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Teaching Calculus with Infinitesimals

Rebecca Vinsonhaler

Department of Curriculum & Instruction, University of Wisconsin Madison, USA
vinsonhaler@wisc.edu

Synopsis

This article argues that first semester calculus courses for non-mathematics ma-
jors should be taught using infinitesimals. This applies to both high school and
undergraduate calculus courses. The use of infinitesimals in calculus, though
more intuitive than the approach developed in the 19th century, has been contro-
versial for over two millennia. However, in the 20th century their use was shown
to be equa-consistent with the approach developed in the 19th century. Here
I first provide a brief history of infinitesimals, why they were controversial, and
how they were finally put on a firm footing. Next I illustrate the intuitive nature
of the use of infinitesimals. Thus I conclude that at least students not continuing
on to more advanced analysis courses would be better served by learning calculus
via infinitesimals.

Keywords: calculus reform; history of mathematics; non-standard analysis

1. Introduction

Infinitesimals not only could serve as an important intuitive aid to learn-
ing some key concepts in calculus, they also have a fascinating history. In-
finitesimals were used as early as the Ancient Greeks by mathematicians such
as Archimedes, were still being used by Leibniz in 1600 C.E. [14] and infor-
mally by physicists and mathematicians until at least the end of the 19th cen-
tury. However, because it would not be until the 20th century that infinites-
imals were shown to be realizable without contradiction, mathematicians
usually sought alternative methods of proof when presenting their results to
the “public” [10]. Thus, for example, Archimedes replaced his arguments
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using “indivisibles” (found, for example, in his The Method of Mechanical
Theorems1) with extensions of Eudoxus’s method of exhaustion. Although
Leibniz and Newton invented calculus by using infinitesimals, the latter were
not rigorously established until the 1960s, forcing the development of a for-
mal calculus along a different route. This formalized calculus, referred to
as modern calculus, or standard analysis, was made possible by the work of
such mathematicians as Cauchy and Weierstrass with the introduction of the
“epsilon-delta” definition of limit [5].

There are deep ironies in this history. For example, standard analysis
was certainly facilitated by the acceptance of a rigorous definition of real
numbers. And this in turn was facilitated by the invention of set theory by
Cantor. One twist here is that Cantor’s thesis advisor, Kronecker, rejected
the concept of an infinite set, something critical to both set theory and the
definition of reals that evolved. Another unexpected fact is that if historical
weight counted for anything, then the moniker “standard analysis” would
have to go to the infinitesimal approach, since it was used by some of the
most prominent mathematicians and physicists working in the field, from
Archimedes to those in the 18th century. Instead, the use of infinitesimals
in calculus is dubbed “non-standard analysis”. Once standard analysis was
developed, infinitesimals were exiled.

2. Standard Analysis vs. Non-Standard Analysis

Standard analysis uses the “epsilon-delta” definition of limit which in turn
is used to define such key concepts as convergence, continuity, derivative and
integral. Standard analysis is currently used as the rigorous foundation for
a majority of traditional calculus courses. “Non-standard” analysis, on the
other hand, uses infinitesimals and what are called “hyperreals”, and most
importantly, does not depend on a notion of “limit” to define the fundamental
concepts of elementary calculus. To speak loosely, the limit concept formal-
izes a concept of converging to small differences, whereas with the concept
of the infinitesimal, one is “already there”.

1This work was only rediscovered early in the 20th century in what has come to be
called Archimedes Palimpsest — a 10th century Byzantine copy had been overwritten
with Christian religious text by 13th century monks.
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Let us look at the notion of the continuity of a function. Intuitively
a function with domain and range that are subsets of the real numbers is
continuous at a real number r if: 1) the number r is in the domain of the
function; and 2) for real numbers s in the domain of the function that are
close to r, the value of the function at s is close to the value of the function at
r. Thus logically one must check a “for all” statement: “for all real numbers
s in the domain of the function close to r [statement]”. And if one uses
infinitesimals then this is exactly the logical complexity of the statement,
since “s is close to r” is translated formally into “the arithmetic difference
of s and r is an infinitesimal”; denoted by r ≈ s. However, if infinitesimals
are not available, one must search for a different translation of “s is close
to r”. The solution introduced by Weierstrass required a definition whose
logical complexity is “for all ε > 0 there exists a δ > 0 such that for all
s [statement]” (where the missing statement is “if the absolute value of the
difference of s and r is less than δ, then the absolute value of the difference of
the function values at s and r is less than ε”). This is the famous or infamous
(depending on your experience in calculus) “epsilon-delta argument”.

In some sense the techniques introduced by Weierstrass for standard anal-
ysis reflected the method of exhaustion introduced by Eudoxus more than
2400 years earlier. Once it was understood by the ancient Greeks that there
were geometric lengths whose ratios were not rational (such as the ratio of
the hypotenuse to either of the other sides in an isosceles right triangle), a
decision had to be made: tackle the question of the existence of numbers that
were not rational, or find a way around the issue. Eudoxus did the latter.
For he said that two lengths were equal if, using modern terminology, the
sets of rational lengths less than both were equal, and the sets of rational
lengths greater than both were equal. This comes very close to the definition
of the real numbers introduced by Dedekind in the 19th century. Eudoxus’s
method allowed the development of two and three dimensional versions used
to prove such things as the relationship of the area and circumference of a
circle or the area and volume of a sphere (all by Archimedes). Recall that
Archimedes convinced himself of the truth of these relationships by using
infinitesimals (and in the case of the sphere also using the Law of the Lever
− see below), but then resorted to a version of the method of exhaustion
probably because he recognized that an argument using infinitesimals would
not be considered a proof.
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We will see below in more detail how standard analysis avoids the ques-
tion of the possible existence of a useful extension of the reals to what are
now called the hyperreals by introducing an alternation of quantifiers that
dynamically bounds the behavior of a function in a way similar to how Eu-
clid, Archimedes, and others of that era statically captured certain lengths,
areas, and volumes by variations on Eudoxus’s method of exhaustion. The
invention of the reals, though strongly resisted by constructivists such as
Kronecker, facilitated the rigorous development of analysis and many other
fields. The invention of the reals also simplified the number of cases neces-
sary in some of the arguments by such luminaries as Euclid and Archimedes.
It is the thesis of this paper that the invention of a sound system that incor-
porates infinitesimals, though passively resisted by most mathematicians of
this and the previous century, could facilitate a more nuanced understanding
of calculus by a larger part of humanity.

3. Historical Perspective - the development of both approaches and
the reason infinitesimals are not popular

Today most mathematicians learn standard analysis first, few encounter
non-standard analysis, and an even smaller number actually learn it. This
is not surprising, since it took until the 1930s and 1960s respectively, for
the work of logicians Kurt Gödel (Compactness Theorem) and Abraham
Robinson (Non-standard analysis, North-Holland Publishing Co., Amster-
dam 1966) to put the use of infinitesimals on a firm logical foundation. With
Robinson’s formalization non-standard analysis was proven sound, but the
mathematical community did not readily warm to the concept. Although this
formalization was not quickly accepted, it did eventually lead to attempts
to teach calculus using non-standard analysis. Logicians such as Robinson
and Jerome Keisler wrote calculus textbooks using infinitesimals and hyper-
reals, which are the basis of non-standard analysis. These texts more closely
modeled the way Leibniz and others had considered the subject, and reduced
the formal logical complexity of central notions in calculus, such as that of
continuity, derivative, and integral (see below).

Although there is evidence (see Section 12 below) that students found
the approach more intuitively accessible, the pedagogical approach did not
take hold. A probable cause was that practicing mathematicians were unable
to embrace the approach (Keisler, personal communication, April 17, 2014).
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Standard analysis is currently used to teach almost all calculus courses at
both the high school and college level. In this paper I argue that infinitesi-
mal calculus should be taught in place of a standard first-semester calculus
course for non-mathematics majors. Not only is there evidence that infinites-
imals accord with the intuitions of students, but they also have a long and
interesting history. Highlighting aspects of the intellectual history of math-
ematics can furthermore strengthen the idea that mathematics is not static
and that it is not apolitical.

In what follows I will briefly explain the history behind infinitesimals,
explain what they are and why they are intuitive, and reflect on some at-
tempts of their integration into classrooms. The history of infinitesimals is
an interesting one, and can be used by teachers to motivate lessons as well
as to illustrate the usefulness of mathematics. Story telling can be a valu-
able tool when teaching mathematics [7]. Regardless of whether the stories
are true, they capture our attention, and add to any lesson. The story that
Newton’s study of gravity was prompted by an apple falling on his head is
fictitious. The story of Archimedes running naked from the baths in Sicily
after realizing how to decide if the king’s crown was made of pure gold may
also be fictitious [14]. However, these stories help illustrate how and why
mathematics was invented. They are entertaining and grab our attention.

Teaching calculus using infinitesimals offers us a great opportunity to in-
troduce relevant historical and cultural contexts in mathematics education.
Not only would students be more engaged in lessons, they could also develop
an appreciation for the invention of mathematics. Furthermore, a historical
approach serves as an opportunity to understand the important role mathe-
matics plays in our society. By learning the history of calculus, students may
recognize that mathematics is (at least partially) socially constructed, that
alternate forms of mathematics exist, and that mathematics can and should
be challenged. Students may also be excited by the notion that even some
professional mathematicians do not fully understand or are not comfortable
with the foundations of infinitesimal calculus, thus making it a bit of a thrill
to learn.

In the overview of the history of infinitesimals below, there are many
stories to be told, some about the mathematicians themselves, some about
the history of mathematics, and others about the role mathematics has played
in society.
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4. The Mathematicians Who Believed in Infinitesimals

As mentioned above, Archimedes used infinitesimals as early at 200 B.C.
[14]. First he set down axioms (for an area that is now called statics) to
derive his Law of the Lever. He then found a clever way to position a ful-
crum with “indivisible” slices of a right circular cylinder a certain distance
from the fulcrum in equilibrium with two corresponding slices of a right cir-
cular cone and sphere at a fixed distance on the other side of the fulcrum, to
prove the relation between the volume of a sphere and the (known) volumes
of the cylinder and right circular cone [10]. He considered this his great-
est achievement and most valuable contribution to mankind. Plutarch later
wrote, “although he made many excellent discoveries, he is said to have asked
his kinsmen and friends to place over the grave where he should be buried
a cylinder enclosing a sphere, with an inscription giving the proportion by
which the containing solid exceeds the contained” [14]. Thus, although his
gravesite is still unknown, sources such as Plutarch imply that on the grave
of Archimedes was an engraved picture of a sphere inscribed in a cylinder,
with the relationships of the volumes and surface areas next to the illustra-
tion. Archimedes used what is now known as the method of indivisibles to
derive this relationship. This process is considered one of the earliest steps
toward integral calculus. The term “method of indivisibles” was not formally
used until 1635 in Bonaventura Cavalieri’s text Geometria indivisibilibus, but
the process is the same as that which was used by Archimedes (page 387).
And as mentioned above, it is of interest that when Archimedes published
his work on deriving this relationship, he used the method of exhaustion to
solve the same problem, thus eliminating infinitesimals from the publication
[14].

In an interview on his book on infinitesimals Amir Alexander asks, “How
many parts can you divide a line into?” [11]. The idea is that it can be
cut in half, and then in half again and so on until the pieces can’t be cut
in half anymore. Of course, if you can’t cut a piece in half this would mean
that the length of that piece was zero, because if it had any length at all
then it could be cut in half again. This idea is similar to the notion of an
infinitesimal. It is easy to see that this idea would be confusing and therefore
problematic. In the 1600s it was the use of this concept that cast suspicion on
the logical soundness of mathematics in general. In the 1600s mathematics
was seen by many as logical and decisive and was meant to be a way to see
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the world. Since the styles of reasoning of mathematicians were important
to the church in the 1600s, the Jesuits were upset because they hoped to use
this same sound logic to prove the Protestants wrong about their religion
[11]. When infinitesimals came into play, the Jesuits began to question their
belief in mathematics. The Jesuits figured that if mathematicians couldn’t
be trusted, then their methods of reasoning couldn’t be trusted to help the
Jesuits overthrow the Protestants [11]. Thus the Jesuits verbally battled
mathematicians such as Galileo on the concept of infinitesimals. Luckily,
infinitesimals were not completely drowned out, however, this complicated
their use and laid the foundation for the negative reputation they still have
within the mathematics community [5].

Although infinitesimals were still controversial during the 1670s and 1680s,
Gottfried Wilhelm Leibniz used them in his development of infinitesimal cal-
culus (Ely, 2010). After Leibniz laid down some rules and heuristics for
working with infinitesimals his method of calculus was used into the 1700s,
by many well-known mathematicians such as Euler. The most vehement at-
tack on the infinitesimal came from Bishop Berkeley (of the Catholic church).
In 1734 he wrote a famous paper attacking Newton and the infinitesimal.
However, historians such as H. Bos ([2]; also see [1]) believed that the loose
definition of infinitesimals is what allowed mathematics in the 18th century to
advance so quickly. Thus the tremendous number of discoveries in mechan-
ics, probability theory, astronomy, and of course calculus during that time
period are likely in part a direct result of this flexible definition of infinites-
imals [5]. However, in the early 1800s contradictory results in mathematics
emerged and thus prompted mathematicians like Cauchy and Bolzano to
work on proving things without the use of infinitesimals. In the 1860s Weier-
strass ended the use of infinitesimals with his rigorously proven epsilon-delta
definition of limit (Keisler, personal communication, April 17, 2014). It was
at this time that mathematicians stopped using infinitesimals entirely. How-
ever, physicists and engineers continued to use them, and continued to find
them useful as well as mathematically sound.

It was not until the 20th century that mathematicians could explain in-
finitesimals rigorously and reliably. In short, mathematicians could not for-
malize infinitesimals not because infinitesimals were contradictory, but be-
cause the language of logic had not developed enough to do so. The first step
was what could be called the formalization of semantics − the world of ref-
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erents for mathematical entities − that started in the 1870s with the work of
two mathematicians, Cantor and Dedekind, when they initiated the study of
what is now set theory [6]. Most mathematicians now agree that (formally)
the objects of their various studies are sets and therefore governed in principle
by the axioms of set theory. For example, though mathematicians who study
number theory or geometry typically have very non-set theoretic intuitions
(in other words they visualize patterns of numbers or shapes of figures), in
principle they pay homage to set theory. Set theory allowed mathematicians
to uniformly define and group objects and describe relationships between two
sets of mathematical objects.

The “flip side” of semantics, or the world of referents, is symbol or the
world of language, syntax, and proof. The emergence of tools sufficient to
prove the relative consistency of infinitesimals required the development of
what is now called mathematical logic. Although Aristotle gave us the for-
mal study of syllogisms and Leibniz is credited with beginning the creation
of symbolic logic, it wasn’t until the mid-1800s that symbolic mathematical
logic really came into existence [6]. There are many different ways to for-
malize logic and there are choices to be made in terms of such things as the
quantifiers that are used (for example first order quantifiers versus higher
order quantifiers). For mathematics to date, the most useful tool in this
toolbox is known as first-order predicate logic, because of what it enables
one to prove.

The formal developments connecting these two sides of the coin of mathe-
matics finally set the stage for the formalization of infinitesimals. The missing
key to the stage was Kurt Gödel’s Completeness theorem and its corollary
the (logical) Compactness theorem that made the connection between the
two sides of the coin [10]. Gödel is well known for his Incompleteness The-
orem, but arguably his Completeness theorem is at least as profound, and
in a constructive rather than a limiting way (the Incompleteness theorem is
about the constraints to proof whereas the Completeness theorem is about
the affordances of proof). The fundamental technique in the proof of the
Completeness theorem (and this is more easily seen in subsequent simplifi-
cations using, for example, what is known as a Henkin construction), is to
convert the referents for syntactic objects (the language of a theory) into the
referents for semantic objects, and in a logically sound manner (T. Millar,
personal communication, March 20, 2014).
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Thus, to speak metaphorically, the consistency of infinitesimals is demon-
strated (through a relatively easy application of the Compactness theorem)
by starting with a logically sound way to syntactically describe infinitesimals
and, almost literally, converting that description (in first order logic) into a
semantic object (in set theory) in which those same infinitesimals “reside”.
Both Archimedes and the Jesuits of the 17th century might have appreciated
the humor in this development! But this development lay relatively dor-
mant until the 1960s when Robinson realized what could be done with the
stage that had been unlocked by Gödel’s key. It is important to note that
this was nearly 2300 years after Archimedes had initially used infinitesimals.
Finally, Robinson was able to prove infinitesimals were logically sound, and
once his work was accepted as error-free, he wrote a textbook on infinitesimal
calculus.

In 1966, Non-standard Analysis by Abraham Robinson was published.
Although non-standard analysis had now been formally established, it was
not easily accepted by the mathematical community. However, from this
original text a few mathematicians, and in particular logicians, began work
on teaching calculus using non-standard analysis. the mathematical logician
Jerome Keisler for instance both helped prove the power of the approach
theoretically and also wrote a very readable calculus textbook based on the
use of infinitesimals.

Keisler tells that his book, The Infinitesimal Approach to Calculus, stirred
up something of a hornet’s nest among mathematicians, with strong support-
ers and opponents (personal communication, April 17, 2014). This could be
expected at first, because as mentioned before, in making calculus rigorous
starting in the 1800s, the work of Weierstrass and others effectively elimi-
nated the need for the use of infinitesimals. This elimination was seen as a
very positive development by many prominent mathematicians, philosophers,
and logicians as far as into the 20th century (for example Bertrand Russell fa-
mously said, “Infinitesimals . . . must be regarded as unnecessary, erroneous,
and self-contradictory”). However, it is surprising that even though the in-
finitesimal approach is now universally accepted as mathematically sound, it
is rarely taught.
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5. Examples of Infinitesimal Use and Teaching Differences

In the following section I elaborate on infinitesimal calculus, and present
examples of the principles of calculus and the different methods to proving
them using a standard versus non-standard approach. First we note that
a positive infinitesimal is a quantity greater than zero and less than any
positive real number (with a similar definition for a negative infinitesimal).
Together with the standard real numbers, the infinitesimals make up what
is called the hyperreals. Just as the real numbers were a useful abstraction
of the rationals, especially in areas such as continuous functions, the same is
true of the hyperreal numbers as an extension of the reals. I will state here,
without proof, some of the useful properties of the hyperreal numbers:

(i). Every first order statement in the usual language of the real numbers is
true about the reals numbers if and only if it is true about the hyperreal
numbers.

(ii). There are hyperreal numbers, called positive infinitesimals, which are
larger than 0, but smaller than any positive real number.

(iii). The additive inverse of a positive infinitesimal is called a negative in-
finitesimal.

(iv). For any infinitesimal, its multiplicative inverse exists (by (i)), and in
absolute value, is larger than any real number ((i) and (ii)).

(v). For every finite hyperreal number there is exactly one real number such
that the arithmetic difference of the two is an infinitesimal.

(vi). Every function f on the real numbers “naturally” extends to a function
f ∗ on the hyperreal numbers.

We will also use the following generalizations of very intuitively accessible
notions of finite, very small, and very large:

a) the sum of two infinitesimal numbers is infinitesimal;

b) the inverse of an infinitesimal is an infinite hyperreal;

c) the product of an infinitesimal with a finite hyperreal is infinitesimal.

The direct construction of a useful model of the hyperreals using the lan-
guage of arithmetic (in other words with a binary predicate symbol for “less
than” and two binary function symbols for “addition” and “multiplication”)
is quite complicated, though it can be done in a way that generalizes Cantor’s
definition of real numbers (as equivalence classes of converging sequences of
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rationals). However, it is relatively easy to visualize such a model if we re-
strict the language to just “less than”. Therefore we will define such a model
and confirm that properties (i), (ii), (v) and (vi) hold in the model. Since we
are not allowing binary function symbols for additional and multiplication in
this language, the model will be “silent” on (iii) and (iv).

It is common practice in mathematics to define a new number system by
taking ordered pairs of a “simpler” system and defining new relations and
functions for the new system in terms of the relations and functions of the
simpler system. For example, rational numbers are usually defined as equiv-
alence classes of order pairs of integers (excluding 0 from the denominator),
and the complex numbers are usually defined as ordered pairs of reals. For-
mally, the universe of our model will be all ordered pairs of rationals. We
will call elements of our model “hybrid-rationals”. Before we give the formal
definition of the less than relation on our hybrid-rationals, we will describe
a direct way to construct them:

6. Construction of the hybrid-rationals

Start with the rationals:

Now replace every rational p by a copy of the rationals “tagged” by the
rational p:
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Formally the universe of the new model is the set {〈p, q〉 | p, q ∈ Q} and
we define the order on the universe as the lexicographic order:

〈p, q〉 <HQ 〈s, t〉 just if either 1) p <Q s or 2) p = s and q <Q t.

Here is an example of case 1): 〈0, 10〉 <HQ 〈1, 0〉:

And here is an example of case 2): 〈1, 0〉 <HQ 〈1, 10〉:

Now in a way similar to how we interpret the integers in the rationals
or the rationals in the reals, we can interpret the rationals in the hybrid-
rationals by interpreting the rational p as say 〈p, 0〉. Here are two examples
with p = 0 and p = 1:
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It is straightforward to prove that this model is a dense linear order
without endpoints. It also is countable. Therefore it is isomorphic to 〈Q,<Q〉.
And thus for every statement in the language, the statement is true in 〈Q,<Q〉
if and only if it is true in 〈HQ,<HQ〉. This is equivalent to (i) in the list
above of properties of hyperreals.

Let us say arbitrarily that any element in 〈HQ,<HQ〉 that is greater than
〈0, 0〉 is positive, and any element less than 〈0, 0〉 is negative. It follows that
there are positive hybrid-rationals that are less than any positive rational
— call those positive infinitesimals, and similarly for negative infinitesimals.
This corresponds to (ii) in the above list.

In general, say that two hybrid-rationals are infinitesimally close if they
have the same first coordinate and different second coordinates. Then it also
is easy to see that for any hybrid-rational, there is exactly one rational such
that the two are either the same or infinitesimally close. This corresponds
to (v) in the above list.

Finally, in this example without the arithmetic operations and simply
treating set theory as the meta-theory, it is easy to show that (vi) holds. For
example, for any function f (defined in the meta-theory) with domain and
range the rationals, define

f ∗ (〈p, q〉) = 〈f(p), f(q)〉.

7. Why might we want to do all this?

A primary advantage to the use of infinitesimals is that “nice” functions
(for example differentiable) are “linear” at the infinitesimal scale in the neigh-
borhood of any real number:
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The first example I offer is the Chain Rule. The Chain Rule states that
given two functions f and g where f is continuous on an interval [a, b], f ′(x)
exists at some point x ∈ [a, b], g is defined on an interval I which contains
the range of f , and g is differentiable at the point f(x), if h(t) = g(f(t))
where a 6 t 6 b, then h is differentiable at x and h′(x) = g′(f(x)) · f ′(x).
[15, page 105].

Consider the following oversimplified example. Assume that the value of
a particular home increases at a linear rate of 10% of its value per year. Next
assume that the property tax (PT ) on the homes in the district of this home
is a base amount (BA) plus an amount of 5% of the value of the home. Given
these assumptions, what is the annual rate of change of the property tax paid
on this home? Let t be the time variable for number of years. Then let V (t)
be the values of the home, and PT (V (t)) the property tax as functions of
time.

We then have:

V (t+ 1) = V (t) + 0.1 · V (t)

PT (V (t)) = BT + 0.05 · V (t)

Therefore, with substitution and simplifying the expression we have:

PT (t+ 1) = BT + 0.05 · V (t+ 1) = BT + 0.05 · (V (t) + 0.1 · V (t))

= (BT + 0.05 · V (t)) + 0.05(0.1 · V (t))

= PT (t) + (0.05 · 0.1) · V (t)

Thus, as is intuitively clear to many people without having to go through
the formalism, the rate of change of the property tax on that home is the
product of the rate of change of the property tax (as a function of home
value) with the rate of change of the value of the home.

The reason this kind of example is relatively straightforward (no pun
intended) is that the relations are linear. But what if the functions are not
linear? In some sense, both a traditional proof and an infinitesimal proof
of the Chain Rule in the general case exploit the fact that differentiable
functions have reliable linear approximations. But in the traditional proof
the limit arguments necessary to make the argument rigorous often obscure
for the student the underlying linear intuition, whereas an infinitesimal proof
is more likely to maintain the linear intuition for the student.
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8. What might Newton have said?

His Method of Fluxions was written in 1671, but was not pub-
lished until 1736. Newton considered a curve as generated by the
continuous motion of a point. A changing quantity is called a
fluent (a flowing quantity), and its rate of change is called the
fluxion of the fluent. If a fluent, such as the ordinate of the point
generating a curve, be represented by y, then the fluxion of this
fluent is represented by ŷ. Newton also introduces another con-
cept, which he calls the moment of a fluent; it is the infinitely
small amount by which a fluent such as x increases in an in-
finitely small interval of time o. Thus the moment of the fluent
x is given by the product ox̂. Newton remarks that we may, in
any problem, neglect all terms that are multiplied by the second
or higher power of o and thus obtain an equation between the
coordinates x and y of the generating point of a curve and their
fluxions x̂ and ŷ. As an example, he considers the cubic curve
x3 − ax2 + axy − y3 = 0. [6, page 400]

Recall that Newton’s approach to orbital analytics was geometric through
and through, with the addition of fluents, fluxions, and infinitesimals. There-
fore I will take the liberty of rephrasing part of the quote from Eves:

Newton also introduces another concept, which he calls the mo-
ment of a fluent; it is the infinitesimal amount by which a fluent
such as x increases in an infinitesimal time o.

Or in symbols, changing x to f and t to x: for δ any infinitesimal
and f as in the statement of the Chain Rule:

f(x+ δ) = f(x) + f ′(x) · δ + something to ignore.

Now of course this begs the question of how to formalize the ‘something
to ignore’, and limits are one way to do that. But if infinitesimals are made
rigorous, then one can have what Keisler [8] calls the Increment Theorem:

The Increment Theorem: If x is real, y = f(x), f ′(x) exists, and 4x is
a nonzero infinitesimal, then 4y = f ′(x)4x + ε4x for some infinitesimal ε,
(i.e. 4y ≈ dy compared to 4x).
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Proof: Since f is differentiable at x, it follows by definition that there
is a real number r (and f ′(x) is then defined to be that real number, i.e.

f ′(x) = r) such that for any infinitesimal δ, r and f(x+δ)−f(x)
δ

differ by an
infinitesimal. Calling that infinitesimal ε gives us

f(x+ δ) = f(x) + f ′(x) · δ + δ · ε
as desired.

This is what we will use to prove the Chain Rule in the case of using
infinitesimals. However, we first consider the standard approach. Note that
it comes at the problem in a somewhat similar manner.

9. Proving the Chain Rule

I reproduce Rudin’s proof [15] of the Chain Rule so that the reader can
compare and contrast an excellent standard proof with an infinitesimal proof.
I use Rudin’s proof because his books are known for their clarity and concise-
ness, and because it uses the notion of ‘tends to zero’. First let us introduce
the definition in that book of the derivative and an infinitesimal definition:

Definition from Rudin: Let f be defined (and real-valued) on [a, b]. For

any x ∈ [a, b] form the quotient φ(t) = f(t)−f(x)
t−x (for a < t < b, t 6= x) and

define f ′(x) = limt→x φ(t) provided the limit exists.

Infinitesimal definition: Let f be defined (and real-valued) on [a, b]. For
any x ∈ [a, b] if there is a real number r such that for all infinitesimals δ the

difference of r and f∗(x+δ)−f(x)
δ

is 0 or an infinitesimal, then define f ′(x) = r.

Note that both definitions involve ratios of ‘rise over run’ for points close
to x. However the definition in Rudin defines an auxiliary function φ(t) (that
is then used, in essence, to later introduce error terms that ‘tend to zero’) and
the limit notion to define the derivative of f at x, whereas the infinitesimal
definition ‘goes directly there’ and simply requires that there is a unique real
infinitesimally close to the value of the ratio for any approximation (hyper-
real) point infinitesimally close to x.

Standard Proof of the Chain Rule [15, page 105] Let y = f(x). By the
definition of the derivative, we have

I. f(t)− f(x) = (t− x) · [f ′(t) + u(t)]

II. g(s)− g(y) = (s− y) · [g′(s) + v(s)]
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where t ∈ [a, b], s ∈ I, u(t) → 0 as t → x and v(s) → 0 as s → y. Let
s = f(t). Using first II. and then I., we obtain

h(t)− h(s) = g(f(t))− g(f(x)) = [f(t)− f(x)] · [g′(y) + v(s)]

= (t− x) · [f ′(x) + u(t)] · [g′(y) + v(s)]

or if t 6= x

III.
h(t)− h(x)

(t− x)
= [f ′(x) + u(t)] · [g′(y) + v(s)]

Letting t → x, we see that y → s, by the continuity of f , so that the right
side of III. tends to g′(f(t)) · f ′(t), which gives the desired result.

To prove the Chain Rule this way one must use the limit definition of
the derivative. The limit definition is somewhat counterintuitive because it
requires students to visualize the denominator, h, going towards zero, and it
also uses the ‘error estimate’ functions u(t) and v(s).

10. Proof of the Chain Rule with Infinitesimals

Now let us prove the Chain Rule using infinitesimals. We must show that
there is a real number r such that for any infinitesimal δ, r and the hyperreal
g(f(x+ δ))− g(f(x))

δ
differ by 0 or an infinitesimal, and that real number r

will be equal to (by definition)
f(x+ δ)− f(x)

δ
.

Start by fixing an arbitrary infinitesimal δ. Then by the Increment The-
orem there is an infinitesimal ε such that f(x + δ) = f(x) + f ′(x) · δ + d · ε.
Therefore g(f(x + δ)) = g(f(x) + f ′(x) · δ + d · ε). Since f ′(x) is a real
number, the expression in the brackets is zero or an infinitesimal. (Since
an infinitesimal times a finite number results in 0 [if the finite number is
0] or an infinitesimal; the sum of an infinitesimal plus either 0 or another
infinitesimal is an infinitesimal). Therefore by the Increment Theorem ap-
plied to g (since g′(f(x)) exists), there exists an infinitesimal λ such that
g(f(x+δ)) = g(f(x))+g(f ′((x) ·δ+dε)+λ[f ′(x) ·δ+δε]. Using substitution
we have

(g(f(x+ δ))− g(f(x))

δ

=
(g(f(x)) + g′(f(x)) · [f ′(x) · δ + δε] + λ[f ′(x) · δ + δε]− g(f(x))

δ
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= g′(f(x)) · [f ′(x) + ε] + λ[f ′(x) + ε]

= g′(f(x)) · f ′(x) + [g′(f(x)) · ε+ λ · f ′(x) + λε].

And once again the expression in the brackets is an infinitesimal, and there-
fore g(f(x+δ))−g(f(x))

δ
is infinitesimally close to g′(f(x)) · f ′(x), and since δ was

an arbitrary infinitesimal, the proof is complete.

Notice that there is no additional layer of abstraction here having to
do with error functions or ‘tends to zero’ or ‘t → x’. With infinitesimals
we already are there, and when there is a fixed real number for any such
infinitesimal, then we have a proof.

Of course if one is not familiar with infinitesimals, then the layers of
abstraction in the two proofs may appear about the same. However, con-
ceptually and pedagogically the rules of understanding the relevant interac-
tions (addition, multiplication, etc) of infinitesimals with reals is really quite
straightforward. The key idea in ultimately disregarding the infinitesimal is
that we are only interested in the behavior of functions on real numbers, but
we use infinitesimals to discover properties of functions when restricted to
real numbers.

Clearly the two methods give the same result. The second method re-
moves the need to define new (error) functions, and is defined using a formula
and concept students are very comfortable with. The idea that a number is
so close to another number that they are virtually the same is similar to the
idea of looking under a microscope and zooming in extremely close to one
point on a curve. This concept is intuitive to students and helps simplify
definitions and concepts such as slope [5].

One final point of difference between the two proofs. Note that the state-
ment of the theorem in [15] includes an assumption of continuity of f on
[a, b], and that continuity is cited in the proof when Rudin writes: “we see
that y → s, by the continuity of f”. This additional assumption is odd since
it is not needed, and in fact on the page prior to the Chain Rule we find the
following theorem.

Theorem. Let f be defined on [a, b]. If f is differentiable at a point x ∈ [a, b],
then f is continuous at x. (page 104)

Before writing the proof, note some of its implications. First, it implies
that the assumption of continuity in the Chain Rule is superfluous. Recall
that the assumption of continuity is not made in the Increment Theorem nor



Rebecca Vinsonhaler 267

is it used in the infinitesimal proof above. So why did Rudin include that
assumption? It could have simply been an oversight, but is it perhaps because
of the function s(t) = f(t) that is introduced in the proof and then used in
the statement: “we see that y → s, by the continuity of f”? (Observe that
the statement of the theorem and the proof treat “x” as a fixed real, which
is the reason for introducing s(t) = f(t), since to make the limit argument
the proof requires a function whose limit is 0 as t → x). Finally, note that
no such functions are needed in the infinitesimal case − it is simply a matter
of verifying that g′(f(x)) · ε + λ · f ′(x) + λε is an infinitesimal under the
assumptions of the theorem (excluding continuity), and assuming ε and λ
are infinitesimals.

Now, let us look at Rudin’s proof of the above theorem, taken verbatim
from [15, page 105].

Proof. As t→ x, we have, by Theorem 4.42,

f(t)− f(x) =
f(t)− f(x)

t− x
g(t− x)→ f ′(x)g(0) = 0

Next, consider the infinitesimal proof:

Proof. Fix any infinitesimal δ. It is sufficient to show that f(x + δ) −
f(x) is an infinitesimal. By the assumption of differentiability at x, we

know that
f(x+ δ)− f(x)

δ
− f ′(x) is an infinitesimal, denote it ε. Therefore

f(x+ δ)− f(x) = δ(x− t) + δε and since the term on the right hand side is
an infinitesimal so is f(x+ δ)− f(x).

2Rudin’s Theorem 4.4 is the following assertion:

Suppose E ⊂ X, a metric space, p is a limit point of E, f and g are complex
functions on E, and

lim
x7→p

f(x) = A and lim
x 7→p

g(x) = B.

Then

1. lim
x 7→p

(f + g)(x) = A + B;

2. lim
x 7→p

(fg)(x) = AB;

3. lim
x 7→p

(f/g)(x) = A/B if B 6= 0.
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Again, for many readers the limit notation (which informally masks the
formally necessary epsilon-delta details) obscures this argument in a way that
the infinitesimal argument does not.

11. Defining Continuity

Next I look at another major component of calculus, which is the defini-
tion of continuity. Again, infinitesimal calculus uses a much nicer definition
than standard calculus.

In a standard calculus class students learn the definition of continuity
of a function f(x) at the point x = c through the first application of the
definition of the limit definition. That is, “f(x) is continuous at the point
x = c” is defined to mean that “f(c) exists and for all ε > 0 there exists
a d > 0 such that for all x, if |x − c| < d, then |f(x) − f(c)| < ε”. This
definition involves multiple quantifiers and conditions.

A logically simpler definition would be one using infinitesimals. Define
a ∼inf b to mean that |a − b| is zero or a positive infinitesimal. With the
properties of the hyperreals, this is provably an equivalence relationship.
Then the definition of f(x) being continuous at x = c can be stated as
follows:

f(c) exists and for all x (if x ∼inf c then f(x) ∼inf f(c)).

And that certainly better corresponds to the standard verbal way of describ-
ing continuity: “If x is close to c then f(x) is close to f(c)”.

To emphasize the multiple quantifiers in the standard definition and the
more intuitive approach of the non-standard definition the pictures below
illustrate the standard and non-standard definitions respectively.

The standard definition of continuity. The infinitesimal definition of continuity.



Rebecca Vinsonhaler 269

With the non-standard approach, one must zoom-in, as a microscope
would do, in order to see that x0 + d is infinitesimally close to x0. This is in-
tuitive, even for students who have already taken courses in standard analysis
[18]. Even more surprising is that students who studied infinitesimal calculus
actually better understood standard analysis. Tall [18] writes, “comparing
students following Keisler’s approach with a control group, Sullivan demon-
strated that those using infinitesimal techniques subsequently had a better
appreciation of ε-δ techniques as well” (page 3). One reason is perhaps that
the concept of two numbers being infinitesimally close is not completely re-
moved from standard analysis. Once students develop the notion of being
able to continuously zoom in on a specific point, thus getting infinitesimally
close, they are more equipped to see the same process taking place within
an epsilon-delta argument. The next two illustrations show how one would
zoom in on a graph until seeing it as a continuous straight line.

The function f(x). Infinitesimally close to the point (c, f(c)).

12. The Benefits of Infinitesimals

These are only two simple examples of how infinitesimals are used, but
they give a clearer picture as to why infinitesimals may be more intuitive
to students. In 2010 Robert Ely conducted a survey on students intuitions
about important concepts in calculus. His original study was a question-
naire he gave to 233 university calculus students to gauge their knowledge on
limits, functions, continuity and the real number line. Ely did not conduct
the survey expecting to find student conceptions about nonstandard analysis,
thus when looking at the data he was surprised to find student conceptions of
nonstandard analysis [5, page 126]. Not only did he realize students believed
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in infinitesimals, but through the questionnaire as well as student interviews,
he also found that students were consistent within their responses to ques-
tions about things being “infinitely small” or “infinitely close” (page 127).
Eighty-three percent of students surveyed responded true to the statement
“it is possible to choose 2 different points on the real number line that are
infinitely close to one another” (page 127). In standard analysis two num-
bers are either the same number or a finite distance apart. Since all of the
students surveyed have only taken standard analysis, it is interesting that
they still believe two numbers can be infinitely close.

In one interview, one student Sarah, explains her thinking with the no-
tion of zooming in and cutting something into pieces, similar to the concept
mentioned earlier. Sarah gives the example of the number 3.999 . . . repeat-
ing forever and 4 being infinitely close, but she also claims there is a number
in between these two quantities. She claims that there are infinitely many
digits followed by even more digits, which is the same concept used to think
about the hyperreals and infinitesimals. What is even more telling is that
Sarah states that 3.999 . . . repeating forever is not actually a “Real” number
[5, page 128].

Ely’s interviews also reveal that students are consistent with their beliefs.
Of critical importance is the fact that Sarah, a sophomore in college, has
taken two semesters of calculus; nonetheless, she explicitly states that she
thinks her ideas are wrong [5]. Even with two semesters of calculus her
natural intuitions have been unaltered, and her “misconceptions” have been
unchanged by her formal mathematics training. It is safe to assume that she
is learning mathematics through memorizing and following the instruction
of her professors. What if instead she followed her own intuitions; might she
have a better grasp on calculus?

When Ely compared student beliefs to the systems Leibniz and Robinson
worked in, he found that they were very similar [5, page 139]. He concludes by
asking, “Why do Sarah’s conceptions reflect those of mathematicians whose
ideas she has not seen, and which are not part of the standard curriculum?”
(page 142).

Thus there is reason to think that non-standard analysis is a better
method for teaching first-year calculus. Although I argue here for such a
course, few universities offer such a class (Millar, personal communication,
March 20, 2014).
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13. Institutional Difficulties with Teaching Infinitesimals

There are various reasons as to why colleges continue to teach standard
calculus. First, universities need someone to initiate teaching a new calculus
course. One university that had someone tackle this project was the Univer-
sity of Wisconsin Madison. Jerome Keisler started teaching a one-semester
honors infinitesimal calculus course at University of Wisconsin Madison in
1969. He used his own mimeographed notes for the first year, and then taught
using a two-semester preliminary version of what would eventually become
his textbook (Keisler, personal communication, April 17, 2014). The first
full 3-semester edition of his text was printed in 1976. The book was used
at Wisconsin for approximately 20 years, and was even used for some large
calculus sections (approximately 250 students) (Keisler, personal communi-
cation, April 17, 2014). During this time Keisler was able to recruit about
9 other members of the math department to teach the course. According to
him, one reason he had trouble finding other teachers was that it is much
easier for a teacher to use the approach they are familiar with than to do
extra work to learn a new approach. In particular he noted that at the col-
lege level calculus is considered a ‘service course’ and thus a professor would
rather spend her time working on her own research than preparing to teach
calculus.

Although Keisler’s comment is about college professors, learning a new
method of instruction would be an issue for high school teachers as well.
It is safe to assume that instructors learn calculus from the standard ap-
proach, and once they have prepared materials and taught the course using
one method, it is unlikely they will want to do the work to change.

Keisler (personal communication, April 17, 2014) believes that another
reason the course did not catch on is that it requires learning something new.
Most graduate math students do not take a logic course and therefore do not
have a good understanding of infinitesimals. Keisler, Terry Millar, and Joel
Robbin who all taught the course at Madison believe that many professors
were uncomfortable with the material and therefore not confident in their
ability to teach it (Keisler, Millar, and Robbin, personal communication).
Again, high school and college calculus teachers would need time to learn
the material and understand it in order to teach an effective course.
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Finally, Keisler (personal communication, April 17, 2014) noted that
math departments think it is dangerous to tamper with their calculus course.
Calculus is a required course for many college graduates. Most mathemat-
ics departments currently have full control of these calculus classes, but if
they began teaching calculus with the infinitesimal approach, how would the
other departments react? What if other departments were then not satis-
fied and decided to teach calculus as they desired to their own students?
Losing control of calculus could be detrimental to mathematics departments
themselves. It could even lead to a large decrease in the number of positions
within mathematics departments.

At Madison the infinitesimal calculus course lasted 20 years, but it was
mainly taught as an experimental or honors course (Keisler, personal com-
munication, April 17, 2014). The course was taught by volunteer teachers
who, Keisler (personal communication, April 17, 2014) noted, “sometimes
faced hostility from their colleagues”. Keisler saw his colleagues’ main incen-
tive to volunteer to be learning the infinitesimal approach to calculus. Since
the number of volunteers eventually ran out, the course was not sustainable.

Thus, although calculus can be taught using infinitesimals, it is perhaps
understandable why so few college math departments implement this type of
course. However, it is being taught elsewhere, especially in contexts where
cost is a factor. Keisler’s text is free online and Dover (2012) sells a low-
cost version of the text, so for homeschoolers, small and short courses, or
where cost is a major factor the text is still being used (Keisler, personal
communication, April 17, 2014).

14. More Thoughts on Teaching with Infinitesimals

What is interesting about the implementation of the course is that the
reaction of the students was very favorable. Millar, Keisler, and Robbin, as
mentioned above, are all former teachers of the course. They agree that one
of the major advantages of the course is that one can often use “microscopes
and telescopes” to illustrate definitions, concepts, and proofs. These visuals
make it much easier for students to grasp the concepts. Scientists and engi-
neers appreciate this as a method for discovering and understanding concepts
(Millar, personal communication, March 20, 2014). As mentioned earlier, in-
finitesimals also eliminate the need for students to learn about limits before
continuity.
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One argument against teaching infinitesimal calculus is that more ad-
vanced analysis courses require knowledge of standard epsilon-delta proofs
(J. Robbin, personal communication, March 27, 2014). Although this means
students taking infinitesimal calculus and pursuing math degrees will have
to learn the concepts later, it is important to note that infinitesimal calculus
does not alter the major calculus concepts that students are learning.

Moreover, most students taking calculus will not go on to pursue a degree
in mathematics. According to a recent study at Duke University, only 2%
of their graduates each year major in mathematics [17]. However, 80% of
Duke’s first-year undergraduates take calculus. Also of importance is the
fact that many mathematics majors come in with calculus credit, thus they
are not included in the 80%. Therefore it is safe to assume over 80% of
Duke’s graduating students will have taken calculus, but the majority of
those students will never take a more advanced analysis course. Based on this
information, if infinitesimal calculus is more intuitive for students, then the
majority of Duke’s college graduates would have benefited from an alternative
calculus course.

Stanley Ocken [12] at C.U.N.Y College reported that in the fall of 2000,
1, 156, 000 high school graduates began their freshman year at a four-year
college in the United States. In the fall of 2000, 463, 000 students in four-year
U.S. institutions enrolled in first-semester calculus. This data shows 40% of
college freshman took calculus. Ocken reports that many of those students
were retaking calculus, as they had failed their first attempt at the course.
This problem is not a new phenomenon. In 1988, Science Magazine reported
that at some universities up to 50% of first-semester calculus students either
drop out or fail [3]. At this point in time the NSF had allotted $1 million to
calculus reform, and many universities began experiments in order to receive
grant money. However, even now in the 21st century this issue has not been
resolved.

Jessica Ellis and her colleagues at San Diego State are also tackling the
problem of first-year calculus courses. Although they are not advocating for
an infinitesimal approach, they are interested in calculus reform. In 2010 they
conducted a survey of over 5,300 students who were intended STEM majors,
finding that 12.5% of those students switched majors and 31.4% of students
who switched cited their negative experience in Calculus I as a factor in their
decision [4]. If calculus is such a barrier to STEM fields it is important that
the mathematical community do something to alleviate it.
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15. Conclusion and Call to Arms

In conclusion, an infinitesimal approach to teaching calculus may not
be initially easy, but it could have a large impact on how much students
learn and engage in the course. A course that uses infinitesimals provides
many opportunities to include the history of mathematics and to help change
student attitudes that mathematics is static. There is also evidence that the
course may be more intuitive for students, and thus easier. When considering
that many high school students are pushed to take calculus in order to get
into colleges, that many colleges require calculus even for non-STEM majors,
and that calculus as it is currently taught on college campuses is often a
serious roadblock, why would we not try to take a more intuitive approach
in teaching it?
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