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Abstract

Pascal’s mystic hexagon is a theorem from projective geometry. Given six
points in the projective plane, we can construct three points by extending
opposite sides of the hexagon. These three points are collinear if and only if
the six original points lie on a nondegenerate conic. We attempt to prove
this theorem in the tropical plane.
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Chapter 1

Introduction

This thesis considers a classical theorem in a new setting, namely, Pascal’s
theorem in tropical geometry. Pascal’s mystic hexagon is a theorem from
algebraic geometry. It states that six points lie on a conic if and only if
three points generated by the original six lie on a line. This is remarkable,
because we don’t expect three general points to be collinear, and because,
similarly, we don’t expect six general points to lie on the same conic. Recall
that conics (also known as conic sections) include such curves as circles,
ellipses, hyperbolae, and parabolae in the real plane (R2). In the projective
plane, where Pascal’s theorem holds, these curves are equivalent.

This theorem has long been proven, and several different proofs are
known. I will attempt to prove an analogue of Pascal’s theorem in tropical
geometry, which is a relatively young field. Its core ideas have been around
for about thirty or forty years, and only since the early 2000s has concerted
attention been paid to the subject. For comparison, Pascal’s Theorem was
first proposed by Blaise Pascal in the 17th century.

Before we get to tropical geometry, however, I’ll introduce the tropical
semiring. Recall that the real numbers are a ring under addition and
multiplication. The tropical semiring has two significant differences from the
ring of real numbers: it includes infinity and the operations of addition and
multiplication are replacedwith tropical addition and tropicalmultiplication.

Tropical addition is defined to be the minimum: that is, when we add
3 and 5, we find the minimum, or 3 ⊕ 5 � min(3, 5) � 3. Also, tropical
multiplication is addition. So, if we tropically multiply 4 and 7, instead of
28, we get 4 � 7 � 4 + 7 � 11.

Why do we care about this? It turns out that this semiring behaves
quite nicely in general, and has several computationally and otherwise



2 Introduction

Figure 1.1 The graph of a tropical quadratic, from Maclagan and Sturmfels
(2015)

Figure 1.2 A tropical quadratic curve, fromMaclagan and Sturmfels (2015)

significant applications beyond the scope of this thesis. This structure has
some interesting consequences for algebraic geometry. Algebraic geometry
over the tropical semiring is also called tropical geometry, so that it is easy
to distinguish the two. While projective geometry, where Pascal’s theorem
originates, and tropical geometry have some similarities, there are several
mathematically significant distinctions.

The easiest of these to illustrate is that tropical curves are piecewise
linear. For example, when we have a quadratic equation in two variables,
(h(x , y) � ax2 + bx y + c y2 + dy + e + f x), the graph looks like Figure 1.1.
When we take the corner locus, we end up with the curve in Figure 1.2.

These “curves” are much nicer to manipulate than standard curves, in
fact, since linear objects are more predictable than nonlinear ones.

Finally, and most relevant to this thesis, we expect this theorem from
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above tohold, since similar theorems fromalgebraic geometryhave translated
over to tropical geometry ratherwell. Furthermore, similar problems actually
look nicer to solve in tropical geometry.





Chapter 2

Background, Algebraic
Geometry

Algebraic geometry is the study of geometric objects that arise from algebra,
and we will be primarily concerned with zero sets of polynomials. We’ll
start by defining projective space, then move on to homogeneous forms,
look at a couple of specific examples (the line and conic) in more depth, and
close with several propositions and lemmas leading to the proof of Pascal’s
theorem, following Reid (1988).

2.1 The Projective Plane

We will work in projective plane for the remainder of this chapter, since it
possesses a few particularly nice qualities that R2 doesn’t.

There are a few equivalent definitions of the projective plane, denoted
P2 1, but we’ll start with a less technically demanding one:

Definition 2.1.1. P2
R
, the projective plane, is the set of all lines through the

origin in R3.

How can we use this definition to imagine the projective plane? Starting
with R3, we can start with a plane parallel to the x y-plane, say z � 1. For
each point in this plane, we can draw a distinct line from the origin through
that point. So, there exists a 1-to-1 correspondence between points in this
plane and lines through the origin in R3, and we may say that there is a

1There are several ways to denote the projective plane over a field: here, since we will be
working over R, I will use P2 for ease, but it is also commonly expressed as P2

R
and RP2.
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copy of this plane, or R2, within P2. Additionally, we have a collection of
lines through the origin that we have not yet considered: those lines in the
x y-plane. Each of these lines corresponds to a direction, so we can consider
each one as a kind of point “at infinity” in that direction. Hence, we can
think of P2 as R2 plus a collection of points at infinity.

Before we get to the most difficult definition, let’s take a detour into
equivalence relations.

Definition 2.1.2. An equivalence relation is a relation ∼ on a set A that satisfies
the following three properties (respectively, the reflexive, symmetric, and
transitive properties) for all a , b , c ∈ A:

(i) a ∼ a for all a,

(ii) a ∼ b implies b ∼ a,

(iii) a ∼ b and b ∼ c together imply a ∼ c.

Equivalence relations let us divide sets into equivalence classes, so that
we can more easily consider them.

Definition 2.1.3. Given a set A, an element a ∈ A, and an equivalence
relation ∼ on A, the equivalence class containing a is the set S of all elements
of A that are equivalent to a, i.e. S � {x ∈ A : x ∼ a}.

For example, consider the rational numbers, Q � { a
b | a , b ∈ Z, b , 0}.

We can define an equivalence relation by a
b ∼

c
d if and only if ad � bc. That is,

1
2 ∼ 3

6 ∼ 52
104 and so on. Notice that this places fractions in equivalence classes

in which each member of a given equivalence class is the same fraction when
reduced to lowest terms.

The equivalence relation given in the following theorem is somewhat
similar to the prior equivalence relation onQ, except defined over all nonzero
points in R3.

Theorem 2.1.1. The projective plane is isomophic to R3 \ {(0, 0, 0)} under the
equivalence relation ∼, where (x , y , z) ∈ R is equivalent to (λx , λy , λz) for
λ ∈ R, λ , 0.

Proof. Each equivalence class under ∼ corresponds to a unique line through
the origin in R3. Recall that we can define a line L in R3 by a point p and
a vector v through L � {p + tv |t ∈ R}. We can simply let p be the origin,
and v be (the vector from the origin to) any point on the line in question.
Then for any λ � t, λv belongs to both the line and the equivalence class
containing v. �
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2.2 Forms and Curves

Now that we have the projective plane, we’ll consider curves - for the
purposes of this thesis, that will include lines, conics, and cubics. But before
we get there, we’ll have to talk about polynomials.

Definition 2.2.1. A homogeneous polynomial is a polynomial that has the same
total degree in each of its terms. The total degree of each term is the degree
of the polynomial. We will also use the word form synonymously.

The general expression for a form in two variables of degree d is

F(x , y) � a0xd
+ a1xd−1 y + . . . + ad−1x yd−1

+ ad yd .

Note that each term has a total degree of d, as we might expect.
Given a three-variable form F, we can find the set of points (x , y , z)

where F(x , y , z) � 0, although this set can be empty. We call this set the zero
set of F, denoted V(F). We state this more formally below:

Definition 2.2.2. Suppose F : R3 → R is a form. Then the zero set, V(F), of
F is the set V(F) � {(x , y , z) ∈ P2 | F(x , y , z) � 0}.

Note that the zero set is well-defined under projective scaling, since for a
degree d form F, F(λx , λy , λz) � λdF(x , y , z) always holds. Additionally,
we note that only homogeneous polynomials have well-defined zero sets
over P2. Otherwise, some representative point p � (x , y , z) might satisfy
F(p) � 0, but we are not guaranteed that equivalent points λp � (λx , λy , λz)
satisfy F(λp) � 0.

We have special names for zero sets corresponding to some low-degree
forms - lines are the zero sets of degree 1 forms, conics are the zero sets of
degree 2 forms, and cubics are the zero sets of degree 3 forms. Let’s take a
look at an example of each of these.

Example 2.2.3. Consider the form F(x , y , z) � x + 2y − 14z. Its zero set is a
line, as in Figure 2.1, since each term has total degree 1.

The general form of a degree 2 form over three variables is

F(x , y , z) � ax2
+ bx y + c y2

+ dyz + exz + f z2.

Example 2.2.4. Consider the degree 2 form F(x , y , z) � 2x2−x y+12yz+3z2.
This form’s zero set is the conic curve in Figure 2.1.
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Figure 2.1 A line and a conic, as in Examples 2.2.3 and 2.2.4

Figure 2.2 A cubic, as in Example 2.2.5

A cubic in P2 is the zero set of a degree three form. A general cubic form
is given by

F(x , y , z) � a0x3
+a1x2 y + a2x2z + a3x y2

+ a4xz2
+

a5x yz + a6 y3
+ a7 y2z + a8 yz2

+ a9z3.

Example 2.2.5. Consider the degree 3 form G(x , y , z) � 4x3 − 3x2 y + 5y3 +

x yz − 7z3. This corresponds to the cubic curve in Figure 2.22.

We can also construct curves by taking the union of two curves of smaller
degree.

Proposition 2.2.6. Suppose that we have a line L and a conic Q. Then L ∪Q
is a cubic.

Proof. The line L is the zero set of a degree 1 form F, and the conic Q is the
zero set of a degree 2 form G. We can then multiply F and G to get a degree
3 form FG, and we will show that the zero set of FG is exactly L ∪Q. Note

2This figure was made with Desmos
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that FG is always zero when at least one of F and G is zero. Also note that
since R has no zero divisors, one of F and G must be zero when FG is zero.
Hence, the zero set of FG contains both L and Q, and does not contain any
other points, as desired. �

Note also that we can generalize this proposition to any set of curves
with total degree d, so that two lines form a conic, three lines form a cubic,
two conics form a quartic, and so on.

2.3 Some Helpful Lemmas

Proposition 2.3.1 (Corollary 1.10 in Reid (1988)). There exists a unique conic
through 5 points, of which no four are collinear, in RP2.

Additionally, when at least six points lie on the same nondegenerate
conic we call them conconic. This parallels the vocabulary we use to describe
at least three points that lie on the same line. Since through any two distinct
points there exists a unique line, when we have three points that lie on a
single line we call them collinear.

Theorem 2.3.1 (Bézout’s theorem). Suppose C and D are curves in the projective
plane with respective degrees m and n. Then C and D intersect in at most mn
points.

While wewon’t prove Bézout’s theorem here (for a proof, see Reid (1988)),
we will note that we don’t get equality (that is, C and D intersect in exactly
mn points) unless the projective plane is over an algebraically closed field
and we count intersections with multiplicity.

The next lemma considers the space of cubics through a given set of
points and the dimension thereof. For simplicity, we will denote the space
of cubics S3 and the space of cubics through a set of points P as S3(P). We
may restate the first proposition of this section, Proposition 2.3.1, as the
following: given general points P1 , . . . , P5, the dimension of the space of
conics through them is 1, or dim S2(P1 , . . . , P5) � 1, where S2 denotes the
space of conics.

Proposition 2.3.2 (Proposition 2.6 in Reid (1988), also known as the Cay-
ley-Bacharach Theorem). Let P1 , . . . , P8 ∈ P2 be distinct points. Suppose
that no 4 of P1 , . . . , P8 are collinear, and no 7 of them lie on a nondegenerate
conic. Then the space of cubics through these 8 points has dimension 2, or
dim S3(P1 , . . . , P8) � 2.
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Proof. We split this proof up into several cases: the “general position case”,
where no 3 of our points are collinear, and no 6 of them are conconic; the case
where there are 3 collinear points; and the case where there are 6 conconic
points.

General Case: We assume to obtain a contradiction that the dimension
of the space of cubics is at least three. Suppose there are two more points, P9
and P10 on the line L through P1 and P2. Then, the dimension of the space of
cubics through P1 , . . . , P8 , P9 , P10 is two less than that of the space of cubics
through the first 8 points. Since there are at least 3 of the latter, there is at
least one nonzero cubic through the ten points. Since the line L goes through
P1 , P2 , P9 , P10, this cubic is the union of L and some conic C through the
remaining 6 points. If C is nondegenerate, P3 , . . . , P8 are conconic, which
contradicts our assumption. Alternately, if C is degenerate it must either be
a line pair or a double line, and by the pigeonhole principle, at least three of
P3 , . . . , P8 must be collinear, which is also a contraction.

3 collinear points: Suppose without loss of generality that P1 , P2 , P3
lie on a line L. Let P9 also be a point on L. Since P1 , P2 , P3 , P9 are all
on L, all cubics through P1 , . . . , P9 must contain L. Then the remaining 5
(noncollinear) points, P4 , . . . , P8 must lie on a conic. By Proposition 2.3.1, we
know that the space of conics through 5 general points has only 1 dimension.
Thus, the dimension of the space of cubics through P1 , . . . , P9 is 1. Then
when we remove P9, we remove one linear condition, so the space of cubics
through P1 , . . . , P8 is at most 2, as desired.

6 conconic points: Suppose without loss of generality that P1 , . . . , P6 lie
on a conic Q. Let P9 also be a (distinct) point on Q. Since P1 , . . . , P6 , P9 are
all on Q, all cubics through P1 , . . . , P9 must contain Q. Then the remaining
2 points, P7 and P8 must lie on a line. Through any two points there is a
unique line, so the dimension of the space of cubics through P1 , . . . , P9 is 1.
Then when we remove P9, we remove one linear condition, so the space of
cubics through P1 , . . . , P8 is at most 2, as desired. �

Proposition 2.3.3 (Corollary 2.7 inReid (1988)). LetC1,C2 be two cubic curves
whose intersection consists of nine distinct points, C1 ∩ C2 � {P1 , . . . , P9}.
Then a cubic D that goes through P1 , . . . , P8 also goes through P9.

Proof. If four of P1 , . . . , P8 were on some line L, then C1 , C2 would meet L in
at least 4 points. By Bézout’s theorem, note that a line and a cubic meet in at
most 3 points. Thus, if a conic contains 4 collinear points, it must contain
the whole line. Hence, if four of P1 , . . . , P8 were collinear on some line L,
both cubics would contain L, which contradicts our assumption on C1 ∩ C2.
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Figure 2.3 Pascal’s mystic hexagon; image from Reid (1988)

Similarly, no 7 of the points can be conconic, since a conic and a cubic
meet in at most 6 points.

Then the assumptions of Proposition 2.3.2 hold, so the space of cubics
through P1 , . . . , P9 has dimension 2. Suppose that C1 is the zero set of F1
and similarly C2 and F2. Then F1 and F2 are a basis of S3(P1 , . . . , P8). So,
D : (G � 0) for G � λF1 + µF2. Since F1 and F2 both vanish at P9, G must
also, and hence D goes through P9. �

2.4 Pascal’s Mystic Hexagon

In this section, we will state and then prove Pascal’s theorem.

Theorem 2.4.1 (Pascal’sMysticHexagon, Theorem 2.11 in Reid (1988)). Given
a hexagon ABCDEF in P2, extend pairs of opposite sides to their intersections to
make the points P, Q, and R. Assume that the six lines and nine points are distinct.
Then the hexagon ABCDEF is conconic if and only if PQR are collinear.

See Figure 2.3 for an example of one such hexagon on a conic and its
associated collinear points.

Proof. Consider 2 triples of lines:

L1 : PAF, L2 : QDE, L3 : RBC

and
M1 : PCD ,M2 : QAB,M3 : REF.
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These define two cubics - C1 � L1 + L2 + L3 and C2 � M1 + M2 + M3. C1 and
C2 intersect in the nine named points of the diagram. Of the nine points, no
four are collinear, and no seven are conconic, so we can apply Proposition
2.3.3.

First, we show the converse. Suppose that PQR are collinear, on line N .
We may also suppose that there is a conic Γ through ABCDE, since through
any five points we can construct a conic by Proposition 2.3.1. Then N + Γ is
a cubic.

Then, by Proposition 2.3.3, since N + Γ goes through the eight points
A, B, C,D , E, P,Q , R, it must also contain F. Note that F cannot belong on
N by assumption – since REF is assumed to be distinct from PQR, if RF
belongs to both REF and PQR, those lines are no longer distinct, which is a
contradiction. Hence, F must belong to Γ, and ABCDEF are conconic.

Now, we show the implication. Suppose that ABCDEF are conconic on
the conicΓ, and letN � PQ. ThenN+Γ is a cubic throughA, B, C,D , E, F, P,Q,
and we can apply Proposition 2.3.3 again. Hence, it must also go through
R. We show that R is not on the conic Γ by contradiction. If R were on Γ,
then Γmust contain the lines RBC and REF, by the original construction of
R. Then either REF and RBC must coincide, which is a contradiction, since
we assumed that these were distinct lines, or Γ is a line pair, which is also
leads us to a contradiction. Note that if Γ is a line pair, with BC on one line
and EF on the other, then A must live on one of these lines. If A lives on BC,
then RBC coincides with QAB, which is again a contradiction. Similarly, if
A is on EF, REF coincides with PAF, also a contradiction. Thus, R must be
on PQ, and PQR are collinear. �



Chapter 3

Background, Tropical
Geometry

In this chapter, we will walk through the basics of tropical algebra, consider
what polynomials look like in tropical algebra, and then move on to the
concepts of lines and conics in tropical geometry. We follow Maclagan and
Sturmfels (2015).

3.1 The Tropical Semiring

Definition 3.1.1. The tropical semiring, (R∪∞, ⊕, �), is the set of real numbers
with infinity under tropical addition and tropical multiplication. Tropical
addition, denoted ⊕, is the minimum, while tropical multiplication, denoted
�, is the usual addition.

We will illustrate these operations with some examples.

Example 3.1.2. Consider 24 ⊕ 2. Since ⊕ is the minimum, we get

24 ⊕ 2 � min(24, 2) � 2.

Note also that for any finite x, min(x ,∞) is always x, so∞ is the additive
identity. However, there are no additive inverses, in general.

Example 3.1.3. Consider 3 � 7. Since � is addition, this is 3 � 7 � 3 + 7 � 10.

Since x + 0 is always x, the multiplicative identity is zero. We also have
multiplicative inverses, and it is left to the reader to determine them.

We can also consider tropical polynomials:
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Example 3.1.4. Let f (x) � x4 ⊕ 2 � x3 ⊕ −4 � x2 ⊕ 3, where x2 means x � x.
Then we can rewrite this as

min(4x , 2 + 3x , 2x − 4, 3).

Thus, for any classical polynomial, we can tropicalize it by interpreting
each multiplication as tropical multiplication and each addition as tropical
addition. Note that for any polynomial f , its tropicalization will be the
minimum of a series of terms that are linear in each variable. The next
section discusses how we formally handle this process.

3.2 Tropicalization of Polynomials

Definition 3.2.1. The tropicalization of a polynomial f �
∑

n∈Z an xn , with
an ∈ R, denoted trop( f ), is

trop( f ) � min
u∈Z
(au + ux).

However, in order to take minima when we have multiple variables and
coefficients from rings other than the real numbers, we’ll have to get more
creative. The first ingredient that we’ll need is valuations – in short, these are
maps that take elements of some field to an abelian group; for our purposes,
that abelian group will be R ∪ {∞} – exactly the set we’ve defined tropical
algebra over.

Definition 3.2.2. Suppose that K is a field, and let K∗ be the nonzero elements
of K. Then a valuation is a map val : K → R ∪ {∞} satisfying the following:

(i) val(a) � ∞ if and only if a � 0,

(ii) val(ab) � val(a) + val(b), and

(iii) val(a + b) ≥ min (val(a), val(b)) for all a , b ∈ K∗.

The trivial valuation of a field takes every element of that field to 0.
A more interesting (and relevant) example fromMaclagan and Sturmfels

(2015) concerns Puiseux series. Let K be the field of Puiseux series with
coefficients. Then an element of K is given by

c(t) � c1ta1 + c2ta2 + c3ta3 + · · · ,
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where the ci are all nonzero complex numbers and a1 < a2 < a3 < · · · are
rational numbers with a common denominator. This field K has a natural
valuation val : K → R where val(c(t)) is the lowest exponent of t that
appears in the series expansion of c(t).

Example 3.2.3. The polynomial c(t) � t3 + 4t18 has valuation val(c(t)) � 3.

Given a valuation, we may also define a residue field. The general
definition is beyond the scope of this thesis. However, for Puiseux series
and their natural valuation as defined above, we may map any element

c(t) � c1ta1 + c2ta2 + c3ta3 + · · ·

with a1 ≥ 0 to the residue field by taking c(t) to 0 if a1 > 0 and by taking c(t)
to c1 if a1 � 0.

The concept of valuation allows us to consider the tropicalization of
polynomials in multiple variables and with coefficients from K, the field of
Puiseux series.

Let f ∈ K[x1 , . . . , xn]. That is, f is a polynomial in the variables
x1 , x2 , . . . , xn with coefficients from K. Then we can express f by

f (x1 , . . . , xn) �
∑

u∈Nn

cu xu .

Here, u � (u1 , . . . , un)with ui ∈ N, cu ∈ K, and xu � xu1
1 xu2

2 · · · x
un
n .

Definition 3.2.4. Let f be defined by f (x1 , . . . , xn) �
∑

u∈Nn cu xu . Then we
define the tropicalization of f , trop( f ), by

trop( f )(w) � min
u∈Nn
(val(cu) +

n∑
i�1

ui wi)

� min
u∈Nn
(val(cu) + u · w)

for w ∈ Rn .

However, trop( f )(w) is in R, so graphing trop( f )(w) against w gives us
a series of hyperplanes in Rn+1. This is rather unwieldy to work with, and
we’re interested in a subset of Rn , not an embedding of Rn in Rn+1. To
solve a similar issue in algebraic geometry, we considered the zero set of a
polynomial – in the next section we examine what a good analogue of the
zero set is for a tropical polynomial.
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Figure 3.1 The graph of a tropical quadratic and its corner locus, fromMacla-
gan and Sturmfels (2015)

3.3 Tropical Varieties

Classically, whenwe define a curve corresponding to some form, we consider
the set of points where the form is zero. However, for tropicalized poly-
nomials, this choice doesn’t make as much sense. By definition, a tropical
polynomial is zero when the minimum of its linear terms is zero. This isn’t
particularly noteworthy, especially considering that the zeroes of traditional
forms correspond to roots of the polynomial. Recall that the roots of a
polynomial allow us to factor the polynomial, so the roots of a polynomial
tell us something fundamental about the structure of the polynomial itself.

So, what aspect of a tropical polynomial might we choose to highlight
when defining a variety for them? We note that for any given tropical
polynomial, we can graph it as a continuous piecewise linear function.

Since this function is continous, but only piecewise linear, we note that
there must be some corners between these linear sections. Since each linear
section corresponds to one of the terms we take the minimum of, the corners
occur where the minimum is generated by at least two of the terms.

For polynomials in a single variable, the location of the corners cor-
responds to roots of the polynomial, and we can use this to factor the
polynomial into linear terms. While multivariate polynomials cannot be
uniquely factored, this object still contains interesting information about the
polynomial, so we’ll choose this as our variety.

We call this collection of points the corner locus, since these points live
on the corners of our surface. We will also call varieties corresponding to
polynomials of degree 1 lines, those corresponding to degree 2 polynomials
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conics, and those corresponding to degree 3 polynomials cubics.
In order to work with the concept more concretely later, we’ll define it

here:

Definition3.3.1. The corner locusof a tropicalizedpolynomial f ∈ K[x1 , . . . , xn],
or the tropical hypersurface trop(V( f )), is the set

{w ∈ Rn : the minimum in trop( f ) is achieved at least twice}.

This concept may also be expressed through initial forms, which we will
define and discuss now.

Definition 3.3.2. Given a polynomial f �
∑

u∈Nn cu xu and a vector w ∈ Rn ,
with W � trop( f )(w), we define the initial form of f with respect to w as
follows:

inw( f ) �
∑

u∈Nn+1:(val(cu)+u·w)�W

cu t−val(cu)xu ,

where the bar denotes the image in the residue field.

For any given w and f , note that inw( f ) is a collection of terms such that
each term indicates where and how trop( f )(w) � minu∈Nn (val(cu) + u · w).
That is, if the initial form inw( f ) is a monomial, the minimum is achieved
only once. Otherwise, w belongs to the corner locus of the tropicalization of
f .

We will finish this section with a theorem that connects the two concep-
tions of the corner locus we discussed. Kapranov’s Theorem lets us move
between classical polynomials, their tropicalizations, and associated tropical
curves.

Theorem 3.3.1 (Kapranov’s Theorem, after Thm 3.1.3 in Maclagan and
Sturmfels (2015)). Fix a Laurent polynomial f �

∑
u∈cu xu in K[x±1 1, . . . , x±n 1].

The following three sets coincide:

1. the tropical hypersurface trop(V( f )) in Rn;

2. the closure in Rn of the set {w ∈ Γn
val : inw( f )is not a monomial};

3. the closure in Rn of {val(y1), . . . , val(yn) : (y1 , . . . , yn) ∈ V( f )}.
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Figure 3.2 Two two tropical lines intersecting in special position.

Figure 3.3 The self-intersection of a tropical conic, fromMaclagan and Sturm-
fels (2015)

3.4 Intersections of Tropical Curves

Given two tropical curves, we would like to know where and how they
intersect. For two curves in general position, the natural choice is the points
that they have in common. Sometimes, however, two tropical curves share a
line segment or half-ray, as in Figure 3.2. Instead of this infinite collection of
points, we want a well-defined and finite set of points of intersection for pair
of tropical curves.

Definition 3.4.1. Let C and D be two tropical curves. Let Cε be the curve
C shifted by ε in some direction, and define Dε similarly. Then the stable
intersection of C and D consists of the limits of the intersection of all curves
Cε and Dε as ε approaches zero.

With this definition, we can even define the intersection of a tropical
curve with itself. This ends up being the vertex or vertices of the curve in
question, as in Figure 3.3.
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3.5 Some Other Parallels

In order to prove the tropicalized version of Pascal’s Theorem, we will need
some more machinery from tropical geometry. First, we will walk through a
result similar to Proposition 2.2.6. We will then discuss some implications
of Kapranov’s Theorem (3.3.1) that let us lift tropical problems back up to
classical algebraic geometry.

Recall that Proposition 2.2.6 allows us to “add” curves together to get
curves of a higher degree. An identical statment holds for curves in tropical
geometry, although here we will only consider two particular cases.

Proposition 3.5.1. Suppose we have two tropical lines K and L. Then K ∪ L
is a tropical conic. Similarly, given a tropical line L and a tropical conic Q,
L ∪Q is a tropical cubic.

Proof. We can express K as the corner locus of g(x , y) � min(a + x , b + y , c)
and similarly express L as the corner locus of h(x , y) � min(d + x , e + y , f ).
Now consider the tropical polynomial g(x , y) ⊗ h(x , y) � p(x , y). We can
express this polynomial as

p(x , y) � min(a + x + d + x , a + x + e + y , a + x + f , b + y + d + x ,
b + y + e + y , b + y + f , c + d + x , c + e + y , c + f ).

Notice that every point in the corner locus of g (i.e., K) is in the corner locus
of p: If g achieves a minimum in multiple terms, then at least two terms of p
will achieve the minimum. There are several cases to show; we will show
one and leave the rest to the reader to check. Suppose that (x0 , y0) ∈ K, with
b + y0 � c � g(x0 , y0), and suppose that h(x0 , y0) � f . Then

b + y0 + f � c + f � p(x0 , y0),

and (x0 , y0) belongs to the corner locus of p. Similarly, L is also contained in
the corner locus of p.

Now it only remains to show that the corner locus of p does not contain
any other points. That is, we want to show that if any pair of terms achieves
the minimum p(x0 , y0), (x0 , y0) ∈ K ∪ L. Note that if a pair of terms has
any coefficients in common, it corresponds to a point in K or L, as we saw
above. So any points in the corner locus of p that do not belong to K or
L must achieve the minimum in two terms that do not have any common
coefficients. Again, there are several cases, of which we will show only
one. Suppose b + y0 + e + y0 � c + f � p(x0 , y0). Then if b + y0 < c, we
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know b + y0 + f < c + f , which is a contradiction, since c + f is a minimum.
Similarly, if b + y0 > c, we know b + y0 + e + y0 > c + e + y0, which is also
a contradiction. Thus, b + y0 must equal c. But then (x0 , y0)must be in K.
Thus, the corner locus of p is exactly K ∪ L, as desired.

The proof of the second statement follows similarly and is left to the
reader. �

Throughout this chapter, we’ve approached (and defined) tropical poly-
nomials and curves as objects that can be constructed from classical polyno-
mials. That is, every tropical polynomial and curve we handle has a classical
counterpart. However, given two tropical curves that intersect, we are not
necessarily guaranteed that their classical counterparts will also intersect,
and if they do, that they will intersect in a similar way.

All of the tropical curves that arise in our tropicalization of Pascal’s
theorem have codimension 1 (i.e., they occupy all but one of the dimensions
of the space we’re working in – our curves are lines in a plane, as opposed to
lines in a three-dimensional space). This means that they have transverse
intersections, so that we may, by work done in Osserman and Payne (2013)1,
lift every tropical intersection to a classical one. Additionally, given two
curves that intersect transversely in a number of places, we are guaranteed
that their corresponding classical counterparts will intersect in the same
way. This is exactly sufficient for a proof of a tropicalization of a key lemma
(2.3.3) in Reid’s proof of Pascal’s theorem.

3.6 Stating Pascal’s Theorem

Having defined lines and conics in tropical geometry, we now want to
translate Pascal’s Theorem from algebraic geometry to tropical geometry.
As in algebraic geometry, two general points define a line, and five general
points define a conic. So, the original statement that, given some generality
constraints, six points are conconic if and only if a related set of three points
is collinear also makes sense - we expect any five points to be conconic, while
adding a sixth is something special, and we expect any two points to be
collinear, and adding a third is again a special occurrence.

While Bézout’s theorem does not hold classically in R2 or even in P2
R
, it

holds in R2 under tropical geometry. This is the tropical projective space.
However, we do not need to use forms, since the tropical projective space

1Theorem 1.1, for the interested reader
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does not have the same equivalence relation, and so the properties of forms
are no longer necessary.

We end by formally stating our conjecture.

Theorem3.6.1. Given six pointsA, B, C,D , E, and F in tropicalR2, letABCDEF
be a hexagon through them. Then let P,Q , and R be the three points of intersection
of the three pairs of lines going through opposite sides of the hexagon. If the six lines
and nine points are distinct, then ABCDEF are conconic exactly when PQR are
collinear.





Chapter 4

A Proof of the Tropical
Hexagon

In order to prove the tropicalized version of Pascal’s theorem, we follow
Reid’s proof idea. However, instead of developing analoguous statements
about the dimensions of spaces of curves, we skip straight to a tropicalization
of the last lemma proven about cubic curves. Armed with this and the fact
that the union of three tropical lines is a tropical cubic, we may closely follow
Reid’s proof.

4.1 A Simple Example

Before we get to the heart of the proof, let’s first examine an example. That
is, we start with a tropical conic, select six points on that conic, and connect
them in order with six tropical lines. We then find the intersections of
opposite sides and show that they indeed lie on a tropical line. While this
is certainly not a rigorous proof, the reader may find it helpful or at least
entertaining to have a picture handy.

We begin with the left side of Figure 4.1, which is a tropical conic. This
conic is the tropicalization of the polynomial1

f (x , y) � t2x2
+ x y + (t2

+ t3)y2
+ (1 + t3)x + t−1 y + t3.

It is left to the reader to check that the tropicalization of this polynomial is

trop( f )(x , y) � min(2 + 2x , x + y , 2 + 2y , x ,−1 + y , 3).
1This polynomial and its tropicalization are from Example 3.1.2 inMaclagan and Sturmfels

(2015).
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Figure 4.1 A tropical conic and six starting points

We have chosen the following six points that lie on the tropical conic:

A : (4.5, 4), B : (−2, 3), C : (−1,−2), D : (0, 1), E : (−1.5, 0), and F : (3,−3).

The right side of Figure 4.1 shows these six points.
Through any two points we may construct a tropical line, and in the left

side of Figure 4.2 we connect two of the points with a tropical line. Since
this tropical line has a vertex at (−1, 4), one tropical polynomial that has this
line as its corner locus is

min(1 + x ,−4 + y , 0).

The right side of Figure 4.2 shows all six lines AB, BC, CD ,DE, EF, and FA.

Figure 4.2 The development of a tropical “hexagon”
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Figure 4.3 Intersections of opposite sides and the line through them

Finally, we may intersect opposite sides. There are three intersections,
occurring at the points

P : (−0.5, 4), Q : (−1.5,−2), and R : (4.5,−1),

which have been marked in green. Luckily for us, we find that these three
points lie on the tropical line given by

min(0.5 + x , 1 + y , 0),

exactly as desired.

4.2 Tropical Intersections of Cubic Curves

What we want to have is a tropical analogue of Proposition 2.3.3. We’ll
restate the original here for convenience.

Proposition 2.3.3. Let C1, C2 be two cubic curves whose intersection consists
of nine distinct points, C1 ∩ C2 � {P1 , . . . , P9}. Then a cubic D that goes
through P1 , . . . , P8 also goes through P9.

We now state the tropical version of this theorem.

Proposition 4.2.1. Let C1, C2 be two tropical cubic curves whose intersection
consists of nine distinct points, C1 ∩C2 � {P1 , . . . , P9}. Then a tropical cubic
D that goes through P1 , . . . , P8 also goes through P9.



26 A Proof of the Tropical Hexagon

To prove this proposition, we will lift the conditions to classical algebraic
geometry. Since every tropical intersection lifts to a classical intersection
under the assumptions in Osserman and Payne (2013), the lifted conditions
are identical to the conditions of the original proposition. We can then
apply the original proposition and tropicalize the result to obtain the desired
tropical conclusion.

Proof. Wemay lift C1 and C2 to cubic curves C̃1 and C̃2 in P2 that intersect in
exactly nine points. We may also lift any tropical cubic D that goes through
exactly eight of those points to a cubic curve D̃ that goes through eight of the
nine intersection points of C̃1 and C̃2. Then we have exactly the conditions
of Proposition 2.3.3, so D̃ goes through the ninth intersection of C̃1 and C̃2.
We may then tropicalize D̃ to D, and the ninth intersection tropicalizes to
the desired last tropical intersection. �

We now have everything we need to prove the tropical version of Pascal’s
Theorem.

4.3 Proving Pascal’s Theorem

We first restate the tropical version:

Theorem 4.3.1. Given six points A, B, C,D , E, and F in R2, let ABCDEF be a
hexagon through them. Then let P,Q , and R be the three points of intersection of
the three pairs of lines going through opposite sides of the hexagon. If the six lines
and nine points are distinct (we might need a different generality condition), then
ABCDEF are conconic exactly when PQR are collinear.

Proof. Consider 2 triples of lines:

L1 : PAF, L2 : QDE, L3 : RBC

and
M1 : PCD ,M2 : QAB,M3 : REF.

These define two cubics - C1 � L1 + L2 + L3 and C2 � M1 + M2 + M3. C1 and
C2 intersect in the nine named points of the diagram. Of the nine points, no
four are collinear, and no seven are conconic, so we can apply Proposition
4.2.1.

First, we show the converse. Suppose that PQR are collinear, on line N .
We may also suppose that there is a conic Γ through ABCDE, since through
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any five points we can construct a tropical conic. Then N + Γ is a cubic by
Proposition 4.2.1.

Then, by Proposition 4.2.1, since N + Γ goes through the eight points
A, B, C,D , E, P,Q , R, it must also contain F. Note that F cannot belong on
N by assumption – since REF is assumed to be distinct from PQR, if RF
belongs to both REF and PQR, those lines are no longer distinct, which is a
contradiction. Hence, F must belong to Γ, and ABCDEF are conconic.

Now, we show the implication. Suppose that ABCDEF are conconic on
the conicΓ, and letN � PQ. ThenN+Γ is a cubic throughA, B, C,D , E, F, P,Q,
and we can apply Proposition 4.2.1 again. Hence, it must also go through
R. We show that R is not on the conic Γ by contradiction. If R were on Γ,
then Γmust contain the lines RBC and REF, by the original construction of
R. Then either REF and RBC must coincide, which is a contradiction, since
we assumed that these were distinct lines, or Γ is a line pair, which is also
leads us to a contradiction. Note that if Γ is a line pair, with BC on one line
and EF on the other, then A must live on one of these lines. If A lives on BC,
then RBC coincides with QAB, which is again a contradiction. Similarly, if
A is on EF, REF coincides with PAF, also a contradiction. Thus, R must be
on PQ, and PQR are collinear. �
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