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Quotients of Gaussian Primes

Stephan Ramon Garcia

Abstract. It has been observed many times, both in the MONTHLY and elsewhere, that the
set of all quotients of prime numbers is dense in the positive real numbers. In this short note
we answer the related question: “Is the set of all quotients of Gaussian primes dense in the
complex plane?”

Quotient sets {s/t : s, t ∈ S} corresponding to subsets S of the natural numbers have
been intensely studied in the MONTHLY over the years [1, 4, 7, 8, 10, 13]. Moreover, it
has been observed many times in the MONTHLY and elsewhere that the set of all quo-
tients of prime numbers is dense in the positive reals (e.g., [2, Ex. 218], [3, Ex. 4.19],
[4, Cor. 5], [8, Thm. 4],[11, Ex. 7, p. 107], [12, Thm. 4], [13, Cor. 2]).

In this short note we answer the related question: “Is the set of all quotients of
Gaussian primes dense in the complex plane?” The author became convinced of the
nontriviality of this problem after consulting several respected number theorists who
each admitted not seeing a simple solution.

In the following, we refer to the traditional primes 2, 3, 5, 7, . . . as rational primes,
remarking that a rational prime p is a Gaussian prime (i.e., a prime in the ring Z[i] :=
{a + bi : a, b ∈ Z} of Gaussian integers), if and only if p ≡ 3 (mod 4). In general, a
nonzero Gaussian integer is prime if and only if it is of the form ±p or ±pi where p
is a rational prime congruent to 3 (mod 4) or if it is of the form a + bi where a2

+ b2

is a rational prime (see Figure 1). We refer the reader to [5] for complete details.

Figure 1. Gaussian primes a + bi satisfying |a|, |b| ≤ 50 and |a|, |b| ≤ 100, respectively
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Theorem. The set of quotients of Gaussian primes is dense in the complex plane.

Proof. It suffices to show that each region of the form

{z ∈ C : α < arg z < β, r < |z| < R}, (1)

contains a quotient of Gaussian primes.
We first claim that if 0 < a < b, then for sufficiently large real x , the open interval

(xa, xb) contains a rational prime congruent to 3 (mod 4). Let π3(x) denote the num-
ber of rational primes congruent to 3 (mod 4) which are ≤ x . By the prime number
theorem for arithmetic progressions [5, Thm. 4.7.4],

lim
x→∞

π3(x)

x/ log x
=

1

2
,

whence

lim
x→∞
[π3(xb)− π3(xa)] = lim

x→∞
π3(xb)

[
1−

π3(xa)

π3(xb)

]
= lim

x→∞
π3(xb)

[
1−

xa log xb

xb log xa

]
=

(
1−

a

b

)
lim

x→∞
π3(xb)

= ∞,

which establishes the claim.
Next observe that the sector α < arg z < β contains Gaussian primes of arbitrarily

large magnitude. This follows from an old result of I. Kubilyus (illustrated in Figure
2) which states that the number of Gaussian primes γ satisfying 0 ≤ α ≤ arg γ ≤ β ≤
2π and |γ |2 ≤ u is

2

π
(β − α)

∫ u

2

dx

log x
+ O

(
u exp(−b

√
log u)

)
(2)

where b > 0 is an absolute constant [9] (see also [6, Thms. 2,3]).

ρ N K

100 50 53
500 946 940

1,000 3,327 3,346
5,000 66,712 66,651

10,000 245,085 245,200
25,000 1,384,746 1,385,602
50,000 5,168,740 5,167,941

ρ N K

1,000 0 5
5,000 0 100

10,000 369 367
50,000 7,823 7,732

100,000 28,964 28,971
250,000 167,197 167,099
500,000 632,781 631,552

(a) π

24 ≤ arg z ≤ 2π
47 (b) π

31415 ≤ arg z ≤ 2π
31415

Figure 2. The number N of Gaussian primes in the specified sector with |z| < ρ, along with the corresponding
estimate K (rounded to the nearest whole number) provided by (2)
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Putting this all together, we conclude that there exists a Gaussian prime γ in the
sector α < arg z < β whose magnitude is large enough to ensure that

π3

(
|γ |

r

)
− π3

(
|γ |

R

)
≥ 2.

This yields a rational prime q ≡ 3 (mod 4) such that

|γ |

R
< q <

|γ |

r
.

Since q is real and positive, it follows that r < | γq | < R and α < arg γ

q < β so that
γ /q is a quotient of Gaussian primes which belongs to the desired region (1).
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1. J. Bukor, J. T. Tóth, On accumulation points of ratio sets of positive integers, Amer. Math. Monthly 103
(1996) 502–504, available at http://dx.doi.org/10.2307/2974720.

2. J.-M. DeKonick, A. Mercier, 1001 Problems in Classical Number Theory, American Mathematical So-
ciety, Providence, RI, 2007.

3. B. Fine, G. Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Birkhäuser,
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