to the network in Section 6.2.2, this network also trained for a

Training and Validating Neural Networks on Data Without Preprocessing 43

longer training period, but most of the increase in accuracy happened within
the first 20 training epochs in Figure 6.7. Both Figure 6.7 and Figure 6.8
show that the validation accuracy and loss respectively have a fairly large
variance over the training period. This suggests that while the validation
accuracy and loss is tracking the training accuracy and loss (which signals
the network has learned to pick up on features in the data), it can still be
quite difficult for the network to classify instances it hasn’t seen before.

Figure 6.7 Accuracy for semicircular and uniform distribution classifier.

44 Results

Figure 6.8 Loss for semicircular and uniform distribution classifier.

Like the network in Section 6.2.2, this network tends to make more type
I errors than type II errors in Figure 6.9. Remember that the Ajne test (3)
only had 10.8% of its error coming from type I error, meaning that majority
was type II error. This means that this network is most likely to incorrectly
classify a data instance being sampled from a uniform distribution as being
sampled from a nonuniform distribution whereas the competing statistical
test is more likely to incorrectly classify a data instance being sampled from
a nonuniform distribution as being sampled from a uniform distribution.

Data Preprocessing: Discrete Cosine Transform 45

Figure 6.9 Type I and II error for semicircular and uniform distribution classi-
fier.

Table 6.7 gives an accuracy comparison between the Ajne Test (3) and
this network.

Ajne Test Network
86.8% 86.5%

Table 6.7 Accuracy comparison of the Ajne test and the network trained on
semicircular and uniform distributions

6.3 Data Preprocessing: Discrete Cosine Transform

In this section, I give results for the accuracy, type I, and type II errors for
training and validating specific neural networks trained on data instances
that were preprocessed with the discrete cosine transform. Preprocessing
in general can often results in shorter training times or better accuracy
results since it picks out distinguishing characteristics of the data for the
network instead of the network trying to pick these itself. The discrete cosine

46 Results

transform is

y(k) �
√

2
N − 1

N∑
n�1

x(n) 1√
1 + δk1 + δkN

cos(π
N − 1 (n − 1)(k − 1))

where

• N is the length of a signal x

• k goes from 1 to N

• δki is the Kronecker delta(16).

The DCT is often used in similar contexts where a Fourier transform might
be used. This is because the Fourier transform is a projection onto the space
spanned by cosines and sines, a complex-valued space. However, since the
DCT is a projection only onto the cosines, the outputs of the DCT are all
real-valued.

6.3.1 DCT for Network Trained to Compete with the Rayleigh
Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform dis-
tribution and data instances sampled from the vonMises distribution. Before
passing a data instance as input to the network, the data was preprocessed
with the discrete cosine transform.

Data Preprocessing: Discrete Cosine Transform 47

Figure 6.10 Accuracy for DCT preprocessed von Mises and uniform distribu-
tion classifier.

Figure 6.10 shows that a network trained and validated with instances
sampled from the von Mises and uniform distributions can perform really
well. Preprocessing the data in this case with the DCT did not seem to
impact the results of this network. The validation accuracy reaches 100% as
it did in the network trained on data that was not preprocessed, and overall
this network does better than the 99.6% accuracy achieved by the Rayleigh
test (1).

48 Results

Figure 6.11 Loss for DCT preprocessed von Mises and uniform distribution
classifier.

Figure 6.11 shows the loss of this network during training and validation
dropping very quickly, and Figure 6.12 shows the error dropping very
quickly as well.

Data Preprocessing: Discrete Cosine Transform 49

Figure 6.12 Type I and II error for DCT preprocessed von Mises and uniform
distribution classifier.

Table 6.8 gives an accuracy comparison between the Rayleigh Test (1) and
two networks trained and validated with data instances, not preprocessed
and preprocessed with the DCT, sampled from the uniform distribution and
the von Mises distribution.

Rayleigh Test No preprocessing DCT
99.6% 100% 100%

Table 6.8 Accuracy comparison of the Rayleigh test, no preprocessing, and
DCT

6.3.2 DCT for Network Trained to Compete with the Watson Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the linear distribution. Before
passing a data instance as input to the network, the data was preprocessed
with the discrete cosine transform.

50 Results

This network was able to achieve a validation accuracy of 98.7% in Figure
6.13. This is slightly lower than the 98.9% accuracy that the network trained
on linear and uniform distributions that were not preprocessed was able to
achieve in Figure 6.4. This network also failed to beat the Watson test’s (2)
99.5% accuracy in Table 6.2.

Figure 6.13 Accuracy for DCT preprocessed linear and uniform distribution
classifier.

Figure 6.14 shows that the loss for this network doesn’t drop as quickly
as the accuracy rises in Figure 6.13.

Data Preprocessing: Discrete Cosine Transform 51

Figure 6.14 Loss for DCT preprocessed linear and uniform distribution classi-
fier.

Figure 6.15 shows that while this network is similar to the one trained
on the nonpreprocessed data in that it is most likely to make a type I error,
they are different in that this network’s type I and type II error fractions are
much closer.

Figure 6.15 Type I and II error for DCT preprocessed linear and uniform distri-
bution classifier.

52 Results

Table 6.9 gives an accuracy comparison between the Watson Test (2) and
two networks trained and validated with data instances, not preprocessed
and preprocessed with the DCT, sampled from the uniform distribution and
the linear distribution.

Watson Test No preprocessing DCT
99.5% 98.9% 98.7%

Table 6.9 Accuracy comparison of the Watson test, no preprocessing, DCT

6.3.3 DCT for Network Trained to Compete with the Ajne Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the semicircular distribu-
tion. Before passing a data instance as input to the network, the data was
preprocessed with the discrete cosine transform.

Figure 6.16 Accuracy for DCT preprocessed semicircular and uniform distri-
bution classifier.

Figure 6.16 is quite similar to Figure 6.7. This network was not able to

Data Preprocessing: Discrete Cosine Transform 53

beat the Ajne test (3), but it achieved a comparable accuracy score. Figure
6.17 shows the loss for this network.

Figure 6.17 Loss for DCT preprocessed semicircular and uniform distribution
classifier.

Figure 6.18 Type I and II error for DCT preprocessed semicircular and uniform
distribution classifier.

54 Results

Figure 6.18 is similar to the error in Figure 6.9, with type I error making
up the majority of the error.

Table 6.10 gives an accuracy comparison between the Ajne Test (3) and
two networks trained and validated with data instances, not preprocessed
and preprocessed with the DCT, sampled from the uniform distribution and
the semicircular distribution.

Ajne Test No preprocessing DCT
86.8% 86.5% 86.1%

Table 6.10 Accuracy comparison of the Ajne test, no preprocessing, DCT

6.4 Data Preprocessing: Discrete Sine Transform

In this section, I give results for the accuracy, type I, and type II errors for
training and validating specific neural networks trained on data instances
that were preprocessed with the discrete sine transform. The discrete sine
transform is

y(k) �
N∑

n�1
x(n)sin(π kn

N + 1)

where

• N is the number of bins on the circle

• k � 1, · · · ,N.

The DST is often used in similar contexts where a Fourier transform might
be used. This is because the Fourier transform is a projection onto the space
spanned by cosines and sines, a complex-valued space. However, since
the DST is a projection only onto the sines, the outputs of the DST are all
real-valued.

6.4.1 DST forNetworkTrained toCompetewith theRayleighTest

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform dis-
tribution and data instances sampled from the vonMises distribution. Before

Data Preprocessing: Discrete Sine Transform 55

passing a data instance as input to the network, the data was preprocessed
with the discrete sine transform.

Figure6.19 Accuracy forDSTpreprocessedvonMises anduniformdistribution
classifier.

Figure 6.19 shows again that a network trainedwith data coming from the
von Mises and uniform distribution can do really well in terms of accuracy.
Preprocessing the data in this case with the DST did not seem to impact the
results of this network. The validation accuracy reaches 100% as it did in the
network trained on data that was not preprocessed, and overall this network
does better than the 99.6% accuracy achieved by the Rayleigh test (1).

56 Results

Figure 6.20 Loss for DST preprocessed von Mises and uniform distribution
classifier.

Figure 6.20 shows the loss drop very quickly, and Figure 6.21 shows the
error dropping to 0 even more quickly.

Figure 6.21 Type I and II error for DST preprocessed von Mises and uniform
distribution classifier.

Data Preprocessing: Discrete Sine Transform 57

Table 6.11 gives an accuracy comparison between the Rayleigh Test
(1) and three networks trained and validated with data instances, not
preprocessed and preprocessed with the DCT and DST, sampled from the
uniform distribution and the von Mises distribution.

Rayleigh Test No preprocessing DCT DST
99.6% 100% 100% 100%

Table 6.11 Accuracy comparison of the Rayleigh test, no preprocessing, DCT,
DST

6.4.2 DST for Network Trained to Compete with the Watson Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the linear distribution. Before
passing a data instance as input to the network, the data was preprocessed
with the discrete sine transform.

Figure 6.22 Accuracy for DST preprocessed linear and uniform distribution
classifier.

58 Results

Using the DST instead of a DCT to preprocess the data produces two
networks with almost the exact same accuracy, both of which are slightly
lower than the accuracy for the network trained on nonpreprocessed data.
All three networks fail to beat the accuracy of the Watson test (2), but they
achieve comparable accuracy.

Figure 6.23 Loss for DST preprocessed linear and uniform distribution classi-
fier.

Figure 6.24 shows much more overlap in type of error than Figure 6.6
or Figure 6.15, which is surpising because one might think that the type of
error would be similar for two networks, one trained on data preprocessed
with the DCT and one trained on data preprocessed with the DST.

Data Preprocessing: Discrete Sine Transform 59

Figure 6.24 Type I and II error for DST preprocessed linear and uniform distri-
bution classifier.

Table 6.12 gives an accuracy comparison between the Watson Test (2)
and three networks trained and validated with data instances, not prepro-
cessed and preprocessed with the DCT and DST, sampled from the uniform
distribution and the linear distribution.

Watson Test No preprocessing DCT DST
99.5% 98.9% 98.7% 98.6%

Table 6.12 Accuracy comparison of the Watson test, no preprocessing, DCT,
DST

6.4.3 DST for Network Trained to Compete with the Ajne Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the semicircular distribu-
tion. Before passing a data instance as input to the network, the data was
preprocessed with the discrete sine transform.

60 Results

Figure 6.25 Accuracy for DST preprocessed semicircular and uniform distri-
bution classifier.

Using the DST instead of a DCT to preprocess the data produces two
networks with almost the exact same accuracy, both of which are slightly
lower than the accuracy for the network trained on nonpreprocessed data.
However, all three networks fail to pass the accuracy of the Ajne test (3).
Figure 6.26 shows the loss for this network.

Data Preprocessing: Discrete Sine Transform 61

Figure 6.26 Loss for DST preprocessed semicircular and uniform distribution
classifier.

Figure 6.27 is similar to the errors in Figure 6.9 and Figure 6.18 in that
type I error makes up the majority of the error.

Figure 6.27 Type I and II error for DST preprocessed semicircular and uniform
distribution classifier.

62 Results

Table 6.13 gives an accuracy comparison between the Ajne Test (3) and
three networks trained and validated with data instances, not preprocessed
and preprocessed with the DCT and DST, sampled from the uniform distri-
bution and the semicircular distribution.

Ajne Test No preprocessing DCT DST
86.8% 86.5% 86.1% 86.2%

Table 6.13 Accuracy comparison of the Ajne test, no preprocessing, DCT, DST

6.5 Data Preprocessing: Fast Fourier Transform

In this section, I give results for the accuracy, type I, and type II errors for
training and validating specific neural networks trained on data instances
that were preprocessed with the fast Fourier transform. The fast Fourier
transform is

y(k) �
n∑

j�1
X(j)W (j−1)(k−1)

n

where

• n is the number of bins on the circle

• k goes from 1 to n

• Wn � e
−2πi

n .

The outputs of an FFT of a vector are not all real-valued, so I took the
magnitude of the output of the FFT.

6.5.1 FFT for Network Trained to Compete with the Rayleigh Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform dis-
tribution and data instances sampled from the vonMises distribution. Before
passing a data instance as input to the network, the data was preprocessed
with the fast fourier transform.

Figure 6.28 once again shows that a network trained with data coming
from the von Mises and uniform distribution can perform very well in terms

Data Preprocessing: Fast Fourier Transform 63

of accuracy. Preprocessing the data in this case with the FFT did not seem to
impact the results of this network. The validation accuracy reaches 100% as
it did in the network trained on data that was not preprocessed, and overall
this network does better than the 99.6% accuracy achieved by the Rayleigh
test (1).

Figure6.28 Accuracy for FFTpreprocessedvonMises anduniformdistribution
classifier.

Figure 6.29 shows the loss of this network dropping very quickly, and
Figure 6.30 shows the error dropping to 0.

64 Results

Figure 6.29 Loss for FFT preprocessed von Mises and uniform distribution
classifier.

Figure 6.30 Type I and II error for FFT preprocessed von Mises and uniform
distribution classifier.

Data Preprocessing: Fast Fourier Transform 65

Table 6.14 gives an accuracy comparison between theRayleigh Test (1) and
four networks trained and validated with data instances, not preprocessed
and preprocessed with the DCT, DST, and FFT sampled from the uniform
distribution and the von Mises distribution.

Rayleigh Test No preprocessing DCT DST FFT
99.6% 100% 100% 100% 100%

Table 6.14 Accuracy comparison of the Rayleigh test, no preprocessing, DCT,
DST, FFT

6.5.2 FFT for Network Trained to Compete with the Watson Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the linear distribution. Before
passing a data instance as input to the network, the data was preprocessed
with the fast fourier transform.

Figure 6.31 Accuracy for FFT preprocessed linear and uniform distribution
classifier.

Taking the FFT of our data before training really helped the accuracy of

66 Results

this network. In this particular case, this is the network that does the best at
differentiating between linear and uniform distributions with an accuracy of
99.7% in Figure 6.31. This is the only network trained to compete with the
Watson Test (2) that was able to surpass its accuracy of 99.5%. Figure 6.32
shows the loss of this network.

Figure 6.32 Loss for FFT preprocessed linear and uniform distribution classi-
fier.

Data Preprocessing: Fast Fourier Transform 67

Figure 6.33 Type I and II error for FFT preprocessed linear and uniform distri-
bution classifier.

The error in Figure 6.33 overlaps very much compared to the other error
distributions seen so far of the networks trained to compete with the Watson
Test (2).

Table 6.15 gives an accuracy comparison between theWatson Test (2) and
four networks trained and validated with data instances, not preprocessed
and preprocessed with the DCT, DST, and FFT sampled from the uniform
distribution and the linear distribution.

Watson Test No preprocessing DCT DST FFT
99.5% 98.9% 98.7% 98.6% 99.7%

Table 6.15 Accuracy comparison of the Watson test, no preprocessing, DCT,
DST, FFT

6.5.3 FFT for Network Trained to Compete with the Ajne Test

In this section, I discuss the results from training and validating a neural
network to distinguish between data instances sampled from a uniform
distribution and data instances sampled from the semicircular distribu-

68 Results

tion. Before passing a data instance as input to the network, the data was
preprocessed with the fast fourier transform.

Figure 6.34 Accuracy for FFT preprocessed semicircular and uniform distri-
bution classifier.

This network performed the best out of all the networks that have been
trained to differentiate between semicircular and uniform distributions with
an accuracy of 86.7% in Figure 6.34. However, this network still falls short of
beating the Ajne test’s (3) accuracy of 86.8%. Figure 6.35 shows the loss of
this network, and Figure 6.36 shows the error type distribution.

Data Preprocessing: Fast Fourier Transform 69

Figure 6.35 Loss for FFT preprocessed semicircular and uniform distribution
classifier.

Figure 6.36 Type I and II error for FFT preprocessed semicircular and uniform
distribution classifier.

70 Results

Table 6.16 gives an accuracy comparison between the Ajne Test (3) and
four networks trained and validated with data instances, not preprocessed
and preprocessed with the DCT, DST, and FFT sampled from the uniform
distribution and the linear distribution.

Ajne Test No preprocessing DCT DST FFT
86.8% 86.5% 86.1% 86.2% 86.7%

Table 6.16 Accuracy comparison of the Ajne test, no preprocessing, DCT, DST,
FFT

6.6 Four Distribution Classifier

I also built one network that took in data instances sampled from all four the
distributions I’ve mentioned, meaning the uniform distribution, von Mises
distribution, linear distribution, and semicircular distribution. This network
had a structure of one input layer with 128 neurons, one hidden layer with
10 neurons, and one output layer with 4 neurons. This network was trained
and validated on data instances that were not preprocessed and was only
able to achieve an accuracy of around 75%. This makes sense considering it
is much more difficult to differentiate between four different distributions in
comparison to differentiating between two. Figure 6.37 shows the accuracy
of this network, and Figure 6.38 shows the loss of this network.

Four Distribution Classifier 71

Figure 6.37 Accuracy for four distribution classifier.

Figure 6.38 Loss for a 4 distribution classifier.

Chapter 7

Conclusion

7.1 Summary of Results

This thesis worked to discover if neural networks built to test for uniformity
on circular data can outperform a class of well-known statistical tests for
uniformity that includes the Rayleigh Test (1), the Watson Test (2), and the
Ajne Test (3). Table 7.1 provides accuracy and error information for all these
three tests for uniformity. The Rayleigh Test (1) was run on data instances
sampled from the uniform distribution and the von Mises distribution.
The Ajne Test (3) was run on data instances sampled from the uniform
distribution and the semicircular distribution, and the Watson Test (2) was
run on data instances sampled from the uniform distribution and the linear
distribution.

Test Confidence Level Correct% Type I Error Type II Error
Ajne 0.03 86.82% 10.76% 89.24%

Watson 0.01 99.5% 91.4% 8.6%
Rayleigh 0.01 99.57% 100% 0%

Table 7.1 Summary of statistical test results.

Table 7.2 shows that out of binary classifying neural networks trained
on non-preprocessed and preprocessed data instances sampled from the
uniform distribution and the von Mises distribution, all of the networks
performed extremely well and outperformed the Rayleigh Test (1).

74 Conclusion

Rayleigh Test No preprocessing DCT DST FFT
99.6% 100% 100% 100% 100%

Table 7.2 Accuracy comparison of the Rayleigh test, no preprocessing, DCT,
DST, FFT

Table 7.3 shows that out of binary classifying neural networks trained
on non-preprocessed and preprocessed data instances sampled from the
uniform distribution and the semicircular distribution, the network trained
on data preprocessed with an FFT performed the best. However, the Ajne
Test (3) still outperformed all the networks in terms of accuracy. The networks
were all quite close to the Ajne Test’s accuracy, but none of them surpassed
it.

Ajne Test No preprocessing DCT DST FFT
86.8% 86.5% 86.1% 86.2% 86.7%

Table 7.3 Accuracy comparison of the Ajne test, no preprocessing, DCT, DST,
FFT

Table 7.4 shows that out of binary classifying neural networks trained
on non-preprocessed and preprocessed data instances sampled from the
uniform distribution and the linear distribution, the network trained on data
preprocessed with an FFT performed the best out of all the networks and
the Watson Test (2).

Watson Test No preprocessing DCT DST FFT
99.5% 98.9% 98.7% 98.6% 99.7%

Table 7.4 Accuracy comparison of the Watson test, no preprocessing, DCT,
DST, FFT

These results show that simple neural networks can be more accurate or
almost as accurate as this set of tests for uniformity.

Future Work 75

7.2 Future Work

In the future, it would be interesting to do more work with preprocessing
data to learn more about its potential for improving accuracy over shorter
training periods. The FFT preprocessing seemed to help the networks learn
the best. It could be interesting to open up one of the neural networks trained
on the FFT preprocessed data and see if the network is actually using the
Fourier coefficients or if it is performing some other computation.

In addition, it could be interesting to train a neural network using error
type as a metric for success to see how controlling the amount of a certain
kind of error affects overall accuracy. I’m not quite sure why the error was
distributed between type I and type II the way that it was for each network,
and I’m curious as to why if a network is trained to maximize accuracy, the
error type fluctuates depending on the type of distribution being sampled
from.

Bibliography

[1] S. Rao Jammalamadaka and A. SenGupta. Topics in circular statistics,
volume 5 of Series on Multivariate Analysis. World Scientific Publishing
Co., Inc., River Edge, NJ, 2001.

[2] G. S. Watson. Goodness-of-fit tests on a circle. II. Biometrika, 49:57–63,
1962. ISSN 0006-3444.

[3] B. Ajne. A simple test for uniformity of a circular distribution. Biometrika,
55:343–354, 1968. ISSN 0006-3444.

[4] https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html.

[5] https://en.wikipedia.org/wiki/Von_Mises_distribution#/media/File:
VonMises_distribution_PDF.png.

[6] R. J. Beran. Testing for uniformity on a compact homogeneous space. J.
Appl. Probability, 5:177–195, 1968. ISSN 0021-9002.

[7] R. J. Beran. Asymptotic theory of a class of tests for uniformity of
a circular distribution. Ann. Math. Statist., 40:1196–1206, 1969. ISSN
0003-4851.

[8] https://en.wikipedia.org/wiki/Perceptron.

[9] Michael Nielsen. Using neural networks to recognize handwritten
digits. http://neuralnetworksanddeeplearning.com/chap1.html.

[10] Zachary Dodds. Cs35 lecture notes on nns, nlp, and projects, March
2019.

[11] https://www.mathworks.com/products/matlab.html, .

[12] https://www.python.org/.

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://en.wikipedia.org/wiki/Von_Mises_distribution#/media/File:VonMises_distribution_PDF.png
https://en.wikipedia.org/wiki/Von_Mises_distribution#/media/File:VonMises_distribution_PDF.png
https://en.wikipedia.org/wiki/Perceptron
http://neuralnetworksanddeeplearning.com/chap1.html
https://www.mathworks.com/products/matlab.html
https://www.python.org/

78 Bibliography

[13] https://pandas.pydata.org/.

[14] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Math. Control Signals Systems, 2(4):303–314, 1989. ISSN 0932-4194.

[15] https://pytorch.org/.

[16] https://www.mathworks.com/help/signal/ref/dct.html?s_tid=doc_ta.

[17] Andrew Gibiansky. Machine learning: Neural net-
works. http://andrew.gibiansky.com/blog/machine-learning/
machine-learning-neural-networks/.

[18] Hans-Georg Zimmermann, Alexey Minin, and Victoria Kusherbaeva.
Comparison of the complex valued and real valued neural networks
trained with gradient descent and random search algorithms. ESANN,
2011.

[19] https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6.

[20] https://www.mathworks.com/help/pde/ug/dst.html.

[21] https://www.mathworks.com/help/matlab/ref/�.html?s_tid=doc_ta.

[22] https://www.mathworks.com/, .

[23] https://www.researchgate.net/figure/Probability-density-function-of-an-uniform-distribution_
fig32_321579283.

https://pandas.pydata.org/
https://pytorch.org/
https://www.mathworks.com/help/signal/ref/dct.html?s_tid=doc_ta
http://andrew.gibiansky.com/blog/machine-learning/machine-learning-neural-networks/
http://andrew.gibiansky.com/blog/machine-learning/machine-learning-neural-networks/
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.mathworks.com/help/pde/ug/dst.html
https://www.mathworks.com/help/matlab/ref/fft.html?s_tid=doc_ta
https://www.mathworks.com/
https://www.researchgate.net/figure/Probability-density-function-of-an-uniform-distribution_fig32_321579283
https://www.researchgate.net/figure/Probability-density-function-of-an-uniform-distribution_fig32_321579283

	Using Neural Networks to Classify Discrete Circular Probability Distributions
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	What is a Neural Network?
	Perceptrons
	Sigmoid Neurons
	A Simple Model for Decision Making
	Layers
	Gradient Descent and Learning

	Generating Data
	Training and Validation Data
	Uniform Distribution
	Linear Distribution
	von Mises Distribution
	Semicircular Distribution
	Duplicates

	Tests for Uniformity
	Beran's Test for Uniformity

	Creating the Network
	Initial Network Structure
	Mimicking Beran's Test
	Network Structure

	Results
	Running Statistical Tests on Data Instances Sample from Uniform and Nonuniform Distributions
	Training and Validating Neural Networks on Data Without Preprocessing
	Data Preprocessing: Discrete Cosine Transform
	Data Preprocessing: Discrete Sine Transform
	Data Preprocessing: Fast Fourier Transform
	Four Distribution Classifier

	Conclusion
	Summary of Results
	Future Work

	Bibliography

