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Abstract

Locust swarms contain millions of individuals and are a threat to agriculture
on four continents. At low densities, locusts are solitary foragers; however,
when crowded, they undergo an epigenetic phase change to a gregarious
state in which they are attracted to other locusts. It is believed that this is an
evolutionary adaptation that optimizes the seeking of resources. We have
developed an agent-based model based on the solitary-gregarious transition
and foraging behaviors due to hunger levels. A novel feature of our model
is that it treats food resources as a dynamic variable in the environment.
We discuss how social interaction strategies influence the efficiency of
foraging and the effect of heterogeneous distributions of resources on the
solitary-gregarious phase transitions.
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Chapter 1

Introduction

Locusts are a group of species in the family Acrididae, which contains
many species of grasshopper and locust, but they can be differentiated
from grasshoppers by their ability to change morphology as a response
to external factors. Adult locusts also often form cohesive groups (called
bands or swarms) as individuals group and travel together. When enough
locusts gather in a group in one location, they can form upsurges or even
plagues. The United Nations defines a plague of locusts as when two or
more regions are simultaneously affected by large swarms of locusts, mean-
ing that plagues could cover up to millions of square kilometers of land
(Symmons and Cressman, 2001). According to the United Nations Food and
Agriculture Organization, a plague of locusts has the ability to affect 20%
of all the Earth’s land and could harm the livelihood of 10% of the world’s
population (Nations, 2019). Because of how detrimental these locusts can
be to their habitats, it is important to study them. If we can learn about the
patterns and behaviors of locusts, we will be able to work with farmers and
other people who may be affected by plagues in order to reach a balance
between human and locust habitats.

In order to learn more about how locusts will behave in their habitats,
we create an agent-based model and observe the patterns produced by
locusts in varying scenarios. In mathematical biology and ecology, agent-
based modeling (sometimes referred to as individual-based modeling) is a
modeling technique frequently used to assess how individuals behave or
interact with their environments. The results of agent-based models can
provide insight into how groups of individuals behave, especially in relation
to other individuals or their surroundings. This differs from many other
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methods of modeling which treat an entire group of individuals as one unit,
eliminating the ability for different individuals to make independent choices
or for the possibility of interaction between individuals of the same group.

In this thesis, we create an agent-based model that considers a variety
of factors that control how locusts interact with their environment, including
resource availability and distribution as well as interaction between multiple
different locusts. This model helps us to understand more about some of
the factors that have an influence over locust behavior and how different
patterns in behavior may arise.



Chapter 2

Locust Biology

Locusts have been studied by both the mathematical and biological
community for a long time. Locusts belong in the family Acrididae, which
includes all grasshoppers and locusts. Our research has focused on the
Desert locust (Schistocerca gregaria), although we have also included research
that considers both the Desert locust and the Australian plague locust (Chor-
toicetes terminifera).

Locust species go through a life cycle divided into different phases (Sym-
mons and Cressman, 2001). Locusts go from eggs to nymphs (otherwise
known as hoppers) to fully grown adults. This entire life cycle can last
anywhere from two to six months. Within the hopper phase, there are five
different instars or intermediate stages. With each instar, the locust will
grow larger and shed their skin. One important aspect of the transition
from the fifth instar to an adult locust is the development of wings. Locusts
can only fly once they have matured into an adult. During both the hopper
and adult phases locusts will sometimes form groups and move collectively.
As an adult, they can create swarms with many flying locusts, but hoppers
will create bands or other formations as they collectively move along the
ground. In this thesis, our work will focus on locusts in the later hopper
stage, typically in their fourth or fifth instar.
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2.1 Gregariousness

Locusts can be differentiated from many other species of grasshopper
because of their propensity to morphologically change as a response to their
surrounding environment. Some of the factors in their environment which
may influence their morphology are resource availability and proximity
to other locusts. Locust behavior and morphology are both governed by
their gregariousness. Biologists define gregariousness as the tendency to
seek out interactions with other locusts and an individual who is gregarious
is more likely to form bands or swarms with many other gregarious in-
dividuals. Gregarious locustswill also occasionally cannibalize other locusts.

An individual who is not gregarious may be solitary, meaning that they
prefer to be alone and will actively avoid other individuals. Because solitary
locusts typically choose to remain alone, they will not participate in group
behavior like forming bands or swarms. The transition from solitary to
gregarious is not instant and locusts have the ability to fall somewhere on
the spectrum between these two social states. In this thesis, we examine
locust social behavior on a scale from solitary to gregarious.

Individuals can become gregarious by a variety of methods, including
crowding, stimulation of the hind leg, or the sense of other locusts via sight
and smell. Additionally, research shows the importance of serotonin in
regulating gregarization. In one study, researchers prevented serotonin
from being released and found that locusts would not gregarize, even when
presented with different stimuli (Anstey et al., 2009). Additionally, as indi-
viduals became more gregarized, the researchers noticed that their serotonin
levels were rising, supporting a positive correlation between serotonin and
gregariousness (Anstey et al., 2009).

Most research focuses on when locusts move from being solitary to
gregarious, but there has also been research done on locusts reversing this
direction and changing from gregarious to solitarious, typically when there
are very few other individuals around them (Dkhili et al., 2017). For the
purposes of our model, most of the locusts will continually gregarize, but
we include the ability for individuals to revert back to being solitary if they
are isolated from other locusts.

Gregarious locusts moving together have been found to align the
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direction of their movement with one another. They also move in a pattern
knownaspause-and-go, inwhich theypause after every step andoccasionally
re-adjust their heading. Many previous studies have examined locust
behavior based on their levels of gregariousness, specifically examining their
movement patterns to see why these might occur. Some researchers have
studied how cannibalistic tendencies may lead to a locust’s pause-and-go
motion or alignment between individuals. Many of these studies have
found a positive feedback cycle in which individual locusts are propelled
forwards simultaneously towards another locust they could eat and away
frompredatory locusts behind them (Ariel et al., 2014; Romanczuk et al., 2009;
Bazazi et al., 2008). Another group of researchers studied the relationship
between density of locusts and swarming or alignment within a group
of locusts. Although the researchers were not certain whether or not
locusts actively self-regulate their surrounding densities, their laboratory
experiments did confirm their beliefs that density regulates locust alignment
and order (Buhl et al., 2006).

2.2 Foraging

When in bands or swarms, locusts will travel across vast areas of land,
eating most of the plants that they encounter. Even when not in a cohesive
group, eating is an important and time consuming part of a locust’s life.
Many animals utilize the strategy of optimal foraging when looking for food
to consume. Optimal foraging helps an individual know where to go in
order to get the most food and energy and when they should move on to the
next location in order to maximize their own time and energy.

Eric Charnov, an ecologist studying optimal foraging in the 1970s,
created the Marginal Value Theorem as a way to explain optimal foraging
behavior in a quantitative way. He explained his theorem thusly: “The
predator should leave the patch it is presently in when the marginal capture
rate in the patch drops to the average capture rate for the habitat” (Charnov,
1976). Charnov showed that individuals would stay foraging in their current
position for as long as the energy gain was high enough, but once nutrients
were depleted, it made more sense for an individual to leave and forage
elsewhere with more food. Although Charnov’s mathematical theorem has
yet to be strictly proven, many ecologists see quite a bit of support for his
ideas and explanations of individuals making decisions about how to gain
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the most energy.

We can see that locusts also follow this pattern of staying at a food
source for as long as it can provide enough food before moving on to the
next one. Nonaka and Holme built an agent-based model to determine how
clumpiness in food resources could affect an individual’s foraging behavior,
where clumpiness was defined as heterogeneity or the clustering of food
(Nonaka and Holme, 2007). This study compared their model with results
from the Marginal Value Theorem in order to verify their models accuracy
in predicting how long an individual would stay at a patch of food before
moving on to another one. The model found that individuals would stay
within one clump of food until most of the food was gone before moving on
to another clump of food patches (Nonaka and Holme, 2007). This agent-
based model simulation backs up the ideas of the Marginal Value Theorem,
but both models are generalized to study any foraging individual, so they
ignore other important social factors, like predation, social interaction, or
gregariousness.
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Agent-Based Modeling

Agent-based modeling is a method commonly used in mathematical
biology or ecology. In an agent-based model, the behavior of individuals is
modeled in order to learn about how groups in a specific environment will
behave. Agent-based modeling includes two elements: individual agents
and the environment.

Individual agents have state variables that they store andwhich change
with internal or external stimuli. State variables can be quantitative or quali-
tative and can include anything from the color of the agent to a numerical
value representing their hunger levels. In addition to dynamic variables,
individual agents have a set of rules for decision making. These rules
generally stay constant throughout the entire run of the model, although
there can be different rules for different scenarios within the model. Rules
inform each agent on what their next action should be based on a variety of
different variables, often involving agents interacting with other agents or
their surrounding environment.

The agent-based model environment does not have rules for decision
making because it generally doesn’t take action, but it will have state variables
that can change. Similar to the individual agents, the environment’s state
variables can change based on the passage of time or some individual agent
catalyzing a change.
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3.1 Why Agent-Based Modeling?

Agent-based modeling is often used by ecologists to study groups of
organisms because of its unique ability to simulate how groups of individual
units interact and behave, instead of considering each group to be one cohe-
sive set. This method of analysis can provide insight into how organisms
behave in ways that other modeling methods cannot. This is something
that we would like to explore in a locust model because of certain group
behaviors. While many previous models have examined behaviors of groups
of locusts, we would like to use an agent-based model to learn more about
how the behavior of individuals can lead to gregarious locusts and collective
decision making.

Agent-based modeling can also incorporate stochasticity into its mech-
anisms. This randomness means that, although the steady-state behavior of
the model will always remain relatively constant, the steps that the model
will take to get there can vary quite a bit throughout different simulation runs.
Where a different model (e.g. one using differential equations) would only
be able to show one possible outcome, agent-based models can demonstrate
the variety that is more realistic to nature. One thing that this could add to
the discussion of locust modeling is whether different factors or choices as
the simulation progress could have an influence on the final results.

3.2 Previous Locust Agent-Based Models

There has been previous work done on locust behavior, using agent-
based modeling. One group of researchers chose to build an agent-based
model in order to determine why different structures of locusts bands form
(Dkhili et al., 2017). This research model paid specific attention to rules of
repulsion, attraction, and alignment in locust movement in order to deter-
mine how these variables affected the movement and, with little parameter
adjustment, they were able to build a model very close to what happens in
reality (Dkhili et al., 2017).

Many of the other models look at how resource distribution affects
different aspects of locusts’ lives, like their ability to optimally forage or
change phase. Despland et al. chose an agent-based model to help them de-
termine how resource distribution in different fractal patterns can influence
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phase change in locusts (Despland et al., 2000). The agent-based model was
able to show that there was more gregarization in areas with resources at
a higher fractal dimension (Despland et al., 2000). This paper also found
that solitarious locusts would group together when necessitated by a patchy
distribution of food, which will be useful to know in the agent-based model
we create in this thesis.

Another agent-based model specifically highlighted the Marginal
Value Theorem as the theory they were trying to examine in their paper
(Nonaka and Holme, 2007). These researchers studied how resource clumpi-
ness affected individual animals’ ability to optimally forage. After building a
model that generally agreed with the principles and results of the Marginal
Value Theorem, the study analyzed how individuals would forage on a
clump of patches of food, including how much time would pass before
an individual would generally move on to the next patch of food (Nonaka
and Holme, 2007). Unlike the other models in this section, this model does
not specify a species that it is studying, instead taking a general approach;
however, it includes many of the same ideas we are exploring in this thesis
so it is important to learn about their methods and results so we can expand
them to focus specifically on locusts.

All of these agent-based models have attributes that we include in
our own model. Despland et al. study how resource distribution affects
gregarization, Nonaka and Holme focus on how resource distribution affects
foraging behavior, and Dkhili et al. have written a model that studies locust-
locust interaction, including attraction, repulsion, and alignment. Themodel
proposed in this thesis has combined the ideas of locust-locust interaction
with hunger and resource distribution throughout the environment. This
gives us a better idea of the different options that a locust has for actions to
take based on their needs at the time and their surrounding environment.

3.3 NetLogo

There are many different ways in which one can build an agent-based
model, both with and without using computational techniques. For our
agent-based model, we have chosen to work in NetLogo, a program specif-
ically designed to help people build agent-based models. NetLogo is a
Scala based language and uses an adapted form of programming as the
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foundation for how the program works. The program is beneficial because
it can provide both visual and numerical outputs. It is possible to edit or
understand the code with minimal prior experience and parameters can
be easily adjusted if multiple simulation runs require different parameter
settings. Many researchers have started to use NetLogo for their models and
the program has continued to improve through multiple different versions
(Lytinen and Railsback, 2012).



Chapter 4

Model

In order to construct our agent-based model, we started by creating an
outline of howwewanted the locusts to behave given different circumstances.
After coming upwith a general idea, we could createmathematical equations
that would model the desired behaviors. The mathematical equations and
roughly identified parameters were integrated into a NetLogo simulation so
we could visualize what we had constructed.

After incorporating the mathematical equations and parameters into
the NetLogo simulation, the NetLogo code still needed editing in order to
ensure that it behaved in what we considered to be the most biologically
accurate way. This involved looking at how certain pairs of state variables
interacted with each other and tweaking parameters slightly, based on
updated calculations.

4.1 Outline

Based on our literature review, there are five different variables we
consider to be important indetermininghow locusts interactwith one another
and their resource environment. Gregarization and locust-locust interaction
is a large part of the model, so we have three variables that will help us
learn more about social interactions. # represents the number of neighbors
around each locust, ( is the gregarization level of each individual locust, and
* is the social contentment score for each locust. Social contentment will
determine how happy a locust is with its current social circumstances (e.g.
a solitary locust would be unhappy around many other individuals but a
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gregarious locust would have a bad social contentment score if it were alone).
The other important aspect of our model is the inclusion of resources. In
order to learn more about how locusts interact with their food resources, we
created two more variables. � shows the hunger of each individual locust
and ' represents the amount of food resources available on a specific patch
of the environment.

Figure 4.1 Diagram showing the progression of the model’s flowchart

We have created a flowchart which demonstrates how all of the vari-
ables work together in the model (Figure 4.1). Gregarization was determined
to be the first step in the flowchart, since it would change with each step and
it would affect further decisions. This step would reassess how gregarious
an individual locust was, based on the level of gregarization in the previous
step as well as the number of neighbors surrounding an individual. This
step also looks at the hunger level of the locust and re-evaluates based on
how much food was consumed in the last time step.
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After gregarization and hunger levels were recalculated, the model
would compute hunger and social scores. These scores would report how
contented each locust was with their current scenario, including how hungry
they are and howhappy they arewith their social surroundings (as described
above). These hunger and social scores help the locust determine what they
will do next: they couldmove, if they need to adjust their social environment;
they could eat, if they need to prioritize their hunger levels; or they could
do nothing if they are already happy. If a locust decides that they need to
prioritize their eating behavior, they then must determine if there is any food
near them. If a locust is very hungry and there is no food around, its next
step is to move in order to find food. If, on the other hand, a locust is very
hungry and there is abundant food around, all they need to do is stay where
they are and eat the food.

Once the locust has figured out exactly what it will be doing for its next
step, time is incremented and hunger and gregariousness are re-evaluated.
Then the cycle of the flowchart will repeat until the modeller tells it to
stop. The ability to stop the model from running can be determined by a
combination of many different attributes chosen by the modeller, including
time steps or set value thresholds for state variables.

4.2 Formulation

The flowchart (Figure 4.1) creates a step-by-step framework for how
we want the model to behave. This allows us to then create mathematical
equations based on transitions between phases in the flowchart. Since many
of the variables considered in this model are proportions, the equations
often have maxima or minima designed to keep the variables in a range that
makes mathematical and biological sense.
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Figure 4.2 Table of variables used in model equations and their descriptions

In addition to the five variables described above, we also have some
constant parameters in our mathematical model. These constants all have
a biological meaning and can be useful in helping to tune the equations to
behave in the ways we would expect. In order to implement the equations
in NetLogo, we needed to determine possible ranges and starting values for
each of the constants. Figure 4.3 shows a table with general ranges of values
for each of the parameters aswell as a description ofwhat the parameter does.

Later, in the results section of this paper, we will explore the parameters
in further detail in order to learn how each of them will affect the model in
different ways.
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Figure 4.3 Table of parameters used in model equations, their descriptions,
and ranges of possible values

Gregarization is calculated as an exponential, so that individuals who
are already partially gregarized will become even more gregarized more
quickly than if they were not gregarious. Our gregarization equation is
a function of the previous time step’s gregarization level and the current
number of neighbors around an individual. There are also two parameters
in this equation: the rate at which an individual gregarizes [(A] and the
gregarization threshold [(C], which determines the number of neighbors it
takes to become more gregarious. Our equation for gregarization includes
a bound at 1 such that, if the value from the equation exceeds 1, it will be
set to equal 1 instead. This was constructed so that a locust will be entirely
gregarized at 1 and will either remain constant at 1 or decrease if there are
too few locusts around.

( = ( ∗ exp((A(# − (C)) [0 ≤ ( ≤ 1]

Hunger was calculated as a simple function, adding a constant amount of
hunger [�8] to the previous time step’s hunger level until there is amaximum
of 1, when the locust is as hungry as it can get. Similarly to the method of
computing gregarization, if the hunger value calculated from the equation
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exceeds 1, H will just be set to 1 until the locust eats and the value decreases
again.

� = � + �8 [0 ≤ � ≤ 1]

The social contentment score* was calculated so that individuals who
are gregarized will have a score of 0 when around other locusts and a
score of 1 when isolated. Likewise, a solitary locust will have a score of 1
when around other locusts and 0 when isolated. In order to calculate this,
we created another variable &, which takes into account an exponential
of the number of neighbors nearby. When this variable is equal to the
gregariousness of a locust, the locust will be completely content with their
social environment.

& = 1 − exp(−#/# ∗) [0 ≤ & ≤ 1]
* = (& − ()2 [0 ≤ * ≤ 1]

In order to use the social contentment score and the hunger score to
determine the locusts next action, we formed a probability distribution. The
probability of a locust choosing to do nothing, instead of eating or moving,
is represented by a constant 
 divided by the total of 
 plus the hunger score
� and social contentment score* . This probability is called "do nothing".

?(do nothing) = 


 + � +*

The probability of a locust choosing to feed next ("feeding behavior") is its
hunger score divided by this same sum of the three possible actions.

?(feeding behavior) = �


 + � +*
The probability that a locustmoves towards or away fromother individuals

("move") is its social contentment score divided by the sum of the three
possible actions.

?(move) = *


 + � +*
Once the locust has chosen its next action, it needs to follow the steps

dictated by that action. If a locust decided to move in order to improve
their social contentment score, it would calculate the lowest potential social
contentment score from the eight neighboring areas and then move to the
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most desired area (the area with the lowest social contentment score). A
locust which chose to do nothing during the next time stepwould do nothing
and then, during the next time step, recalculate the probability of each action
and make a new decision.

If a locust needed to eat food next, it would have to determine whether
or not there were resources nearby. A locust who has no resources in it’s area
would then move to a nearby random location. If, however, there is food
where the locust is currently located, the locust will eat immediately. This
will decrease hunger levels by a constant [�3], until it reaches 0, when it will
level out. These bounds are based on biological principles: a locust cannot be
so full that it has negative hunger, so hunger will either stay at 0 or increase
if no food has been consumed. In addition to decreasing hunger levels, the
resources available in the environment will decrease by a constant ['2], until
they reach 0. For this agent-based model, we have set a maximum amount
of food per cell at 100 and a minimum at 0 (when there is no food left) but
this maximum could be changed if you wanted to alter the conditions of the
world. Additionally, no food grows back in our model, so R can only ever
decrease, while H could increase or decrease depending on the frequency of
food consumption.

� = � − �3 [0 ≤ � ≤ 1]
' = ' − '2 [0 ≤ ' ≤ 100]

These equations described in this section above form the framework for
our exploration of locust behavior. We can now integrate them into NetLogo
and simulate different behavioral patterns.

4.3 Simulation

In addition to adding our equations to the NetLogo model, the NetLogo
code requires some information about the world, like how many individuals
will be inhabiting the space, as well as how large the world is. This aspect
of our model does not mirror the "real world" environment of locusts, as
their natural world is often not confined to a perfectly square space with an
unchanging number of individuals. These variables can be set to values that
make it easier to look at other parts of the model. In addition to being able
to set the size of the world, we have chosen to have the edges of the world
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wrap around. This means that a locust who wanders past an edge tile will
reappear on the other side of the world, as if all edges are connected.

The NetLogo model is divided so that the world consists of many
individual patches, or squares, with coordinates and attributes like resources
and color. In order to see more easily how much food is left in each patch,
we have color coded the world so that a darker patch will have more food
while a white patch has no food left (Figure 4.4). You can also see light
pink locusts in the world. In this model, locusts move from one patch to
another and are always at the center of their patch. Locusts are seeking out
resources to eat as well as patches that either are close to or far away from
other individuals, depending on their level of gregariousness. Much like
the environment is color-coded to represent the amount of food, locusts are
colored such that the darker the locust is, the more gregarious it is, on a
scale from light pink [solitary] to dark red [gregarious].

Each time the simulation is run, all of the locusts start out as completely
solitary and randomly distributed throughout the world. Each cell in the
model has a random number of resources between 0 and 100. A sample
initial view is shown below in Figure 4.4. Figure 4.5 shows images of the
environment after the locusts have eaten different amounts of the food from
the environment.
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Figure 4.4 Initial image of the agent-basedmodel simulation
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Figure 4.5 Two images of aNetLogo simulation a�er having run formany time
steps

a. Image from part way through the simulation when some locusts
are gregarious

b. Image taken when most of the food has been eaten and most
individuals are gregarious
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4.3.1 Variable Initial Conditions

Although the default initial conditions set up the world randomly, we
included a few other methods of creating initial conditions that were less
random. This allowed us to learn about what the locusts might choose to do
in a variety of different worlds. In addition to each cell randomly choosing a
resource amount, it is possible for every cell in the world to have the same
amount of starting resources, in order to explore a uniform environment.

Many times, in nature, plants will also grow in patches or clumps,
which means there will also be large spaces without any plants. In order to
simulate this in theNetLogomodel, we included the ability to determine how
many cells will even have food at the beginning of a simulation. Additionally,
there is one initial condition that splits the world into one half that has no
food, and one half that has uniform resource distribution. This creates one
large patch of food that may attract hungry locusts.

Figure4.6 Twoexamples of alternative resourcedistribution initial conditions
(aside from randomly distributed)

a. Starting image from a world where only
30% of cells have food and all cells with
food have the same amount

b. Initial conditions where only half of the
world has cells with resources. All cells
have the same amount of food

4.4 Verification

Before fully analyzing our model in order to arrive at possible conclu-
sions about locust behavior, we spent some time verifying that the model
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achieves the general behavior that we expected. We started by examining
average values for hunger, gregarization, and social contentment over the
entire locust population.

Figure 4.7 Graph of average gregarization (red), hunger (blue), and social
contentment (grey) for 200 locusts

As we expected, the gregarization has a sudden, rapid increase before
slowing and gradually rising to a level that it generally maintains for the
rest of the simulation. We wouldn’t necessarily expect all of the locusts to
become gregarized, especially after all of the food has been eaten, because
the solitary locusts can continue to roam the environment without having to
interact with other locusts. Locusts who have become gregarized tend to
stay close to other locusts, so their gregarization will remain high, but there
are occasions where they may randomly move in different directions and a
locust could become solitary again.

We can also see in this graph that the hunger level goes down very
quickly and stays low for a short amount of time. This is the time in the
simulation where there is still plenty of food available for all of the locusts,
and they can eat without worrying about much else. After the food starts
to disappear, the locusts become hungry once again, slowly when there are
resources left in the world, and rapidly once the food is gone.

The grey line in Figure 4.7 represents the average social contentment
of the locusts. Throughout this entire simulation, the average social content-
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ment is around 1.5. This is relatively low because a high value for social
contentment is part of the trigger a locust might get to change its social
environment. The social contentment would likely never have an average of
zero though, since locusts can only control their own actions and have no
ability to know what other locusts nearby might choose to do.

In order to make sure that the model was working correctly, we also
looked at average resource density over many time steps. As expected, the
resource density decreases in a fairly linear manner. As time goes on and
more food has been consumed, there is less food in the environment. This
means that it is slightly more difficult for locusts to find food, meaning
that the food will be eaten at a slightly slower rate than at the beginning of
the simulation. The resource density eventually reaches 0 and stays there,
since the environment doesn’t grow food back and cannot have less than no
resources.

Figure 4.8 Average resource density over time

4.5 Parameter Selection

After writing the equations that determined how the locusts would
behave in our model, we briefly identified all of the parameters in the
equations and what they represented biologically. The next step, in order
to make sure that the model was actually behaving as we wanted, was to
come up with more precise values for our parameters. Figure 4.9 shows all
of the parameters with descriptions as well as the values we chose to use
in NetLogo. Below, we explain how each of these parameter values was
chosen.
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Figure 4.9 Table showing all identified parameters, descriptions, ranges, and
chosen values

4.5.1 Hunger Parameters

There were some parameters which had a wide range of possible val-
ues, but when choosing specific values, we had to pay attention to their
relationship with other parameters. When choosing �8 (how much hunger
increases), although we had determined that it could be anything less than
1, we didn’t want �3 (how much hunger decreases) to be a multiple of �8 . If
�3 were a multiple of �8 , that would reduce the number of possible values
of hunger, effectively making hunger a quantized variable. We also decided,
based on biological ideas, that hunger should decrease with food much
faster than the naturally increasing hunger rate. Thus, we chose the values
�8 = 0.06 and �3 = 0.21 for these parameters.

The third parameter related to resource consumption was '2 : how
much food a locust would eat each time it did decide to eat. Unlike many of
the other parameters which deal with locusts directly, this constant affects
the world and the resources left after each time step. Because this is the only
parameter to affect the environment and initial resources on a cell can vary
greatly, we decided to set this parameter to 5.
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4.5.2 Gregarization Parameters

There are two parameters in the model which affect how the locusts
become gregarized. One parameter, (A , determines how quickly an indi-
vidual locust will gregarize, while (C is more related to the threshold of
neighbors over which a locust would become more gregarious. Because (C
represents a threshold of neighbors, we decided that the threshold should
be only slightly greater than the average number of neighbors a locust might
have throughout the simulation. After running the model many times, the
average number of neighbors was estimated to be about 1.3, so we chose (C
to be 1.5.

After choosing a parameter value for (C , we were able to use the
equation for gregarization to estimate a value for (A . Gregarization is
calculated using this equation:

(= = (2 ∗ exp((A(# − (C))

We chose to look at this equation at a time when a locust might be
gregarizing quite a bit. In order to do this, we set # (the number of
neighbors) to be a value close to the maximum number of neighbors a locust
could have (10). We then decided that, when a locust encountered a lot of
neighbors, its gregarization rate might increase by 7-fold. This then allowed
us to plug in values for all but one variable in the above equation.

7 = exp(8.5 ∗ (A)

Thus, (A = 0.223. Although this isn’t a precise number, due to the
estimation of other variables in this equation, 0.22 was close enough where
the model performed as we hoped it would when we tested it with different
conditions.

4.5.3 Other Parameters

There are two other parameters in our system of equations. One parame-
ter helps to determine how socially contented each locust is at every time step.
This parameter is the neighbor threshold # ∗. We wanted to locusts to be
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generally happy if they were in the correct social environment. After trying
a fewdifferent parameter values, we decided that 3was a roughly good value.

The other parameter left to identify is ?= , the probability of doing
nothing. In the original flowchart of the model, there is a third option for
locusts who don’t want to eat and don’t want to move, which is to do nothing.
In order to construct this probability model, we decided that approximately
1
3 of the time, a locust would spend the time step doing nothing.
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Results

Now that we have both a mathematical model and a simulation in
NetLogo which behaves roughly as we expect it to, given initial conditions
and chosen parameters, we are able to run the simulation to learn more
about how the locusts are behaving under certain specific conditions and
how different variables affect their behavior.

5.1 Initial Resource Quantity and Distribution

We examined how some of the initial environmental conditions had
an effect on long-term behavior. We wanted to see how, or if, the locusts
changed their behavior in response to varying the initial resource conditions,
specifically looking at patchiness and the distribution of food throughout the
environment as well as quantity of food. We ran one study that chose differ-
ent percentages of initial cells to distribute food resources among (Figure 5.1).

For each percentage of initial cells with food, themodel was run for five
different initial resource per cell values. Becausewewere comparing environ-
ments with different percentages of cells with resources, instead of inputting
the same number of resources per cell, we compared tests with the same
number of total resources in the world, divided among cells that had food.
This allowed us to take into account the percentage of cells with resources in
them. For example, one could compare a simulation run with all of the cells
at 50 food resources to a run where 50% of the cells had 100 food resources.
This was done so that we could compare environments where the total
quantity of food was the same, so, for each different amount of equivalent
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resources per cell, the factor that changed was how the food was distributed
throughout the environment. There were three replicates of each initial
condition combination that were then averaged together to find how long
it took for the locust population to reach an average gregariousness threshold.

Figure 5.1 Graph comparing simulations with di�erent percentages of cells
with food at various initial resource per cell values. This graphmeasures how
long it takes the locust population to reach an average gregariousness value of
0.75

This graph shows, for each initial resource per cell value, the time it
takes for the average gregarization of all locusts to reach 75%. All five values
for each initial resource per cell value appear to be relatively similar and
there isn’t a strong pattern for any of the cell percentage groups standing
out from the others. This graph shows us that, as long as the total number
of resources is the same, the time it takes to reach a population of mostly
gregarized locusts is independent of the number of cells that have resources
in them. We can also see from this graph that locusts generally take longer
to gregarize when there are more resources available to them, as they will
spendmore time eating foodbeforeworrying about their neighboring locusts.
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5.2 Initial Resources and Gregarization Rate

Wehad noticed, while selecting parameters to use in the simulation, that
different gregarization rates had a big influence on how each of the locusts
behaved and could drastically change what the model looked like after
many time steps. In order to further explore this parameter, we performed a
study exploring gregarization rate versus time to a gregarization threshold
at different amounts of initial resources per cell (Figure 5.2).

Figure 5.2 Graph comparing simulations with di�erent gregarization rates at
various initial resource per cell values. This graphmeasures how long it takes
the locust population to reach an average gregariousness value of 0.7
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There were ten different gregarization rates studied, evenly spaced on
a logarithmic scale between 0.09 and 0.954. Each of these rates was tested
at six different initial resource values between 0 and 100 in order to see
how they behaved in different environments. We collected data on how
many time steps it took for the locust population to reach an average of
70% gregarization. In the study looking at gregarization time and resource
distribution, we used an average gregarization threshold of 75%, however,
we used 70% in this study because some of the gregarization rates did not
have the population reach 75% gregarization. We noticed that there seemed
to be quite a bit of noise and variation for each set of gregarization rate and
initial resources, so we ran each pair seven times, in order to calculate a
smoother average.

In Figure 5.2, as in Figure 5.1, we notice that in environments with more
initial resources, it generally takes longer for the average locust population
to become gregarized. Additionally, we can see that there is quite a bit of
variation between different gregarization values. Smaller gregarization rates
like 0.09 tend to take longer to reach the same average gregarization for the
population than medium gregarization rates like 0.334; however, the larger
gregarization rates like 0.734 and 0.954 generally take the longest time to
reach the same average gregarization for the population. This shows us
that there is likely a medium gregarization rate for which the time it takes
to gregarize a population is a minimum. In Figure 5.3, we can see that the
rate which takes the least time to reach 70% average gregarization shifts
with different initial resource values. Additionally, simulations with high
gregarization rates like 0.954 tend to have a much wider range of times
until a majority gregarization. Of the seven runs for the test with 20 initial
resources, one run only took 221 steps while another took 1371. Smaller
gregarization rates all had much more consistent times.
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Discussion

In this thesis, we have built a system of mathematical equations based on
some important biological principles of locusts. This mathematical model
takes into account gregarization and social interaction as well as environ-
mental factors like resource distribution. Our model was implemented
in NetLogo as an agent-based model and we were able to observe locust
behaviors as a result of a wide variety of initial conditions.

We found that locusts generally take more time for the average gregariza-
tion of the population to reach a majority threshold when there are more
initial resources in the environment, regardless of how the resources are
distributed throughout the environment. There are some resource distribu-
tion patters we would like to continue exploring, as discussed in our Future
Work chapter.

We also found results that suggest that there is a gregarization rate for
locusts which has a minimum number of time steps until the population
reaches a majority threshold. This gregarization rate may shift depending on
environmental initial conditions, like locust distribution and initial resources
per cell, but it always lands in the middle, between 0 and 1. Gregarization
rates towards both ends of the range (0.09 and 0.954 in our test) tend to take
much longer to gregarize.

We also found that high gregarization rates take the longest time to reach
a majority gregarization threshold. One observation from watching the
locusts forage and interact with each other while running simulations in
NetLogo is that locusts with a high gregarization rate tend to start by gre-
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garizing and forming small clumps of nearby locusts, instead of immediately
foraging as locusts with lower gregarization rates do. After these initial
small groups of gregarious locusts form, they will eventually break up as the
locusts choose to eat instead of prioritizing social interaction. Locusts who
are initially randomly placed with few other locusts won’t form those initial
groups and it will take them longer to become gregarized. This situation will
take longer for the population to increase its average gregariousness because,
while the environment will always have some small groups of gregarious
locusts, there will also be other locusts who are separated, foraging, and
aren’t encountering other locusts as frequently. This scenario differs from a
simulation where the gregarization rate is small because, in that environ-
ment, all the locusts will forage and generally avoid one another until all the
resources are consumed. In both simulations (large and small gregarization
rates), it is generally only after all the resources are gone that the populations
average gregarization rate will increase past the threshold. This occurrence
and explanation was only observed anecdotally so we could not be sure that
this is what is causing the relationship between gregarization rate and time
until the population’s average gregarization reaches the threshold without
further study.



Chapter 7

Future Directions

Throughout this project, we have looked at a variety of different re-
source distributions, including random, uniform, patchy, and a gradient.
One agent-based model we found in the literature, written by Nonaka and
Holme, explores the idea of clumpiness in the environment and how that
may affect different optimal foraging strategies (Nonaka and Holme, 2007).
In future work, we would like to combine our model with some of the ideas
from this paper to see how large patches or groups of resources clumped
together might affect how the locusts behave, forage, and gregarize.

Through some of the parameter identification work conducted in this
paper, we thought about both the temporal and spatial scale of the world
of the simulation. Unfortunately, this was not something we were able
to research thoroughly or connect to the literature and future work could
enhance the model by refining both the spatial and temporal scales.

Another element of the simulation that could use more refinement is
the orientation of the locusts. Currently, the locusts are given a random orien-
tation at the start of the model and do not change from that position, moving
from the center of one cell to the center of a neighboring cell. Unfortunately,
we know that this is unrealistic in biology and locusts often align with each
other as they are moving or make very small angular changes, so it would
be interesting to see how adding orientation into the model would change
it. One group of researchers studied how locusts pause between steps and
found that they will often slightly alter the direction which they are facing
during each pause, causing them to move in a slightly different direction
when they next move (Bazazi et al., 2012). We would like to see how this
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reorientation effect could change locust distribution or movement patterns.
Another important element of the locust movement part of our model is
repulsion. Much research on locusts discuss the idea of attraction and
repulsion from other locusts as two of the fundamental rules of movement
(Dkhili et al., 2017). While our model includes attraction, it doesn’t have any
rules for repulsion, making it likely that gregarized locusts will simply end
up piled on top of each other. Future work could explore these nuances in
locust movement to see how they might affect how the model predicts locust
behavior.
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