
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2020

Use of Kalman Filtering in State and Parameter Estimation of Use of Kalman Filtering in State and Parameter Estimation of

Diabetes Models Diabetes Models

Cassidy Le

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

 Part of the Applied Mathematics Commons, Diseases Commons, Mathematics Commons, and the

Physiology Commons

Recommended Citation Recommended Citation
Le, Cassidy, "Use of Kalman Filtering in State and Parameter Estimation of Diabetes Models" (2020). HMC
Senior Theses. 232.
https://scholarship.claremont.edu/hmc_theses/232

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/813?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/232?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Use of Kalman Filtering in State and Parameter
Estimation of Diabetes Models

Cassidy Lê

Lisette de Pillis, Advisor

Blerta Shtylla, Reader

Department of Mathematics

May, 2020

Copyright © 2020 Cassidy Lê.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of the author. To
disseminate otherwise or to republish requires written permission from the author.

Abstract

Diabetes continues to affect many lives every year, putting those affected
by it at higher risk of serious health issues. Despite many efforts, there
currently is no cure for diabetes. Nevertheless, researchers continue to study
diabetes in hopes of understanding the disease and how it affects people,
creating mathematical models to simulate the onset and progression of
diabetes. Recent research in [4] has suggested that these models can be
furthered through the use of Data Assimilation, a regression method that
synchronizes a model with a particular set of data by estimating the system’s
states and parameters. In my thesis, I explore how Data Assimilation,
specifically different types of Kalman filters, can be applied to various
models, including a diabetes model.

Contents

Abstract iii

Acknowledgments xvii

1 Background of Diabetes 1
1.1 Type 1 Diabetes . 2
1.2 Type 2 Diabetes . 3
1.3 Diabetes Models . 3

2 Data Assimilation in Bioinformatics 7

3 Kalman Filter 11
3.1 Discretization of Continuous Systems 13
3.2 Kalman Filter Algorithm . 18
3.3 Types of Kalman Filters . 22

4 Extended Kalman Filter 25
4.1 Extended Kalman Filter Algorithm 25

5 EKF State Estimation 33
5.1 Linear System . 35
5.2 Nonlinear System . 36
5.3 Type 2 Diabetes Physiologcial Model 38

6 Unscented Kalman Filter 45
6.1 Unscented Kalman Filter Algorithm 47

7 UKF State Estimation 51
7.1 Nonlinear System: Van der Pol Equation 52
7.2 Linear System: Kinematic Equation 55

vi Contents

7.3 Type 2 Diabetes Physiological Model 61

8 Methods for State and Parameter Estimation 67
8.1 Joint Estimation . 67
8.2 Dual Estimation . 68

9 Joint EKF State and Parameter Estimation 71
9.1 Linear System . 73
9.2 Type 2 Diabetes Physiological Model 74

10 Joint UKF State and Parameter Estimation 85
10.1 Type 2 Diabetes Physiological Model 86

11 Discussion 97
11.1 Conclusion . 97
11.2 Future Work . 99

A Terminology 101

B Constants for T2D Model 103

Bibliography 105

List of Figures

1.1 Visualization of dynamics between insulin and glucose taken
from [14]. Left: Diabetes results in a lack of insulin to connect
with the cell so it blocks the glucose channel, preventing
glucose to enter the cell and be processed. Right: Healthy cell
with sufficient insulin that connects with the cell and opens
the glucose channel, allowing glucose to enter the cell and be
processed. 2

3.1 Flow chart of Kalman filter algorithm. Begins with the input
of measured parameters and a set of DEs, which gets passed
through the prediction step along with process noise. Then,
it goes through the correction step as well as supplementary
input of measurement noise and additional data, which pro-
duces an estimated output. This continues to loop through
the correction step until the algorithm goes through all the
time steps, where it outputs data states. 12

3.2 Graphical visualization of differentiation taken from [1]. Here,
we see that the derivative of a function is the slope of the
secant line between the points on the function at x0 and x + h.
The smaller that h is, the more accurate this approximation
becomes. 15

5.1 Results of EKF implementation of System 5.1. The true
solutions for states x(k) and z(k) are depicted by the red
curves, and the EKF estimates by the blue curves. In this
example, EKF produces a reasonable approximation for the
true solution (errors and simulated data not shown). Code to
reproduce figure available at https://github.com/CassidyLe98/
Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex7/ . 36

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex7/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex7/

viii List of Figures

5.2 Results of EKF implementation of System 5.2. The true
solutions for states x(k) and z(k) are depicted by the red curves,
and the EKF estimates by the blue curves. In this example,
EKF does not produce as accurate approximations for the true
solution as System 5.1 (errors and simulated data not shown).
This is likely because System 5.2 is highly nonlinear. Code to
reproduce figure available at https://github.com/CassidyLe98/
Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex5/ . 37

5.3 Results of EKF implementation for T2D model proposed in
[6]. The true solution for the glucose state is depicted by
the solid red curve, the measured data (with noise) is de-
picted by the dotted magenta curve, and the EKF estimates
by the dashed blue curve. In this example, EKF produces a
reasonable approximation for the true solution. The results
for this nonlinear system seem to be better than the other
nonlinear system (System 5.1). This could be due to the use
of MATLAB’s built-in extendedKalmanFilter function
rather than manually calculating each step. Code to repro-
duce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Extended_KFs/Albers/ 42

5.4 Measurement residuals of Albers’ model EKF estimates. Note:
measurement residual is defined in Equation 5.3. The resid-
uals suggest that EKF is performing well on this system
because they have a relatively small magnitude, zero mean,
and no atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Extended_KFs/Albers/ 43

6.1 Visualization of UT from [22]. First image (left) is the actual
distribution of the data as it is passed through a nonlinear
system. Second (middle) image is the distribution of the
data after it is passed through first-order linearization of a
nonlinear transformation, and the third (right) image is the
distribution of the data after it goes through UT of a nonlinear
system. 46

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex5/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex5/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/

List of Figures ix

7.1 Results of UKF implementation of Van der Pol equation. The
true solution for the states x1 (velocity) and x2 (acceleration)
are depicted by the blue curves, the measured data (with
noise) for velocity by the yellow curve, and the EKF estimates
for x1 and x2 by the orange curve. In this example, UKF
produces a reasonable approximation for the true solution,
accurately estimating and smoothing the data. Code to repro-
duce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/ 55

7.2 Measurement residuals (or innovation) of Van der Pol equa-
tion UKF estimates. Note: measurement residual is defined
in Equation 5.3. The residuals suggest that UKF performs
well on this system because they have small magnitudes,
zero mean, and no atuocorrelation (except at zero lag). Code
to reproduce figure available at https://github.com/CassidyLe98/
Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/ 56

7.3 Results of UKF implementation of kinematics equation. The
true solution for the velocity state is depicted by the solid
blue curve, the measured data (with noise) is depicted by
the solid yellow curve, and the UKF estimates by the solid
orange curve. In this example, UKF produces a good approxi-
mation for the true solution of velocity, accurately estimating
and smoothing the data. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Kinematic/ 59

7.4 Measurement residuals (or innovation) of kinematic equation
UKF estimates. Note: measurement residual is defined in
Equation 5.3. The residuals suggest that UKF is performing
well on this system because they have small magnitudes, zero
mean, and no atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Kinematic/ 60

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/

x List of Figures

7.5 Results of UKF implementation of Albers et al’s equation.
The true solution for the glucose state is depicted by the solid
red curve, the measured data (with noise) is depicted by the
dotted magenta curve, and the EKF estimates by the solid
blue curve. In this example, UKF produces a reasonable
approximation for the true solution, accurately estimating
and smoothing the data. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Albers/ 65

7.6 Measurement residuals (or innovation) of Albers’ model UKF
estimates. Note: measurement residual is defined inEquation
5.3. The residuals suggest that UKF is performing well on this
system because they have a relatively small magnitude, zero
mean, and no atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Albers/ 66

9.1 Results of EKF implementation of System 9.1. The true solu-
tions for states x(k) and z(k) as well as the parameter x2 � a
are depicted by the red curves/line, and the EKF produces
a reasonable approximation for the true state solution but
not the parameter estimation (errors and simulated data not
shown). This may suggest that joint estimation does not per-
form well in predicting states and parameters. Code to repro-
duce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Bolviken_
Ex7/ . 74

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Bolviken_Ex7/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Bolviken_Ex7/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Bolviken_Ex7/

List of Figures xi

9.2 Results of joint EKF estimation for parameter E. Left: joint
EKF estimation for E. The true solution for parameter E
is depicted by the solid red line, the measured data (with
noise) by the dotted magenta curve, and the joint EKF es-
timates by the dashed blue curve. In this example, joint
EKF produces an inaccurate approximation for the true so-
lution, diverging from the true solution at about 500 min-
utes. Right: measurement residuals (or innovation) of joint
EKF estimations for E. Note: measurement residual is de-
fined in Equation 5.3. The measurement residuals suggest
that joint EKF is not performing well because they generally
have large magnitude and non-zero mean, though they do
not exhibit atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Extended_KFs/Joint_Estimation/Albers/ 78

9.3 Results of joint EKF estimation for parameter Vi . Left: joint
EKF estimation for Vi . The true solution for parameter Vi is
depicted by the solid red line, the measured data (with noise)
by the dotted magenta curve, and the joint EKF estimates by
the dashed blue curve. In this example, joint EKF does not
seem to sufficiently approximate for the true solution since
the estimates do not converge. Right: measurement residuals
(or innovation) of joint EKF estimations for Vi . Note: measure-
ment residual is defined in Equation 5.3. The measurement
residuals suggest that joint EKF is not performingwell because
they generally have large magnitude, though they do seem
to have zero-mean and no atuocorrelation. Code to repro-
duce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/ 80

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

xii List of Figures

9.4 Results of joint EKF estimation for parameter ti . Left: joint
EKF estimation for ti . The true solution for parameter ti
is depicted by the solid red line, the measured data (with
noise) by the dotted magenta curve, and the joint EKF esti-
mates by the dashed blue curve. In this example, joint EKF
produces an accurate approximation for the true solution,
converging to the true solution (100). Right: measurement
residuals (or innovation) of joint EKF estimations for ti . Note:
measurement residual is defined in Equation 5.3. The mea-
surement residuals suggest that joint EKF is performing well
because they have relatively small magnitude, zero mean,
and no atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Extended_KFs/Joint_Estimation/Albers/ 81

9.5 Results of joint EKF estimation for glucose. Left: joint EKF
estimation for glucose. The true solution for the glucose
state is depicted by the solid red line, the measured data
(with noise) by the dotted magenta curve, and the joint EKF
estimates by the dashed blue curve. In this example, joint
EKF produces an inaccurate approximation for the true solu-
tion, suggesting that there is some error due to the sudden
change in trend after about 500minutes. Right: measurement
residuals (or innovation) of joint EKF estimations for glucose.
Note: measurement residual is defined in Equation 5.3. The
measurement residuals suggest that joint EKF is not perform-
ing well because they have an unusual spike after around
500 minutes, indicating that there must be some error. With
further investigation, we find that there is error propagating
after just a few time steps, causing the joint EKF algorithm to
produce complex estimates. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Extended_KFs/Joint_Estimation/Albers/ 82

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

List of Figures xiii

10.1 Results of joint UKF estimation for parameter E. Left: joint
UKF estimation for E. The true solution for parameter E is de-
picted by the solid red line, the measured data (with noise) by
the dotted magenta curve, and the joint UKF estimates by the
dashed blue curve. In this example, joint UKF produces an ac-
curate approximation for the true solution, converging to the
true solution (0.2). Right: measurement residuals (or innova-
tion) of joint UKF estimations for E. Note: measurement resid-
ual is defined in Equation 5.3. Interestingly, the measurement
residuals suggest that jointUKF is notperformingwell because
theygenerally have largemagnitude, though theydohave zero
mean and lack atuocorrelation. Code to reproducefigure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Albers/Joint_Estimation 90

10.2 Results of joint UKF estimation for parameter Vi . Left: joint
UKF estimation forVi . The true solution for parameterVi is de-
picted by the solid red line, the measured data (with noise) by
the dotted magenta curve, and the joint UKF estimates by the
dashed blue curve. In this example, joint UKF does not seem
to sufficiently approximate for the true solution since the esti-
mates do not converge, though they seem to be close to the true
solution (11). Right: measurement residuals (or innovation)
of jointUKF estimations forVi . Note: measurement residual is
defined in Equation 5.3. The measurement residuals suggest
that joint UKF is not performing well because they generally
have large magnitude, though they do seem to have zero-
mean and no atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Albers/Joint_Estimation 92

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

xiv List of Figures

10.3 Results of joint UKF estimation for parameter ti . Left: joint
UKF estimation for ti . The true solution for parameter ti
is depicted by the solid red line, the measured data (with
noise) by the dotted magenta curve, and the joint UKF esti-
mates by the dashed blue curve. In this example, joint UKF
produces an accurate approximation for the true solution,
converging to the true solution (100). Right: measurement
residuals (or innovation) of joint UKF estimations for ti . Note:
measurement residual is defined in Equation 5.3. The mea-
surement residuals suggest that joint UKF is performing
well because they have a relatively small magnitude, zero
mean, and no atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Albers/Joint_Estimation 93

10.4 Results of joint UKF estimation for glucose. Left: joint UKF
estimation for glucose. The true solution for the glucose
state is depicted by the solid red line, the measured data
(with noise) by the dotted magenta curve, and the joint UKF
estimates by the dashed blue curve. In this example, joint
UKF produces a reasonable approximation for the true solu-
tion, accurately estimating and smoothing the data. Right:
measurement residuals (or innovation) of joint UKF estima-
tions for glucose. Note: measurement residual is defined
in Equation 5.3. The measurement residuals suggest that
joint UKF is not performing well because they exhibit an
oscillatory pattern, which suggests poor state estimation and
possible autocorrelation in the data. Unfortunately, when
the algorithm is run with a larger time interval (greater
than 600 minutes), it throws a sigma point calculation error.
With a little more investigation, it seems that the error stems
from issues with updating the covariance matrix and, con-
sequently, the Kalman gain. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/Albers/Joint_Estimation 94

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

List of Tables

3.1 Discrete time system variables for Kalman filter. 18

4.1 Discrete time system variables for extended Kalman filter. . 26

6.1 Discrete time system variables for unscented Kalman filter. . 47
6.2 Constants for unscented Kalman filter 49

9.1 Parameter Estimates using joint EKF algorithm. 83

10.1 Parameter Estimates using joint UKF algorithm. 95

Acknowledgments

I would like to start by acknowledging that Harvey Mudd College sits
upon the original homelands of the Tongvan people. Long before this
institution settled here, Tongvan people have been children, students, and
caretakers of this land. Despite continuous forced displacement, Tongvan
efforts for proper healthcare, economic justice, and education persist. Un-
fortunately, the 2010 U.S. Census Bureau reports that only about 14% of
Tongvans have a bachelor’s degree, which is less than half that of the total
U.S. population. As a student researcher of HMC and beneficiary from
settler colonialism and the U.S. higher education system, I would like to
show my gratitude for the Tongvan elders both past and present, honoring
their lives and connection to this land. By doing so, I hope to consider my
positionality in the story of colonization and the undoing of its legacy.

Additionally, I would like to express how grateful I am for the researchers
who precede me, particularly GiannaWu, Amber Nguyen, Nat Efrat-Henrici,
Matt Matusiewicz, and An Do. Without your extensive research and impec-
cable documentation, I would not have the understanding of type 1 diabetes
that I have now or the ability to dive into such a rich topic. For that, I am
incredibly grateful.

Special thanks to Lindsey Tam forworkingwithme through this challeng-
ing research. You have helpedme in so manyways, both in the mathematical
field and companionship. I just hope that I was able to provide the same for
you as you worked through your thesis.

Most importantly, I’d like to thank Professor Blerta Shtylla and Professor
Lisette de Pillis. Throughout this project, they have provided an enormous
amount of guidance and support. Their passion and perseverance inspired
me to produce the work that I did. Thank you so much!

xviii List of Tables

Chapter 1

Background of Diabetes

According to the American Diabetes Association, every year, approx-
imately 1.5 million Americans are diagnosed with diabetes [2], a chronic
disease inwhich one’s body exhibits excessive levels of blood glucose due to a
lack of insulin. Those affected by diabetes have a higher risk of serious health
issues, including neuropathy (nerve damage), nephropathy (kidney disease),
ketoacidosis (excessive levels of ketones causing the blood to become acidic),
and strokes (interruption of blood supply to the brain).

Unfortunately, a cure for diabetes does not currently exist [2]. However,
the disease can go into remission, and oftentimes people manage it with
medication and lifestyle changes [3]. Some common methods of manage-
ment include taking insulin, eating healthy foods, exercising regularly, and
frequently monitoring blood sugar. Depending on what type of diabetes
a person has, their treatment plans may vary. The three main types of
diabetes are type 1 diabetes, type 2 diabetes, and gestational diabetes. Type
1 diabetes (T1D) is an autoimmune condition that is believed to stem from
genetics and/or environmental factors [18]. Type 2 diabetes (T2D) is an
insulin resistance condition that is believed to be a result of genetics, lack
of exercise, and/or being overweight [18]. Gestational diabetes is a result
of insulin-blocking hormones produced during pregnancy and only occurs
during pregnancy [18]. Gestational diabetes is not as common as T1D or
T2D, so in this paper I focus on T1D and T2D.

2 Background of Diabetes

1.1 Type 1 Diabetes

Unlike other types of diabetes, T1D is decidedly autoimmune, which
causes more difficulty with potential preventions, treatments, and cures.
Additionally, it is often diagnosed in early childhood. Although there is
no definitive cause of T1D, scientists believe that it is a combination of
genetic and environmental factors [20]. Despite its unknown cause, decades
of studies and research have produced a collective understanding of the
development of T1D and how it affects the autoimmune system.

T1D is characterized by an autoimmune attack on β-cells located in the
pancreas, which produce insulin. Insulin is a hormone that binds with
cells, allowing them to absorb glucose and consequently lowering blood
glucose levels [20]. This physiological dynamic between insulin and glucose
is visually portrayed in Figure 1.1. Additionally, biological terminology
is further defined in Appendix A. The T1D autoimmune attack on β-cells
results in a deficiency of insulin, which then causes a rise in glucose levels
to a point that is unhealthy [20].

Figure 1.1 Visualization of dynamics between insulin and glucose taken from
[14]. Le�: Diabetes results in a lack of insulin to connect with the cell so it blocks
the glucose channel, preventing glucose to enter the cell and be processed.
Right: Healthy cell with su�icient insulin that connects with the cell and opens
the glucose channel, allowing glucose to enter the cell and be processed.

Type 2 Diabetes 3

1.2 Type 2 Diabetes

Typically, T2D initially starts as insulin resistance, which means one’s
body does not efficiently use insulin. As previously mentioned insulin
enables cells to absorb glucose, and thus lowers blood glucose levels. See
Figure 1.1 for a visual representation of this physiological interaction.

Insulin resistance prompts the pancreas to produce more insulin in order
to compensate for the inefficient use of insulin. However, at some point the
pancreas cannot produce enough insulin to sufficiently supply the demand.
As a result, insulin production decreases, causing a deficiency in insulin [18].
Like T1D, this then causes a rise in glucose levels to an unhealthy degree.

1.3 Diabetes Models

Before scientists can determine a cure for diabetes, they must first gain
a robust understanding of the onset and progression of this disease. In
order to do so, researchers have created mathematical models to simulate
the immune system and relevant components in the body. These models
are intended to provide proper insight for diabetes treatments, allowing
scientists to test the actions and effectiveness of treatments as they are
produced. Hopefully, as new discoveries are uncovered and a potential
successful treatment is introduced, researchers will be able to use these
models to determine the performance of a treatment on an individual with
diabetes.

In this paper, I build on an existingdynamicalmodel for T2D. Inparticular,
I work with a T2D model proposed in [4]. In the future, I hope to extend my
work with this T2D model to a T1D model from [20]. These two models are
further explained in the following sections.

1.3.1 Type 1 Diabetes Model

The T1D model in [20] is a single compartment mathematical model that
reflects important qualitative features of T1D progression and dynamics
[20]. Through this model, there are two goals. One is to determine what
influence tolerogenic dendritic cells (tDCs) have in the development of T1D
in the presence of a β-cell apoptotic wave in non-obese diabetic (NOD) and
non-diabetic (Balb/c) mice. The other goal is to determine the significance

4 Background of Diabetes

that timing and dosing of tDC injections have on NOD mice’s ability to
escape the onset of T1D [20].

To provide more details, the single compartment model from [20] ac-
counts for the following biological components involved in the onset and
progression of T1D: dendritic cells (both tolerogenic and immunogenic), T
cells (effector and regulatory), and macrophages. It is single compartment
because it simulates a single, well-mixed pancreatic compartment. This
model is based on an earlier model in [15]. The researchers of [20] extend
the model from [15] by including healthy β-cell counts as well as antigen
presenting and T-cell populations [20].

To incorporate the DC effect on the development of T1D, the researchers
of [20] conduct stochastic parameter fitting techniques on human experi-
mental DC data collected in [7]. For the overall simplified model, they fit
the parameters using Maximum Likelihood Estimate (MLE), implementing
the Metropolis Monte Carlo Markov-Chain (MCMC) algorithm[20].

After running the model, they find that if a mouse reduces efficacy of
microphages and undergoes a wave of increased β-cell death, then said
mouse enters a diseased steady state. Additionally, many of the parameters
are measured or inferred, which requires a sensitivity analysis in order to
assess the parameters chosen. From the sensitivity analysis, it is determined
that NOD mice are much more sensitive to single parameter changes than
Balb/c mice, so Balb/c mice have a more robust healthy system overall.

The strong sensitivity to parameter changes in the model from [20]
suggests that there needs to be more work to stabilize parameter changes.
Luckily, there are increasingly more sophisticated techniques to fit parame-
ters. For example, one method that would be incredibly useful in predicting
the correct parameter values based on the population of the data set is a
method proposed in [4] called data assimilation. Data assimilation is further
discussed in chapter 2.

1.3.2 Type 2 Diabetes Model

The T2D model that is used in [4] is one that represents simple physio-
logic mechanics of glucose and insulin. It is taken from an earlier study by
David J Albers, George Hripcsak, and Michael Schmidt [6]. Originally, this

Diabetes Models 5

model was developed in [21], a study by Jeppe Sturis, Kenneth S. Polonsky,
Erik Mosekilde, and Eve Van Cauter.

In general, the T2D model serves as a dynamical representation of ul-
tradian oscillations of insulin and glucose. More colloquially, the model
describes how an individual’s blood sugar levels change based on that
person’s eating habits. Initially, researchers from [21] developed this model
to determine whether the ultradian oscillations in human insulin secretion
could result from the feedback loops between insulin and glucose. It consists
of two major negative feedback loops: one describes the effects of insulin on
the utilization of glucose, and the other describes the effects of insulin on
the production of glucose. Both of these loops account for the stimulator
effect of glucose on insulin secretion [21].

For the study in [4], this ultradian model is used in their research for
accurate parameter fitting. Like [20], [4] notes the importance of parameter
fitting in order to produce an accurate model. In the next chapter, I further
discuss the research in T2D and parameter fitting detailed in [4]. Specifically,
I detail their research in a parameter fitting technique called data assimilation.

Chapter 2

Data Assimilation in
Bioinformatics

Mathematical modeling of biological systems, such as the T1D model
from [20], is under the larger field of study called bioinformatics. Bioinfor-
matics is an interdisciplinary field that uses computer science, mathematics
and statistics to analyze biological information. To further advance studies
in bioinformatics, the writers of [4] argue for an increase in the use of data
assimilation (DA). In particular, they argue that DA significantly improves
accuracy in research and modeling of population physiology. At the begin-
ning of the paper, they claim that many mathematical models approximate
dynamical systems and, in the case of diabetes, vary significantly by patient.
To personalize these models, they advocate the use of DA.

Data assimilation is defined as a regression method that uses a particular
data set to estimate the states and parameters of a mathematical model
[4]. This results in a model that is accurately fitted to that set of data. It
does so by combining mathematical theory, mainly dynamical systems as
well as some statistical background, and human observations in the form
of collected data [4][23]. In doing so, DA fits a mathematical model to a
particular set of data, training the model to accurately represent a system. In
the end, the model’s parameters are fit in such a way that it most accurately
reflects the population physiology.

This push for the use of DA in bioinformatics proves to be incredibly
significant and impactful in the lives of individuals with T2D. In fact, the

8 Data Assimilation in Bioinformatics

results of their study are used in an app called Glucoracle. Specifically,
Glucoracle uses the personalized DA algorithm that is proposed in [4] to
predict an individuals blood sugar levels based on the food that they record
as eaten. Users can upload blood measurements from finger prick tests as
well as an estimate of their meal’s nutritional content. In turn, the algorithm
from [4] uses this data to forecast the user’s glucose levels and returns this
to the user as a post-meal prediction [9]. Consequently, Glucoracle serves
as an easily accessible tool for blood sugar monitoring for type 2 diabetic
individuals.

In the study from [3], which is the earlier work of [4], the researchers
apply DA to a dynamical model of T2D using a dataset collected from the
Mobile Access to Health Information (MAHI) [3]. For clarification, MAHI is
a phone application that helps individuals with diabetes track their meals
and glucose levels. As a result, the dataset consists of various glucose levels
as well as the nutritional values from meal intakes.

For more comprehensive results, [3] compares two different dynamical
models that represent the physiological dynamics of glucose and insulin: a
simple ultradian model and a meal simulation model. The simple ultradian
model represents simple physiologic mechanics and is taken from [6], an
earlier study by David J Albers, George Hripcsak, and Michael Schmidt.
This model is based on [21], which is a 1991 study by Jeppe Sturis, Kenneth
S. Polonsky, Erik Mosekilde, and Eve Van Cauter. In chapter 1, I explain
this model in more detail. The meal simulation model is taken from [13],
a study by Chiara Dalla Man, Robert A. Rizza, and Claudio Cobelli. This
model includes more digestive mechanics than the simple ultradian model,
including both physiologic (living system-related) and pathophysiologic
(disease-related) dynamics.

Additionally, the work in [3] produces two different implementations of
DA algorithms to forecast glucose levels for the simple ultradianmodel: dual
unscented Kalman filter and Metropolis-Hastings-within-Gibbs Markov
chain Monte Carlo method [4]. For brevity’s sake, I will only briefly ex-
plain these two algorithms. However, a more detailed explanation of the
unscented Kalman filter algorithm can be found in chapter 6. The dual
unscented Kalman filter computes parameters in real time as data arrives.
As a brief explanation, it uses the unscented transformation, which is ex-
plained more in chapter 6, to choose a set of sample points around the

9

mean. It then uses these points to recalculate a new mean and covariance
that is updated to accurately represent the data set. On the other hand,
the Metropolis-Hastings-within-Gibbs Markov chain Monte Carlo method
computes parameters on the whole data set in retrospect [4]. Essentially, it
takes random samples that have reasonably high contribution to the expected
value and uses them to determine parameter values.

In order to compare the two different dynamical models in their study,
the researchers apply the dual unscented Kalman filter on both the sim-
ple ultradian model and the meal simulation model [3]. One particular
assumption that they had to enforce in their study is positivity. To elaborate,
the model in [3] assumes positive values. Consequently, if the algorithm
produced negative values, the next iteration of points is generated using
only the real part of the value. However, it is important to note that this can
lead to under-fitting because it can cause premature parameter convergence
[3].

To assess their results, they compare mean squared error and root mean
squared error of the DA implementations to linear regression and gaussian
processes. It is found that both the mean squared error and the root mean
squared error are the lowest for the DA implementations, no matter the sam-
ple size of the data set. They also compare the DA forecasts to those made by
certified diabetes educators, who are trained diabetes counselors. According
to this comparison, it is found that both the dual unscented Kalman filter and
the Metropolis-Hastings-within-Gibbs Markov chain Monte Carlo method
can generate glucose forecasts that are similar to or of higher quality than
those of the certified diabetes educators [3].

In conclusion, this study reveals that DA algorithms can improve fore-
casting accuracy to the order of 40 measures. The researchers from this
study believe that this is a speed that is fast enough to be useful in context
of diabetes self-management. Furthermore, they found that the dual filter
in conjunction with the unscented Kalman filter substantially improves
performance compared to no-filter and state-only filters [3].

These conclusions suggest that DA algorithms can be applied to other
mathematical modeling of diabetes, including T1D. This is because the
physiological model represents glucose and insulin dynamics for T2D,
which consist of the same key components in T1D with slightly differing

10 Data Assimilation in Bioinformatics

dynamics. In other words, a similar method can be used to fit parameters
for T1D physiological models with slight adjustments, which is my ultimate
goal. In this paper, I document my findings of Kalman filtering and how it
can be applied to various dynamical models with the intent of analyzing its
performance on a biological model.

Chapter 3

Kalman Filter

As mentioned earlier, data assimilation (DA) is a regression method
that uses machine learning to forecast a model’s future states. There are
many algorithms within the category of DA, some of which include Markov
Chain Monte Carlo method, three-dimensional variation (3dVar), optimal
interpolation, and Kalman filters. This paper focuses on Kalman filters,
particularly the extended Kalman filter (EKF) and the unscented Kalman
Filter (UKF).

The Kalman filter (KF) algorithm is named after its primary developer,
Rudolf Kalman, who first thought of the algorithm in 1958 and later pub-
lished papers about it in 1960 and 1961 [19]. It is a recursive algorithm used
to estimate states and parameters of dynamical models [12]. The models on
which KF can be applied are often systems that can be rewritten in linear
state space format, which is explained in the next section and shown later in
Equation 3.8.

The KF algorithm functions by first taking in data that can have some
error, uncertainty, or noise. Then, it filters this data to reduce the uncertainty
or noise as much as possible [19]. We can think of it in the sense of how
we think of general filters. Figure 3.1 is a visual that represents the process
of the KF algorithm. Through this, we see that measured parameters as
well as a set of differential equations are passed into the filter. Then, the
input goes through the prediction step, where process noise is passed
through as additional input. After the prediction step, the data goes to the
correction step, where there is supplementary input of measurement noise
and additional data. From the correction step, we get an estimated output.

12 Kalman Filter

This estimated output as well as the additional data mentioned before goes
back to the correction step, and the cycle repeats from there. In the end, the
KF algorithm outputs values that represent the state of the data.

Figure 3.1 Flow chart of Kalman filter algorithm. Begins with the input of
measuredparameters anda set ofDEs,whichgets passed through theprediction
step along with process noise. Then, it goes through the correction step as
well as supplementary input of measurement noise and additional data, which
produces an estimated output. This continues to loop through the correction
step until the algorithm goes through all the time steps, where it outputs data
states.

There are two main parts to the KF algorithm: the prediction and the
correction. In the first part of the algorithm, it estimates, or predicts, the
state of the dynamical system. In the second part, the state is corrected using
known observations such that it minimizes the estimator’s error covariance
[12]. Consequently, KF is a form of DA that is framed through Bayesian
inference [4].

Bayesian inference uses prior knowledge and the likelihood function to
characterize the posterior distribution, or the distribution of the observed
data. The likelihood function describes how current data and parameters
map to future states and parameters [4]. In the case of the KF algorithm,
the likelihood function is the state transition matrix (or state system matrix),
which is often mathematically represented by F. The state transition matrix
is used in both the prediction and correction steps of the KF algorithm,

Discretization of Continuous Systems 13

which is explained in more detail later in this chapter.

3.1 Discretization of Continuous Systems

Before implementing the KF algorithm, we must first discretize the
model by rewriting it in state space form, which is a set of coupled first order
differential equations. Recall the difference between a discrete system and
a continuous system is that a discrete system considers time as countable
steps where the state variable(s) change only at each discrete step in time.
On the other hand, a continuous system considers time to be fluid so the
state variable(s) change continuously over time. Therefore, a discrete system
would generally be written as

x(tk+1) � x(tk) + ∆x(t), (3.1)

where t ∈ Z or t ∈ Z+ and ∆x(t) is the change in x from one time step to the
next. In contrast, continuous system would be written as

Ûx(t) � dx(t)
dt

, (3.2)

where t ∈ R or t ∈ R+. We can see how the discrete form is related to the
continuous form if we manipulate Equation 3.1 a little using ∆t, where is
the change in time from one time step to the next. Mathematically, ∆t is

∆t � tk+1 − tk .

More specifically, if we divide Equation 3.1 by ∆t and then take the limit as
∆t approaches zero, we get

dx(t)
dt

� lim
∆t→0

x(tk+1) − x(tk)
tk+1 − tk

.

This process is described a little later when we talk about the Euler method,
starting at Equation 3.5. Essentially, the main take-away is that the dis-
crete and continuous equations of systems are related through this limit
relationship. Consequently, they only differ in that the discrete equation
produces the actual value of x as a recurrence relation, whereas the con-
tinuous equation only describes the change in x rather than x itself. It
is important to know this difference and relationship when constructing

14 Kalman Filter

and/ormanipulatingmodels onwhich you intend to apply Kalman filtering.

In general, the state space format for a continuous model is given by

Ûx(t) � F(t)x(t) + G(t)u(t) + w(t) (3.3a)
y(t) � H(t)x(t) + v(t), (3.3b)

where x(t) is the state vector, y(t) is the observation (or measurement) vector,
and u(t) is the input vector. Additionally, F(t) is called the state transition
matrix (or the state system matrix) and H(t) is called the observation matrix.
The process noise, associated with states, is represented by w(t) and the
measurement noise, associated with observations, is represented by v(t). In
System 3.3, Equation 3.3a represents the system and Equation 3.3b repre-
sents the observations [8]. We can see that System 3.3 is continuous because
time is continuous, denoted by t.

As mentioned earlier, in order to apply Kalman filtering on a system, it
must be discrete. Therefore, we must take a system in the form of System 3.3
where time is continuous, solve it, and discretize it into time steps denoted
as k. The general form of a discrete system in state space format is

xk � eFt xk−1 +

∫ k

s�k−1
eF(t−s)G(s) ds uk−1 + wk (3.4a)

yk � Hk xk + vk , (3.4b)

where k ∈ Z+ and eFt is the matrix exponential of the state transition matrix
F [8]. Note that Equation 3.4a is the solution to Equation 3.3a. Because com-
puting a matrix exponential is computationally expensive, especially when
F is not diagonalizable, oftentimes the Euler method is used to discretize
systems.

Recall that the Euler method approximates the solution of a DE, say f (x),
at a certain point xi . Consider the definition of a derivative for the function
f (x) at a point x0, which is given by

f ′(x0) � lim
h→0

f (x0 + h) − f (x0)
h

. (3.5)

A graphical interpretation of this definition is that the derivative of a
function is the slope of the secant line between the points on the function at

Discretization of Continuous Systems 15

Figure 3.2 Graphical visualization of di�erentiation taken from [1]. Here, we
see that the derivative of a function is the slope of the secant line between the
points on the function at x0 and x + h. The smaller that h is, the more accurate
this approximation becomes.

x0 and x0 + h, or (x0 , f (x0)) and (x0 + h , f (x0 + h)). As x0 + h gets closer to
x0, the slope of the secant line gets closer to the slope of the tangent line at
x0, which is equivalent to f ′(x0). In other words, the smaller that h is, the
more accurate this approximation becomes. A visual representation of this
can be seen in Figure 3.2.

If we let x0 be an arbitrary time step k, h � ∆x, and xk � xk−1 + ∆x in
Equation 3.5, then we get the difference quotient of f (x), which is

f ′(xk) ≈
f (xk+1) − f (xk)

∆x
. (3.6)

We can rewrite this as a difference equation by letting Fi denote our approxi-
mation of f (xi), so at time xk , the approximation is Fk . Then,

f ′(xk) �
Fk+1 − Fk

∆x
Fk+1 � Fk + ∆x f ′(xk).

In general, this means

Fi+1 � Fi + ∆x f ′(xi). (3.7)

16 Kalman Filter

Although the Eulermethod is simple anddirect, it is numerically unstable
and not an accurate approximation for large time steps. Asmentioned earlier,
the smaller the time step ∆x, the more accurate the approximation. However,
using smaller time steps also requires a larger number of discretized time
steps, which becomes computationally expensive. Additionally, the Euler
method does not work as well for implicit DE as it does for explicit DE.
Therefore, if computing the matrix exponential for Equation 3.4 is not hard,
then it is best to avoid using Euler method.

Let’s try going through an example to help solidify our understanding of
discretizing systems. This example is taken from Example 1 of Chapter 2 in
[8]. Consider the general second order DE for Newton’s 2nd law of motion:

m Üx(t) � u(t),

where m represents the mass of the moving body, x(t) represents dis-
placement (or position), and u(t) represents the input function. Since x(t)
represents displacement, it must mean that Üx(t) represents velocity and Ûx(t)
represents acceleration. Assuming that the position x(t) is measured free of
errors at discrete time steps, then we can write the system as

m Üx(t) � u(t)
y(t) � x(t).

For this continuous system, the two state variables are x1(t) � x(t) and
x2(t) � Ûx(t) and the measurement variable is y(t). Then, it is true that

Ûx1(t) � Ûx(t) � x2(t)

Ûx2(t) � Üx(t) �
u(t)
m

y(t) � x1(t).

The complete model can be written in matrix form:

Ûx(t) �
[
Ûx1(t)
Ûx2(t)

]
�

[
x2(t)

u(t)
m

]
y(t) � x1(t).

Discretization of Continuous Systems 17

Now, in vector-matrix form, the model is[
Ûx1(t)
Ûx2(t)

]
�

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1
m

]
u(t)

y(t) �
[
1 0

] [
x1(t)
x2(t)

]
.

With the system in vector-matrix form, the state vector is x � [x1 x2]T . Now,
we have discretized the system into state space form, similar to System 3.3
but without process noise w(t) and measurement noise v(t). For this system,
we see that

F �

[
0 1
0 0

]
, G �

[
0
1
m

]
, H �

[
1 0

]
.

In this paper, in order to implement Kalman filtering, you do not need to
manipulate the system further because there are often built-in functions to
differentiate the system and solve for the solution. For practice, this example
will take one step further and determine the solution to write the system in
the form of System 3.4.

In order to solve the systemandwrite it in the formofSystem 3.4, wemust
first determine the matrix exponential of F as well as

∫ k
s�k−1 eF(t−s)G(s) ds.

Recall that matrix exponential calculation for a diagonalizable matrix simply
uses the eigenvalues. In this case, the eigenvalues of F are repeated with
both equaling λ1 � 0. Thus, the matrix exponential of F is

eFt
�

[
eλ1t teλ1t

0 eλ1t

]
�

[
e0Ût te0Ût

0 e0Ût

]
�

[
1 t
0 1

]
.

Using this, we can calculate
∫ k

s�k−1 eF(t−s)G(s) ds. In this case, we consider
our time step to be the first time step where the size of each time step is t.
Consequently, we calculate this integral where k − 1 � 0 and k � t.∫ t

s�0
eF(t−s)G(s) ds �

∫ k

s�0

[
1 s
0 1

] [
0
1
m

]
ds �

∫ t

s�0

[s
m
1
m

]
ds �

[
t2

2m
t
m

]
.

Thus, we have the discretized state space model with state vector x and
observation vector y, which is

xk �

[
1 t
0 1

]
xk−1 +

[
t2

2m
t
m

]
uk

yk �
[
1 0

]
xk .

18 Kalman Filter

Variable Description Dimension
x state vector n × 1
y observation vector ny × 1
u input vector nu × 1
w process noise vector n × 1
v measurement noise vector ny × 1
F state transition matrix n × n
G input system matrix n × nu

H observation matrix ny × n

Table 3.1 Discrete time system variables for Kalman filter.

With a better understanding of how to discretize systems and rewrite
them in state space form, we can now discuss the Kalman filter algorithm.

3.2 Kalman Filter Algorithm

From the previous section, we know that Kalman filtering is applied
to models in discrete linear state space format. These systems would then
appear as

xk � Fk−1xk−1 + Gk−1uk−1 + wk−1 (3.8a)
yk � Hk xk + vk , (3.8b)

where the variables are defined in Table 3.1 [19].

Now, we can begin the KF algorithm, which consists of two parts: the
prediction and the correction.

3.2.1 Prediction Step

The prediction step calculates two things: (a) the predicted state vector
of the initial state x̂0 and (b) the covariance matrix P0 of the initial predicted
state [19][12]. In general, the predicted state vector x̂ represents the desired
result. The values in x̂ will be passed through and estimated by the filter. In
general, x̂ is constructed as the following:

x̂ � Fk−1 x̂k−1 + wk−1 , (3.9)

Kalman Filter Algorithm 19

where Fk−1 is the state transition matrix for the previous time step, x̂k−1 is
the state vector from the previous time step, and wk−1 is the process noise
vector from the previous time step. The state transition matrix F contains
the coefficients of the state terms in the dynamical model [19]. In other
words, it transforms any initial state x(k0) to its corresponding state x(k)
at time step k[12]. Consequently, if x̂ is an n×1 vector, then F is an n×n matrix.

For the initial state, the predicted state vector x̂ is equivalent to the initial
state vector x̂0. This implies that in Equation 3.9,

F0 � I �


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


,

where I is the identity matrix. In other words, the initial predicted state
vector x̂0 consists of educated guesses that are considered the initial values.
Therefore, the initial state transition matrix F0 does not need to apply any
transformation, so it is equivalent to the identity matrix.

After determining the initial predicted state vector, we must determine
its corresponding initial covariance matrix P0. We can determine the initial
state error covariance matrix by simply using the values in the predicted
state vector x̂ and the statistical definition of covariance, which is

P � E[(x̂ − E[x̂])(x̂ − E[x̂])T], (3.10)

where E[x̂] is the expected value of x̂. Recall from probability that the
expected value of a vector is defined as

E[x̂] �
n∑

i�1
xi pi � x1p1 + x2p2 + . . . + xn pn , (3.11)

where x̂ � {x1 , x2 , . . . , xn} occurring with probabilities {p1 , p2 , . . . , pn}
respectively. Consequently, if x̂ is an n × 1 vector, then P is an n × n matrix,
which are the same dimensions as F. Thus, the initial state covariance matrix
P0 is

P0 �


var(x1) · · · cov(x1 , xn)
...

. . .
...

cov(xn , x1) · · · var(xn)

 .

20 Kalman Filter

When the state variables in the state vector are uncorrelated, cov(xa , xb) �
0, where a , b ∈ Z. Because the state variables in the state vector x̂ are
Gaussian, meaning normally distributed, if they are uncorrelated then they
are independent. Consequently, if the state variables are independent, then
the covariance matrix P0 is a diagonal matrix where the diagonal consists of
the variances of state variables:

P0 �

©­­­«
var(x1) 0

. . .

0 var(xn)

ª®®®¬ .
3.2.2 Correction Step

Now, with our initial state vector and initial state covariance matrix,
we can move on to the correction step of the KF algorithm. Similar to the
prediction step, the correction step calculates the predicted state vector and
its corresponding covariance matrix for the next time step k. The correction
step differs from the prediction step in that it incorporates observation data
that will be used to adjust the prediction state and covariance matrix. For
the state vector, we can use a similar method as in the prediction step, except
incorporate collected data.

x̂k |k−1 � Fk−1 x̂k−1 + Gk−1ûk−1 , (3.12)

where x̂k |k−1 is the state vector at time step k that we are calculating, x̂k−1
is the estimated state vector from the previous time step, ûk−1 is the input
vector that represents the collected data at the previous time step, Fk−1 is
the same state transition matrix from Equation 3.9, and Gk−1 is the system
input matrix from the previous time step. The system input matrix consists
of coefficients of the input terms in the state dynamics. In other words, the
system input matrix G consists of values that are taken from the dynamical
model. These values are the coefficients in the dynamical model, specifically
the coefficients of terms that are the input for the filter. Note that if x̂k−1 and
ûk−1 are vectors with length n, then x̂k |k−1 is also a vector with length n.

In order to determine the covariance matrix P, we use the following
equation:

Pk � Fk−1Pk−1FT
k−1 + Qk−1 , (3.13)

Kalman Filter Algorithm 21

where Pk−1 is the estimated state error covariance matrix for the previous
time step, Fk−1 is the state transition matrix for the previous time step, and
Qk−1 is the process noise covariance matrix associated with the process noise
vector wk−1. From Equation 3.13, we see that Pk has the same dimensions
as Pk−1.

With our predicted state vector x̂k and predicted state covariance matrix
Pk for time step k, we can now calculate the corresponding Kalman gain
matrix Kk . The Kalman gain matrix describes howmuch you want to change
your estimate by a given measurement. Mathematically, it is expressed as

Kk � PkHT
k (HkPkHT

k + Rk)−1 , (3.14)

where Pk is the state covariance matrix defined in Equation 3.13, Hk is the
observation matrix at time step k, and Rk is the measurement noise covari-
ance at time step k. The observation matrix Hk consists of the collected data
values at time step k. It is important to note the difference between R and
Q. R represents the measurement noise whereas Q represents the process
noise. Measurement noise represents the idea that data is collected in noisy
environments rather than completely controlled environments, so we must
account for the noise in the environment. On the other hand, process noise
represents the idea that the state of the system changes in a way that we do
not know exactly, so we must account for the noise in the system.

With the Kalman gain matrix, we can now update the prediction by the
appropriate amount:

x̂k � x̂k |k−1 + Kk(yk − Hk x̂k |k−1), (3.15)

where yk is the observation (or measurement) of the output and Hk x̂k |k−1 is
the predicted output (sometimes referred to as ŷk |k−1). Recall from Equation
3.8b, the observation (or measurement) of the output yk at time step k is
based on the previous time step k − 1, defining it as

yk � Hk x̂k |k−1 + vk ,

where vk is the "innovation." The "innovation" is also known as the mea-
surement noise vector, which is associated with the measurement noise
covariance matrix Rk . In general, the measurement noise v is normally dis-
tributedwithmean zero andvariance R, so v ∼ N(0, R). In this case, since the

22 Kalman Filter

process noise for a given time step vk is a vector, the variance R for that same
time step is a covariancematrix Rk called the process noise covariancematrix.

Looking back at Equation 3.15, we can analyze how the measurement
output yk differs from the predicted output ŷk |k−1:

yk − ŷk |k−1 � Hk x̂k |k−1 + vk − Hk x̂k |k−1

� vk .

Therefore, the difference between the measurement output and the
predicted output in Equation 3.15 is vk , or the "innovation." As was just
mentioned, the "innovation" is also known as the measurement noise. Since
the measurement output and the predicted output only differ by the mea-
surement noise, the corrected state vector x̂k in Equation 3.15 is updated
by an amount that is equivalent to scaling the measurement noise by the
Kalman gain matrix Kk .

In a similar way, we also update the state error covariance matrix by

Pk � (I − KkHk)Pk |k−1 ,

where I is the identity matrix.

3.2.3 Example

To help solidify the Kalman Filter algorithm, it helps to see an example,
which can be found in [19]. In section 4, "ALinearKalmanFilteringExample,"
there is a thorough explanation on how to apply the Kalman Filter to a
dynamical system for a free falling object.

3.3 Types of Kalman Filters

For linear systems, Bayesian inference methods, such as KF, work very
well. However, when working with nonlinear systems, the basic KF algo-
rithm fails to properly predict states. Thankfully, there are other prediction
algorithms that can handle nonlinear systems, including derivations of KF.
The most commonly used type of KF that can take in nonlinear systems is
the extended Kalman filter (EKF).

Types of Kalman Filters 23

The EKF algorithm determines the state distribution by analytically prop-
agating a Gaussian random variable through the first-order linearization of
the nonlinear system [22]. In other words, EKF takes a nonlinear system
and approximates it to the first-order, which results in a first-order lineariza-
tion. Then, it passes a normally-distributed random variable through the
linearization to determine the state distribution. Because it only calculates
the state distribution up to the first-order, the EKF algorithm provides only
an approximation for the state estimation [22]. As a result, EKF cannot be
applied to problems with high dimensional data and state spaces [22]. Oth-
erwise, it can produce large errors in the true posterior mean and covariance
of the transformed data [22]. In the next chapter, EKF is explained in more
detail.

An alternative that does not produce large errors for nonlinear systems
is another derivative of KF called the Unscented Kalman filter (UKF). The
UKF algorithm uses a deterministic sampling approach rather than an
approximation approach, which prevents the large errors that the EKF
sometimes introduces. In chapter 6, UKF is explained in more detail.

Chapter 4

Extended Kalman Filter

The extended Kalman filter (EKF) is a type of Kalman filter that can be
used to approximate states as well as parameters of nonlinear systems. The
EKF algorithm was discovered by Stanley F. Schmidt shortly after Rudolf
Kalman presented his Kalman filtering results in 1961. After hearing of
the Kalman filter, Schdmit applied it to the upcoming Apollo program
for exploration of the mankind on the moon, using KF to solve the space
navigation problem. In doing so, Schmidt invented the EKF algorithm [12].

As mentioned in chapter 3, EKF determines the state distribution by
passing a Gaussian random variable through a first-order linearization of a
nonlinear system. Because EKF linearizes the system about the estimated
state, the system must be represented by continuously differentiable func-
tions. For linear systems, this could be computed efficiently and still produce
fairly accurate results. However, for nonlinear systems, the EKF can become
computationally time-consuming and produce large errors [12].

4.1 Extended Kalman Filter Algorithm

Like the KF algorithm, the extended Kalman filter is applied to systems in
linear state space format, which is defined in System 4.1, where the variables
are defined in Table 4.1 [19].

xk � Fk−1xk−1 + Gk−1uk−1 + wk−1 (4.1a)
yk � Hk xk + vk . (4.1b)

26 Extended Kalman Filter

Variable Description Dimension
x state vector n × 1
y observation vector ny × 1
u input vector nu × 1
w process noise vector n × 1
v measurement noise vector ny × 1
F state transition matrix n × n
G input system matrix n × nu

H observation matrix ny × n

Table 4.1 Discrete time system variables for extended Kalman filter.

Here, Equation 4.1a represents the systemwith state(s) x and Equation 4.1b
represents the observation(s).

As a derivative of KF, EKF also has two steps: the prediction step and the
correction step. Therefore, we can visualize EKF using the same diagram
that we did for the KF algorithm in Figure 3.1. EKF differs from the general
KF algorithm in how it linearizes the dynamical system. Unlike the KF
algorithm, EKF utilizes Jacobian matrices to linearly approximate the system
[8]. These Jacobian matrices are later used in the state transition matrix and
the observation matrix.

Recall that a Jacobian matrix is the matrix of all first-order partial
derivatives. Mathematically, if you were given an n-dimensional function f,
then the Jacobian of f is

Jf �
[
∂f
∂x1

· · · ∂f
∂xn

]
�



∂ f1
∂x1

· · · ∂ f1
∂xn

∂ f2
∂x1

· · · ∂ f2
∂xn

...
. . .

...
∂ fn
∂x1

· · · ∂ fn
∂xn


. (4.2)

Like the KF algorithm, wemust first discretize the system of DEs, writing
them in state-space form before implementing the EKF algorithm. Recall
that we can do this by using the method explained in chapter 3 and through
System 3.3. For the system, we are often given a model that consists of the
states x and the corresponding observations (or measurements) y. With
a state-space system of DEs consisting of both the state equation and the

Extended Kalman Filter Algorithm 27

measurement equation, we can move on to the prediction step of the EKF
algorithm.

4.1.1 Prediction Step

We can begin the EKF algorithm with its first step, the prediction step.
The prediction step calculates two things: (a) the predicted state vector of
the initial state x̂0 and (b) the covariance matrix P0 of the initial predicted
state [19][12]. In general, the predicted state vector represents the desired
result. The values in x̂ will be passed through and estimated by the filter. In
general, x̂ is constructed as the following:

x̂ � Fk−1 x̂k−1 + wk−1 , (4.3)

where Fk−1 is the state transition matrix for the previous time step, x̂k−1 is the
state vector from the previous time step, and wk−1 is the process noise vector
from the previous time step. The process noise w is normally distributed
with mean zero and variance Q, so w ∼ N(0,Q). In this case, since the
process noise for the previous time step wk−1 is a vector, the variance Q for
the previous time step is a covariance matrix Qk−1 called the process noise
covariance matrix.

The state transition matrix F is the Jacobian of the state equations in the
dynamical model [12][8]. It transforms any initial state xk0 to its correspond-
ing state xk at time step k [12]. Consequently, if x̂ is an n×1 vector, then F is an
n×n matrix. The state transitionmatrix can be calculated usingEquation 4.2.

For the initial state, the predicted state vector x̂ is equivalent to the initial
state vector x̂0. This implies that in Equation 4.3,

F0 � I �


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


,

where I is the identity matrix. In other words, the predicted state vector x̂
consists of educated guesses that are considered the initial values. Therefore,
the initial state transition matrix F0 does not need to apply any transforma-
tion, so it can be the identity matrix.

28 Extended Kalman Filter

After determining the initial predicted state vector, we must determine
its corresponding initial covariance matrix P0. We can determine the initial
state error covariance matrix by simply using the values in the predicted
state vector x̂ and the statistical definition of covariance, which is

P � E[(x̂ − E[x̂])(x̂ − E[x̂])T], (4.4)

where E[x̂] is the expected value of x̂. Recall from probability that the
expected value of a vector is defined as

E[x̂] �
n∑

i�1
xi pi � x1p1 + x2p2 + . . . + xn pn , (4.5)

where x̂ � {x1 , x2 , . . . , xn} occurring with probabilities {p1 , p2 , . . . , pn}
respectively. Consequently, if x̂ is an n × 1 vector, then P is an n × n matrix,
which are the same dimensions as F. Thus, the initial state covariance matrix
P0 is

P0 �


var(x1) · · · cov(x1 , xn)
...

. . .
...

cov(xn , x1) · · · var(xn)

 .
When the state variables in the state vector are uncorrelated, cov(xa , xb) �
0, where a , b ∈ Z. Because the state variables in the state vector x̂ are
Gaussian, meaning normally distributed, if they are uncorrelated then they
are independent. Consequently, if the state variables are independent, then
the covariance matrix P0 is a diagonal matrix where the diagonal consists of
the variances of state variables:

P0 �

©­­­«
var(x1) 0

. . .

0 var(xn)

ª®®®¬ .
4.1.2 Correction Step

Now, with our initial state vector and initial state covariance matrix, we
can move on to the correction step of the EKF algorithm. Similar to the
prediction step, the correction step calculates the predicted state vector and
its corresponding covariance matrix for the next time step k. The correction
step differs from the prediction step in that it incorporates observation data

Extended Kalman Filter Algorithm 29

that will be used to adjust the prediction state and covariance matrix. For
the state vector, we can use a similar method as in the prediction step, except
incorporate collected data.

x̂k |k−1 � Fk−1 x̂k−1 + Gk−1ûk−1 , (4.6)

where x̂k |k−1 is the state vector at time step k that we are calculating, x̂k−1
is the estimated state vector from the previous time step, ûk−1 is the input
vector that represents the collected data at the previous time step, Fk−1 is
the same state transition matrix from Equation 4.3, and Gk−1 is the system
input matrix from the previous time step. Like KF, the system input matrix
consists of coefficients of the input terms in the state dynamics. Note that
if x̂k−1 and ûk−1 are vectors with length n, then x̂k |k−1 is also a vector with
length n.

In order to determine the covariance matrix P, we use the following
equation:

Pk � Fk−1Pk−1FT
k−1 + Qk−1 , (4.7)

where Pk−1 is the estimated state error covariance matrix for the previous
time step, Fk−1 is the state transition matrix for the previous time step,
and Qk−1 is the process noise covariance matrix associated with the pro-
cess noise vector wk−1. Like Equation 4.6, the state transition matrix Fk−1
is the same state transition matrix from Equation 4.3. In other words,
Fk−1 is the Jacobian of the state equations in the dynamical model for time
step k−1, which can be computed using themethod outlined inEquation 4.2.

For linear systems, this is generally the same, so the implementation can
be made more efficient by pre-computing the Jacobian matrix F. However,
for nonlinear systems, the partial derivatives that compose F are functions
of the state, so they change at every time step and, thus, must be computed
with every time step [12].

With our predicted state vector x̂k and predicted state covariance matrix
Pk for time step k, we can now calculate the corresponding Kalman gain
matrix Kk . The Kalman gain matrix describes howmuch you want to change
your estimate by a given measurement. Mathematically, it is expressed as

Kk � PkHT
k (HkPkHT

k + Rk)−1 , (4.8)

30 Extended Kalman Filter

where Pk is the state covariance matrix defined in Equation 4.7, Hk is the ob-
servation matrix at time step k, and Rk is the measurement noise covariance
at time step k.

The observation matrix Hk is the Jacobian of the measurement equations
at time step k. It transforms any initial measurement yk0 , which is usually
written in terms of x, to its corresponding measurement yk at time step k
[8]. Consequently, if ŷ is an n × 1 vector, then H is an n × n matrix. The
observation matrix can be calculated using Equation 4.2.

It is important to note the difference between R and Q. This was men-
tioned in chapter 3, but I will reiterate for emphasis. R represents the
measurement noise whereas Q represents the process noise. Measurement
noise represents the idea that data is collected in noisy environments rather
than completely controlled environments, so we must account for the noise
in the environment. On the other hand, process noise represents the idea
that the state of the system changes in a way that we do not know exactly, so
we must account for the noise in the system.

With the Kalman gain matrix, we can now update the prediction by the
appropriate amount:

x̂k � x̂k |k−1 + Kk(yk − Hk x̂k |k−1), (4.9)

where yk is the observation (or measurement) of the output and Hk x̂k |k−1 is
the predicted output (sometimes referred to as ŷk |k−1). Recall from Equation
4.1b, the observation (or measurement) of the output yk at time step k is
based on the previous time step k − 1, defining it as

yk � Hk x̂k |k−1 + vk ,

where vk is the "innovation." The "innovation" is also known as the mea-
surement noise vector, which is associated with the measurement noise
covariance matrix Rk . In general, the measurement noise v is normally dis-
tributedwithmean zero andvariance R, so v ∼ N(0, R). In this case, since the
process noise for a given time step vk is a vector, the variance R for that same
time step is a covariancematrix Rk called the process noise covariancematrix.

Looking back at Equation 4.9, we can analyze how the measurement

Extended Kalman Filter Algorithm 31

output yk differs from the predicted output ŷk |k−1:

yk − ŷk |k−1 � Hk x̂k |k−1 + vk − Hk x̂k |k−1

� vk .

Therefore, the difference between the measurement output and the
predicted output in Equation 4.9 is vk , or the "innovation." As was just
mentioned, the "innovation" is also known as the measurement noise. Since
the measurement output and the predicted output only differ by the mea-
surement noise, the corrected state vector x̂k in Equation 4.9 is updated
by an amount that is equivalent to scaling the measurement noise by the
Kalman gain matrix Kk .

In a similar way, we also update the state error covariance matrix by

Pk � (I − KkHk)Pk |k−1 ,

where I is the identity matrix.

To help solidify the extended Kalman Filter algorithm, it is important to
go through an example. In the following chapter, I provide examples of how
the EKF algorithm estimates the states of three different systems along with
the implementation for these examples.

Chapter 5

EKF State Estimation

In order to implement the EKF algorithm to estimate state values, I use
source code from [8] as a foundation as well as the built-in MATLAB ex-
tendedKalmanFilter function. In "Chapter 11.4: Examples of non-linear
fitting" of [8], there is source code for implementing the EKF algorithm on an
example originally proposed by [11], which is a nonlinear system. I use this
provided code as a basis for all of my implementations of EKF, except for one.

In this chapter, I go through three different implementations. The first
implementation of EKF estimates the state of a linear system, which is
provided in [8]. The second implementation of EKF also estimates a state
variable but on a nonlinear system. For this nonlinear system, I use the
provided code from [8]. The last implementation estimates the states of
another nonlinear system, but this last one represents a type 2 diabetes
physiological model consisting of six differential equations.

The code from [8] consists of two functions: sim_gss and ekf_gss.
The first function, sim_gss, simulates Gaussian data for the system, which
consists of state function(s) and measurement function(s). As input, it takes
the variance of the process noise Q, the variance of the measurement noise R,
the mean m0, the variance P0, and the number of values produced N. For
any system, Q and R are single-valued inputs. The dimensions of m0 and
P0 depend on the system. In general, if the system consists of n equations,
then m0 is a vector of length n and P0 is an n × n matrix. The results of
sim_gss represent true values for the state(s) as well as themeasurement(s).

The second function, ekf_gss, implements the EKF algorithm and pro-

34 EKF State Estimation

duces estimates for the given system. It takes in the same inputs as sim_gss
with an additional two inputs, which are the outputs of sim_gss. The two
inputs are the simulated data for the state variable(s) x and the simulated
data for the measurement(s) z. The dimensions of x and z depend on the
system. If the system has a state equations and b measurement equations,
then x is a N × a matrix and z is a N × b matrix, where N (as mentioned
before) represents the number of values produced. The results of ekf_gss
are the EKF estimates for the state(s) and the measurement(s).

In addition to the code from [8], I also use MATLAB’s pre-existing
extendedKalmanFilter function to implement EKF on the biological
model. The MATLAB extendedKalmanFilter function takes as input
a function StateTransitionFcn, a function MeasurementFcn, a vector
InitialState, a vector or matrix MeasurementNoise, and a square
matrix ProcessNoise.

StateTransitionFcn calculates the state vector of the system at time
step k given the state vector at time step k − 1. MeasurementFcn calculates
the output measurement vector of the system at time step k given the sate
vector at time step k. InitialState represents the initial state values
based on the user’s knowledge of the system. Therefore, it is a vector with
length n, where n represents the number of states in the system. Measure-
mentNoise represents the measurement noise covariance. It is a scalar
when HasAdditiveMeasurementNoise is set to true and a matrix when
HasAdditiveMeasurementNoise is set to false. If it is a matrix, then its
dimensions are v × v, where v represents the number of measurement noise
terms. ProcessNoise represents the process noise covariance, and it is a
square matrix with dimensions w × w, where w represents the number of
process noise terms.

Using the pre-existing MATLAB function extendedKalmanFilter, I
estimate states for a biological model, specifically the T2D model discussed
in chapter 1. I choose to use this method rather than the method proposed
in [8] because the biological model is complex, which would make it diffi-
cult to implement using the method in [8]. Luckily, it can be conveniently
implemented using the MATLAB function extendedKalmanFilter.

The code corresponding to this chapter can be found in the following
GitHub repository: https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/

Linear System 35

master/Extended_KFs/. For the linear system, the code is in the subfolder
Bolviken_Ex7. The code corresponding to the nonlinear system is in the
subfolder Bolviken_Ex5. The type 2 diabetes biological model’s code is
located in the subfolder Albers.

5.1 Linear System

Consider the following linear system proposed in [8]:

x(k) � ax(k − 1) + w(k − 1) (5.1a)
z(k) � x(k) + v(k), (5.1b)

where a is a constant equal to 1.

The simulated data function sim_gss simply rewrites the system so that
it takes in values and passes it through the system to produce simulated true
values for both the states x and the measurements z. The input values were
guessed to be the following: Q � 0.01, R � 0.02, N � 100, m0 � 0, P0 � 25,
and N � 50.

Because the initial values and noise were produced randomly, every time
sim_gss is run a different dataset is produced, even if the input values are
the same. Consequently, for reproducibility purposes, I include the dataset I
used to run the next function in the GitHub repository mentioned earlier.

The ekf_gss implements EKF on the system. The first two inputs, x
and z, were the outputs of sim_gss and represent what the algorithm is
measuring. These results can be found in the GitHub repository mentioned
earlier. The other input values are the same as the inputs for sim_gss. The
resulting EKF estimation for the states x and z are depicted in Figure 5.1.

In Figure 5.1, there are two plots, the left for the x state and the right for
the z state. For both plots, the true values (simulated data) for each state are
in red while the EKF estimates are in blue. By looking at these plots, the EKF
algorithm seems to perform fairly well in estimating states for this system.
The EKF estimates seem to follow closely to the true values. Consequently,
this example suggests that EKF performs well when estimating states of
linear systems. This leads us to wonder the following: does EKF perform
equally as well when estimating states of nonlinear systems?

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/

36 EKF State Estimation

Figure 5.1 Results of EKF implementation of System 5.1. The true solutions
for states x(k) and z(k) are depicted by the red curves, and the EKF estimates
by the blue curves. In this example, EKF produces a reasonable approximation
for the true solution (errors and simulated data not shown). Code to reproduce
figure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Extended_KFs/Bolviken_Ex7/

5.2 Nonlinear System

Consider the following nonlinear system proposed in [11]:

x(k) � 0.5x(k − 1) + 25x(k − 1)
1 + x2(k − 1) + 8 cos (1.2(k − 1)) + w(k − 1) (5.2a)

z(k) � x2(k)
20 + v(k). (5.2b)

Like the linear example in the previous section, the simulated data
function sim_gss simply rewrites the system so that it takes in values and
passes it through the system to produce simulated true values for both the
states x and the measurements z. The input values were provided in [8]:
Q � 10, R � 1, m0 � 0, P0 � 1, and N � 50.

The ekf_gss implements EKF on the system. The first two inputs, x
and z, were the outputs of sim_gss and represent what the algorithm is
measuring. These results can be found in the GitHub repository mentioned
earlier. The other input values are the same as the inputs for sim_gss. The
resulting EKF estimation for the states x and z are depicted in Figure 5.2.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex7/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex7/

Nonlinear System 37

Figure 5.2 Results of EKF implementation of System 5.2. The true solutions
for states x(k) and z(k) are depicted by the red curves, and the EKF estimates by
the blue curves. In this example, EKF does not produce as accurate approxima-
tions for the true solution as System 5.1 (errors and simulated data not shown).
This is likely because System 5.2 is highly nonlinear. Code to reproduce fig-
ure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Extended_KFs/Bolviken_Ex5/

Figure 5.2 consists of two plots, the left for the x state and the right for
the z state. For both plots, the true values (simulated data) for each state are
in red while the EKF estimates are in blue. By looking at these plots, the EKF
algorithm seems to have mediocre performance in estimating states for this
system. The EKF estimates seem to follow the true values for the most part,
but they seem to have unusual peaks for certain time steps. Consequently,
this example suggests that EKF performs with moderate accuracy when
estimating states of nonlinear systems.

Comparing these results to Figure 5.1, it seems that EKF performs better
on linear states compared to nonlinear states. This was mentioned earlier
in chapter 3 and chapter 4. We can further investigate EKF estimation
on nonlinear systems by applying EKF to the states on a highly nonlinear
biological system. Given the performance of EKF on System 5.2, we expect
the results for the next system to also perform worse than System 5.1, or
maybe even worse given that the next system is highly nonlinear.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex5/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Bolviken_Ex5/

38 EKF State Estimation

5.3 Type 2 Diabetes Physiologcial Model

The third system of differential equations that I implement is a nonlinear
system that consisted of six ordinary differential equations (ODEs). This
system of ODEs is taken from the equations David J. Albers used to model
glucose/insulin through a MATLAB implementation [5]. It is supposedly
the equations in the population physiology model from [6]. This model
simulates glucose-insulin physiology among individuals with T2D. As men-
tioned in chapter 1, this model is based on an earlier model proposed in [21].

However, there seems to be some discrepancy between the two systems
of ODEs. In particular, the two ODEs that represent the change in glucose
do not seem to be the same. Interestingly, [5] seems to implement the six
DEs in [21] rather than their own paper. Currently, I do not why these two
systems differ and how significantly they differ. For now, we only consider
the DEs from [21].

Typically, we first have to rewrite our system of DEs such that it is
in state-space format. However, this glucose-insulin physiology model is
already in state-space form.

Type 2 Diabetes Physiologcial Model 39

The six ODEs are as follows:

dIp

dt
�

Rm

1 − exp(−G
Vg C1

+ a1)
− E

(
Ip

Vp
− Ii

Vi

)
−

Ip

tp

dIi

dt
� E

(
Ip

Vp
− Ii

Vi

)
− Ii

ti

dG
dt

�
Rg

1 + exp(0.29h3
Vp−7.5)

+ Ig −Ub

(
1 − exp

(
−G

C2Vg

))
− 90

1 + exp(−1.772 log
(
Ii

(
1

Vi
+

1
Eti

))
+ 7.76)

+ 4

dh1
dt

�
3(Ip − h1)

td

dh2
dt

�
3(h1 − h2)

td

dh3
dt

�
3(h2 − h3)

td

The thirty different constants that appear in the system of ODEs can be
found in Appendix B. These constants were taken from [6].

This set of six ODEs are then used to create the state vector x̂, where the
state vector is

x̂ �



Ip
Ii
G
h1
h2
h3


,

where Ip represents plasma insulin, Ii represents remote insulin, G repre-
sents glucose, and the last three states represent different delayed feeding
cycles. By feeding cycle, we mean an individual’s eating habits. Therefore,
this system explores three different possible eating habits. In the system, h1
represents the first stage linear filter feeding cycle, h2 represents the second
stage linear filter feeding cycle, and h3 represents the third stage linear filter

40 EKF State Estimation

feeding cycle.

In order to determine the states based on the system of ODEs, we use
the MATLAB ODE-solver called ode45, which takes in a DE as input and
returns the solution to the DE. Consequently, when applying ode45 to the
T2D model we get the state vector x̂.

With the state vector for the glucose-insulin physiology system, we can
create the StateTransitionFcn and the MeasurementFcn that will be
fed as inputs into the extendedKalmanFilterMATLAB algorithm. We
set the MeasurementFcn to output only the third element in the state vector,
which represents glucose. By doing this, the EKF algorithm only measures
glucose. This is because we mainly care about the change in glucose lev-
els, so we choose to decrease computational cost by onlymeasuring one state.

Additionally, we set the InitialState vector to be the initial values
that were used in [21]. This has the initial values as

[200, 200, 12000, 0.1, 0.2, 0.1].

In other words, we set the plasma insulin to be 200 mU/min, remote insulin
to be 200 mU/min, glucose to be 12000 mU/min, the first stage linear filter
to be 0.1 mU/min2, the second stage linear filter to be 0.2 mU/min2, and
the third stage linear filter to be 0.1 mU/min2.

The MATLAB algorithm also has the capability to add an additional
input to represent noise, called MeasurementNoise and ProcessNoise.

In a brief tangent, I take a moment to explain the difference between mea-
surement noise and process noise, which are often variables incorporated
in systems and models. Both are key components in accounting for noise,
though they represent very different ways in which noise can enter a system.
Measurement noise accounts for the uncertainty in the data measurements,
whereas process noise accounts for the uncertainty in the system or model.

In this example, we let the measurement noise be additive, so

ŷk � x̂k + v̂k .

Since the measurement noise is additive, we must be sure to set HasAddi-
tiveMeasurementNoise to be true. The measurement noise vector v̂k

Type 2 Diabetes Physiologcial Model 41

has the same dimensions as the state vector x̂k . We set v̂k to be a vector that
consists of one arbitrarily-chosen value, 5. We chose this value because it
adds sufficient noise to the state values for glucose, which are on the scale
of a hundred. This gets input as the MeasurementNoise. Since we let
measurement noise be additive, we must also set HasAdditiveMeasure-
mentNoise in the UKF algorithm to be true.

For ProcessNoise, the input must be a matrix with dimensions n × n,
where n represents the number of states there are. In this example, the
values for ProcessNoise were arbitrarily chosen, though intentionally
chosen to be on a similar scale as the MeasurementNoise. As a result, the
input for ProcessNoise is

0.02 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.04 0 0 0
0 0 0 0.2 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.01


Now, we have all the inputs to implement the MATLAB extended-

KalmanFilter function. This process starts by creating simulated data
measurements that incorporate some random noise that is based on clean
simulated data that represents the "true" values. The noisy simulated data
represents the "measured" data, which was created by adding a randomly-
determined shift to values that were generated using the DEs. Then, we
call the extendedKalmanFilter function for each measured data point
to update the state and covariance based on the previous estimation and the
latest measured data point, which produce the "EKF estimate" values.

In Figure 5.3, we can see the results of applying the EKF algorithm to
this T2D model. Rather than displaying all six states in the model, I only
graph the results of glucose. This is because the algorithm only measures
the change in glucose levels, as mentioned earlier. The graph displays the
change in glucose levels in milligrams per liter over 1200 minutes. The
measured data (in magenta dotted curve) is somewhat noisy while the true
data (in red solid curve) is smooth. Looking at the results, it seems that
the values estimated by the EKF algorithm (in blue dashed curve) are ac-
curate at predicting the glucose levels as well as correctly smoothing the data.

42 EKF State Estimation

Figure 5.3 Results of EKF implementation for T2Dmodel proposed in [6]. The
true solution for the glucose state is depicted by the solid red curve, the mea-
sureddata (withnoise) is depictedby thedottedmagenta curve, and theEKFesti-
mates by the dashed blue curve. In this example, EKF produces a reasonable ap-
proximation for the true solution. The results for this nonlinear system seem to
be better than the other nonlinear system (System5.1). This could be due to the
useofMATLAB’sbuilt-inextendedKalmanFilter function rather thanman-
ually calculating each step. Code to reproduce figure available at https://github.
com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/

We can further assess the performance of the EKF algorithm by analyzing
the measurement residuals (or innovation) of the velocity estimation. Recall
that a residual essentially represents the error in a result. In this case, a
residual is calculated by finding the difference between the noisy measure-
ment value and the algorithm’s estimated value. In this case, the algorithm
is EKF, so the estimated value would be the value that EKF produces as an
estimate of the state(s). Mathematically, this can be written as

measurement residual � measurement value − estimated value. (5.3)

The resulting measurement residuals are depicted in Figure 5.4. From
this plot, the residuals suggest that the EKF estimation performs fairly well.
This is because the residuals generally have a small magnitude, zero mean,
and no autocorrelation (except at zero lag). Looking at Figure 5.4, we see
that the residuals range between −20 and 20 centered around 0, which
indicates a fairly small magnitude (considering glucose is in the scale of 100)
as well as zero mean. We can infer that the residuals lack autocorrection if

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/

Type 2 Diabetes Physiologcial Model 43

they appear randomly distributed and without a pattern, which they do.
Consequently, the EKF algorithm seems to perform fairly well for the type 2
diabetes biological model.

Figure 5.4 Measurement residuals of Albers’ model EKF estimates. Note: mea-
surement residual is defined in Equation 5.3. The residuals suggest that EKF
is performing well on this system because they have a relatively small mag-
nitude, zero mean, and no atuocorrelation. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/
Extended_KFs/Albers/

Interestingly, these results seem to contradict the original hypothesis that
EKF would not accurately estimate states for such a highly nonlinear system.
This could be a result of using MATLAB’s built-in extendedKalmanFil-
ter algorithm. Recall that the we apply EKF to System 5.2 by manually
calculating each step, which may contribute to error. Unfortunately, we do
not know MATLAB’s encoding for its extendedKalmanFilter function,
so cannot determine how this function differs from the other EKF imple-
mentation. Though, considering the performance of EKF on the nonlinear
system, System 5.2, we may want to pursue another type of Kalman filter.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Albers/

44 EKF State Estimation

Recall that my goal is to use Kalman filtering to accurately estimate states
and parameters of biological models, particularly diabetes models. These
models are often nonlinear, so EKF may not be the best fit. As mentioned
in chapter 3, the unscented Kalman filter may be a better alternative for
nonlinear systems. In the following chapters, I discuss the unscentedKalman
filter more.

Chapter 6

Unscented Kalman Filter

The unscented Kalman filter is a type of Kalman filter that, like the EKF,
has a state distribution that is represented by a Gaussian random variable.
The UKF is distinguished from other KFs by its use of the unscented trans-
formation (UT), which was first introduced by Jeffrey Uhlmann in 1995
and further developed by Eric A. Wan and Rudolph van der Merwe [10].
Essentially, the UT attempts to completely capture the first two moments of
the joint density in both the prediction and the correction steps of the KF. In
other words, the UT is a method used to calculate the statistics of a random
variable that is transformed nonlinearly [22]. It does so by deterministically
sampling points from the joint density, applying the nonlinear dynamics to
these points [10].

In other words, the UKF’s state distribution is specified using a minimal
set of carefully chosen sample points, which are called "sigma points" [22].
The sigma points completely capture the true mean and covariance of the
state distribution. Consequently, when it is propagated through the true
nonlinear system, it captures the posterior mean and covariance accurately
to the second order linearization for any nonlinearity [22]. This process can
be visually represented through Figure 6.1.

Figure 6.1 visualizes in two-dimension how the UT differs from other
sampling methods that also attempt to accurately propagate the distribu-
tion of data. The left (blue) visualization shows the distribution of the

46 Unscented Kalman Filter

Figure 6.1 Visualization of UT from [22]. First image (le�) is the actual distri-
bution of the data as it is passed through a nonlinear system. Second (middle)
image is the distribution of the data a�er it is passed through first-order lineariza-
tion of a nonlinear transformation, and the third (right) image is the distribution
of the data a�er it goes through UT of a nonlinear system.

actual data before and after it is propagated through the nonlinear system
y � f (x). Before the passing through the system, the data has a true mean
and covariance associated with the distribution. After, the distribution of
the data is different and, thus, the truemean and covariance have also shifted.

The middle (black and pink) visualization in Figure 6.1 represents how
using a linearization approach, such as EKF, propagates the distribution
of the data. The true distribution is illustrated in black before and after
it is propagated through the system. In this approach, the system is ap-
proximated with a linearization ȳ � f (x̄), which produces an approximate
mean f (x̄) and approximate covariance ATPA that is depicted in pink. As

Unscented Kalman Filter Algorithm 47

Variable Description Dimension
x state vector n × 1
y observation vector ny × 1
u input vector nu × 1
w process noise vector n × 1
v measurement noise vector ny × 1
F state transition matrix n × n
G input system matrix n × nu

H observation matrix ny × n

Table 6.1 Discrete time system variables for unscented Kalman filter.

one can visually see, the linear approximation produces a distribution that
is similar to the true distribution, but these approximations of the mean
and covariance do not alignwellwith the truemean and covariance (in black).

The right (black, red, and green) visualization in Figure 6.1 displays
how the UT propagates the distribution of data. As mentioned earlier, UT
strategically chooses sigma points (red points) in the original data that act
as representative points of the distribution of the data. Then, UT passes
these points through the nonlinear systemY � f (X), which produces the
transformed sigma points in red. In doing so, UT produces a mean and
covariance (in green) that closely reflect the true mean and true covariance
(in black).

6.1 Unscented Kalman Filter Algorithm

Similar to the KF algorithm, the unscented Kalman filter is applied to
systems that can be discretized into state space format, which is defined in
System 6.1, where the variable are defined in Table 6.1 [19].

xk � Fk−1xk−1 + Gk−1uk−1 + wk−1 (6.1a)
yk � Hk xk + vk . (6.1b)

Additionally, like KF, UKF also consists of two main steps: the prediction
step and the correction step. Therefore, we can visualize UKF using the
same diagram that we did for the KF algorithm in Figure 3.1. As mentioned

48 Unscented Kalman Filter

before, the UKF algorithm is a derivative of the KF algorithm such that it
utilizes the UT, applying it in the prediction step. Consequently, a diagram
to represent the overall process of the UKF algorithm would not differ from
that of the KF algorithm. Instead, the difference between the two algorithms
can be seen in the specific steps and formulas used in the UKF algorithm.

Like the KF algorithm, we must first write the system of DEs in state-
space form before implementing the UKF algorithm. Recall that we can do
this by using the method explained in chapter 3 and through System 3.3.
With a state-space system of DEs, we can move on to the prediction step of
the UKF algorithm.

6.1.1 Prediction Step

First, we must initialize our state vector x̂ and state error covariance
matrix P. To determine the initial state vector x̂0, we simply calculate the
mean:

x̂0 � E[x0],

where E[x0] is the expected value of x0, which was defined earlier in Equa-
tion 3.11. To determine the initial state error covariance matrix P, we can
use the same calculation as Equation 3.10.

With the initial state vector and state error covariance matrix, we can
now calculate the sigma points, which are sample points that capture the
true mean and covariance of the state distribution. First, calculate the scaling
parameter λ as

λ � α2(n + κ) − n ,

where α and κ are constants defined in Table 6.2, and n is the dimension
of the state vector x̂. More specifically, α and κ are scalars that represent
the spread of the sigma points around the mean state value. While α is a
scalar in the range 0 < α ≤ 1, κ is a scalar in the range 0 ≤ κ ≤ 3. With λ
calculated, we can now create a matrix X of 2n + 1 sigma points. The sigma
points Xi are calculated by

Xi � x̂ + (
√
(n + λ)P)i i � 1, . . . , n

Xi � x̂ − (
√
(n + λ)P)i−n i � 1, . . . , 2n

Unscented Kalman Filter Algorithm 49

Constant Value Representation

α 0 < α ≤ 1
spread of sigma points around

mean state value

κ 0 ≤ κ ≤ 3
spread of sigma points around

mean state value

β 0 ≤ β

characterization of state distribution
used to adjust weights of transformed

sigma points

Table 6.2 Constants for unscented Kalman filter

Then, use the methodology described in [22] to determine the weights
for the state filter. The weighting schemes W for determining the mean state
estimates m and the covariances c are

W (m)0 �
λ

n + λ
, i � 0

W (c)0 �
λ

n + λ
+ (1 − α2

+ β), i � 0

W (m)i � W (c)i �
λ

2(n + λ) , i � 1, . . . , 2n

where β is a constant defined in Table 6.2. This constant characterizes the
distribution of the states and is used to adjust the weights of the transformed
sigma points. β is a scalar greater than or equal to 0. It is important to note
that the weights can be positive or negative and must sum to one [10]. Now,
we have the sigma point set, which consists of the sigma points as well as
the weights:

S � {Xi ,W
(j)
i | i � 0, . . . , 2n , j ∈ (m , c)}.

For more context on the constants, α determines the spread of the sigma
points around the mean state value. It is typically a small positive value.
This means that smaller α values correspond to sigma points being closer to
the mean state. κ is a scaling parameter that is usually set to zero. Like α,
smaller κ values correspond to sigma points being closer to the mean state.
β incorporates prior knowledge of the distribution of the state. For Gaussian
distributions, an optimal β value is two [16].

Unlike the KF algorithm, the UKF algorithm requires more computation
in the prediction step. In particular, the UKF algorithm calls for a non-

50 Unscented Kalman Filter

linear transformation. With our sigma point set, we apply the nonlinear
transformation f to each sigma points. Mathematically, this means

Yi � f (Xi), i � 0, . . . , 2n.

With the new set of nonlinear transformed sigma points, we have all the
components we need to execute the correction step of the UKF algorithm.

6.1.2 Correction Step

The correction step of the UKF algorithm first calls for a re-calculation of
the mean ŷ, covariance Py , and cross covariance Px y , respectively, for each
time step k

ŷ �

2n∑
i�0

W (m)i Yi

Py �

2n∑
i�0

W (c)i (Yi − ŷ)(Yi − ŷ)T + Rn

Px y �

2n∑
i�0

W (c)i (Xi − x̂)(Yi − ŷ)T ,

where Rn is the assumed measurement noise. Using our covariance and
cross covariance from the transformed sigma points, we can compute the
Kalman gain matrix for a given time step k:

Kk � Px yP−1
y .

With the Kalman gain matrix at time step k, we can update the state vector

x̂k � x̂k |k−1 + Kk(yk − ŷk |k−1)

as well as the state error covariance matrix

Pk � Pk |k−1 − KkPyK−1
k .

To help solidify the unscented Kalman filter algorithm, it is important to
go through an example. In the following chapter, I provide three different
examples of the UKF algorithm and how to implement them to estimate
state values of dynamical systems.

Chapter 7

UKF State Estimation

In order to implement the UKF algorithm to estimate state values, I use
MATLAB’s pre-existing unscentedKalmanFilter function. This func-
tion takes in the same inputs as the MATLAB extendedKalmanFilter
function. Recall that the inputs are a function StateTransitionFcn, a
function MeasurementFcn, a vector InitialState, a vector or matrix
MeasurementNoise, and a square matrix ProcessNoise.

StateTransitionFcn calculates the state vector of the system at time
step k given the state vector at time step k − 1. MeasurementFcn calculates
the output measurement vector of the system at time step k given the sate
vector at time step k. InitialState represents the initial state values
based on the user’s knowledge of the system. Therefore, it is a vector with
length n, where n represents the number of states in the system. Measure-
mentNoise represents the measurement noise covariance. It is a scalar
when HasAdditiveMeasurementNoise is set to true and a matrix when
HasAdditiveMeasurementNoise is set to false. If it is a matrix, then its
dimensions are v × v, where v represents the number of measurement noise
terms. ProcessNoise represents the process noise covariance, and it is a
square matrix with dimensions w × w, where w represents the number of
process noise terms.

Alongwith this pre-existingunscentedKalmanFilter function,MAT-
LAB provides an example of an implementation of Van der Pol’s equation
that came with public source code [17]. Basing my implementation on
this example, I was able to implement two different systems of differential
equations. One was a simple linear system while the other was a nonlinear

52 UKF State Estimation

system consisting of six differential equations.

The code corresponding to this chapter can be found in the following
GitHub repository: https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Unscented_KFs/. For the nonlinear system, Van der Pol’s equation, the
code is in the subfolder MatLab_vdp_Example. The code corresponding
to the linear system, the kinematic equations, is in the subfolder Kinematic.
The type 2 diabetes physiological model’s code is in the subfolder Albers.

7.1 Nonlinear System: Van der Pol Equation

As mentioned, MATLAB provides an example for how to implement
the pre-existing unscentedKalmanFilter function [17]. In other imple-
mentations of the UKF algorithm, we use this source code as a foundation.
The example uses Van der Pol’s equation to implement UKF. Physically,
this DE describes the dynamics of self-sustaining oscillations. One physical
example of these oscillations is the heartbeat. In fact, Van der Pol’s equation
is often used to model the heartbeat. Mathematically, Van der Pol’s equation
is written as

d2x
dt2 − µ(1 − x2)dx

dt
+ x � 0,

where x is position, dx
dt is velocity, and d2x

dt2 is acceleration, and µ is the
damping constant. First, we must re-write this DE in state-space form.
In order to do so, we can create a state vector that represents this DE
and, thus, describes the oscillations of an object. Because velocity dx

dt and
acceleration d2x

dt2 appear in the equation, we must include both in the state
vector. Therefore, the state vector for the unscented Kalman filter is defined
as

x̂k �

[dx
dt

d2x
dt2

]
�

[dx
dt

µ(1 − x2) dx
dt − x

]
.

With the state vector for Van der Pol’s system, we now have the State-
TransitionFcn and the MeasurementFcn that will be fed as inputs
into the unscentedKalmanFilterMATLAB algorithm. We set the Mea-
surementFcn to output only the first element in the state vector, which

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/

Nonlinear System: Van der Pol Equation 53

represents velocity. We do this because the acceleration is based on the
change in velocity, so we do not find it necessary to create measurement
values for acceleration. By doing this, the UKF algorithm only measures
velocity. Physically, this would represent an experiment where only velocity
is measured rather than position, velocity, and acceleration.

Additionally, the InitialState is set to [2, 0], which is given by MAT-
LAB. This can be interpreted as setting the initial velocity to 2 meters per
second and the initial acceleration to 0 meters per second2. The MATLAB
algorithm also has the capability to add an additional input to represent
noise, called MeasurementNoise and ProcessNoise.

In a brief tangent, I take a moment to explain the difference between mea-
surement noise and process noise, which are often variables incorporated
in systems and models. Both are key components in accounting for noise,
though they represent very different ways in which noise can enter a system.
Measurement noise accounts for the uncertainty in the data measurements,
whereas process noise accounts for the uncertainty in the system or model.

Let us consider a scenariowhere there is noise collected based on the state.
Then, this noise would cause a slight uncertainty in the state measurement.
As a result, we must account for this measurement noise as a vector v̂ that is
added to the state x̂. Thus, the measurement noise function is multiplicative:

ŷk � x̂k(1 + v̂k).

Since the measurement noise is multiplicative, we must also be sure to set
HasAdditiveMeasurementNoise as false. The measurement vector v̂k
has the same dimensions as the state vector x̂k . In this example, v̂k is set as a
vector that consists of one value, which is 0.2. This is the value that is input
as the MeasurementNoise.

For ProcessNoise, the input must be a square matrix with dimensions
n × n, where n represents the number of states there are. In this example,
the values for ProcessNoise are set as[

0.02 0
0 0.1

]
It is important to note that the values for ProcessNoise are on a similar
scale as the MeasurementNoise. This is because a disparity in these two

54 UKF State Estimation

inputs would cause unusual outputs or even overfitting.

With all the inputs, we can now implement the MATLAB unscent-
edKalmanFilter function. Rather than collecting data measurements,
data measurements were simulated such that they incorporate some ran-
dom noise, of which is based on clean simulated data that represents the
"true" values. The noisy simulated data represents the "measured" data,
which was created by scaling values that were generated using the DEs by a
randomly-determined scalar. Then, for each measured data point, we call
the unscentedKalmanFilter function to update the state and covariance
based on the previous estimation and the latest measured data point, which
produce the "UKF estimate" values.

In Figure 7.1, we can see the results of applying the UKF algorithm to
the Van der Pol system of DEs. The first graph represents the velocity of
the oscillations dx

dt , and the second graph represents the acceleration of the
oscillations d2x

dt2 . As one can see, the measured data (in yellow) is quite noisy
while the true data (in blue) is smooth. There is no measured data for the
acceleration because we did not have the MeasurementFcn produce values
for acceleration.

Looking at both graphs, it is evident that the values estimated by the
UKF algorithm (in orange) is not only accurate but also smooths the data.
From this example of Van der Pol’s oscillation, we see the accurate as well as
clean results of applying the UKF algorithm to a dynamical system.

We can further assess the performance of theUKF algorithm by analyzing
the measurement residuals (or innovation) of the velocity estimation. Recall
that residuals are explained in chapter 5 and Equation 5.3. The resulting
measurement residuals are depicted in Figure 7.2.

From this plot, the measurement residuals suggest that the UKF esti-
mation performs fairly well. This is because the residuals generally have a
small magnitude, zero mean, and no autocorrelation (except at zero lag).
Looking at Figure 7.2, we see that the residuals range between −2 and 2
centered around 0, which indicates a small magnitude as well as zero mean.
We can infer that the residuals lack autocorrection if they appear randomly
distributed and without a pattern, which it does. Consequently, the UKF

Linear System: Kinematic Equation 55

Figure 7.1 Results of UKF implementation of Van der Pol equation. The
true solution for the states x1 (velocity) and x2 (acceleration) are depicted
by the blue curves, the measured data (with noise) for velocity by the yellow
curve, and the EKF estimates for x1 and x2 by the orange curve. In this ex-
ample, UKF produces a reasonable approximation for the true solution, ac-
curately estimating and smoothing the data. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/
Unscented_KFs/MatLab_vdp_Example/

algorithm seems to perform fairly well for the Van der Pol equation.

Using this example, I now have the framework to implement other
dynamical systems - both simple and complex.

7.2 Linear System: Kinematic Equation

The first system of differential equations that I implemented was a simple
linear system - the kinematic equations. The system of DEs for the kinematic
equations can be derived from a second-order differential equation:

h′′(t) � −g , (7.1)

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/

56 UKF State Estimation

Figure 7.2 Measurement residuals (or innovation) of Van der Pol equationUKF
estimates. Note: measurement residual is defined in Equation 5.3. The residu-
als suggest that UKF performs well on this system because they have small mag-
nitudes, zero mean, and no atuocorrelation (except at zero lag). Code to repro-
duce figure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/
tree/master/Unscented_KFs/MatLab_vdp_Example/

where h represents the height of an object in meters and g is the gravitational
constant, 9.80665 meters per second2. Equation 7.1 indicates that the second
derivative of height with respect to time t is equivalent to acceleration due
to gravity.

Before applying the UKF algorithm to this DE, we have to rewrite the
system in discretized state-space form, as explained in 3. We can do so
using the Euler method, which will result in a state-space format system
that resembles System 3.3. First, we will rewrite Equation 7.1 as a difference
quotient.

h′′(tk−1) �
h′(tk) − h′(tk−1)

∆t
� −g.

Consider only the first derivative and the gravitational constant, then we

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/MatLab_vdp_Example/

Linear System: Kinematic Equation 57

can simplify this to

h′(tk) � h′(tk−1) − g∆t
h′k � h′k−1 − g∆t .

This first-order DE represents the velocity of an object, which seems to be an
implicit equation. We can integrate this to get the position of an object:

h(tk) � h(tk−1) + h′(tk−1)∆t − 1
2 g(∆t)2

hk � hk−1 + h′k−1∆t − 1
2 g(∆t)2.

With these kinematic expressions, we have two equations that describe the
motion of an object. Now, we can create a state vector that describes the
motion, or kinematics, of an object. Since the velocity equation h′k appears in
the position equation hk , we must include both the position and the velocity
equations in the state vector. Therefore, the state vector for the unscented
Kalman filter is defined as

x̂k �

[
hk
h′k

]
�

[
hk−1 + h′k−1∆t − 1

2 g(∆t)2
h′k−1 − g∆t

]
.

The discretization of Equation 7.1 is explained in more detail in [19].
With the state vector for the kinematic system, we now have the State-
TransitionFcn and the MeasurementFcn that will be fed as inputs into
the unscentedKalmanFilterMATLAB algorithm. We set the Measure-
mentFcn to output only the first element in the state vector, which represents
velocity. By doing this, the UKF algorithm onlymeasures velocity. Physically,
this would represent an experiment where only velocity is measured rather
than velocity and acceleration.

Additionally, we set the InitialState to [2, 0], using the same initial
values as the MATLAB example for the Van der Pol oscillator. With these
initial values, it represents setting the initial position to be 2 meters and
the initial velocity to be 0 meters per second. The MATLAB algorithm
also has the capability to add additional inputs, MeasurementNoise and
ProcessNoise, to represent noise.

Similar to the previous example of Van der Pol’s equation, let us consider
a scenario where there is noise collected based on the position. Then, this

58 UKF State Estimation

noise would cause a slight uncertainty in the position measurement. As
a result, we must account for this measurement noise as a vector v̂ that is
added to the position ĥ because it only shifts the position slightly. Thus, the
measurement noise is additive:

ŷk � ĥk + v̂k .

Since the measurement noise is additive, we must be sure to set HasAddi-
tiveMeasurementNoise to be true. The measurement vector v̂k has the
same dimensions as the state vector x̂k . Like the Van der Pol example, we
set v̂k to be a vector that consists of one value, which we arbitrarily choose
to be 0.2. This gets input as the MeasurementNoise.

For ProcessNoise, the input must be a square matrix with dimen-
sions n × n, where n represents the number of states there are. In this
example, we set the values for ProcessNoise to be the same values as the
ProcessNoise in the previous example:[

0.02 0
0 0.1

]
Now, we have all the inputs to implement the MATLAB unscented-

KalmanFilter function. Rather than use real data measurements, we
create simulated data measurements that incorporate some random noise, of
which is based on clean simulated data that represents the "true" values. The
noisy simulated data represents the "measured" data, which was created by
adding a randomly-determined shift to values that were generated using the
DEs. Then, for each measured data point, we call the unscentedKalman-
Filter function to update the state and covariance based on the previous
estimation and the latest measured data point, which produce the "UKF
estimate" values.

In Figure 7.3, we can see the results of applying the UKF algorithm to
the kinematics system of DEs. Rather than displaying both the position
and velocity, I only graph the results of velocity. This is because velocity
is a derivative of position and, thus, is dependent on position. The graph
displays the change in velocity of an object in meters per second over the
time span of five seconds. As one can see, the measured data (in yellow) is
somewhat noisy while the true data (in blue) is smooth.

Linear System: Kinematic Equation 59

Figure 7.3 Results of UKF implementation of kinematics equation. The true
solution for the velocity state is depicted by the solid blue curve, the measured
data (with noise) is depicted by the solid yellow curve, and the UKF estimates
by the solid orange curve. In this example, UKF produces a good approximation
for the true solution of velocity, accurately estimating and smoothing the data.
Code to reproduce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Unscented_KFs/Kinematic/

Looking at the results, it is evident that the values estimated by the UKF
algorithm (in orange) is not only accurate but also smooths the data. The
UKF estimate values accounts for noise while remaining accurate. From
this example of kinematics, we see the accurate as well as clean results of
applying the UKF algorithm to a simple linear system.

We can further assess the performance of theUKF algorithm by analyzing
the measurement residuals of the velocity estimation. Recall that residuals
are explained in chapter 5 and Equation 5.3. The resulting measurement
residuals are depicted in Figure 7.4.

From this plot, the measurement residuals suggest that the UKF esti-
mation performs fairly well. This is because the residuals generally have a

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/

60 UKF State Estimation

Figure 7.4 Measurement residuals (or innovation) of kinematic equation UKF
estimates. Note: measurement residual is defined in Equation 5.3. The resid-
uals suggest that UKF is performing well on this system because they have
small magnitudes, zero mean, and no atuocorrelation. Code to reproduce fig-
ure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Unscented_KFs/Kinematic/

small magnitude, zero mean, and no autocorrelation (except at zero lag).
Looking at Figure 7.4, we see that the residuals range between −8 and 6
mainly centered around 0, which indicates a small magnitude as well as
zero mean. We can infer that the residuals lack autocorrection if they appear
randomly distributed and without a pattern, which it does. Consequently,
the UKF algorithm seems to perform fairly well for the kinematic equation.

After implementing the UKF algorithm on a simple linear system, I can
move onto a more complex system.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Kinematic/

Type 2 Diabetes Physiological Model 61

7.3 Type 2 Diabetes Physiological Model

The second system of differential equations that I implement is a biolog-
ical nonlinear system that consisted of six ordinary differential equations
(ODEs). This system of ODEs is taken from the equations David J. Albers
used to model glucose/insulin through MATLAB [5]. It is supposedly the
equations in the population physiology model from [6]. This model simu-
lates glucose-insulin physiology among individuals with T2D. Asmentioned
in chapter 1, this model is based on an earlier model proposed in [21].

However, there seems to be some discrepancy between the two systems
of ODEs. In particular, the two ODEs that represent the change in glucose
do not seem to be the same. Interestingly, [5] seems to implement the six
DEs in [21] rather than their own paper. Currently, I do not why these two
systems differ and how significantly they differ. For now, we only consider
the DEs from [21].

Typically, we first have to discretize our system of DEs and rewrite the
system in state-space form. However, this glucose-insulin physiology model
is already in state-space form.

62 UKF State Estimation

The six ODEs are as follows:

dIp

dt
�

Rm

1 − exp(−G
Vg C1

+ a1)
− E

(
Ip

Vp
− Ii

Vi

)
−

Ip

tp

dIi

dt
� E

(
Ip

Vp
− Ii

Vi

)
− Ii

ti

dG
dt

�
Rg

1 + exp(0.29h3
Vp−7.5)

+ Ig −Ub

(
1 − exp

(
−G

C2Vg

))
− 90

1 + exp(−1.772 log
(
Ii

(
1

Vi
+

1
Eti

))
+ 7.76)

+ 4

dh1
dt

�
3(Ip − h1)

td

dh2
dt

�
3(h1 − h2)

td

dh3
dt

�
3(h2 − h3)

td

The thirty different constants that appear in the system of ODEs can be
found in Appendix B. These constants were taken from [6].

This set of six ODEs are then used to create the state vector x̂k , where the
state vector is

x̂k �



Ip
Ii
G
h1
h2
h3


.

where Ip represents plasma insulin, Ii represents remote insulin, G repre-
sents glucose, and the last three states represent different delayed feeding
cycles. By feeding cycle, we mean an individual’s eating habits. Therefore,
this system explores three different possible eating habits. In the system, h1
represents the first stage linear filter feeding cycle, h2 represents the second
stage linear filter feeding cycle, and h3 represents the third stage linear filter

Type 2 Diabetes Physiological Model 63

feeding cycle.

In order to determine the states based on the system of ODEs, we use
the MATLAB ODE-solver called ode45, which takes in a DE as input and
returns the solution to the DE. Consequently, when applying ode45 to the
T2D model we get the state vector x̂k .

With the state vector for the glucose-insulin physiology system, we can
create the StateTransitionFcn and the MeasurementFcn that will be
fed as inputs into the unscentedKalmanFilterMATLAB algorithm. We
set the MeasurementFcn to output only the third element in the state vector,
which represents glucose. By doing this, the UKF algorithm only measures
glucose. This is because we mainly care about the change in glucose lev-
els, so we choose to decrease computational cost by onlymeasuring one state.

Additionally, we set the InitialState vector to be the initial values
that were used in [21]. This has the initial values as

[200, 200, 12000, 0.1, 0.2, 0.1].

In other words, we set the plasma insulin to be 200 mU/min, remote insulin
to be 200 mU/min, glucose to be 12000 mU/min, the first stage linear filter
to be 0.1 mU/min2, the second stage linear filter to be 0.2 mU/min2, and
the third stage linear filter to be 0.1 mU/min2.

The MATLAB algorithm also has the capability to add an additional
input to represent measurement and process noise. Similar to the kinematic
example, we let the measurement noise function be an additive, so

ŷk � x̂k + v̂k .

Since the measurement noise is additive, we must be sure to set HasAd-
ditiveMeasurementNoise to be true. The measurement vector v̂k has
the same dimensions as the state vector x̂k . Similar to the previous two
examples, we set v̂k to be a vector that consists of one arbitrarily-chosen
value, 5. We chose this value because it adds sufficient noise to the state
values for glucose, which are on the scale of a hundred. This gets input as
the MeasurementNoise.

For ProcessNoise, the input must be a square matrix with dimensions
n × n, where n represents the number of states there are. In this example,

64 UKF State Estimation

the values for ProcessNoise are chosen to be on a similar scale as the
MeasurementNoise. As a result, the input for ProcessNoise is

0.02 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.04 0 0 0
0 0 0 0.2 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.01


Now, we have all the inputs to implement the MATLAB unscented-

KalmanFilter function. This process follows the same process as the
kinematic example, such that we create simulated data measurements that
incorporate some random noise that is based on clean simulated data that
represents the "true" values. The noisy simulated data represents the "mea-
sured" data, which was created by adding a randomly-determined shift to
values that were generated using the DEs. Then, we call the unscented-
KalmanFilter function for each measured data point to update the state
and covariance based on the previous estimation and the latest measured
data point, which produce the "UKF estimate" values.

In Figure 7.5, we can see the results of applying the UKF algorithm to
the Albers’ et al’s system of DEs. Rather than displaying all six states in the
model, I only graph the results of glucose. This is because the algorithm
only measures the change in glucose levels, as mentioned earlier. The
graph displays the change in glucose levels in milligrams per liter over 1200
minutes. The measured data (in magenta dotted line) is somewhat noisy
while the true data (in red solid line) is smooth.

Looking at the results, it seems that the values estimated by the UKF
algorithm (in blue solid line) are accurate at predicting the glucose levels as
well as correctly smoothing the data.

We can further assess the performance of theUKF algorithm by analyzing
the measurement residuals of the velocity estimation. Recall that residuals
are explained in chapter 5 and Equation 5.3. The resulting measurement
residuals are depicted in Figure 7.6.

From this plot, the measurement residuals suggest that the UKF estima-
tion performs fairly well. This is because the residuals generally have a small

Type 2 Diabetes Physiological Model 65

Figure 7.5 Results of UKF implementation of Albers et al’s equation. The true
solution for the glucose state is depicted by the solid red curve, the measured
data (with noise) is depicted by the dotted magenta curve, and the EKF esti-
mates by the solid blue curve. In this example, UKF produces a reasonable
approximation for the true solution, accurately estimating and smoothing the
data. Code to reproduce figure available at https://github.com/CassidyLe98/
Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/

magnitude, zero mean, and no autocorrelation (except at zero lag). Looking
at Figure 7.6, we see that the residuals range between −20 and 20 centered
around 0, which indicates a small magnitude (considering glucose is in
the scale of 100) as well as zero mean. We can infer that the residuals lack
autocorrection if they appear randomly distributed and without a pattern,
which they do. Consequently, the UKF algorithm seems to perform fairly
well for the type 2 diabetes system.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/

66 UKF State Estimation

Figure 7.6 Measurement residuals (or innovation) of Albers’ model UKF esti-
mates. Note: measurement residual is defined in Equation 5.3. The residuals
suggest that UKF is performing well on this system because they have a rela-
tively small magnitude, zero mean, and no atuocorrelation. Code to reproduce
figure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Unscented_KFs/Albers/

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/

Chapter 8

Methods for State and
Parameter Estimation

There are many different approaches to estimate both states and parame-
ters of models. For instance, the Schmidt-Kalman filter indirectly estimates
parameters through state estimation rather than explicitly estimating param-
eters. Another method is the state-dependent approach, which estimates
statistically dependent unknown states and parameters using a multi-step
autoregressive filtering and modeling process [10]. For Kalman filtering,
the there are two main methods proposed in [22]: joint estimation and dual
estimation.

Joint differs from dual in the number of filters required in order to
estimate both states and parameters. Additionally, joint estimation explicitly
allows for dependencies in parameters and states whereas dual estimation
assumes that cross covariances are zero. Therefore, dual estimation does
not explicitly estimate the cross covariances [10]. As a result, if there is
suspicion that states and parameters are correlated, it can be argued that
joint estimation may perform better [22].

8.1 Joint Estimation

In joint estimation, the states x and parameters a are concatenated into a
single "joint" state vector [xT

k aT
k]

T [22]. Write the state-space equation for the

68 Methods for State and Parameter Estimation

joint state as the following:[
xk
ak

]
�

[
F(xk−1 , ak−1)

Iak−1

]
+

[
wk
bk

]
(8.1)

yk � Hk

[
xk
ak

]
+ vk , (8.2)

where F is the linear or nonlinear transformation matrix, I is the identity
matrix, wk is the process noise associated with states, bk is the process noise
associated with parameters, yk is the observation, Hk is the observation
matrix, and vk is the observation noise.

Recursively apply Kalman filtering on the joint state-space defined in
System 8.1 to simultaneously estimate the states x and the parameters a [22].
Joint estimation can be applied to both UKF and EKF.

8.2 Dual Estimation

In dual estimation, the states x and parameters a are represented in
separate state-space equations. The state-space equation for the states x is
given by

xk � F(xk−1 , a) + wk−1

yk � Hk xk + vk ,

where F is the linear or nonlinear transformation matrix, wk is the process
noise associated with states, yk is the observation, Hk is the observation
matrix, and vk is the observation noise.

The state-space representation for the parameters is written as follows:

ak � ak−1 + bk

yk � F(xk−1 , ak) + wk + vk ,

where bk is the process noise associated with parameters, yk is the obser-
vation, F is the linear or nonlinear transformation matrix, wk is the process
noise associated with states, and vk is the observation noise. Note that the
state-transition for the parameter is linear. This means that nonlinearity is
restricted to the measurement equation only.

Dual Estimation 69

Recursively run two simultaneous Kalman filterings, one for the states
and one for the parameters. For each time step, themost-updated estimate for
the parameters is used in the KF estimation for states. Similarly, at every time
step, the most-updated estimate for the states is used in the KF estimation
for the parameters [22]. Dual estimation can be applied to bothUKF and EKF.

In the following chapters, I explore joint estimation in Kalman filtering
in different dynamical systems.

Chapter 9

Joint EKF State and Parameter
Estimation

In order to implement joint EKF to estimate state and parameter values, I
use the same source code that was used in chapter 5, which is taken from
[8]. More specifically, I use the provided code from "Chapter 11.4: Examples
of non-linear fitting" of this book as a basis for my implementation of joint
EKF. In this chapter, I go through one implementation using this method.
This implementation estimates both state and parameter of the same linear
system I mentioned in chapter 5.

Recall that the code from [8] consists of two functions: sim_gss and
ekf_gss. The first function, sim_gss, simulates Gaussian data for the
system, which consists of state function(s) and measurement function(s).
As input, it takes the variance of the process noise Q, the variance of the
measurement noise R, the mean m0, the variance P0, and the number of
values produced N. For any system, Q and R are single-valued inputs. The
dimensions of m0 and P0 depend on the system. In general, if the system
consists of n equations, then m0 is a vector of length n and P0 is an n × n
matrix. The results of sim_gss represent true values for the state(s) as well
as the measurement(s).

The second function, ekf_gss, implements the EKF algorithm and pro-
duces estimates for the given system. It takes in the same inputs as sim_gss
with an additionally two inputs, which are the outputs of sim_gss. The
two inputs are the simulated data for the state variables x and the simulated

72 Joint EKF State and Parameter Estimation

data for the measurements z. The dimensions of x and z depend on the
system. If the system has a state equations and b measurement equations,
then x is a N × a matrix and z is a N × b matrix. The results of ekf_gss are
the EKF estimates for the state(s) and the measurement(s).

In addition to the method used in chapter 5, I also use MATLAB’s pre-
existing extendedKalmanFilter function to implement joint EKF on a
biological model. Recall that this function takes as input a function State-
TransitionFcn, a function MeasurementFcn, a vector InitialState,
a vector or matrix MeasurementNoise, and a square matrix Process-
Noise.

StateTransitionFcn calculates the state vector of the system at time
step k given the state vector at time step k − 1. MeasurementFcn calculates
the output measurement vector of the system at time step k given the sate
vector at time step k. InitialState represents the initial state values
based on the user’s knowledge of the system. Therefore, it is a vector with
length n, where n represents the number of states in the system. Measure-
mentNoise represents the measurement noise covariance. It is a scalar
when HasAdditiveMeasurementNoise is set to true and a matrix when
HasAdditiveMeasurementNoise is set to false. If it is a matrix, then its
dimensions are v × v, where v represents the number of measurement noise
terms. ProcessNoise represents the process noise covariance, and it is a
square matrix with dimensions w × w, where w represents the number of
process noise terms.

Using the pre-existing MATLAB function extendedKalmanFilter, I
estimate states and parameters for a biological model, specifically the T2D
model discussed in chapter 1. I choose to use this method rather than the
method used from [8] because the biological model is complex and can be
conveniently implemented using the MATLAB function extendedKalman-
Filter.

The code corresponding to this chapter can be found in the following
GitHub repository: https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Extended_KFs/Joint_Estimation. For the linear system, the code is
in the subfolder Bolviken_Ex7. The code corresponding to the type 2
diabetes physiological model is in the subfolder Albers.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation

Linear System 73

9.1 Linear System

Consider the the same linear system fromEquation 5.1. We canadjust this
system from a state estimation problem to a state and parameter estimation
problem by defining a second state variable x2(k) � a. This allows us to
derive the augmented non-linear system

x1(k) � x2(k − 1)x1(k − 1) + w1(k − 1) (9.1a)
x2(k) � x2(k − 1) (9.1b)
z(k) � x2(k)x1(k) + v(k). (9.1c)

Like the previous two examples, the simulated data function sim_gss
simply rewrites the system so that it takes in values and passes it through
the system to produce simulated true values for both the states x and
the measurements z. The input values were guessed to be the following:
Q � 0.01, R � 0.02, N � 50,

m0 �
[
2 1

]
, P0 �

[
1 0
0 1

]
.

The ekf_gss implements EKF on the system. The first two inputs, x
and z, were the outputs of sim_gss and represent what the algorithm is
measuring. These results can be found in the GitHub repository mentioned
earlier. The other input values are the same as the inputs for sim_gss. The
resulting EKF estimation for the states x and z are depicted in Figure 9.1.

In Figure 9.1, there are three plots: the left displays the results for the x
state, the middle shows the results for the z state, and the right indicates the
results for the parameter a. For all three plots, the true values (simulated
data) for each state are in red while the EKF estimates are in blue. Looking
at these plots, the EKF algorithm seems to perform fairly well in estimating
states for this system because the EKF estimates for states x and z seem to
follow closely to the true values.

However, for the parameter estimation in the third plot, the EKF estimates
seem to vary significantly, though oscillating around the true value. From
the y-axis, it looks like the estimates vary by ±0.15. Further investigation
indicates that the minimum estimation is 0.7907 and maximum is 1.8273.

74 Joint EKF State and Parameter Estimation

Figure 9.1 Results of EKF implementation of System 9.1. The true solutions
for states x(k) and z(k) as well as the parameter x2 � a are depicted by
the red curves/line, and the EKF produces a reasonable approximation for
the true state solution but not the parameter estimation (errors and simu-
lated data not shown). This may suggest that joint estimation does not per-
formwell in predicting states and parameters. Code to reproduce figure avail-
able at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/
Extended_KFs/Joint_Estimation/Bolviken_Ex7/

The average of all estimates is 1.3363 and themedian is 1.3241. After 50 times
steps, the joint EKF algorithm estimates parameter a to be 1.3227. Given that
the true value of a is 1, these estimates do not seem to be accurate, especially
since there is such a large variance. Although joint EKF does not accurate
estimate the parameter value, the estimates for the other states (x and z)
suggest that EKF has fair performance when estimating states jointly with
parameters for linear systems.

9.2 Type 2 Diabetes Physiological Model

The second system of differential equations that I implement is the same
biological nonlinear system from chapter 5. This system consists of six
ordinary differential equations (ODEs) that represent the states and three
ODEs that represent the parameters. The three parameters we estimate
are the following: exchange rate for insulin between remote compartments
and plasma compartments E, insulin volume Vi , and time of remote insulin
degradation ti .

This system of ODEs is taken from the equations David J. Albers used to
model glucose/insulin through MATLAB [5]. It is supposedly the equations

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Bolviken_Ex7/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Bolviken_Ex7/

Type 2 Diabetes Physiological Model 75

in the population physiology model from [6]. This model simulates glucose-
insulin physiology among individuals with T2D. As mentioned earlier in
chapter 1, this model is based on an earlier model by proposed in [21].

Typically, we first have to rewrite our system of DEs in state-space form.
However, this glucose-insulin physiology model is already in state-space
form.

The nine ODEs are as follows:
dIp

dt
�

Rm

1 − exp(−G
Vg C1

+ a1)
− E

(
Ip

Vp
− Ii

Vi

)
−

Ip

tp

dIi

dt
� E

(
Ip

Vp
− Ii

Vi

)
− Ii

ti

dG
dt

�
Rg

1 + exp(0.29h3
Vp−7.5)

+ Ig −Ub

(
1 − exp

(
−G

C2Vg

))
− 90

1 + exp(−1.772 log
(
Ii

(
1

Vi
+

1
Eti

))
+ 7.76)

+ 4

dh1
dt

�
3(Ip − h1)

td

dh2
dt

�
3(h1 − h2)

td

dh3
dt

�
3(h2 − h3)

td
dE
dt

� 0

dVi

dt
� 0

dti

dt
� 0.

The different constants that appear in the system of ODEs can be found
in Appendix B. Note that since we are estimating the three parameters,
they are passed through the filter as part of the state vector rather than
as constants. The true values for these three parameters are still listed in
Appendix B for reference. The other constants were taken from [6].

76 Joint EKF State and Parameter Estimation

This set of nine ODEs are then used to create the state vector x̂k , where
the state vector is

x̂k �



Ip
Ii
G
h1
h2
h3
E
Vi
ti


.

In order to determine the states based on the system of ODEs, we use
the MATLAB ODE-solver called ode45, which takes in a DE as input and
returns the solution to the DE. Consequently, when applying ode45 to the
T2D model we get the state vector x̂k .

With the state vector for the glucose-insulin physiology system, we can
create the StateTransitionFcn and the MeasurementFcn that will be
fed as inputs into the extendedKalmanFilterMATLAB algorithm. We
set the MeasurementFcn to output the third element in the state vector,
which represents glucose, as well as the seventh, eighth, and ninth element
in the state vector, which represents the three parameters E, Vi , and ti . By
doing this, the EKF algorithm only measures glucose, E, Vi , and ti . This is
because we mainly care about the change in glucose levels and parameters,
so we choose to decrease computational cost by only measuring four states.

Additionally, we set the InitialState vector to be the initial values
that were used in [21]. However, the last three initial values are offset from
the true values slightly because they are the parameters we hope to estimate
using joint EKF. Therefore, the initial values are

[200, 200, 12000, 0.1, 0.2, 0.1, 0.13, 15, 90].

In other words, we set the plasma insulin to be 200 mU/min, remote insulin
to be 200 mU/min, glucose to be 12000 mU/min, the first stage linear filter to
be 0.1 mU/min2, the second stage linear filter to be 0.2 mU/min2, the third
stage linear filter to be 0.1 mU/min2, the exchange rate for insulin between
remote and plasma compartments to be 0.13 liters/min, the insulin vol-

Type 2 Diabetes Physiological Model 77

ume to 15 liters, and the time for remote insulin degradation to be 90 minutes.

The MATLAB algorithm also has the capability to add an additional
input to represent measurement and process noise. For this example, we let
the measurement noise function be an additive, so

ŷk � x̂k + v̂k .

The measurement vector v̂k has the same dimensions as the state vector x̂k .
We set v̂k to be a vector that consists of one value, 1.5. This gets input as the
MeasurementNoise.

Interestingly, it was difficult and took quite a while to find a value that
properly fit the system, ensuring that the code can run. There is no particular
process used to determine this value. Instead, it is chosen through trial and
error as well as intuition based on the ProcessNoise values.

For ProcessNoise, the input must be a square matrix with dimensions
n × n, where n represents the number of states there are. In this example,
the values for ProcessNoisewere chosen with some trial and error and
intentionally on a similar scale as the MeasurementNoise. Some trial
and error suggests that really small values for ProcessNoise of the three
parameters work best. As a result, the input for ProcessNoise is

0.02 0 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0 0
0 0 0.04 0 0 0 0 0 0
0 0 0 0.2 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0
0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 0.0001 0 0
0 0 0 0 0 0 0 0.0001 0
0 0 0 0 0 0 0 0 0.0001


Now, we have all the inputs to implement the MATLAB extended-

KalmanFilter function. Rather than use real data, we create simulated
data measurements that incorporate some random noise that is based on
clean simulated data that represents the "true" values. The noisy simulated
data represents the "measured" data, which is created by adding a randomly-
determined shift to values that were generated using the DEs. Then, we

78 Joint EKF State and Parameter Estimation

call the extendedKalmanFilter function for each measured data point
to update the state and covariance based on the previous estimation and the
latest measured data point, which produce the "EKF estimate" values.

In Figures 9.2, 9.3, 9.4, and 9.5, we can see the results of applying joint
EKF to the T2D system of DEs. As seen in the graphs, I use joint EKF to esti-
mate one state (glucose) and three parameters (E, Vi , and ti). This is because
we only allow the joint EKF algorithm tomeasure these state and parameters.

The first graph, Figure 9.2, displays the estimation of parameter E over
600 minutes as well as the corresponding measurement residuals (or innova-
tion), which help further assess the performance of the joint EKF algorithm.
The measured data (in magenta dotted line) is somewhat noisy while the
true data (in red solid line) is smooth.

Figure 9.2 Results of joint EKF estimation for parameter E. Le�: joint EKF
estimation for E. The true solution for parameter E is depicted by the solid
red line, the measured data (with noise) by the dotted magenta curve, and
the joint EKF estimates by the dashed blue curve. In this example, joint EKF
produces an inaccurate approximation for the true solution, diverging from
the true solution at about 500 minutes. Right: measurement residuals (or
innovation) of joint EKF estimations for E. Note: measurement residual is de-
fined in Equation 5.3. The measurement residuals suggest that joint EKF is
not performing well because they generally have large magnitude and non-
zero mean, though they do not exhibit atuocorrelation. Code to reproduce
figure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Extended_KFs/Joint_Estimation/Albers/

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

Type 2 Diabetes Physiological Model 79

Looking at the results, it seems that the values estimated by the joint
EKF algorithm (in blue dashed line) are not accurate at fitting the pa-
rameter E. For parameters, we want them to converge to the true value,
which does not seem to be the case for E. In fact, the EKF estimate seem to
bemostly unchanging until about 500minutes, where it looks like it diverges.

Analyzing the EKF estimates for parameter E, the average estimate is
−0.1869 and themedian is−0.1141. Given that the true value of E is 0.2, these
estimates are inaccurate. In fact, this parameter represents the exchange rate
for insulin between the remote compartment and the plasma compartment.
Consequently, a negative value is not physically possible. This suggests that
there must be some error in the algorithm that is producing these negative
values.

Furthermore, the measurement residuals suggest poor estimation. Look-
ing at the right graph in Figure 9.2, we see that the residuals range between
−4 and 6 centered around a value between 0 and 1. Considering the actual
value of E is 0.2, these residuals seem to have a large range, which indicates
large errors. We can infer that the residuals lack autocorrection if they
appear randomly distributed and without a pattern, which they do. Since
the estimates have large errors and the estimates do not converge, the joint
EKF algorithm does not accurately estimate the parameter E.

The second graph, Figure 9.3, displays the estimation of parameter Vi
over 600 minutes as well as the corresponding measurement residuals (or
innovation), which help further assess the performance of the joint EKF
algorithm. The measured data (in magenta dotted line) is somewhat noisy
while the true data (in red solid line) is smooth.

Looking at the results, it seems that the values estimated by the EKF
algorithm (in blue dashed line) are close to true value, which is 11. In fact,
the average estimate for this parameter is 11.1664 and the median is 11.1507.
Like E, we want the estimates for Vi to converge. However, it does not seem
to be the case from the results in Figure 9.3, though the estimates do not
diverge like they do for E.

Looking at the measurement residuals, the EKF estimates seem to stay
within a somewhat large range. From the right graph in Figure 9.3, we
see that the residuals range between −6 and 6 centered around 0 (with the

80 Joint EKF State and Parameter Estimation

Figure 9.3 Results of joint EKF estimation for parameter Vi . Le�: joint EKF
estimation forVi . The true solution for parameterVi is depicted by the solid red
line, the measured data (with noise) by the dotted magenta curve, and the joint
EKFestimatesby thedashedbluecurve. In this example, joint EKFdoesnot seem
to su�iciently approximate for the true solution since the estimates do not con-
verge. Right: measurement residuals (or innovation) of joint EKF estimations for
Vi . Note: measurement residual is defined in Equation 5.3. The measurement
residuals suggest that joint EKF is not performing well because they generally
have large magnitude, though they do seem to have zero-mean and no atuocor-
relation. Code to reproduce figure available at https://github.com/CassidyLe98/
Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

exception with a couple outliers). Considering the actual value of Vi is
11, these residuals seem to have a fairly large range, suggesting significant
errors. We can infer that the residuals lack autocorrection if they appear
randomly distributed and without a pattern, which they do. However, since
the estimates have large errors and the estimates do not converge, the joint
EKF algorithm does not accurately estimate the parameter Vi .

The third graph, Figure 9.4, displays the estimation of parameter ti
over 600 minutes as well as the corresponding measurement residuals (or
innovation), which help further assess the performance of the joint EKF
algorithm. The measured data (in magenta dotted line) is somewhat noisy
while the true data (in red solid line) is smooth.

Looking at the results, it seems that the values estimated by the EKF
algorithm (in blue dashed line) are accurately fitting ti . The estimates for this
parameter seem to converge to the true value 100. Looking at the numerical

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

Type 2 Diabetes Physiological Model 81

Figure 9.4 Results of joint EKF estimation for parameter ti . Le�: joint EKF
estimation for ti . The true solution for parameter ti is depicted by the solid red
line, the measured data (with noise) by the dotted magenta curve, and the joint
EKF estimates by the dashed blue curve. In this example, joint EKF produces an
accurate approximation for the true solution, converging to the true solution
(100). Right: measurement residuals (or innovation) of joint EKF estimations for
ti . Note: measurement residual is defined in Equation 5.3. The measurement
residuals suggest that joint EKF is performing well because they have relatively
small magnitude, zero mean, and no atuocorrelation. Code to reproduce fig-
ure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Extended_KFs/Joint_Estimation/Albers/

estimates, the average estimate is 99.8770 and the median is 99.9601.

Additionally, looking at the measurement residuals in the right graph
of Figure 9.4, we see that the residuals range between −6 and 6 centered
around 0. Considering the actual value of ti is 100, these residuals are small,
indicating small errors. We can infer that the residuals lack autocorrection
if they appear randomly distributed and without a pattern, which they do.
Thus, since the estimates have small errors and the estimates converge, the
joint EKF algorithm accurately estimates the parameter ti .

The last graph, Figure 9.5, displays the change in glucose levels in mil-
ligrams per liter over 600 minutes as well as the corresponding measurement
residuals (or innovation), which help further assess the performance of
the joint EKF algorithm. The measured data (in magenta dotted line) is
somewhat noisy while the true data (in red solid line) is smooth.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

82 Joint EKF State and Parameter Estimation

Figure 9.5 Results of joint EKF estimation for glucose. Le�: joint EKF esti-
mation for glucose. The true solution for the glucose state is depicted by the
solid red line, the measured data (with noise) by the dotted magenta curve,
and the joint EKF estimates by the dashed blue curve. In this example, joint
EKF produces an inaccurate approximation for the true solution, suggesting
that there is some error due to the sudden change in trend a�er about 500 min-
utes. Right: measurement residuals (or innovation) of joint EKF estimations for
glucose. Note: measurement residual is defined in Equation 5.3. The measure-
ment residuals suggest that joint EKF is not performing well because they have
an unusual spike a�er around 500minutes, indicating that there must be some
error. With further investigation, we find that there is error propagating a�er just
a few time steps, causing the joint EKF algorithm to produce complex estimates.
Code to reproduce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

Looking at the results, it seems that the values estimated by the EKF
algorithm (in blue dashed line) are not accurate at predicting the glucose
levels, though it seems to smoothing the data. In fact, after about 500minutes,
the joint EKF algorithm seems to produce estimations that suggest an inverse
trend of what is expected, deviating from previous estimations that seem to
follow the ultradian oscillations. To add to that, the measurement residuals,
as seen in the right graph of Figure 9.5, exhibit an oscillatory pattern, which
is not ideal.

With further investigation, we find that the joint EKF algorithm is produc-
ing complex estimates for glucose as well as the three parameters. Table 9.1
indicates the parameters, their true values, the average estimate produced
by the joint EKF algorithm, and the median estimate produced by the joint

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Extended_KFs/Joint_Estimation/Albers/

Type 2 Diabetes Physiological Model 83

Parameter True Value Mean joint EKF Estimate Median joint EKF Estimate
E 0.2 −0.1869 + 0.0004i −0.1141 + 0.0034i
Vi 11 11.1664 − 0.0000i 11.1507 + 0.0002i
ti 100 99.8770 − 0.0000i 99.9601 + 0.0003i

Table 9.1 Parameter Estimates using joint EKF algorithm.

EKF algorithm. These complex values are concerning because physiological
values should not be complex given that they represent real, positive values.
One cause could be error propagation. Recall from chapter 3, the EKF
algorithm uses first-order linearization to approximate nonlinear systems,
such as this T2D model and many other biological models. Consequently,
for high dimensional state spaces, error gets propagated after just a few time
steps.

As mentioned earlier in chapter 2, [3] also encounters issues when ap-
plying Kalman filtering to the same T2D model. In that study, their issue is
related to positivity, which is corrected by enforcing positivity. This means
that if the algorithm produces negative values, the next iteration of points is
generated using only the real part of the value. Clearly, numerical issues
arise when applying these filters to dynamical systems like this T2D model
that require forcing external constraints, such as positivity.

However, it is worth pursuing another type of Kalman filter, particularly
the Unscented Kalman filter. In the following chapter, I use joint UKF to
estimate states and parameters for this T2D model.

Chapter 10

Joint UKF State and Parameter
Estimation

In order to implement joint UKF to estimate state and parameter values,
I use MATLAB’s pre-existing unscentedKalmanFilter function. Re-
call that this function takes as input a function StateTransitionFcn, a
function MeasurementFcn, a vector InitialState, a vector or matrix
MeasurementNoise, and a square matrix ProcessNoise.

StateTransitionFcn calculates the state vector of the system at time
step k given the state vector at time step k − 1. MeasurementFcn calculates
the output measurement vector of the system at time step k given the sate
vector at time step k. InitialState represents the initial state values
based on the user’s knowledge of the system. Therefore, it is a vector with
length n, where n represents the number of states in the system. Measure-
mentNoise represents the measurement noise covariance. It is a scalar
when HasAdditiveMeasurementNoise is set to true and a matrix when
HasAdditiveMeasurementNoise is set to false. If it is a matrix, then its
dimensions are v × v, where v represents the number of measurement noise
terms. ProcessNoise represents the process noise covariance, and it is a
square matrix with dimensions w × w, where w represents the number of
process noise terms.

Using the pre-existing MATLAB function unscentedKalmanFilter,
I estimate states and parameters for the same biological model detailed in
chapter 7 and used in the last chapter, chapter 10.

86 Joint UKF State and Parameter Estimation

The code corresponding to this chapter can be found in the following
GitHub repository: https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Unscented_KFs/Albers/Joint_Estimation.

10.1 Type 2 Diabetes Physiological Model

Recall that the system consists of six ordinary differential equations
(ODEs) that represent the states and three ODEs that represent the parame-
ters. The three parameters we estimate are the following: exchange rate for
insulin between remote compartments and plasma compartments E, insulin
volume Vi , and time of remote insulin degradation ti .

Again, this system of ODEs is taken from the equations David J. Albers
used to model glucose/insulin through MATLAB [5]. The nine ODEs are as

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

Type 2 Diabetes Physiological Model 87

follows:

dIp

dt
�

Rm

1 − exp(−G
Vg C1

+ a1)
− E

(
Ip

Vp
− Ii

Vi

)
−

Ip

tp

dIi

dt
� E

(
Ip

Vp
− Ii

Vi

)
− Ii

ti

dG
dt

�
Rg

1 + exp(0.29h3
Vp−7.5)

+ Ig −Ub

(
1 − exp

(
−G

C2Vg

))
− 90

1 + exp(−1.772 log
(
Ii

(
1

Vi
+

1
Eti

))
+ 7.76)

+ 4

dh1
dt

�
3(Ip − h1)

td

dh2
dt

�
3(h1 − h2)

td

dh3
dt

�
3(h2 − h3)

td
dE
dt

� 0

dVi

dt
� 0

dti

dt
� 0.

The different constants that appear in the system of ODEs can be found in
Appendix B. As mentioned in the previous chapter, since we are estimating
the three parameters, they are passed through the filter as part of the state
vector rather than as constants. The true values for these three parameters
are still listed in Appendix B for reference. The other constants were taken
from [6].

This set of nine ODEs are then used to create the state vector x̂k , where

88 Joint UKF State and Parameter Estimation

the state vector is

x̂k �



Ip
Ii
G
h1
h2
h3
E
Vi
ti


.

In order to determine the states based on the system of ODEs, we use
the MATLAB ODE-solver called ode45, which takes in a DE as input and
returns the solution to the DE. Consequently, when applying ode45 to the
T2D model we get the state vector x̂k .

With the state vector for the glucose-insulin physiology system, we can
create the StateTransitionFcn and the MeasurementFcn that will be
fed as inputs into the unscentedKalmanFilterMATLAB algorithm. We
set the MeasurementFcn to output the third element in the state vector,
which represents glucose, as well as the seventh, eighth, and ninth element
in the state vector, which represents the three parameters E, Vi , and ti . By
doing this, the UKF algorithm only measures glucose, E, Vi , and ti . This is
because we mainly care about the change in glucose levels and parameters,
so we choose to decrease computational cost by only measuring four states.

Additionally, we set the InitialState vector to be the initial values
that were used in [21]. However, the last three initial values are offset from
the true values slightly because they are the parameters we hope to estimate
using joint UKF. Therefore, the initial values are

[200, 200, 12000, 0.1, 0.2, 0.1, 0.13, 15, 90].

In other words, we set the plasma insulin to be 200 mU/min, remote insulin
to be 200 mU/min, glucose to be 12000 mU/min, the first stage linear filter to
be 0.1 mU/min2, the second stage linear filter to be 0.2 mU/min2, the third
stage linear filter to be 0.1 mU/min2, the exchange rate for insulin between
remote and plasma compartments to be 0.13 liters/min, the insulin vol-
ume to 15 liters, and the time for remote insulin degradation to be 90 minutes.

Type 2 Diabetes Physiological Model 89

The MATLAB algorithm also has the capability to add an additional
input to represent measurement and process noise. For this example, we let
the measurement noise function be an additive, so

ŷk � x̂k + v̂k .

The measurement vector v̂k has the same dimensions as the state vector x̂k .
We set v̂k to be a vector that consists of one value, 1.5. This gets input as the
MeasurementNoise.

Interestingly, it took quite a while to find a value that properly fit the
system, ensuring that the code can run. There is no particular process used to
determine this value. Instead, the MeasurementNoise is chosen through
trial and error as well as intuition based on the ProcessNoise values.

For ProcessNoise, the input must be a square matrix with dimensions
n × n, where n represents the number of states there are. In this example,
the values for ProcessNoise are chosen with some trial and error and
intentionally on a similar scale as the MeasurementNoise. Some trial
and error suggests that really small values for ProcessNoise of the three
parameters work best. As a result, the input for ProcessNoisewas

0.02 0 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0 0
0 0 0.04 0 0 0 0 0 0
0 0 0 0.2 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0
0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 0.0001 0 0
0 0 0 0 0 0 0 0.0001 0
0 0 0 0 0 0 0 0 0.0001


Now, we have all the inputs to implement the MATLAB unscented-

KalmanFilter function. Rather than using real data, we create simulated
data measurements that incorporate some random noise that is based on
clean simulated data that represents the "true" values. The noisy simulated
data represents the "measured" data, which is created by adding a randomly-
determined shift to values that were generated using the DEs. Then, we call
the unscentedKalmanFilter function for each measured data point to
update the state and covariance based on the previous estimation and the

90 Joint UKF State and Parameter Estimation

latest measured data point, which produce the "UKF estimate" values.

In Figures 10.1, 10.2, 10.3, and 10.4, we can see the results of applying
joint UKF to the T2D system of DEs. As seen in the graphs, I use joint UKF
to estimate one state (glucose) and three parameters (E, Vi , and ti). This is
because we only allow the joint UKF algorithm to measure these state and
parameters.

The first graph, Figure 10.1, displays the estimation of parameter E
over 600 minutes as well as the corresponding measurement residuals (or
innovation), which help further assess the performance of the joint UKF
algorithm. The measured data (in magenta dotted line) is somewhat noisy
while the true data (in red solid line) is smooth.

Figure 10.1 Results of joint UKF estimation for parameter E. Le�: joint UKF
estimation for E. The true solution for parameter E is depicted by the solid
red line, the measured data (with noise) by the dotted magenta curve, and
the joint UKF estimates by the dashed blue curve. In this example, joint
UKF produces an accurate approximation for the true solution, converging
to the true solution (0.2). Right: measurement residuals (or innovation) of
joint UKF estimations for E. Note: measurement residual is defined in Equa-
tion 5.3. Interestingly, the measurement residuals suggest that joint UKF is
not performing well because they generally have large magnitude, though
they do have zero mean and lack atuocorrelation. Code to reproduce fig-
ure available at https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/
master/Unscented_KFs/Albers/Joint_Estimation

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

Type 2 Diabetes Physiological Model 91

Looking at the results, it seems that the values estimated by the joint
UKF algorithm (in blue dashed line) are accurate at fitting the parameter E.
For parameters, we want them to converge to the true value, which seems to
be true for E. In fact, the average estimate for this parameter is 0.2767 and
the median is 0.2670, which is close to the true value 0.2.

Interestingly, the measurement residuals suggest poor estimation. Look-
ing at the right graph in Figure 10.1, we can infer that the residuals lack
autocorrection if they appear randomly distributed and without a pattern,
which it does. Furthermore, we see that the residuals range between −5 and
5 centered around 0. Considering the actual value of E is 0.2, the range of
these residuals is fairly large, which indicates that there are large errors. This
does not immediately make sense. However, further investigation provides
better insight as to why this is happening.

After looking into the measurement residuals of the estimates for pa-
rameter E, we find that the minimum value is −4.2398 and the maximum
value is 4.6426 while the average value for the residuals is −0.0744 and the
median is −0.0688. Additionally, almost half of the residuals (47.72%) have
a magnitude greater than 1, which is significant given that the true value of
E is 0.2. Therefore, although the estimates for E seem to converge and there
is a lack of autocorrelation, the joint UKF algorithm produces large errors
when estimating the parameter E.

The second graph, Figure 10.2, displays the estimation of parameter Vi
over 600 minutes as well as the corresponding measurement residuals (or
innovation), which help further assess the performance of the joint UKF
algorithm. The measured data (in magenta dotted line) is somewhat noisy
while the true data (in red solid line) is smooth.

Looking at the results, it seems that the values estimated by the UKF
algorithm (in blue dashed line) are mediocre. Like E, we want the estimates
for Vi to converge. However, it does not seem to be the case from the
results in Figure 10.2. Instead, the estimates are close to the true value of 11
but showing no indication of converging. To be more precise, the average
estimate for this parameter is 11.1068 and the median is 11.0898.

From themeasurement residuals, theUKF estimates seem to be contained
within a somewhat large range. From the right graph in Figure 10.2, we see

92 Joint UKF State and Parameter Estimation

Figure 10.2 Results of joint UKF estimation for parameterVi . Le�: joint UKF
estimation forVi . The true solution for parameterVi is depicted by the solid
red line, the measured data (with noise) by the dotted magenta curve, and the
joint UKF estimates by the dashed blue curve. In this example, joint UKF does
not seem to su�iciently approximate for the true solution since the estimates
do not converge, though they seem to be close to the true solution (11). Right:
measurement residuals (or innovation) of joint UKF estimations forVi . Note:
measurement residual is defined in Equation 5.3. The measurement residuals
suggest that joint UKF is not performing well because they generally have large
magnitude, though they do seem to have zero-mean and no atuocorrelation.
Code to reproduce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

that the residuals range between−4 and 4 centered around 0. Considering the
actual value of Vi is 11, these residuals seem to have a fairly large range, sug-
gesting significant errors. We can infer that the residuals lack autocorrection
if they appear randomly distributed and without a pattern, which they do.
However, since the estimates have large errors and the estimates do not con-
verge, the joint UKF algorithm does not accurately estimate the parameter Vi .

The third graph, Figure 10.3, displays the estimation of parameter ti
over 600 minutes as well as the corresponding measurement residuals (or
innovation), which help further assess the performance of the joint UKF
algorithm. The measured data (in magenta dotted line) is somewhat noisy
while the true data (in red solid line) is smooth.

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

Type 2 Diabetes Physiological Model 93

Figure 10.3 Results of joint UKF estimation for parameter ti . Le�: joint UKF
estimation for ti . The true solution for parameter ti is depicted by the solid
red line, the measured data (with noise) by the dotted magenta curve, and
the joint UKF estimates by the dashed blue curve. In this example, joint UKF
produces an accurate approximation for the true solution, converging to the
true solution (100). Right: measurement residuals (or innovation) of joint UKF
estimations for ti . Note: measurement residual is defined in Equation 5.3.
The measurement residuals suggest that joint UKF is performing well because
they have a relatively small magnitude, zero mean, and no atuocorrelation.
Code to reproduce figure available at https://github.com/CassidyLe98/Thesis_
KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

Looking at the results, it seems that the values estimated by the UKF
algorithm (in blue dashed line) are accurate at fitting ti . The estimates
for this parameter seem to converge to the true value 100 with an average
estimate of 99.9384 and median estimate of 99.9726.

Additionally, looking at the measurement residuals in the right graph
of Figure 10.3, we see that the residuals range between −6 and 6 centered
around 0. Considering the actual value of ti is 100, these residuals are small,
indicating small errors. We can infer that the residuals lack autocorrection
if they appear randomly distributed and without a pattern, which they do.
Thus, since the estimates have small errors and the estimates converge, the
joint UKF algorithm accurately estimates the parameter ti .

The last graph, Figure 10.4, displays the change in glucose levels in

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

94 Joint UKF State and Parameter Estimation

milligrams per liter over 600 minutes as well as the corresponding measure-
ment residuals (or innovation), which help further assess the performance
of the joint UKF algorithm. The measured data (in magenta dotted line) is
somewhat noisy while the true data (in red solid line) is smooth. Looking
at the results, it seems that the values estimated by the UKF algorithm (in
blue dashed line) are accurate at predicting the glucose levels as well as
smoothing the data.

Figure 10.4 Results of joint UKF estimation for glucose. Le�: joint UKF esti-
mation for glucose. The true solution for the glucose state is depicted by the
solid red line, the measured data (with noise) by the dottedmagenta curve, and
the joint UKF estimates by the dashed blue curve. In this example, joint UKF pro-
duces a reasonable approximation for the true solution, accurately estimating
and smoothing the data. Right: measurement residuals (or innovation) of joint
UKFestimations for glucose. Note: measurement residual is defined inEquation
5.3. Themeasurement residuals suggest that jointUKF is not performingwell be-
cause they exhibit an oscillatory pattern, which suggests poor state estimation
and possible autocorrelation in the data. Unfortunately, when the algorithm is
runwith a larger time interval (greater than600minutes), it throwsa sigmapoint
calculation error. With a little more investigation, it seems that the error stems
from issues with updating the covariancematrix and, consequently, the Kalman
gain. Code to reproduce figure available at https://github.com/CassidyLe98/
Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

Unfortunately, looking at the measurement residuals in the right graph
of Figure 10.4, it seems that the residuals exhibit an oscillatory pattern,
which suggests poor state estimation and possible autocorrelation in the

https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation
https://github.com/CassidyLe98/Thesis_KalmanFilters/tree/master/Unscented_KFs/Albers/Joint_Estimation

Type 2 Diabetes Physiological Model 95

Parameter True Value Mean joint UKF Estimate Median joint UKF Estimate
E 0.2 0.2767 0.2670
Vi 11 11.1068 11.0898
ti 100 99.9384 99.9726

Table 10.1 Parameter Estimates using joint UKF algorithm.

data. Though, the range of the residuals is quite small with respect to the
values of glucose, staying contained within a range of −6 and 6. Interestingly,
when the code is run with a larger time interval (greater than 600 minutes),
the algorithm throws an error that indicates a sigma point calculation error.
This seems to be stemming from the updated covariance matrix and, thus,
the Kalman gain matrix.

Although joint UKF produces estimates that seem to closely follow the
true values for both states and parameters, the measurement residuals
suggest that there needs to be a deeper investigation of what the algorithm
is outputting at each time step. Just by a quick look at Figure 10.4 and Table
10.1, which indicates the parameters, their true values, the average estimate
produced by the joint UKF algorithm, and the median estimate produced
by the joint UKF algorithm, one may conclude that joint UKF accurately
estimates states and parameters. However, a deeper look into the covariance
matrices produced indicates that the algorithm may not be performing as
well as one may initially think.

As mentioned earlier in chapter 2 as well as at the end of chapter 9, the
study in [3] also encounters issues when applying UKF to the same T2D
model. In that study, their issue is related to positivity, which is resolved
by enforcing positivity. In other words, if the algorithm produces negative
values, the next iteration of points is generated using only the real part of
the value. Clearly, numerical issues arise when applying Kalman filters to
systems like this T2D model that require forcing external constraints, such
as positivity.

Chapter 11

Discussion

11.1 Conclusion

To summarize, in this paper, we study how Kalman filtering can be used
to fit states and parameters of biological models to a data set. In particular,
we explore two types of Kalman filters - the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF). Using a couple different methods
of implementation, we estimate states as well as parameters for linear and
nonlinear systems, including a type 2 diabetesmodel that is highly nonlinear.

For estimating states of linear systems, EKF seems to perform just as well
as UKF. This is reasonable because EKF would not have to approximate the
system, like it does for nonlinear systems. For estimating states of nonlinear
systems, EKF does not perform as well as UKF, as seen through the results
in chapter 5 and chapter 7. UKF’s superior performance is likely due to
the fact that EKF approximates the nonlinear system by linearizing it to
the first-order, which may propagate error over time. With this in mind,
we suggest the use of UKF over EKF when estimating states for nonlinear
systems. Therefore, because biological models tend to be highly nonlinear,
we believe it is best to use UKF when estimating the states of biological
models.

In addition to estimating states, we also estimate states in conjunction
with parameters for both linear and nonlinear models. We do so using
both joint EKF and joint UKF. For estimating states and parameters of lin-
ear systems, joint EKF performs well, as seen in chapter 9. However, for

98 Discussion

nonlinear systems, joint EKF seems to propagate error after just a few time
steps. In fact, the results of applying joint EKF to the type 2 diabetes model
indicate that joint EKF produces complex values, which is noted in chapter 9.
Unfortunately, although joint UKF seems to estimate states and parameters
better than joint EKF, there are still issues that arise.

More specifically, the results of applying joint UKF to the type 2 diabetes
model suggest that more attention is needed when running each time step.
To elaborate, in chapter 10, we note that the algorithm seems to fail after
a certain number of time steps (around 600). With further inspection, this
complication stems from how the covariance matrix is updated and what the
resulting covariance matrix looks like after each time step. This suggests that
it may be best to use a different approach to estimate states and parameters
for nonlinear systems, such as dual estimation in conjunction with Kalman
filtering or even Monte Carlo methods.

Interestingly, the numerical challenges that we encounter in this paper
are not unique to our implementations of Kalman filtering. In [3], their
implementation of UKF for the same T2D model exhibits numerical issues
related to positivity, which is corrected by enforcing positivity. In other
words, if the algorithm produces negative values, the next iteration of points
is generated using only the real part of the value. Clearly, numerical issues
arise when applying these filters to dynamical systems like this T2D model,
which require problem-dependent adjustments for each implementation.

Additionally, throughout this research, we greatly struggle to determine
values for the process noise and measurement noise that worked well with
each system. We believe there is a balance and threshold that exists between
the process noise and measurement noise that varies based on the system.
As a result, one must be careful when choosing these values. It becomes
easier with more experience and a stronger foundational understanding of
dynamical systems and probability. This is also an issue when determining
what constants to use for the UKF algorithm, which are detailed in Table
6.2. Fortunately, the MATLAB unscentedKalmanFilter algorithm can
automatically set these constant values, so the main concern is the process
and measurement noise.

Future Work 99

11.2 Future Work

It is important to note that this paper uses simulated data, which histori-
cally is cleaner and behaves better than real data sets. Therefore, the results
and conclusions in this paper may not be applicable to real data sets. In the
future, it would be good to see how these algorithms and systems perform
on real, experimentally-based data sets. It is likely that this will cause more
complications to overcome, but it would provide valuable insight as to the
performance of Kalman filtering on biological models.

Another valuable extension of this project would be to apply dual EKF
or dual UKF to the type 2 diabetes biological model. As mentioned earlier
in the Conclusion section, the results of this paper revealed that joint EKF
propagates error when estimating states and parameters of the T2D model.
Similarly, there were issues with the joint UKF algorithm that need further
investigation. Due to time constraint, we were unable to use dual EKF or
dual UKF. It may be possible that the dual estimation approach works better
with biological models. Although dual estimation does not account for
correlations between states and parameters, it does allow for tuning of the
algorithm’s meta-parameters (i.e. α, κ, and β). With the flexibility to tune α,
we may be able to adjust the spread of the sigma points, which may produce
better estimates.

For distant future work, it would be great to apply these Kalman filtering
algorithms, especially UKF, to the T1D single-compartment model from [20].
This would be dependent on the results of using real, experimentally-based
data sets as well as applying dual estimation to the T2D model. If there
is some success in that research, then applying some of those state and
parameter estimation techniques would be highly valuable for the T1D
single-compartment model from [20].

Appendix A

Terminology

Antigen: Antigens are any foreign and potentially harmful substances.

Beta-cells: Beta- (or β-) cells are located in pancreatic islets of Langerhans.
They are mainly responsible for producing insulin.

Dendritic cells: Dendritic cells (or DCs) process and present antigens for
recognition by T-cells, which produces an immunogenic response from the
T-cells.

Endocrine system: A system in the human body that consists of glands
which secrete hormones directly into the circulator system. It does so in a
feedback loop process. By releasing hormones, the endocrine system regu-
lates various functionalities of the body, some of which include metabolism,
growth and development, tissue function, sexual function, reproduction,
sleep, and mood.

Insulin: Insulin is a hormone that binds with cells, allowing the cells to
absorb glucose. This represents the enzymatic ’lock-and-key’ description.

Macrophages: Macrophages are a type of white blood cell in the immune
system that engulf and digest foreign substances, microbes, cancer cells, and
cellular debris through phagocytosis. When a macrophage encounters an
antigen, it activates the T-cells by producing cytokines, or cellular signals.

Monocytes: Monocytes are the largest type of white blood cells. Initially,

102 Terminology

they are found in the bloodstream and then enter body tissue after about two
days. Once in body tissue, monocytes can differentiate into macrophages
and dendritic cells.

Lymphocytes: Lymphocytes are a type of white blood cell that originate
from stem cells in the bone marrow. They are one of the body’s main types
of immune cells. Two types of lymphocytes are B-cells and T-cells.

T-cells: T-cells are a type of lymphocyte that have a receptor on the cell
surface, which provide them the ability to play a central role in the immune
response. Initially, T-cells are classified as naive T-cells. Once a DC presents
an antigen to a T-cell, the T-cell becomes immunogenic and the immune
response is activated.

Appendix B

Constants for T2D Model

Constant Value Units Representation
Rm 209 mU

min linear constant affecting insulin secretion
a1 6.67 exponential constant affecting insulin secretion
α 7.5 exponential constant affecting insulin dependent glucose utilization
β 1.77 exponent affecting insulin dependent glucose utilization

Vp 3 L plasma volume
Vi 11 L insulin volume
Vg 10 L glucose space
E 0.2 L

min exchange rate for insulin between remote/plasma compartments
tp 6 min time constant for plasma insulin degradation
ti 100 min time constant for remote insulin degradation
td 36 min time delay between plasma insulin degradation and glucose production
C1 300 m g

L exponential constant affecting insulin secretion
C2 144 m g

L exponential constant affecting insulin independent glucose utilization
C3 100 m g

L linear constant affecting insulin dependent glucose utilization
Ub 72 m g

min linear constant effacing insulin independent glucose utilization
U0 4 m g

min linear constant effacing insulin dependent glucose utilization
Um 92 m g

min linear constant effacing insulin independent glucose utilization
Rg 180 m g

min linear constant effacing insulin independent glucose utilization
Ig 216 m g

min exogenous glucose delivery rate (feeding pattern)

Bibliography

[1] 2020. Numerical differentiation. https://en.wikipedia.org/wiki/Numerical_
di�erentiation.

[2] ADA2019. 2019. Statistics about diabetes. http://www.diabetes.org/
resources/statistics/statistics-about-diabetes.

[3] Albers, David J., Matthew Levine, Bruce Gluckman, Henry Gins-
berg, George Hripcsak, and Lena Mamykina. 2017. Personalized glu-
cose forecasting for type 2 diabetes using data assimilation. PLOS
Computational Biology 13(4):1–38. doi:10.1371/journal.pcbi.1005232.
https://doi.org/10.1371/journal.pcbi.1005232.

[4] Albers, David J, Matthew E Levine, Andrew Stuart, Lena Mamykina,
Bruce Gluckman, and George Hripcsak. 2018. Mechanistic machine
learning: how data assimilation leverages physiologic knowledge
using bayesian inference to forecast the future, infer the present, and
phenotype. JAMIA 25(10):1392–1401. doi:10.1093/jamia/ocy106. https:
//doi.org/10.1371/journal.pone.0048058.

[5] Albers, DJ. 2013. Matlab code for glucose/insulin modeling. https:
//github.com/djalbers/glucose_dynamics_modeling.

[6] Albers, D.J., George Hripcsak, and Michael Schmidt. 2012. Population
physiology: Leveraging electronic health record data to understand
human endocrine dynamics. PLOS ONE 7(12):1–13. doi:10.1371/journal.
pone.0048058. https://doi.org/10.1371/journal.pone.0048058.

[7] Albert, Matthew L., S Frieda A. Pearce, LoiseM. Francisco, Birthe Sauter,
Pampa Roy, Roy L. Silverstein, and Nina Bhardwaj. 1998. Immature
dendritic cells phagocytose apoptotic cells via ?v?5 and cd36, and cross-
present antigens to cytotoxic t lymphocytes. JEM 188(7):1359–1368.
doi:10.1084/jem.188.7.1359. https://doi.org/10.1084/jem.188.7.1359.

https://en.wikipedia.org/wiki/Numerical_differentiation
https://en.wikipedia.org/wiki/Numerical_differentiation
http://www.diabetes.org/resources/statistics/statistics-about-diabetes
http://www.diabetes.org/resources/statistics/statistics-about-diabetes
https://doi.org/10.1371/journal.pcbi.1005232
https://doi.org/10.1371/journal.pone.0048058
https://doi.org/10.1371/journal.pone.0048058
https://github.com/djalbers/glucose_dynamics_modeling
https://github.com/djalbers/glucose_dynamics_modeling
https://doi.org/10.1371/journal.pone.0048058
https://doi.org/10.1084/jem.188.7.1359

106 Bibliography

[8] Bolviken, Erik, Nils Christophersen, and Geir Storvik. 1998. Linear
dynamical models, Kalman filtering and statistics. Lecture notes to
IN-ST 259.

[9] Center, Columbia University Medical. 2017. Diabetes app fore-
casts blood sugar levels. https://www.sciencedaily.com/releases/2017/
04/170427141732.htm.

[10] Gove, J.H, and D.Y. Hollinger. 2006. Application of a dual un-
scented Kalman filter for simultaneous state and parameter estima-
tion in problems of surface-atmosphere exchange. Journal of Geo-
physical Research: Atmospheres 111(D8). doi:10.1029/2005JD006021.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005JD006021.

[11] Kitagawa, Genshiro. 1987. Non-Gaussian State Space Modeling of
Nonstationary Time Series. Journal of the American Statistical Association
82(400):1032–1041. doi:10.1080/01621459.1987.10478534.

[12] Kleinbauer, Rachel. 2004. Kalman filtering implementation withMatlab.
Universitat Stuttgart: Institute of Geodesy .

[13] Man, ChiaraDalla, RobertA. Rizza, andClaudioCobelli. 2008. Meal sim-
ulation model of glucose-insulin system. IEE Transactions on Biomedical
Engineering 54(10):1740–49. doi:10.1109/TBME.2007.893506.

[14] Mandal, Ananya MD. 2019. Insulin gene. https://www.news-medical.
net/health/Insulin-Gene.aspx.

[15] Marée, Athanasius, Richard Kublik, Diane T. Finegood, and Leah
Edelstein-Keshet. 2006. Modelling the onset of type 1 diabetes: Can
impairedmacrophage phagocytosis make the difference between health
and disease? Philosophical transactions Series A, Mathematical, physical,
and engineering sciences 364:1267–82. doi:10.1098/rsta.2006.1769.

[16] Mathworks. 2019. Extended and Unscented Kalman Filter Algorithms
forOnline State Estimation. https://www.mathworks.com/help/control/ug/
extended-and-unscented-kalman-filter-algorithms-for-online-state-estimation.
html#bvgiw03.

[17] ———. 2019. unscentedKalmanFilter. https://www.mathworks.com/help/
control/ref/unscentedkalmanfilter.html#bvf20x4.

https://www.sciencedaily.com/releases/2017/04/170427141732.htm
https://www.sciencedaily.com/releases/2017/04/170427141732.htm
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005JD006021
https://www.news-medical.net/health/Insulin-Gene.aspx
https://www.news-medical.net/health/Insulin-Gene.aspx
https://www.mathworks.com/help/control/ug/extended-and-unscented-kalman-filter-algorithms-for-online-state-estimation.html#bvgiw03
https://www.mathworks.com/help/control/ug/extended-and-unscented-kalman-filter-algorithms-for-online-state-estimation.html#bvgiw03
https://www.mathworks.com/help/control/ug/extended-and-unscented-kalman-filter-algorithms-for-online-state-estimation.html#bvgiw03
https://www.mathworks.com/help/control/ref/unscentedkalmanfilter.html#bvf20x4
https://www.mathworks.com/help/control/ref/unscentedkalmanfilter.html#bvf20x4

Bibliography 107

[18] Pietrangelo, Ann. 2018. What are the different types of diabetes?
https://www.healthline.com/health/diabetes/types-of-diabetes#causes.

[19] Rhudy, Matthew B., Roger A Salguero, and Keaton Holappa. 2017.
A Kalman filtering tutorial for undergraduate students. International
Journal of Computer Science & Engineering Survey 8(1):1–18. doi:10.5121/
ĳcses.2017.8101.

[20] Shtylla, Blerta, Marissa Gee, An Do, Shahrokh Shabahang, Leif Eldevik,
and Lisette de Pillis. 2019. A Mathematical Model for DC Vaccine
Treatment of Type I Diabetes. Frontiers in Physiology 10:1107. doi:
10.3389/fphys.2019.01107. https://www.frontiersin.org/article/10.3389/
fphys.2019.01107.

[21] Sturis, J., K.S. Polonsky, E.Mosekilde, andE.VanCauter. 1991. Computer
model for mechanisms underlying ultradian oscillations of insulin and
glucose. American Journal of Physiology-Endocrinology and Metabolism
260(5):E801–E809. doi:10.1152/ajpendo.1991.260.5.E801.

[22] Wan, Eric A., and Rudolph Van Der Merwe. 2001. The Unscented
Kalman Filter. In Kalman Filtering and Neural Networks, 221–280. Wiley.

[23] Wikle, Christopher, and L. Berliner. 2007. A bayesian tutorial for data
assimilation. Physica D: Nonlinear Phenomena 230:1–16. doi:10.1016/j.
physd.2006.09.017.

https://www.healthline.com/health/diabetes/types-of-diabetes#causes
https://www.frontiersin.org/article/10.3389/fphys.2019.01107
https://www.frontiersin.org/article/10.3389/fphys.2019.01107

	Use of Kalman Filtering in State and Parameter Estimation of Diabetes Models
	Recommended Citation

	Abstract
	Acknowledgments
	Background of Diabetes
	Type 1 Diabetes
	Type 2 Diabetes
	Diabetes Models

	Data Assimilation in Bioinformatics
	Kalman Filter
	Discretization of Continuous Systems
	Kalman Filter Algorithm
	Types of Kalman Filters

	Extended Kalman Filter
	Extended Kalman Filter Algorithm

	EKF State Estimation
	Linear System
	Nonlinear System
	Type 2 Diabetes Physiologcial Model

	Unscented Kalman Filter
	Unscented Kalman Filter Algorithm

	UKF State Estimation
	Nonlinear System: Van der Pol Equation
	Linear System: Kinematic Equation
	Type 2 Diabetes Physiological Model

	Methods for State and Parameter Estimation
	Joint Estimation
	Dual Estimation

	Joint EKF State and Parameter Estimation
	Linear System
	Type 2 Diabetes Physiological Model

	Joint UKF State and Parameter Estimation
	Type 2 Diabetes Physiological Model

	Discussion
	Conclusion
	Future Work

	Terminology
	Constants for T2D Model
	Bibliography

