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Abstract

Interpolation Jack polynomials are certain symmetric polynomials in #

variables G1 , . . . , G# , with coefficients that are rational functions in another
parameter �, indexed by partitions of length at most # . Introduced first
in 1996 by F. Knop and S. Sahi, and later studied extensively by Sahi,
Knop-Sahi, and Okounkov-Olshanski, they have interesting connections
to the representation theory of Lie algebras. Given an interpolation Jack
polynomial %�, we would like to write

%

%�
%� =

∑
�

2
�
�%�

where the coefficients 2�� are rational functions of �. In this thesis I present
proofs of expressions for a few specific cases of these coefficients, and develop
a general matrix formula which does not provide a concrete formula but can
act as a starting point for computing such a formula.
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Chapter 1

Symmetric Polynomials and
Partitions

In this section we provide a brief introduction to symmetric polynomials and
partitions, and present a connection between them in the form of families
of symmetric polynomials indexed by partitions. For further reading on
symmetric polynomials and families indexed by partitions see [1, 2, 3],
and for more information on partitions and their various combinatorial
properties see [4].

1.1 Symmetric Polynomials

Let %# = ℂ[G1 , . . . , G# ] be the algebra of polynomials in # variables
G1 , . . . , G# with complex coefficients. Recall that the symmetric group (# is
defined to be the set of bĳections

� : {1, . . . , #} → {1, . . . , #}.

Then a polynomial 5 ∈ ℂ[G1 , . . . , G# ] is defined to be symmetric if it is
invariant under the action of the symmetric group, i.e.,

5 (G�(1) , . . . , G�(#)) = 5 (G1 , . . . , G# )

for all � ∈ (# . There are several fundamental examples of symmetric
polynomials.



2 Symmetric Polynomials and Partitions

Example 1.1.1. The elementary symmetric polynomials 4: := 4:(G1 , . . . , G# ) in
# variables are defined by the relation

#∏
8=1
(1 + CG8) = 1 +

#∑
:=1

4:C
: . (1.1)

That is, the :Cℎ elementary symmetric polynomial is defined to be the
coefficient of C: when

∏#
8=1(1 + CG8) is expanded out. For example, if # = 1,

then Equation 1.1 becomes

1 + CG1 = 1 + 41C
and so 41(G1) = G1. If # = 2, then Equation 1.1 instead becomes

(1 + CG1)(1 + CG2) = 1 + (G1 + G2)C + G1G2C
2 = 1 + 41C + 42C2

so that 41(G1 , G2) = G1 + G2 and 42(G1 , G2) = G1G2.
Example 1.1.2. The complete symmetric polynomials ℎ: := ℎ:(G1 , . . . , G# ) in #
variables are defined by the relation

∞∑
:=1

ℎ:C
: = 1 +

#∏
8=1
(1 − G8C)−1. (1.2)

Similarly to before, this means that the :Cℎ complete symmetric polynomial
is defined to be the coefficient of C: when

∏#
8=1(1 − G8C)−1 is expanded out

using power series. For example, if # = 1 then Equation 1.2 becomes
∞∑
:=1

ℎ:C
: = 1 + (1 − G1C)−1

= 1 +
∞∑
9=0
(G1C)9

= 1 + G1C + G2
1C

2 + · · · .
So ℎ1(G1) = G1, ℎ2(G1) = G2

1, etc. If # = 2 then Equation 1.2 becomes
∞∑
:=1

ℎ:C
: = 1 + (1 − G1C)−1(1 − G2C)−1

= 1 + ©«
∞∑
9=0
(G1C)9

ª®¬
( ∞∑
ℓ=0
(G2C)ℓ

)
= 1 + (G1 + G2)C + (G2

1 + G1G2 + G2
2)C2 + · · · .
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Thus ℎ1(G1 , G2) = G1+G2, ℎ2(G1 , G2) = G2
1+G1G2+G2

2. In general ℎ:(G1 , . . . , G=)
will be the sum of all distinct monomials in G1 , . . . , G= that have total degree
:.

Example 1.1.3. The power sumsΨ: in # variables are defined to be

Ψ:(G1 , . . . , G# ) :=
#∑
8=1

G:8 .

For example, the power sumΨ5 in 2 variables is

Ψ5(G1 , G2) = G5
1 + G

5
2 .

Another fundamental example of symmetric functions are the monomial
symmetric functions, but we hold off on a definition of these until we have
introduced the concept of a partition1.

One can check that the collection of symmetric polynomials in# variables
is closed under addition, multiplication and scalar multiplication and so in
fact forms a subalgebra of %# , denoted Λ# .

An interesting question that arises now that we know Λ# is an algebra
is: which collections of symmetric polynomials form a basis for Λ#? Each
of the families of polynomials presented in Examples 1.1.1-1.1.3 do2, and
we will encounter more such families of polynomials later on after we have
introduced partitions. In particular, this report will revolve around one
specific basis for Λ# , called the interpolation Jack polynomials.

1.2 Partitions

We now introduce the notion of a partition.

Definition 1.2.1. A partition of a non-negative integer < is a tuple � =

(�1 , . . . ,�# ) such that �1 , . . . ,�# are non-negative integers, �1 ≥ · · · ≥ �# ,
and �1 + · · · + �# = <. The number # is called the length of the partition �,
and the number < is called the size of the partition �, denoted |�|.

Example 1.2.2. The partitions of length three of the integer 3 are (1, 1, 1),
(2, 1, 0) and (3, 0, 0).

1See Section 1.3.
2We will make this statement more precise in Section 1.3.
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One question that arises when studying partitions is: how do we order
them? There are several ways of doing this, but here we present one that is
often used in the study of symmetric polynomials.

Definition 1.2.3. Let � = (�1 , . . . ,�;) and � = (�1 , . . . , �;) be two partitions
of the same length. Then� > � in lexicographic ordering (sometimes written
� >;4G �) if for some index 8

� 9 = �9 for 9 < 8 and �8 < �8 .

Note that lexicographic ordering is a total ordering on partitions of a
certain length, i.e., for each two partitions � and � of the same length,
either � >;4G � or � ≤;4G �. This is important because later on we will use
lexicographic ordering to order certain families of symmetric polynomials
indexed by partitions.

Another important and notorious concept related to partitions is that of
the Young diagram associated to a partition.3

Definition 1.2.4. Let � = (�1 , . . . ,�# ) be a partition. Then the Young diagram
associated to �, which we will denote �̃4, is an array of boxes with # left-
justified rows, where row 8 has �8 boxes. We also say that such a Young
diagram has shape �.

Example 1.2.5. If � = (3, 2, 1), then the Young diagram of shape � is

.

Young diagrams arise often in combinatorial settings, and provide
an insightful approach to many problems due to their visual nature. In
particular, they are integral in the study of the representation theory of the
symmetric group, and will show up later in this document playing a key
role in finding a concrete formula for interpolation Jack polynomials.

Young diagrams are also useful in defining the conjugate or transpose of a
partition �.

3Despite the name, these diagrams have in fact been around since 1900, and so are not
particularly young.

4This is not standard notation.
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Definition 1.2.6. Let � = (�1 , . . . ,�# ) be a partition. Then the conjugate or
transpose of � is the partition �† = (�†1 , . . . ,�

†
ℓ
), where �†

8
is the number of

boxes in column 8 of the Young diagram of shape �.

Note that the Young diagram of �† can be obtained from the Young
digram of � by flipping the boxes over the diagonal that goes from the
upper left to the bottom right, i.e., taking the transpose of a Young diagram
is like taking the transpose of a matrix. For example, using the partition
� = (3, 2, 1) from Example 1.2.5 we see that in fact � = �†.

1.3 Symmetric Polynomials Indexed by Partitions

We can now combine what we have learned about symmetric polynomials
and partitions to form the general type of object that this thesis will revolve
around: families of symmetric polynomials indexed by partitions.

The concept of a family of symmetric polynomials being indexed by
partitions is analogous to the idea of a sequence 01 , 02 , . . . being indexed
by natural numbers. That is, there is a bĳection between partitions and
polynomials in that family, and in general this bĳection is established through
some type of formula involving the parts of �.

Example 1.3.1. We now find ourselves in a place where we can define the
monomial symmetric functions, as promised in Section 1.1. If � = (�1 , . . . ,�# )
is a partition, then we define the monomial symmetric function associated to �
to be

<�(G1 , . . . , G# ) =
∑

G
01
1 · · · G

0#
#

where the summation is over all distinct permutations 0 = (01 , . . . , 0# ) of
� = (�1 , . . . ,�# ). For example, the monomial symmetric function in three
variables associated to � = (6, 5, 4) is

<(6,5,4)(G1 , G2 , G3) = G6
1G

5
2G

4
3 + G6

1G
4
2G

5
3 + G

5
1G

6
2G

4
3 + G5

1G
4
2G

6
3 + G

4
1G

6
2G

5
3 + G

4
1G

5
2G

6
3 .

Monomial symmetric functions are particularly important in the study of
symmetric polynomials because they are a useful way of consolidating
notation. That is, if ?(G1 , . . . , G# ) is a symmetric polynomial, then every
term in the monomial symmetric function <�(G1 , . . . , G# )will have the same
coefficient in ?, so instead of writing out all of the terms in ?, we can simply
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write it in terms of the monomial symmetric functions. For example, the
symmetric polynomial

?(G1 , G2) = 3G2
1 + 3G2

2 + G1 + G2

can be written instead as

?(G1 , G2) = 3<(2,0)(G1 , G2) + <(1,0)(G1 , G2).

Thus instead of thinking about symmetric polynomials in terms of the mono-
mials that they contain, it is useful to think of them in terms of the monomial
symmetric functions that they contain. We shall see later on that monomial
symmetric functions play an integral role in our study of interpolation Jack
polynomials.

Example 1.3.2. Another prominent example of a family of symmetric poly-
nomials indexed by partitions is the Schur functions or Schur polynomials.
Given a partition � = (�1 , . . . ,�# ) the Schur function, B�, associated to that
partition is the polynomial

B�(G1 , . . . , G# ) =
det

(
G
�9+#−9
8

)
1≤8 , 9≤#

det
(
G
#−9
8

)
1≤8 , 9≤#

.

Although it is not clear that this will always be a polynomial in G1 , . . . , G#
(as opposed to merely a rational function), this turns out to be the case. As a
concrete example, let # = 2 and � = (2, 1). Then we see that

det
(
G
�9+#−9
8

)
1≤8 , 9≤#

= det
(
G2+2−1

1 G1+2−2
1

G2+2−1
2 G1+2−2

2

)
= det

(
G3

1 G1
G3

2 G2

)
= G3

1G2 − G1G
3
2

and

det
(
G
#−9
8

)
1≤8 , 9≤#

= det
(
G2−1

1 G2−2
1

G2−1
2 G2−2

2

)
= det

(
G1 1
G2 1

)
= G1 − G2.
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Thus

B(2,1)(G1 , G2) =
G3

1G
1
2 − G1

1G
3
2

G1 − G2

= G2
1G2 + G1G

2
2 .

So we see that B(2,1)(G1 , G2) is indeed a symmetric polynomial in the variables
G1 and G2. It is also worth noting that when � = (�1) we have B� = ℎ�1 ,
where ℎ�1 is the complete symmetric polynomial mentioned in Example
1.1.2. When � = (1, . . . , 1), B� is the elementary symmetric function 4#
mentioned in Example 1.1.1 (where # is the number of 1’s in �).

We can also define variations on the symmetric polynomials presented in
Examples 1.1.1, 1.1.2 and 1.1.3, as follows. If � = (�1 , . . . ,�# ) is a partition,
then the elementary symmetric polynomial indexed by � is 4� = 4�1 4�2 · · · ;
and the complete symmetric polynomial indexed by � and the power
sum indexed by � are defined analogously. These families of symmetric
polynomials are of interest because for each family, the subset of that family
that is indexed by partitions of length # (where we allow some of the �8
to be zero) forms a basis for the space Λ# 5. As mentioned previously, this
thesis is focused on a particular basis of symmetric polynomials indexed by
partitions, called the interpolation Jack polynomials.

5To be more precise, the sets {4�(G1 , . . . , GA ) | A ≤ #}, {ℎ�(G1 , . . . , GA ) | A ≤ #} and
{?�(G1 , . . . , GA ) | A ≤ #} each are a basis for Λ# .





Chapter 2

Interpolation Jack Polynomials:
What Are They?

In this section we introduce the interpolation Jack polynomials, first through
an abstract definition introduced by Knop and Sahi and then through an
explicit combinatorial formula developed by Okounkov. For more reading
on each, see respectively [5] and [6], and for further reading on similar
combinatorial formulas see [1]. Note also that parts of this section follow
closely the discussion in [7] (also written by the author).

2.1 First Definition

Interpolation Jack polynomials were first introduced in 1996 by F. Knop
and S. Sahi [5], and were defined by certain vanishing conditions. In
order to develop the definition, we must first introduce some notation. Let
� = (�1 , . . . ,�# ) be a partition and let � = (�1 , . . . , �# ) be a vector in ℂ# .
Then we say that � is dominant if �8 − � 9 ≠ −1,−2,−3, . . . for all 8 < 9. We
can then define the �-hooklength of a box B = (8 , 9) in the Young diagram
associated to the partition � to be

2
�
�(B) := (�8 − 9 + 1) + (�8 − ��†

9
)

where we recall from Section 1.2 that �† = (�†1 , . . . ,�
†
ℓ
) denotes the transpose

of the partition �.

Example 2.1.1. Let � = (1, 1, 1) and � = (3, 2, 1). Then the Young diagram
associated to � and its transpose are:
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and .

Thus the transpose of � is �† = (3, 0, 0). Now consider the box B = (2, 1) in
this Young diagram. This is the middle box, and its �-hooklength is

2
(3,2,1)
(1,1,1)(2, 1) = (�2 − 1 + 1) + (�1 − ��†1)

= 1 + (3 − �3)
= 1 + (3 − 0)
= 4.

For each partition � we can then further define

2
�
� :=

∏
B∈�

2
�
�(B).

Finally, for non-negative integers # and 3 (note that # is actually strictly
positive) let ((#, 3) denote the set of partitions � = (�1 ,�2 , . . . ,�# ) with∑
8 �8 = 3. We then present the following definition from [5].

Definition 2.1.2. Let � ∈ ℂ# be dominant and let 3 and # be non-negative
integers. Then for any partition � ∈ ((#, 3), the interpolation Jack polynomial
%
�
� associated to that partition is the unique polynomial in # variables such

that

(1) %�
� is symmetric

(2) deg%�
� ≤ 3

(3) %�
�(� + �) = 0 for all partitions � of 3 with � ≠ �

(4) %�
�(� + �) = 2

�
�.

In otherwords, these polynomials are defined to be the unique symmetric
polynomials in # variables satisfying a degree condition (2), a vanishing
condition (3) and a normalization condition (4).

It is proven in [5] that these polynomials will in fact exist and be unique
for each dominant � ∈ ℂ# and each � ∈ ((#, 3). Note that they are also
sometimes referred to as shifted Jack polynomials (see [3]).
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In this report, we will focus on a particular sub-family of these polynomi-
als, indexed by vectors of the form � = ��, where � is a formal parameter and
� = (= − 1, = − 2, . . . , 1, 0). This sub-family is of particular interest because
for certain values of �, the interpolation Jack polynomial %��� reduces to
certain other well-known symmetric polynomials. For example, let us define
the falling factorial polynomials

G1 := G(G − 1) · · · (G − 1 + 1).

Then we can obtain the factorial monomial symmetric functions and the factorial
Schur functions by replacing each G1

8
by G

1

8
in the monomial symmetric

functions and Schur functions, respectively1. Then for � = 0 we obtain the
factorial monomial symmetric functions and for � = 1 we obtain the factorial
Schur functions (see [5]).

The above definition is all very well if we want to know only about the
defining properties of the interpolation Jack polynomials, but it is not very
helpful in giving us a concrete expression to work with. In fact, in the paper
[5], no such expression is given. However, Proposition 3.4 of [5] does give
an explicit formula for %��� (G1 , . . . , G# )when � = (�1 , 0, . . . , 0), which is as
follows:

%��(�1 ,0,...,0)(G1 , . . . , G# ) =
(
−�
�1

) ∑
8 9

#∏
9=1

[(
−�

8 9−1 − 8 9

)
(G 9 − �� 9 − 8 9)

8 9−1−8 9
]

(2.1)

where the sum runs through all integer sequences �1 = 80 ≥ 81 ≥ · · · ≥
8=−1 ≥ 8# ≥ 0. Also note that(

−�
�

)
:=
(−� − � + 1)(−� − � + 2) · · · (−�)

�! =
(−1)���

�!

and
( −�
8 9−1−8 9

)
is defined similarly2. This formula will be useful in Chapter 4

when we look specifically at interpolation Jack polynomials of this form.
However, we would also like to look at interpolation Jack polynomials that
are not of this form, and so for a general formula we turn once again to
Young diagrams.

1See Section 1.3 for the definition of the monomial symmetric functions and the Schur
functions.

2This is a natural extension of the usual binomial coefficient.
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2.2 Combinatorial Formula

We now present a series of definitions, which build up to a combinatorial
formula for the interpolation Jackpolynomials%��� . Wepresent theprocedure
for interpolation Jack polynomials in three variables, but it can be generalized
to # variables with only slight modification. Recall that for a partition � we
denote the Young diagram of shape � by �̃.

Definition 2.2.1. Let � = (�1 , �2 , �3) be a partition. Then for a box B at
position (8 , 9) in �̃, we define

;�(B) =
��{: > 8 | �: ≥ 9}

�� ;′(B) = 8 − 1
0�(B) = �8 − 9 0′(B) = 9 − 1.

Note that ;�(B), ;′(B), 0�(B), and 0′(B) are respectively the number of boxes in
the Young diagram to the south, north, west and east of the box B.

Example 2.2.2. Let � = (2, 0, 0) and B be the box at position (1, 2) in �̃. That
is, B is the starred box in the following diagram:

★ .

Then

;�(B) =
��{: > 8 | �: ≥ 9}

�� = ��{: > 1 | �: ≥ 2}
�� = 0,

;′(B) = 1 − 1 = 0,
0�(B) = �1 − 2 = 2 − 2 = 0,
0′(B) = 2 − 1 = 1.

Definition 2.2.3. Let � = (�1 , �2 , �3) be a partition. Then for a box B in �̃, we
define

1�(B, �) =
0�(B) + �(;�(B) + 1)
0�(B) + �;�(B) + 1

.

Example 2.2.4. Using the same � and B from Example 2.2.2, we see that

1�(B, �) =
0 + �(0 + 1)
0 + �(0) + 1

= �.

Definition 2.2.5. Let � = (�1 ,�2 ,�3) be a partition. Then a reverse tableau
of shape � is a filling of the Young diagram �̃ by the numbers 1, 2, 3 such
that the rows are weakly decreasing from left to right and the columns are
strictly decreasing from top to bottom.
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Example 2.2.6. Let � = (3, 2, 1). Then a few reverse fillings of the Young
diagram �̃ are

3 3 1
2 2
1

3 3 1
2 1
1

3 2 2
2 1
1

For a box B in position (8 , 9) in a reverse tableau ), we denote the entry
in B by )(B) or )(8 , 9). For example, if ) is the reverse tableau on the left in
Example 2.2.6 then )(1, 1) = 3.

Definition 2.2.7. Let � = (�1 ,�2 ,�3) be a partition, and let ) be a reverse
tableau of shape �. Then for 8 = 0, 1, 2, we define �̃(8) to be the reverse
tableau obtained from ) by keeping only the boxes containing the numbers
8 + 1, . . . , 3.

Example 2.2.8. Again let ) be the reverse tableau on the left in Example
2.2.6. Then �̃(2) and �̃(1) are

3 3 and 3 3
2 2

respectively, and �̃(0) is just the original reverse tableau. Note that �̃(0) will
always simply be the original reverse tableau.

Definition 2.2.9. Let � = (�1 ,�2 ,�3) be a partition, and let ) be a reverse
tableau of shape �. Then for 8 = 1, 2, we define ('/�)�(8−1)/�(8) to be the set of
boxes B in the Young diagram �̃(8) with the following two properties:

• Property 1: The row that contains B also contains a box from ��(8−1) that
is not in �̃(8).

• Property 2: The column that contains B does not contain a box from��(8−1) that is not in �̃(8).

Example 2.2.10. Again let ) be the reverse tableau on the left in Example
2.2.6. Then

('/�)�(1)/�(2) = ∅, and
('/�)�(0)/�(1) = {(1, 2)}.
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Definition 2.2.11. Let � = (�1 ,�2 ,�3) be a partition and let ) be a reverse
tableau of shape �. Then we define

#)(�) =
2∏
8=1

∏
B∈('/�)

�(8−1)/�(8)

1�(8)(B, �)
1�(8−1)(B, �)

where the function 1 is as in Definition 2.2.3.

Actual calculations ofΨ)(�) can be somewhat lengthy, so we hold off on
a concrete example until after the next definition, when we will provide a
full example calculation of an interpolation Jack polynomial.

Finally, for a box B in a reverse tableau ) define the function ! as follows:

!(B, �) =


−2� if )(B) = 1
−� if )(B) = 2
0 if )(B) = 3.

Then we can write a combinatorial formula for the interpolation Jack poly-
nomials that we wish to work with.

Formula 2.2.12. Let � = (�1 ,�2 ,�3) be a partition. Then the interpolation Jack
polynomial associated with � is

%��� (G1 , G2 , G3) =
∑

) a reverse
tableau

of shape �

#)(�)
∏
B∈)
(G)(B) + !(B, �) − 0′(B) + ;′(B)�). (2.2)

Example 2.2.13. Now let’s use the above Formula 2.2 to find the interpolation
Jack polynomial for � = (2, 0, 0). This is a bit of a complicated calculation, so
we have broken it down into several steps.
Step 1: The first step is to find all reverse tableaux of shape � = (2, 0, 0). The
Young diagram associated to � = (2, 0, 0) is

so the reverse tableaux of shape � = (2, 0, 0) are

)1 =
3 2 , )2 =

3 1 , )3 =
2 1 ,

)4 =
3 3 , )5 =

2 2 , )6 =
1 1 .
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Step 2: The next step is to findΨ)8 (�) for each reverse tableau )8 .

Let’s consider )1. We first calculate the �̃(8). We have

�̃(0) = �̃(1) = 3 2 , �̃(2) = 3 .

Then we can use the �̃(8) to calculate the ('/�)�(8−1)/�(8) . We see that

('/�)�(0)/�(1) = ∅, ('/�)�(1)/�(2) = {(1, 1)}.

Now for each 8 we calculate 1�(8)(B, �) and 1�(8−1)(B, �) for all B in ('/�)�(8−1)/�(8) .
In this case, there are no B in ('/�)�(0)/�(1) , so we only need to worry about
('/�)�(1)/�(2) . There is only one box in ('/�)�(1)/�(2) , namely B = (1, 1), and
we see that

0�(1)(B) = �̃(1)1 − 1 = 2 − 1 = 1, ;�(1)(B) =
����{: > 1 | �̃(1)

:
≥ 1

}���� = 0,

0�(2)(B) = �̃(2)1 − 1 = 1 − 1 = 0, ;�(2)(B) =
����{: > 1 | �̃(2)

:
≥ 1

}���� = 0,

so

1�(1)(B, �) =
0�(1)(B) + �(;�(1)(B) + 1)
0�(1)(B) + �;�(1)(B) + 1

=
� + 1

2

1�(2)(B, �) =
0�(2)(B) + �(;�(2)(B) + 1)
0�(2)(B) + �;�(2)(B) + 1

= �.

Putting this all together we have

#)1(�) =
2∏
8=1

∏
B∈('/�)

�(8−1)/�(8)

1�(8)(B, �)
1�(8−1)(B, �)

=
�(
�+1

2
)

=
2�

� + 1 .

Since the calculation ofΨ)8 (�) doesn’t depend on the actual values in )8 but
only on the relative sizes of those values, in this caseΨ)8 (�)will be the same
for 8 = 1, 2, 3.

Now consider )4. Again, we first calculate the �̃(8):

�̃(0) = �̃(1) = �̃(2) = )4.
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So

('/�)�(0)/�(1) = ('/�)�(1)/�(2) = ∅.

ThusΨ)4(�) = 1. As before,Ψ)8 is the same for 8 = 4, 5, 6.
Step 3: The third step is to find the entire term contributed by each reverse
tableau )8 . First note that all the )8 have the same two boxes, (1, 1) and (1, 2).
Since for a box B in a reverse tableau )8 , 0′(B) and ;′(B) depend only on the
position of B, we see that for all )8 we have

0′(1, 1) = 1 − 1 = 0, 0′(1, 2) = 2 − 1 = 1
;′(1, 1) = 1 − 1 = 0, ;′(1, 2) = 1 − 1 = 0.

Thus for each reverse tableau )8 the term contributed is

Ψ)8 (�)
[
G)8(1,1) + !((1, 1), �)

] [
G)8(1,2) + !((1, 2), �) − 1

]
.

We now consider each reverse tableau individually.

(1) First consider )1. We see that

)1(1, 1) = 3, )1(1, 2) = 2,
!((1, 1), �) = 0, !((1, 2), �) = −�.

So the term contributed by )1 is

Ψ)1(�)
[
G)1(1,1) + !((1, 1), �)

] [
G)1(1,2) + !((1, 2), �) − 1

]
=

(
2�

� + 1

)
(G3)(G2 − � − 1).

(2) For )2 we can calculate

)2(1, 1) = 3, )2(1, 2) = 1,
!((1, 1), �) = 0, !((1, 2), �) = −2�.

So the term contributed by )2 is

Ψ)2(�)
[
G)2(1,1) + !((1, 1), �)

] [
G)2(1,2) + !((1, 2), �) − 1

]
=

(
2�

� + 1

)
(G3)(G1 − 2� − 1).
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(3) For )3 we have

)3(1, 1) = 2, )3(1, 2) = 1,
!((1, 1), �) = −�, !((1, 2), �) = −2�.

So the term contributed by )3 is

Ψ)3(�)
[
G)3(1,1) + !((1, 1), �)

] [
G)3(1,2) + !((1, 2), �) − 1

]
=

(
2�

� + 1

)
(G2 − �)(G1 − 2� − 1).

(4) For )4 we have

)4(1, 1) = 3, )4(1, 2) = 3,
!((1, 1), �) = 0, !((1, 2), �) = 0.

So the term contributed by )4 is

Ψ)4(�)
[
G)4(1,1) + !((1, 1), �)

] [
G)4(1,2) + !((1, 2), �) − 1

]
= (G3)(G3 − 1).

(5) For )5 we have

)5(1, 1) = 2, )5(1, 2) = 2,
!((1, 1), �) = −�, !((1, 2), �) = −�.

So the term contributed by )5 is

Ψ)5(�)
[
G)5(1,1) + !((1, 1), �)

] [
G)5(1,2) + !((1, 2), �) − 1

]
= (G2 − �)(G2 − � − 1).

(6) Finally, for )6 we have

)6(1, 1) = 1, )6(1, 2) = 1,
!((1, 1), �) = −2�, !((1, 2), �) = −2�.

So the term contributed by )6 is

Ψ)6(�)
[
G)6(1,1) + !((1, 1), �)

] [
G)6(1,2) + !((1, 2), �) − 1

]
= (G1 − 2�)(G1 − 2� − 1).
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Step 4: The final step is to add up the terms contributed by each )8 to
get %��(2,0,0)(G1 , G2 , G3). From step 3 we see that

%��� (G1 , G2 , G3) =
∑

) a reverse
tableau

of shape �

#)(�)
∏
B∈)
(G)(B) + !(B, �) − 0′(B) + ;′(B)�)

=

(
2�

� + 1

)
(G3)(G2 − � − 1) +

(
2�

� + 1

)
(G3)(G1 − 2� − 1)

+
(

2�
� + 1

)
(G2 − �)(G1 − 2� − 1) + (G3)(G3 − 1)

+ (G2 − �)(G2 − � − 1) + (G1 − 2�)(G1 − 2� − 1)

= G2
3 + G2

2 + G2
1 +

(
2�

� + 1

)
(G3G2 + G2G1 + G2G1)

−
(
6�2 + 5� + 1

� + 1

)
(G3 + G2 + G1) +

9�3 + 10�2 + 3�
� + 1 .



Chapter 3

Summer Exploits and Thesis
Goals

Over the summer of 2019, I conducted research on interpolation Jack
polynomials at the Fields Institute for Research in the Mathematical Sciences
with fellow undergraduate Xiaomin Li from University of Illinois at Urbana-
Champaign, under the supervision ofDr.Hadi Salmasian from theUniversity
of Ottawa. During this summer research we constructed several conjectures,
andmyoriginal goals for this thesiswere to prove these conjectures. However,
while I did work on problems related to the conjectures, I ended up going in
a slightly different direction than originally planned. In this section I will
go over a description of the goals of my summer research, a brief summary
of our conjectures, and an indication of how my final thesis has deviated
from my original hopes. Note that my research over the summer focused
only on interpolation Jack polynomials in three variables, so this section will
primarily discuss that case.

In this section we also go over a brief introduction to Lie algebras
and representation theory, as it is closely intertwined with the study of
interpolation Jack polynomals. For further reading on these topics, see
respectively [8, 9] and [4]. Further exposition on the conjectures developed
over the summer can be found in [7].

For the remainder of this thesis, we will drop the �� superscript, and
simply denote our interpolation Jack polynomials as %�. However, it should
be assumed that they are of the form discussed on page 11.
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3.1 Some More Background

Briefly, the goal of my summer research and thesis was to differentiate an
interpolation Jack polynomial %� with respect to the parameter � and write
the result as a linear combination of other interpolation Jack polynomials,
where the coefficients in the linear combination are rational functions in
�. That is, for each interpolation Jack polynomial %� we would like to find
rational functions of �, 2��(�), such that

%

%�
%�(G1 , . . . , G# ) =

∑
�

2
�
�(�)%�(G1 , . . . , G# )

where the sum ranges over some finite collection of partitions �. Note that in
my summer research I focused only on the case where # = 3. In this section
we will go over some motivation for studying this particular problem.

First we motivate our decision to take the derivative with respect to �.
To this end, we first introduce the notion of a Lie algebra.

Definition 3.1.1. Let � be a field. A Lie algebra over � is an �-vector space !
together with a bilinear map

! × !→ !, (G, H) ↦→ [G, H]

that satisfies the following properties:

[G, G] = 0 for all G ∈ !, (3.1)
[G, [H, I]] + [H, [G, I]] + [I, [G, H]] = 0 for all G, H, I ∈ !. (3.2)

The map (G, H) ↦→ [G, H] is called the Lie bracket.

One prominent example of a Lie algebra is the general linear algebra for a
vector space + , denoted gl(+). This consists of all linear maps from + to + ,
with Lie bracket given by

[�, �] = �� − ��

for all �, � ∈ gl(+). It is straightforward to verify that this satisfies both
properties of the Lie bracket. Now given a Lie algebra !, we can form its
universal enveloping algebra, which in a sense allows us to multiply elements.
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Definition 3.1.2. Let ! be a Lie algebra over a field �. A universal enveloping
algebra of ! is a pair (U , 8), whereU is an associative algebra with 1 over �,
8 : !→U is a linear map satisfying

8([G, H]) = 8(G)8(H) − 8(H)8(G) (3.3)

for all G, H ∈ !, and the following holds: for any associative �-algebra Uwith
1 and any linear map 9 : !→ U satisfying Equation 3.3, there exists a unique
homomorphism of algebras ) :U → U (sending 1 to 1) such that ) ◦ 8 = 9.

This is a rather abstract definition, and we will not deal with it directly.
Instead, we consider the tensor algebra of a vector space + .

Definition 3.1.3. Let + be a finite-dimensional vector space over a field �.
Let )0+ = �, )1+ = + , and for each < > 0 let )< = + ⊗ · · · ⊗ + (< times),
where ⊗ denotes the tensor product over �. The tensor algebra on + is then
the vector space

ℐ(+) =
∞⊕
8=0

) 8+

together with the product

(E1 ⊗ · · · ⊗ E:)(F1 ⊗ · · · ⊗ F<) = E1 ⊗ · · · ⊗ E: ⊗ F1 ⊗ · · · ⊗ F< .

Note that this choice of product makes ℐ(+) an associative algebra with
unity.

Now let ! be a finite-dimensional Lie algebra, and let � be the two-sided
ideal in ℐ(!) generated by elements of the form G ⊗ H − H ⊗ G − [G, H] (where
G, H ∈ !). Let U(!) = ℐ(!)/�, and let � : ℐ(ℒ) → U(!) be the canonical
homomorphism. Then the pair (U(!), 8), where 8 is the restriction of � to
!, is a universal enveloping algebra for !, and furthermore it is the unique
universal enveloping algebra of ! up to isomorphism.

Thus for a finite-dimensional Lie algebra ! we can refer to the universal
enveloping algebra of !, which can be thought of as the quotient algebra
U(!) = ℐ(!)/�, as described above.

We will now take a brief detour into representation theory. For a vector
space + let gl(+) be the general linear Lie algebra associated with + , as
defined above, and recall the following definitions:

Definition 3.1.4. Let ! be a Lie algebra and + be a vector space. If there is a
Lie algebra homomorphism � : !→ gl(+), then the pair (+, �) is called an
!-module (or representation) of !. Note that sometimes the vector space itself
is referred to as an !-module or representation of !.
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Definition 3.1.5. Let ! be a Lie algebra and let + be an !-module with Lie
algebra homomorphism � : !→ gl(+). Let, ⊆ + be a subspace of+ . Then
, is a submodule of + if

F ∈, =⇒ (�(G))(F) ∈, for all G ∈ !.

Definition 3.1.6. Let ! be a Lie algebra and let + ≠ {0} be an !-module.
Then + is irreducible if the only submodules of + are {0} and + .

So where do interpolation Jack polynomials come into this? Well, given
a Lie algebra !, we may wish to understand its irreducible representations.
In Section 15.2.1 of [8], it is shown that there is a bĳective correspondence
between the representations of ! and those ofU(!), so to study the irreducible
representations of ! it suffices to study those ofU(!). To do this, it is useful
to study how the elements of the center of U(!) act on the irreducible
representations. Why is this useful? By Schur’s Lemma1, the elements of
the center of U(!) act by scalars on irreducible representations of U(!).
Thus it is sometimes the case that we can distinguish different irreducible
representations by these scalars.

In particular, if ! is a reductive Lie algebra, there is a distinguished basis of
the center ofU(!) that is indexed by partitions. Let us denote the elements
in this basis as 1�. They are called the Capelli elements or Capelli operators
and interpolation Jack polynomials tend to show up in connection to the
eigenvalues of these operators. For example, consider the Lie algebra gl(+)
mentioned above. In this case, the irreducible representations can be indexed
by partitions; let us denote each irreducible representation by +�. Then the
eigenvalue of the Capelli element 1� acting on the irreducible representation
+� is simply %�

�(�), i.e., for each E ∈ +� we have

1� · E = %�
�(�)E.

So in this case, the interpolation Jack polynomials show up as eigenvalue
polynomials. Works of Sahi, Salmasian and Serganova (see [10]) further
show a connection between the derivative with respect to � of two-variable
interpolation Jack polynomials and the eigenvalues of Capelli operators of
orthosymplectic Lie superalgebras. This suggests that there may be further
connections between the derivatives of interpolation Jack polynomials and
representation theory, and this is our motivation for studying them.

1See Lemma 7.13 in [8].
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Now let’s return to the “real world” and consider what actually happens
we we differentiate with respect to �. To make things more tangible, let’s
again work with a concrete example.

Example 3.1.7. Consider the interpolation Jack polynomial in three variables
indexed by the partition � = (2, 1, 1):

%(2,1,1)(G1 , G2 , G3) = G2
1G2G3 + G1G

2
2G3 + G2G2G

2
3 − 3(� + 1)G1G2G3.

When we differentiate with respect to � we get

%

%�
%(2,1,1)(G1 , G2 , G3) = −3G1G2G3

which is again a symmetric polynomial.

This will in fact be the case in general. That is, when we differentiate
an interpolation Jack polynomial with respect to � we will be left with a
symmetric polynomial. It is straightforward to see why this is the case. Let 5
be a symmetric polynomial in # variables with coefficients that are rational
functions of �. Then we can write 5 as

5 (G1 , . . . , G# ) =
∑
�

2�(�)<�(G1 , . . . , G# )

where the <� are the monomial symmetric functions introduced in Section
1.3. If we differentiate with respect to � we get

%

%�
5 (G1 , . . . , G# ) =

∑
�

2′�(�)<�(G1 , . . . , G# )

which is again a linear combination of monomial symmetric functions. Since
the monomial symmetric functions are, in fact, symmetric, the resulting
linear combination is also symmetric.

Now, as alluded to previously, for each # the set of interpolation Jack
polynomials {%�(G1 , . . . , GA) | A ≤ #} forms a basis for Λ# . Thus for each
interpolation Jack polynomial %� we can write %

%�%� as a linear combination
of other interpolation Jack polynomials where the coefficients are rational
functions of �.

Our goal over the summer was to determine which interpolation Jack
polynomials occur in these linear combinations with non-zero coefficients
and to find formulas for the coefficients that are non-zero. We worked
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exclusively with interpolation Jack polynomials in three variables, inspired
by the successful solution of the problem for two variable polynomials by
Sahi, Salmasian and Serganova (see [10]). Although the approach used for
the two variable case will not work exactly for the three variable case, a
similar approach could be effective, and so in the next section I give a brief
overview of the two variable case.

3.2 Previous Work: the Two Variable Case

In this section, we will assume that all interpolation Jack polynomial are
in two variables. First, we recall that in [5] an explicit formula is given for
interpolation Jack polynomials %(�1 ,0,0):

%(�1 ,0,...,0)(G1 , . . . , G# ) =
(
−�
�1

) ∑
8 9

#∏
9=1

[(
−�

8 9−1 − 8 9

)
(G 9 − �� 9 − 8 9)

8 9−1−8 9
]

where the sum runs through all integer sequences �1 = 80 ≥ 81 ≥ · · · ≥
8=−1 ≥ 8# ≥ 0. Also, from Lemma 2.3 in [5] we have the following identity
for each interpolation Jack polynomial %(�1 ,�2):

%(�1 ,�2)(G1 , G2) = G1G2%(�1−1,�2−1)(G1 − 1, G2 − 1). (3.4)

Using this formula repeatedly, we can write

%(�1 ,�2)(G1 , G2) = G1G2%(�1−1,�2−1)(G1 − 1, G2 − 1)
= (G1G2)2%(�1−2,�2−2)(G1 − 2, G2 − 2)
...

= (G1G2)�2%(�1−�2 ,0)(G1 − �2 , G2 − �2).

So we can write any %(�1 ,�2) in terms of an interpolation Jack polynomial
indexed by a partition with only one non-zero part. Thus we can find an
explicit formula for all interpolation Jack polynomials in two variables using
Equation 3.4. Using this explicit formula, we can then write an explicit
expression for the coefficient in front of G 81G

9

2 in %� for each 8 and 9. Then we
can differentiate these coefficients with respect to � to get an expression for
the coefficient of G 81G

9

2 in
%
%�%�. Let’s denote this differentiated coefficient by

28 9 .
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Now, as my partner and I did over the summer, Dr. Salmasian and
collaborators came up with conjectures for the coefficient of %� in the linear
combination for %

%�%�. Using these conjectures and the explicit formulas for
the interpolation Jack polynomials mentioned above, we can write down
what the coefficient of G 81G

9

2 would be in %
%�%� if the conjectures were true.

Let’s denote this coefficient by 2′
8 9
.

To prove the conjectures, then, we must simply show that 28 9 = 2′
8 9
for

each 8 , 9. This equivalence, it turns out, is analogous to a hypergeometric
identity proven by Dougall in 19072. This proves that the conjectures are
correct.

Given this approach for the two-variable case, we can ask what breaks in
the three variable case. There are in fact several stages that break.

For one, we do not have an explicit formula for interpolation Jack
polynomials in three variables, just one that depends on Young diagrams3.
So we would have to re-derive an expression for the coefficient of G 81G

9

2G
ℓ
3

in %�(G1 , G2 , G3), and this expression would depend on Young diagrams.
Our conjectures also do not line up with those of Dr. Salmasian, so we
would have to re-derive the coefficient of G 81G

9

2G
ℓ
3 in

%
%�%�(G1 , G2 , G3) that we

would get if our conjectures were correct. Lastly, equating coefficients in the
three-variable case may not reduce to the same hypergeometric identity, so
we would have to look around for another identity to possibly reduce it to.
However, the approach taken in the two-variable place is still a good guide
as to where to start for the three-variable case, and a similar approach may
work.

3.3 Previous Work: Conjectures

As mentioned above, our research goal over the summer was to differentiate
each interpolation Jack polynomial %� in three variables with respect to the
variable � and write the result as a linear combination of other interpolation
Jack polynomials:

%

%�
%� =

∑
�

2
�
�(�)%�

2See [11].
3See Section 2.2.
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where the coefficients 2��(�) are rational functions of �. The first question to
ask in this scenario is: which interpolation Jack polynomials appear with
non-zero coefficients in this linear combination? For example,

%

%:
%(2,0,0) =

(
5: + 3
: + 1

)
%(0,0,0) +

(
−6: − 4
: + 1

)
%(1,0,0)

+
(

2
:2 + 2: + 1

)
%(1,1,0)

sowe see that only%(0,0,0) , %(1,0,0) and%(1,1,0) appearwith non-zero coefficients
in the linear combination for %

%�%(2,0,0). In fact, in general it will be the case
that for each partition �, there is a cutoff in size (with respect to lexicographic
ordering) such that if � is “too large” relative to � then %� will not appear in
the linear combination for %

%�%�.
It is convenient at this point to break the question down into two cases:

(1) if the partition � has three non-zero parts (e.g., � = (3, 2, 1)) and (2) if �
has fewer than three non-zero parts (e.g., � = (3, 2, 0)). It turns out that the
first case reduces to the second case:

Theorem 3.3.1. Let � = (�1 ,�2 ,�3) be a partition with exactly three non-zero
parts and � = (�1 , �2 , �3) be a partition with at most three non-zero parts. Then

2
�
� =

{
0 if �3 − �3 < 0
2
(�1−�3 ,�2−�3 ,�3−�3)
(�1−�3 ,�2−�3 ,0) otherwise.

Note that we have written just 2�� instead of 2��(�) here, for ease of reading.

Proof. Let � = (�1 ,�2 ,�3) be a partition with exactly three non-zero parts,
and let �∗ = (�1 − �3 ,�2 − �3 , 0). Then suppose that the linear combination
for %

%�%�∗ is

%

%�
%�∗ =

∑
�

2
�
�∗%�. (3.5)

Now, from Corollary 2.3 in [5], we know that for any partition � = (�1 , �2 , �3)
we have

%(�1 ,�2 ,�3)(G1 , G2 , G3) = G1G2G3%(�1−1,�2−1,�3−1)(G1 − 1, G2 − 1, G3 − 1).

Repeated application of this formula to %� shows that

%�(G1 , G2 , G3) = (G1G2G3)�3%�∗(G1 − �3 , G2 − �3 , G3 − �3).
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Then differentiating both sides and using Equation 3.5, we see that

%

%�
%�(G1 , G2 , G3) = (G1G2G3)�3 %

%�
%�∗(G1 − �3 , G2 − �3 , G3 − �3)

= (G1G2G3)�3
∑
�

2
�
�∗%�(G1 − �3 , G2 − �3 , G3 − �3).

We can then move the (G1G2G3)�3 inside the summation and apply Corollary
2.3 from [5] in reverse:

%

%�
%�(G1 , G2 , G3) =

∑
�

2
�
�∗

[
(G1G2G3)�3%�(G1 − �3 , G2 − �3 , G3 − �3)

]
=

∑
�

2
�
�∗%(�1+�3 ,�2+�3 ,�3+�3)(G1 , G2 , G3). (3.6)

Since the linear combination for %
%�%� is unique, this shows the desired

result. �

Let’s take a look at an example to help digest this theorem.

Example 3.3.2.

• Let � = (1, 1, 1) and � = (2, 1, 1) Then the coefficient of %� in %
%�%�is

−3. If we subtract �3 = 1 from each part in � and �we get �′ = (0, 0, 0)
and �′ = (1, 0, 0), and the coefficient of %�′ in %

%�%�′ is also −3.

• On the other hand, let � = (1, 1, 0) and � = (2, 1, 1). Then if we subtract
�3 = 1 from all the parts of �we get �′ = (0, 0,−1), which is not a valid
partition. Thus %� doesn’t appear in the linear combination for %

%�%�.

Thus it is more interesting to focus on partitions � with one or two
non-zero parts. In this case, we find that in fact %� appears in the linear
combination for %

%�%� only if � is “small enough” with respect to �. To be
precise, we will see in Section 4.24 that if � = (�1 , �3 , �3) and � = (�1 ,�2 ,�3)
then 2�� = 0 if � ≥ � or if

∑
�8 >

∑
�8 . In fact, computations in sage would

suggest that this is an if and only if condition for �with one or two non-zero
parts. That is, we have the following conjecture.

Conjecture 3.3.3. Let � = (�1 ,�2 , 0) and � = (�1 , �2 , �3) be partitions. The
interpolation Jack polynomial %� appears in the linear combination for %

%�%�
if and only if � < � and

∑
�8 ≤

∑
�8 .

4See Lemmas 4.2.4 and 4.2.5.
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Once that we know which polynomials appear in the linear combinations,
we can ask what the coefficients are, and if there is a “nice” formula for
them. Over the summer we came up with several conjectures for these
coefficients, but have yet to prove any of them. I will not dwell on these
conjectures in this thesis, but will mention one of them briefly to give the
reader a sense of their nature. The conjectures are broken down into several
cases depending on the number of non-zero parts in � and �. For example,
one of our conjectures is as follows:

Conjecture 3.3.4. The coefficient of %(�1 ,0,0) in
%
%�%(�1 ,0,0), where �1 ≥ 0, is

2
(�1 ,0,0)
(�1 ,0,0)(�) =

(−1)�1−�1 · �1!
(�1−�1) �1! × [(2� + �1)�1−�1 + (� + �1)�1−�1]

(� + �1)�1−�1

where 01 denotes the rising factorial:

01 := (0 + 0)(0 + 1) · · · (0 + 1 − 1)

which is analogous to the falling factorial introduced in Section 2.1

The original goal of my thesis was to attempt to prove some of the
conjectures that we came up with over the summer. However, as I started
trying to prove them, I found that it was easier to find a slightly different
set of coefficients. In particular, I focused primarily on %

%�%� where � has
exactly one non-zero part, and instead of focusing on the number of nonzero
parts in �, I focused on the relationship between those parts and the single
non-zero part of �. The coefficients that I found are sub-cases of our summer
conjectures, and it is worth noting that they agree with our conjectures (that
is, the expressions in our conjectures don’t contradict the expressions that I
found).



Chapter 4

Results

In this chapter we present the results of this thesis. In particular, we provide
formulas, with proof, for the coefficient of %� in %(�,0,0) for several partitions
�, and then give a general matrix formula for finding the coefficients. The
proofs of these formulas rely on finding the coefficient of various monomial
symmetric functions, <�, in various interpolation Jack polynomials %�, so
first we provide a general expression for a specific case of such coefficients,
and then we move into the proofs of the coefficients of the interpolation Jack
polynomials. We will use the following notation throughout this chapter:

• The coefficient of %� in %
%�%� we denote by 2��(�) or just 2

�
�.

• The coefficient of <� in %� we denote by 1��(�) or just 1
�
�.

Note also that unless stated otherwise, all partitions in this chapter have
at most three non-zero parts, all polynomials are in three variables, and �
always denotes a non-negative integer.

4.1 Coefficients of Monomial Symmetric Functions

4.1.1 Coefficient of <(�−0,0,0) in %(�−1,1,0)
Theorem 4.1.1. Let 0, 1 ∈ ℤ be such that 0 < 0 < �

2 , 0 ≤ 1 < �
2 , and

� − 1 > � − 0. Then the coefficient of <(�−0,0,0) in %(�−1,1,0) is

1
(�−0,0,0)
(�−1,1,0)(�) =

(� − 21)0−1(� + 0 − 1 − 1)0−1
(0 − 1)!(� + � − 21 − 1)0−1

.
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Proof. Recall that from Formula 2.2 we have

%(�−1,1,0)(G1 , G2 , G3) =
∑
)

Ψ)(�)
©«

∏
)(B)=1

(G1 − 0′(B) + (ℓ ′(B) − 2)�)

×
∏
)(B)=2

(G2 − 0′(B) + (ℓ ′(B) − 1)�)

×
∏
)(B)=3

(G3 − 0′(B) + ℓ ′(B)�)
ª®¬ .

We want to find the coefficient of the G�−03 G02 term in this expression.
Thus we only need to look at terms generated by reverse tableaux with � − 0
threes and 0 twos. Since reverse tableaux must be non-increasing along rows
and strictly decreasing along columns, we see that the only reverse tableau
we are interested in is

) = 3 · · · · · · · · · 3 2 · · · 2
2 · · · 2

where there are � − 0 threes and 0 − 1 twos in the top row, and 1 twos in
the bottom row. Note that this way there will be a total of � − 0 threes and
(0 − 1) + 1 = 0 twos, as desired. The coefficient of G�−03 G02 will then beΨ)(�)
for this ), so let’s find thisΨ)(�). We have

�̃(0) = ) = �̃(1) , �̃(2) =

�−0︷       ︸︸       ︷
3 · · · 3 , �̃(3) = ∅.

Thus

('/�)�(1)/�(0) = ∅, ('/�)�(1)/�(2) = {(1, 1 + 1), · · · , (1, � − 0)}.

Thus

Ψ)(�) =
∏

B∈('/�)
�(1)/�(2)

1�(2)(B, �)
1�(1)(B, �)

.
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So now let’s find 1�(1)(B, �) and 1�(2)(B, �). If B = (8 , 9) ∈ ('/�)�(1)/�(2) then
8 = 1 and 1 + 1 ≤ 9 ≤ � − 0, so

0�(1)(B) = �(1)1 − 9 = � − 1 − 9 , 0�(2)(B) = �(2)1 − 9 = � − 0 − 9 ,

;�(1)(B) =
���{: > 1 | �(1)

:
≥ 9}

��� = 0, ;�(2)(B) =
���{: > 1 | �(2)

:
≥ 9}

��� = 0.

To see why the left side of the second line holds, note that �(1)2 = 1 and for
all B we have 9 > 1. Thus

1�(1)(B, �) =
0�(1)(B) + �(;�(1)(B) + 1)
0�(1)(B) + �;�(1)(B) + 1

=
� − 1 − 9 + �
� − 1 − 9 + 1 ,

1�(2)(B, �) =
0�(2)(B) + �(;�(2)(B) + 1)
0�(2)(B) + �;�(2)(B) + 1

=
� − 0 − 9 + �
� − 0 − 9 + 1 .

Plugging this into our formula forΨ)(�)we get

Ψ)(�) =
�−0∏
9=1+1

1�(2)(B, �)
1�(1)(B, �)

=

�−0∏
9=1+1

(
�−0−9+�
�−0−9+1

)(
�−1−9+�
�−1−9+1

)
=

�−0∏
9=1+1

(� − 0 − 9 + �)(� − 1 − 9 + 1)
(� − 1 − 9 + �)(� − 0 − 9 + 1)

=
(� − 21)0−1(� + 0 − 1 − 1)0−1
(0 − 1)!(� + � − 21 − 1)0−1

.

The last line here is not obvious. To arrive at this expression, I used
Mathematica to simplify the product in the second to last line but was not
satisfied with the expression it simplified to. However, using the expression
it outputted I then took a guess at an equivalent but cleaner expression
might look like, and arrived at the expression in the last line. I then used
Mathematica to verify that this solution is correct. This shows the desired
result. �

4.2 A General Formula for the 2��
The main result of this section is the following theorem:
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Theorem 4.2.1. For � ≥ � we have 2�� = 0 and for � < � we have

3

3�
1
�
� =

∑
�≤�<�

2��1
�
� =

∑
�≤�<�
|� |≤|�|

2��1
�
� . (4.1)

Note that the second equality holds because 2�� = 0 if |� | > |�| 1. We will
present a proof of this theorem in a few pages, but first we must prove a few
supplementary lemmas.

Lemma 4.2.2. If � > � then <� appears in %� with a zero coefficient, that is,
1
�
� = 0.

Proof. Consider the combinatorial formula for %�:

%�(G1 , G2 , G3) =
∑
)

Ψ)(�)
©«

∏
)(B)=1

(G1 − 0′(B) + (ℓ ′(B) − 2)�)

×
∏
)(B)=2

(G2 − 0′(B) + (ℓ ′(B) − 1)�)
∏
)(B)=3

(G3 − 0′(B) + ℓ ′(B)�)
ª®¬ .

Let’s say <(�1 ,�2 ,�3) is the monomial symmetric function in this expression
that is highest in lexicographic ordering. Then in particular the term
G
�1
3 G

�2
2 G

�3
1 appears in this expression (with some non-zero coefficient). Say

this term appears in the expression produced by the reverse tableau ). Then
the exponent of G3 is less than or equal to the number of threes in ). Since �
is maximal in lexicographic ordering, we see that �1 must equal the number
of threes in ), and again since � is maximal, the number of threes in ) must
equal �1. That is, the entire top row of ) is filled with threes. Thus �1 = �1.
Similarly, we can show that we must have �2 = �2 and �3 = �3, which is the
desired result. �

Lemma 4.2.3. For any partition � (with three parts), the monomial symmetric
function <� appears in %� with coefficient 1, that is, 1�� = 1.

Note that the proof that follows incorporates Jack polynomials, which
are distinct from interpolation Jack polynomials. Jack polynomials are
another family of symmetric polynomials indexed by partitions, and unlike
interpolation Jack polynomials, they are homogeneous. We will denote the

1We will show this in Lemma 4.2.5.
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Jack polynomial associated to the partition � by ��. The precise definition
is unimportant here, but for more information about Jack polynomials and
their properties see [3].

Also note that in this proof we use results from [5], which uses slightly
different notation than we do. If the reader is interested in perusing [5], the
important notational differences to keep in mind here are:

1. The interpolation Jack polynomial that we refer to as %� is denoted by
%A�� in [5].

2. The Jack polynomial that we refer to as �� is denoted by %(1/A)� in [5].

Proof. From Corollary 4.7 in [5], the highest degree homogeneous part of the
interpolation Jack polynomial %� is the Jack polynomial ��. Also from [5], ��
is of the form <� +

∑
�<� 0�<�. Thus <� appears in %� with coefficient one,

which is the desired result. �

Lemma 4.2.4. Each differentiated interpolation Jack polynomial %
%�%� can be

written as a linear combination of %� with � < �.

Proof. From Lemmas 4.2.2 and 4.2.3, we know that if � ≥ � then <� appears
in %

%�%� with a zero coefficient. Now consider the following construction of
a linear combination for %

%�%�. First look at the leading term in lexicographic
ordering, which by Lemmas 4.2.2 and 4.2.3 we can write as(

3

3�
1
�
�(�)

)
<�

for some � < �. Then define

%
(1)
� =

%

%�
%� −

(
3

3�
1
�
�(�)

)
%�.

We see that %(1)� is symmetric and every monomial symmetric function <�

in %(1)� has � < �. Look at the leading term in lexicographic ordering for %(1)� ,
and repeat the process. This process will terminate, since at each step we
reduce the degree of the polynomial and there are finitely many terms, and
will produce a linear combination for %

%�%� of the desired form. �

Lemma 4.2.5. Each differentiated interpolation Jack polynomial %
%�%� can be

written as a linear combination of %� with
����� ≤ |�|.
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Proof. From the proof of Lemma 4.2.3 we know that for any �, the highest
degree homogeneous part of %� is a Jack polynomial with leading term <�.
Since <� has degree

�����, all terms in %� must have degree less than or equal
to

�����.
Now consider the process for constructing a linear combination for %

%�%�
described in the proof of Lemma 4.2.4. From the previous paragraph all
monomial symmetric functions <� in %

%�%� have |� | ≤ |�|, and at each step in
this process the only new monomial symmetric functions we can introduce
are <� such that |� | ≤ |�|. Thus all %� in this constructed linear combination
must have

����� ≤ |�|, as desired. �

Now we find ourselves in a position to prove Theorem 4.2.1.

Proof. (Of Theorem 4.2.1.) From Lemma 4.2.4, for an interpolation Jack
polynomial %� we can write

%

%�
%� =

∑
�<�

2��%� .

Thus in particular 2�� = 0 if � ≥ �. Now consider the coefficient of <� on
both sides of this equation. On the left side we have just 3

3� 1
�
�. On the other

side we have
∑

�<� 2
�
�1

�
� . Thus,

3

3�
1
�
� =

∑
�<�

2��1
�
� .

Now, from Lemma 4.2.2 we know that if � < � then 1�� = 0. Thus we can
rewrite this as the first desired equality:

3

3�
1
�
� =

∑
�≤�<�

2��1
�
� .

Furthermore, by Lemma 4.2.5, 2�� = 0 if
����� > |�|, so we can in fact write

3

3�
1
�
� =

∑
�≤�<�
|� |≤|�|

2��1
�
� .

Thus the second equality holds as well. �
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In the next three sections, we will find the coefficients 2(�−1,1,0)
(�,0,0) , 2

(�−1,0,0)
(�,0,0) ,

and 2(�−2,2,0)
(�,0,0) , using the method outlined below. First note that it will be

convenient to rewrite Equation 4.1 as

2
�
� =

3

3�
1
�
� −

∑
�<�<�

|�|≤|�|

2��1
�
� (4.2)

which we can do since by Lemma 4.2.3 we know that 1�� = 1. Our procedure
to find the coefficient of %� and %

%�%� is thus as follows.

1. Find the set (�� of partitions � such that � < � < � and
����� ≤ |�|.

2. For each partition � ∈ (�� find 2�� and 1�� .

3. Find 3
3� 1

�
�.

4. Use the coefficients found in steps 1 and 2, along with Equation 4.2 to
calculate 2��.

4.3 Coefficient of %(�−1,1,0) in %
%�%(�,0,0)

The main result of this section is the following theorem:

Theorem 4.3.1. The coefficient of %(�−1,1,0) in the linear combination for %
%�%(�,0,0)

is

2
(�−1,1,0)
(�,0,0) (�) =

�(� − 1)
(� + � − 1)2 .

In the next two sections we will prove a few intermediate lemmas and
find an expression for 1(�−1,1,0)

(�,0,0) , building up to a proof of this theorem.

4.3.1 A Method for Finding 2(�−1,1,0)
(�,0,0)

The main result of this section is the following theorem:

Theorem 4.3.2. The coefficient of %(�−1,1,0) in the linear combination for %
%�%(�,0,0)

is

2
(�−1,1,0)
(�,0,0) =

3

3�
1
(�−1,1,0)
(�,0,0) .
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To prove this theorem we first prove the following two lemmas:

Lemma 4.3.3. Let � be some positive integer and let � = (� − 1, 1, 0). If � is a
partition such that � > � then |� | ≥ �.

Proof. Let � = (�1 , �2 , �3) be a partition such that � > �. We have a few cases
to consider. If �1 ≥ � then we clearly have |� | ≥ �. Otherwise we must
have �1 = � − 1. In this case we must have �2 ≥ 1, so |� | ≥ � − 1 + 1 = �.
This shows the desired result. �

Lemma 4.3.4. Let � be some positive integer and let � = (� − 1, 1, 0). If
� = (�1 , �2 , �3) is a partition such that � > � and |� | = � then � = (�, 0, 0).

Proof. Let � = (�1 , �2 , �3). First note that we must have �1 ≥ � − 1 since
� > �, and �1 ≤ � since |� | = �. Thus �1 = � − 1 or �1 = �. If �1 = �

then �2 = �3 = 0, so � = (�, 0, 0). If �1 = � − 1, then �2 = 1 and �3 = 0
since |� | = �. But then � = �, which is a contradiction.Thus � = (�, 0, 0), as
desired. �

We are now in a position to prove Theorem 4.3.2.

Proof. (Of Theorem 4.3.2.) From Equation 4.2 we know that

2
(�−1,1,0)
(�,0,0) =

3

3�
1
(�−1,1,0)
(�,0,0) −

∑
(�−1,1,0)<�<(�,0,0)

|� |≤�

2�(�,0,0)1
(�−1,1,0)
� .

Then from Lemma 4.3.3 we know that if � > (� − 1, 1, 0) then |� | ≥ �, so we
can rewrite this as

2
(�−1,1,0)
(�,0,0) =

3

3�
1
(�−1,1,0)
(�,0,0) −

∑
(�−1,1,0)<�<(�,0,0)

|� |=�

2�(�,0,0)1
(�−1,1,0)
� .

But then by Lemma 4.3.4 we know that if � > (� − 1, 1, 0) and |� | = � then
� = (�, 0, 0). Thus in fact there are no terms in the above sum, and so we
just get

2
(�−1,1,0)
(�,0,0) =

3

3�
1
(�−1,1,0)
(�,0,0) .

�
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4.3.2 A Formula for 2(�−1,1,0)
(�,0,0)

This section is devoted to finding an explicit formula for the coefficient
of %(�−1,1,0) in %

%�%(�,0,0). From Section 4.3.1, we know that the desired
coefficient is the derivative of the coefficient 1(�−1,1,0)

(�,0,0) of <(�−1,1,0) in %(�,0,0),

so it is sufficient to find a formula for 1(�−1,1,0)
(�,0,0)

A Formula for 1(�−1,1,0)
(�,0,0)

.
Theorem 4.3.5. For � ≥ 2, the coefficient of <(�−1,1,0) in %(�,0,0) is

1
(�−1,1,0)
(�,0,0) (�) =

��
� + � − 1 .

Proof. From Theorem 4.1.1, for 0, 1 ∈ ℤ such that 0 < 0 < �
2 , 0 ≤ 1 < �

2 , and
� − 1 > � − 0 we have

1
(�−0,0,0)
(�−1,1,0)(�) =

(� − 21)0−1(� + 0 − 1 − 1)0−1
(0 − 1!)(� + � − 21 − 1)0−1

.

Setting 0 = 1 and 1 = 0 we then see that

1
(�−1,1,0)
(�,0,0) (�) =

(� − 2(0))1−0(� + 1 − 0 − 1)1−0

(1 − 0)!(� + � − 2(0) − 1)1−0

=
��

� + � − 1
as desired. For the interested reader, I have also included a proof of this
formula that doesn’t rely on Theorem 4.1.1 but instead uses Formula 2.1. �

Proof of Theorem 4.3.1

From the previous section we know that

1
(�−1,1,0)
(�,0,0) (�) =

��
� + � − 1

and by Theorem 4.3.2 we know that

2
(�−1,1,0)
(�,0,0) =

3

3�
1
(�−1,1,0)
(�,0,0) .

Theorem 4.3.1 follows directly from these results and an application of the
quotient rule for derivatives.
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4.4 Coefficient of %(�−1,0,0) in %
%�%(�,0,0)

We nowmove on to the next partition in lexicographic ordering, (� − 1, 0, 0).
In this section I will find a formula for the coefficient of %(�−1,0,0) in the linear
combination for %

%�%(�,0,0).

Theorem 4.4.1. For � ≥ 1, the coefficient of %(�−1,0,0) in the linear combination
for %

%�%(�,0,0) is

2
(�−1,0,0)
(�,0,0) =

−3�: − 2�(� − 1)
� + � − 1 .

As before, in the next few sections I will prove an intermediate lemma
and find expressions for the coefficient of<(�−1,0,0) in %(�−1,1,0) and in %(�,0,0),
building up to a proof of this theorem.

4.4.1 A Method for Finding 2(�−1,0,0)
(�,0,0)

The main result of this section is the following theorem:

Theorem 4.4.2. For � ≥ 1 we have

2
(�−1,0,0)
(�,0,0) (�) =

3

3�
1
(�−1,0,0)
(�,0,0) − 2

(�−1,1,0)
(�,0,0) 1

(�−1,0,0)
(�−1,1,0) .

Before we prove this theorem, we must have the following lemma:

Lemma 4.4.3. Let � = (� − 1, 1, 0) and � = (� − 1, 0, 0). Then there are no
partitions � such that � > � > �.

Proof. Let � = (�1 , �2 , �3) and suppose � > �. Then �1 ≥ �−1. If �1 > �−1
then � > � so we must have �1 = � − 1. Then we must also have �2 ≥ 0.
If �2 = 0 then �3 = 0 which can’t happen because � > �, so we must have
�2 > 0. If �2 > 1 then � > � so in fact we must have �2 = 1. Finally, we
then have either �3 = 0 or �3 = 1. The latter cannot happen because then we
would have � > �. Thus we must have � = (� − 1, 1, 0) = �, which shows
the desired result. �

Using this and the results of Section 4.3.1, we can now prove Theorem
4.4.2.
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Proof. (Of Theorem 4.4.2.) By Equation 4.2, we know that

2
(�−1,10,0)
(�,0,0) =

3

3�
1
(�−1,0,0)
(�,0,0) −

∑
(�−1,0,0)<�<(�,0,0)

|� |≤�

2�(�,0,0)1
(�−1,0,0)
� .

Now let � be such that (� − 1, 1, 0) < � < (�, 0, 0) and |� | ≤ �. Then by
Lemma 4.4.3, � ≥ (� − 1, 1, 0). But then from the proof of Theorem 4.3.2 we
know that � = (� − 1, 1, 0). Thus

2
(�−1,0,0)
(�,0,0) =

3

3�
1
(�−1,0,0)
(�,0,0) − 2

(�−1,1,0)
(�,0,0) 1

(�−1,0,0)
(�−1,1,0) .

�

4.4.2 A Formula for 2(�−1,0,0)
(�,0,0)

This sectionwill be dedicated to finding an explicit formula for the coefficient
of %(�−1,0,0) in %

%�%(�,0,0). It will be split into several sections for ease of
reading.

A Formula for 1(�−1,0,0)
(�−1,1,0)

Theorem 4.4.4. or � ≥ 2, the coefficient of <(�−1,0,0) in %(�−1,1,0) is

1
(�−1,0,0)
(�−1,1,0)(�) = −�.

Proof. Recall Formula 2.2:

%�(G1 , G2 , G3) =
∑
)

Ψ)(�)
©«

∏
)(B)=1

(G1 − 0′(B) + (ℓ ′(B) − 2)�)

×
∏
)(B)=2

(G2 − 0′(B) + (ℓ ′(B) − 1)�)
∏
)(B)=3

(G3 − 0′(B) + ℓ ′(B)�)
ª®¬ .

Now we want to find the coefficient of the <(�−1,0,0) term in this polynomial.
To find this coefficient it is sufficient to find the coefficient of the G�−1

3 , so
we will focus on that here. From the combinatorial formula we see that a
reverse tableau ) will contribute to the G�−1

3 term if and only if it has � − 1
boxes filled with 3. But our reverse tableaux are of the shape
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�−1︷            ︸︸            ︷
· · ·

where the top row has � − 1 boxes. Reverse tableau are strictly decreasing
down the columns, so all � − 1 of the threes must be in the top row and the
box in the second row must be either a one or a two. That is, we only need
to look at the terms contributed by two specific tableaux:

)1 =
3 3 · · · 3
1

and )2 =
3 3 · · · 3
2

.

First let’s look at the term contributed by )2. Recall that for a box B = (8 , 9) in
a reverse tableau, 0′(B) = 9 − 1 and ℓ ′(B) = 8 − 1. Thus in this case we get∏

)2(B)=1

(G1 − 0′(B) + (ℓ ′(B) − 2)�) ×
∏

)2(B)=2

(G2 − 0′(B) + (ℓ ′(B) − 1)�)

×
∏

)2(B)=3

(G3 − 0′(B) + ℓ ′(B)�)

= G2
∏

)1(B)=3

(G3 − 0′(B) + ℓ ′(B)�) .

Thus in fact this reverse tableau will not contribute an G�−1
3 term at all, since

all terms it contributes will have an G2.
So now let’s look at the term contributed by )1. In this case we get a term

(G1 − 0′(B0) + (ℓ ′(B0) − 2)�)
∏

)1(B)=3

(G3 − 0′(B) + ℓ ′(B)�) = (G1 − �)
�−2∏
9=0
(G3 − 9)

where B0 denotes the box in the second row. We see that from this we will
get a term −�G�−1

3 . Thus the coefficient of G�−1
3 in %(�−1,1,0) is −�Ψ)1(�). So

let’s findΨ)1(�). We see that

�̃(0) = )1 , �̃(1) =

�−1︷       ︸︸       ︷
3 · · · 3

= �̃(2) , �̃(3) = ∅.

And thus ('/�)�(8−1)/�(8) = ∅ for 8 = 1, 2. Thus Ψ)1(�), so the coefficient of
<(�−1,0,0) in %(�−1,1,0) is −�. �
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A Formula for 1(�−1,0,0)
(�,0,0)

Theorem 4.4.5. or � ≥ 1, the coefficient of <(�−1,0,0) in %(�,0,0) is

1
(�−1,0,0)
(�,0,0) (�) =

−6��2 − 5�(� − 1)� − �(� − 1)2
2(� + � − 1) .

From Formula 2.1 we have the following formula for %(�,0,0):

%(�,0,0)(G1 , G2 , G3) =
(
−�
�

)−1 ∑
8 9

3∏
9=1

[(
−�

8 9−1 − 8 9

)
(G 9 − �� 9 − 8 9)

8 9−1−8 9
]

where � = (�1 , �2 , �3) = (2, 1, 0), and the sum runs through all integer
sequences � = 80 ≥ 81 ≥ 82 ≥ 83 = 0. We want to find the coefficient of
<(�−1,0,0), but since %(�,0,0) is symmetric it is sufficient to find the coefficient
of G�−1

1 . Thus we want to find all sequences 8 9 where the product over 9
produces an G�−1

1 term. We see that to produce such a term we must have
80 − 81 = � or 80 − 81 = � − 1. Let’s consider the case where 80 − 81 = � − 1
first.
Case 1:
Suppose 80− 81 = �−1. Then 80 = � and 81 = 1. This gives us two sequences
to consider: (�, 1, 1, 0) and (�, 1, 0, 0). For the first sequence we get a term

3∏
9=1

[(
−�

8 9−1 − 8 9

) (
G 9 − �� 9 − 8 9

) 8 9−1−8 9
]

=

[(
−�
� − 1

)
(G1 − 2� − 1)�−1

] [(
−�
0

)
(G2 − � − 1)0

] [(
−�
1

)
G

1
3

]
=

[(
−�
� − 1

)
(G1 − 2� − 1)�−1

] [(
−�
1

)
G3

]
.

Every term in this product will be multiplied by G3. Since we are only
interested in G�−1

1 terms, we don’t actually have to consider any terms
produced by this sequence.
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Now for the second sequence, (�, 1, 0, 0)we get the term

3∏
9=1

[(
−�

8 9−1 − 8 9

) (
G 9 − �� 9 − 8 9

) 8 9−1−8 9
]

=

[(
−�
� − 1

)
(G1 − 2� − 1)�−1

] [(
−�
1

)
(G2 − �)1

] [(
−�
0

)
G

0
3

]
=

[(
−�

8 9−1 − 8 9

) (
G 9 − �� 9 − 8 9

) 8 9−1−8 9
]

=

[(
−�
� − 1

)
(G1 − 2� − 1)�−1

] [(
−�
1

)
(G2 − �)

]
.

The coefficient of the G�−1
1 factor that we get from this expression is

3(�,1,0,0) =

(
−�
� − 1

) (
−�
1

)
(−�)

=

(
−�
� − 1

) (
�2) .

Case 2:
Now suppose 80− 81 = �. Since 80 = � by definition, this forces 81 = 0, which
in turn forces 82 = 0. Since 83 = 0 by definition, we see that we only have to
consider the sequence (�, 0, 0, 0). The product term from this sequence is

3∏
9=1

[(
−�

8 9−1 − 8 9

) (
G 9 − �� 9 − 8 9

) 8 9−1−8 9
]

=

[(
−�
�

)
(G1 − 2�)�

] [(
−�
0

)
(G2 − �)0

] [(
−�
0

)
G

0
3

]
=

(
−�
�

)
(G1 − 2�)�

=

(
−�
�

)
(G1 − 2�)(G1 − 2� − 1) · · · (G1 − 2� − (� − 1))
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and so the coefficient of G�−1
1 from this term is

3(�,0,0,0) =

(
−�
�

)
(−2� − (2� + 1) − · · · − (2� + (� − 1))

=

(
−�
�

) (
−2�� −

�−1∑
ℓ=0

ℓ

)
=

(
−�
�

) (
−2�� − �(� − 1)

2

)
.

This completes case 2.
Thus the total coefficient of G�−1

1 in %(�,0,0) is(
−�
�

)−1

(3(�,0,0,0) + 3(�,1,0,0)) =
(
−�
�

)−1 ((
−�
�

) (
−2�� − �(� − 1)

2

)
+

(
−�
� − 1

) (
�2) )

= −2�� − �(� − 1)
2 +

(
−�
�

)−1 ( −�
� − 1

) (
�2)

= −2�� − �(� − 1)
2 +

(
�!

(−1)���

) (
(−1)�−1��−1

(� − 1)!

) (
�2)

= −2�� − �(� − 1)
2 − ��2

� + � − 1

=
−6��2 − 5�(� − 1)� − �(� − 1)2

2(� + � − 1) .

Note that the coefficients in the numerator will be even for all �, so in fact
the 2 in the denominator will “cancel”.

Proof of Theorem 4.4.1

From the previous two sections we have formulas for the coefficients of
<(�−1,0,0) in %(�,0,0) and in %(�−1,1,0). Also, we know that the coefficient of
<(�−1,0,0) in %(�−1,0,0) is one, and that the coefficient of %(�−1,1,0) in the linear
combination for %

%�%(�,0,0) is

2
(�−1,1,0)
(�,0,0) (�) =

�(� − 1)
(� + � − 1)2 .

Then by Theorem 4.4.2 we have

2
(�−1,0,0)
(�,0,0) (�) =

3

3�
1
(�−1,0,0)
(�,0,0) − 2

(�−1,1,0)
(�,0,0) 1

(�−1,0,0)
(�−1,1,0) .
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Substituting our expressions for 1(�−1,0,0)
(�,0,0) , 2

(�−1,1,0)
(�,0,0) , 1

(�−1,0,0)
(�−1,1,0) andusingMath-

ematica to simplify the resulting expression we get

2
(�−1,0,0)
(�,0,0) =

−3�� − 2�(� − 1)
� + � − 1 .

4.5 Coefficient of %(�−2,2,0) in %
%�%(�,0,0)

Here I present a proof of the following theorem:

Theorem 4.5.1. For � ≥ 4, the coefficient of %(�−2,2,0) in %
%�%(�,0,0) is

2
(�−2,2,0)
(�,0,0) =

�(� − 1)(� − 2)(� − 3)
2(� + � − 3)(� + � − 2)2(� + � − 1) .

Again, in the next few sections I will prove an intermediate lemma and
find the coefficient of <(�−2,2,0) in %(�,0,0) and %(�−1,1,0), building up to a
proof of this theorem.

4.5.1 A Method for Finding 2(�−2,2,0)
(�,0,0)

The main result of this section is the following theorem:

Theorem 4.5.2. For � ≥ 4 we have

2
(�−2,2,0)
(�,0,0) =

3

3�
1
(�−2,2,0)
(�,0,0) − 2

(�−1,1,0)
(�,0,0) 1

(�−2,2,0)
(�−1,1,0) .

To prove this theorem we will need the following lemma.

Lemma 4.5.3. Let � = (� − 1, 0, 0) and � = (� − 2, 2, 0). Then there are no
partitions � = (�1 , �2 , �3) such that � > � > � and

∑
�8 ≤ �.

Proof. Suppose � > �. Then �1 ≥ � − 2. If �1 > � − 2 then � > � so
�1 = � − 1. Then we must have �2 = �3 = 0 because � ≤ �. Thus � = �.
Now suppose instead that we have �1 = � − 2. Then �2 ≥ 2 since � ≥ �. If
�2 > 2 then ∑

�8 ≥ �1 + �2 > �,

which is a contradiction. Thus�2 = 2. This forces�3 = 0 by similar reasoning,
so � = �. This shows the desired result. �

We can now prove Theorem 4.5.2.
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Proof. (Of Theorem 4.5.2.) From Equation 4.2, we have

2
(�−2,2,0)
(�,0,0) =

3

3�
1
(�−2,2,0)
(�,0,0) −

∑
(�−2,2,0)<�<(�,0,0)

|� |≤�

2�(�,0,0)1
(�−2,2,0)
� .

So we need to find all partitions � such that (� − 2, 2, 0) < � < (�, 0, 0) and
|� | ≤ �. First, fromLemma 4.5.3we have � ≥ (�−1, 0, 0). Then fromLemma
4.4.3 we know that � = (� − 1, 0, 0) or � ≥ (� − 1, 1, 0). Finally, from the
results of Section 4.3.1 we know that if � ≥ (� − 1, 1, 0) then � = (� − 1, 1, 0).
Thus the only partitions � with (� − 2, 2, 0) < � < (�, 0, 0) and |� | ≤ � are
(� − 1, 0, 0) and (� − 1, 1, 0). Thus

2
(�−2,2,0)
(�,0,0) =

3

3�
1
(�−2,2,0)
(�,0,0) − 2

(�−1,0,0)
(�,0,0) 1

(�−2,2,0)
(�−1,0,0) − 2

(�−1,1,0)
(�,0,0) 1

(�−2,2,0)
(�−1,1,0) .

Finally, from Lemma 4.2.5 we know that 2(�−2,2,0)
(�−1,0,0) = 0. Thus

2
(�−2,2,0)
(�,0,0) =

3

3�
1
(�−2,2,0)
(�,0,0) − 2

(�−1,1,0)
(�,0,0) 1

(�−2,2,0)
(�−1,1,0) .

�

4.5.2 A Formula for 2(�−2,2,0)
(�,0,0)

In this sectionwefind an expression for the coefficient of%(�−2,2,0) in the linear
combination for %

%�%(�,0,0). We break this down into a couple subsections to
find the coefficient of <(�−2,2,0) in %(�,0,0) and %(�−1,1,0).

A Formula for 1(�−2,2,0)
(�,0,0)

Theorem 4.5.4. For � ≥ 4 the coefficient of <(�−2,2,0) in %(�,0,0) is

1
(�−2,2,0)
(�,0,0) (�) =

�(� − 1)(�)(� + 1)
2(� + � − 1)(� + � − 2) .

Proof. From Theorem 4.1.1, for 0, 1 ∈ ℤ such that 0 < 0 < �
2 , 0 ≤ 1 < �

2 , and
� − 1 > � − 0 we have

1
(�−0,0,0)
(�−1,1,0)(�) =

(� − 21)0−1(� + 0 − 1 − 1)0−1
(0 − 1!)(� + � − 21 − 1)0−1

.
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Setting 0 = 2 and 1 = 0 we then see that

1
(�−2,2,0)
(�,0,0) (�) =

(� − 2(0))2−0(� + 2 − 0 − 1)2−0

(2 − 0)!(� + � − 2(0) − 1)2−0

=
�(� − 1)(�)(� + 1)

2(� + � − 1)(� + � − 2)

as desired. For the interested reader, I have also included a proof of this
formula that doesn’t rely on Theorem 4.1.1 but instead uses Formula 2.1. �

A Formula for 1(�−2,2,0)
(�−1,1,0)

Theorem 4.5.5. The coefficient of <(�−2,2,0) in %(�−1,1,0) is

1
(�−2,2,0)
(�−1,1,0)(�) =

(� − 2)�
� − 3 − � .

Proof. From Theorem 4.1.1, for 0, 1 ∈ ℤ such that 0 < 0 < �
2 , 0 ≤ 1 < �

2 , and
� − 1 > � − 0 we have

1
(�−0,0,0)
(�−1,1,0)(�) =

(� − 21)0−1(� + 0 − 1 − 1)0−1
(0 − 1!)(� + � − 21 − 1)0−1

.

Setting 0 = 2 and 1 = 1 we then see that

1
(�−2,2,0)
(�−1,1,0)(�) =

(� − 2(1))2−1(� + 2 − 1 − 1)2−1

(2 − 1)!(� + � − 2(1) − 1)2−1

=
(� − 2)�
� + � − 3

as desired. For the interested reader, I have also included a proof of this
formula that doesn’t rely on Theorem 4.1.1 but instead uses Formula 2.1. �

Proof of Theorem 4.5.1

From the previous two sections we have formulas for the coefficients of
<(�−2,2,0) in %(�−1,1,0) and in %(�,0,0). Also, we know that the coefficient of
<(�−2,2,0) in %(�−2,2,0) is one, and that the coefficient of %(�−1,1,0) in the linear
combination for %

%�%(�,0,0) is

2
(�−1,1,0)
(�,0,0) (�) =

�(� − 1)
(� + � − 1)2 .
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Then by Theorem 4.5.2 we have

2
(�−2,2,0)
(�,0,0) =

3

3�
1
(�−2,2,0)
(�,0,0) − 2

(�−1,1,0)
(�,0,0) 1

(�−2,2,0)
(�−1,1,0) .

Substituting in our expressions for 1(�−2,2,0)
(�,0,0) , 2(�−1,1,0)

(�,0,0) and 1
(�−2,2,0)
(�−1,1,0), and

using Mathematica to simplify the resulting expression we get

2
(�−2,2,0)
(�,0,0) (�) =

�(� − 1)(� − 2)(� − 3)
2(� + � − 1)(� + � − 2)2(� + � − 3) .

4.6 A Further Conjecture

In the previous sections, we found that the coefficients of %(�−1,1,0) and
%(�−2,2,0) in %

%�%(�,0,0) are

2
(�−1,1,0)
(�,0,0) (�) =

�(� − 1)
(� + � − 1)2 ,

2
(�−2,2,0)
(�,0,0) (�) =

�(� − 1)(� − 2)(� − 3)
2(� + � − 3)(� + � − 2)2(� + � − 1) .

From this it is reasonable to form the following conjecture:

Conjecture 4.6.1. For 0 < 0 < �
2 , the coefficient of %(�−0,0,0) in %

%�%(�,0,0) is

2
(�−0,0,0)
(�,0,0) (�) =

�20

0(� + � − 1)0(� + � − 0)0 .

Note that this conjecture has been tested in Sage up to � = 15.

4.7 A Matrix Formula for Coefficients

In this section we present a matrix formula for the coefficients 2�� in terms of
the coefficients 1��. First recall Theorem 4.2.1:

Theorem 4.2.1. For � ≥ � we have 2�� = 0 and for � < � we have

3

3�
1
�
� =

∑
�≤�<�

2��1
�
� =

∑
�≤�<�
|� |≤|�|

2��1
�
� . (4.1)
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We can restate this theoremas a statement aboutmatrices, in the following
way. Note that since partitions of length three are totally ordered by
lexicographic ordering, if we have a matrix we can index its rows and
columns by partitions instead of integers. That is, we refer to the (8 , 9) entry
as the (�,�) entry, where � and � are the 8Cℎ and 9Cℎ partitions, respectively,
in lexicographic ordering.

Now let � and � be the matrices of infinite dimensions such that the
(�,�) entries are 1�� and 2��, respectively. For example, the first five partitions
in lexicographic ordering are

(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0)

so the (2, 3) entry in � is 1(1,0,0)(1,1,0)(�). Furthermore, let �′ denote the entry-wise
derivative of � with respect to �. Then we have the following theorem:

Theorem 4.7.1. We can write

�′ = ��.

Furthermore, � has a left inverse, �−1, and thus

� = �−1�′.

Proof. First note that by Lemmas 4.2.2 and 4.2.3, � is an upper triangular
matrix with ones along the diagonal, and by Lemma 4.2.4, � is strictly upper
triangular. That is, we can write

� =


1 1

(0,0,0)
(1,0,0) 1

(0,0,0)
(1,1,0) 1

(0,0,0)
(1,1,1) · · ·

0 1 1
(1,0,0)
(1,1,0) 1

(1,0,0)
(1,1,1) · · ·

0 0 1 1
(1,1,0)
(1,1,1) · · ·

...
...

...
...

. . .


and

� =


0 2

(0,0,0)
(1,0,0) 2

(0,0,0)
(1,1,0) 2

(0,0,0)
(1,1,1) · · ·

0 0 2
(1,0,0)
(1,1,0) 2

(1,0,0)
(1,1,1) · · ·

0 0 0 2
(1,1,0)
(1,1,1) · · ·

...
...

...
...

. . .


.
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Let � = ��, and let 3�� be the (�,�) entry in �. Then 3�� is the �Cℎ row of �
dotted with the �Cℎ column of �:

3
�
� =

(∑
�<�

(0)2��

)
+ 2�� +

©«
∑

�<�<�

1
�
� 2

�
�
ª®¬ +

(∑
�≥�
(0)1��

)

= 2
�
� +

©«
∑

�<�<�

1
�
� 2

�
�
ª®¬

=

∑
�≤�<�

1
�
� 2

�
�

=
3

3�
1
�
� .

Thus the (�,�) entry of � is the (�,�) entry of 3
3:�, and so

�′ = ��

as desired. Now, we would like to multiply both sides on the left by the left
inverse of �. However, before we can do this we must show that the left
inverse of � exists. We can find this inverse as follows. We want to find a
matrix �, with (�,�) entry 0��, such that �� = �. Consider some row of �,
say the �Cℎ row. Since we want �� = �, we must have

0
�
(0,0,0) = ��,(0,0,0)

0
�
(0,0,0)1

(0,0,0)
(1,0,0) + 0

�
(1,0,0) = ��,(1,0,0)

0
�
(0,0,0)1

(0,0,0)
(1,1,0) + 0

�
(1,0,0)1

(1,0,0)
(1,1,0) + 0

�
(1,1,0) = ��,(1,1,0)

...

where ��� is one if � = � and zero otherwise. This is a triangular system,
and thus solvable for the 0��. Thus we can find a left inverse �, for �. Thus

� = ��′.

Note also that we could use the Taylor expansion of the function 5 (G) = 1
G to

write out � explicitly in terms of �. �





Chapter 5

Further Directions

In this thesis, we have discussed the problem of differentiating an interpo-
lation Jack polynomial %� in three variables with respect to the variable �,
and writing the result as a linear combination of other interpolation Jack
polynomials:

%

%�
%� =

∑
�

2
�
�%�.

We have made progress towards understanding this linear combination: we
know that if � is “large enough” with respect to �, then 2�� = 0 (see Section
4.2), we’ve found explicit formulas for the 2�� for a few different specific
relationships between � and � (see Sections 4.3-4.5), and we’ve found an
implicit matrix formula for all 2�� in terms of the coefficients of monomial
symmetric functions 1��. But there is plenty of work still to be done! How
can we proceed from here? Well, there are a few different directions we
could go in.

The first direction would be to continue as we were in Chapter 4. That is,
we find the coefficients 2�� one-by-one going in reverse lexicographic ordering.
This will give us concrete formulas for arbitrarily many coefficients, but will
not solve the problem completely since if we start at an arbitrary partition
� we cannot go through all partitions � < �. Furthermore, we have only
started this approach for the specific case � = (�, 0, 0). In cases where �
has more than one non-zero part it may be more computationally intense
to find coefficients in this manner. However, it is possible that as we start
to compute specific coefficients, a pattern will emerge, as did in the case of
finding 2(�−0,0,0)(�,0,0) (see Section 4.6). Once we have a conjecture, we can turn to
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other means to try to prove it, such as the use of hypergeometric functions.
The other main direction to go in is to focus on finding the coefficients

1
�
�, of monomial symmetric functions in interpolation Jack polynomials.

There are a few reasons to take this approach. First, the solution for the
two-variable case relied on having expressions for these coefficients, so if we
want to try a similar approach for three variables we will need to calculate
them. Furthermore, we saw in Sections 4.3-4.5 that the approach outlined in
the previous paragraph relies heavily on knowing the coefficients 1��, so if
we want to take that approach then it will be useful to know them. Finally,
the matrix formula found in Section 4.7 gives an implicit expression for the
2
�
� in terms of the 1��, so if we want to use this implicit formula to find an
explicit formula for the 2��, it would again be useful to know the 1��.

In this thesis we have made progress towards the problem of finding the
coefficients 2��, but have yet to find an explicit formula, and thus the general
problem remains open. It is my hope that the exploration in this thesis will
aid in the solution of this problem, and foremost I hope that the relatively
concrete manipulations presented here can lead to a deeper understanding
of the theory behind interpolation polynomials. This brings to mind a quote
by Emmy Noether1:

If one proves the equality of two numbers 0 and 1 by showing
first that ‘0 is less than or equal to 1’ and then ‘0 is greater than
or equal to 1’, it is unfair; one should instead show that they are
really equal by disclosing the inner ground for their equality.

Here I have shown several equalities using algebraic manipulations. How-
ever, I wonder why these equalities hold and what more complex mathemat-
ical structure they may be hinting at. My hope is that further study of this
problem will explain the “inner ground for their equality”.

1See [12].



Appendix A

Alternative Proofs for Various
Coefficients

A.1 The Coefficient of <(�−1,1,0) in %(�,0,0)
Theorem 4.3.5. For � ≥ 2, the coefficient of <(�−1,1,0) in %(�,0,0) is

1
(�−1,1,0)
(�,0,0) (�) =

��
� + � − 1 .

Proof. Let � = (�, 0, 0). Then from Formula 2.1, we can write

%�(G1 , G2 , G3) =
(
−�
�

) ∑
8 9

3∏
9=1

[(
−�

8 9−1 − 8 9

)
(G 9 − �� 9 − 8 9)

8 9−1−8 9
]

where � = (�1 , �2 , �3) = (2, 1, 0), and the sum runs through all integer
sequences � = 80 ≥ 81 ≥ 82 ≥ 83 = 0. Since %� is a symmetric polynomial,
the coefficient of <(�−1,1,0) in %� is just the coefficient of G�−1

1 G2. So let’s try
to find that coefficient. To this end, let’s look at the product term produced
by each sequence 8 9 . For this product to output a term G�−1

1 G2, we must have

80 − 81 = � − 1
81 − 82 = 1.

Since we know 80 = �, this forces 81 = 1 and 82 = 0. Thus it is sufficient to
compute the product for these values of 8 9 . First, for 9 = 3 we have

8 9−1 − 8 9 = 82 − 83 = 0 − 0 = 0.
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So the 9 = 3 term is just 1. For 9 = 2 we have

8 9−1 − 8 9 = 81 − 82 = 1 − 0 = 1.

So the 9 = 2 term is(
−�
81 − 82

)
(G2 − ��2 − 82)81−82 =

(
−�
1

)
(G2 − � − 0)1

= −�1(G2 − �)1

= −�(G2 − �).
Finally, when 9 = 1 we have

8 9−1 − 8 9 = 80 − 81 = � − 1.

So the 9 = 1 term is(
−�
80 − 81

)
(G1 − ��1 − 81)80−81 =

(
−�
� − 1

)
(G1 − ��1 − 81)�−1

=
(−1)�−1��−1

(� − 1)! (G1 − 3� − 81)�−1.

Thus the product we are interested in will be
3∏
9=1

[(
−�

8 9−1 − 8 9

)
(G 9 − �� 9 − 8 9)

8 9−1−8 9
]
=

(
(−1)�−1��−1

(� − 1)! (G1 − 3� − 81)�−1
)

× (−�(G2 − �)) (1).
This will be a polynomial in G1 and G2. However, we are only interested in
the term involving G�−1

1 G2, which is(
(−1)�−1��−1

(� − 1)! G�−1
1

)
(−�G2) =

(−1)���−1�

(� − 1)! G�−1
1 G2.

Now, looking again at Formula 2.1 we see that to get the full coefficient of
G�−1

1 G2 in %� we have to multiply by
(−�
�

)−1. Thus the final coefficient is(
−�
�

)−1 (−1)���−1�

(� − 1)! =

(
�!

(−1)���

) (
(−1)���−1�

(� − 1)!

)
=
��(�)(� + 1) · · · (� + � − 2)
(�)(� + 1) · · · (� + � − 1)

=
��

� + � − 1 .

Thus the coefficient of <(�−1,1,0) in %(�,0,0) is ��
�+�−1 , as desired. �
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A.2 The Coefficient of <(�−2,2,0) in %(�,0,0)
Theorem 4.5.4. For � ≥ 4 the coefficient of <(�−2,2,0) in %(�,0,0) is

1
(�−2,2,0)
(�,0,0) (�) =

�(� − 1)(�)(� + 1)
2(� + � − 1)(� + � − 2) .

Proof. Recall that from Formula 2.1 that

%(�,0,0) =

(
−�
�

)−1 ∑
8 9

3∏
9=1

[(
−�

8 9−1 − 8 9

)
(G 9 − �� 9 − 8 9)

8 9−1−8 9
]

where the sum runs over all integer sequences � = 80 ≥ 81 ≥ 82 ≥ 83 = 0. We
want to find the coefficient of G�−2

1 G2
2 in this expression. Now, �3 = 83 = 0,

so if 82 ≠ 83 then the product term for the sequence 8 9 will have an G3 in
every term. Since we are only interested in the G�−2

1 G2
2 term, we know that

any sequence of interest to us will have 82 = 83 = 0. Furthermore, to get an
G2

2 term we must have 81 − 82 ≥ 2, and to get an G�−2
1 term we must have

80 − 81 ≥ � − 2. Thus

� − 81 ≥ � − 2 and 81 − 0 ≥ 2, so
2 ≥ 81 and 81 ≥ 2.

So 81 = 2. Thus the only sequence that is of interest to us is 80 = �, 81 =

2, 82 = 0, 83 = 0. The term we get from this sequence is(
−�
� − 2

)
(G1 − 2� − 2)�−2

(
−�
2

)
(G2 − :)2

(
−�
0

)
(G3)0

=

(
−�
� − 2

)
(G1 − 2� − 2)�−2

(
−�
2

)
(G2 − :)2.

The G�−2
1 G2

2 term produced by this product is(
−�
� − 2

) (
−�
2

)
G�−2

1 G2
2 .

Thus the coefficient of G�−2
1 G2

2, and thus <(�−2,2,0) in %(�,0,0) is(
−�
�

)−1 ( −�
� − 2

) (
−�
2

)
=

�!
(−1)���

(−1)�−2��−2

(� − 2)!
(−1)2�2

2!

=
�(� − 1)(�)(� + 1)

2(� + � − 1)(� + � − 2) .
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That is,

1
(�−2,2,0)
(�,0,0) (�) =

�(� − 1)(�)(� + 1)
2(� + � − 1)(� + � − 2) .

�

A.3 Coefficient of <(�−2,2,0) in %(�−1,1,0)

Theorem 4.5.5. The coefficient of <(�−2,2,0) in %(�−1,1,0) is

1
(�−2,2,0)
(�−1,1,0)(�) =

(� − 2)�
� − 3 − � .

Proof. Recall Formula 2.2:

%(�−1,1,0)(G1 , G2 , G3) =
∑
)

Ψ)(�)
©«

∏
)(B)=1

(G1 − 0′(B) + (ℓ ′(B) − 2)�)

×
∏
)(B)=2

(G2 − 0′(B) + (ℓ ′(B) − 1)�)

×
∏
)(B)=3

(G3 − 0′(B) + ℓ ′(B)�)
ª®¬ .

We now want to find the coefficient of the G�−2
3 G2

2 term. Thus we see that we
are only interested in terms generated by reverse tableaux where � − 2 boxes
are filled with 3’s and two are filled with 2’s. Since reverse tableaux must be
weakly decreasing along rows and strictly decreasing along columns, the
only reverse tableau that gives a product with a G�−2

3 G2
2 term is the following:

) = 3 · · · 3 2
2

.

Thus the coefficient of G�−2
3 G2

2 in %(�−1,1,0) is #)(�). So let’s find this
#)(�). We have

�(0) = �(1) = {(1, 1), . . . , (1, � − 2), (2, 1)},
�(2) = {(1, 1), . . . , (1, � − 2)}, �(3) = ∅.
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And thus

('/�)�(0)/�(1) = ∅, ('/�)�(1)/�(2) = {(1, 2), . . . (1, � − 2)}.

So #)(�) reduces to

#)(�) =
∏

B∈('/�)
�(1)/�(2)

1�(2)(B, �)
1�(1)(B, �)

.

Now let’s find 1�(1)(B, �) and 1�(2)(B, �). Let B = (8 , 9) be a box in ('/�)�(1)/�(2) .
Then 8 = 1 and 2 ≤ 9 ≤ � − 2. Thus

;�(1)(B) =
���{: > 1 | �(1)

:
≥ 9

}��� = 0

;�(2)(B) =
���{: > 1 | �(2)

:
≥ 9

}��� = 0

and

0�(1)(B) = �(1)1 − 9 = � − 1 − 9
0�(2)(B) = �(2)1 − 9 = � − 2 − 9.

Thus

1�(1)((1, 9), �) =
0�(1)(1, 9) + �(;�(1)(1, 9) + 1)
0�(1)(1, 9) + �;�(1)(1, 9) + 1

=
� − 1 − 9 + �

� − 9

1�(2)((1, 9), �) =
0�(2)(1, 9) + �(;�(2)(1, 9) + 1)
0�(2)(1, 9) + �;�(2)(1, 9) + 1

=
� − 2 − 9 + �
� − 1 − 9 .

And so the quotient is

1�(2)((1, 9), �)
1�(1)((1, 9), �)

=

(
�−2−9+�
�−1−9

)(
�−1−9+�
�−9

) = (� − 9 + � − 2)(� − 9)
(� − 9 + � − 1)(� − 9 − 1) .

Thus our product telescopes:

#)(�) =
∏

B∈('/�)
�(1)/�(2)

1�(2)(B, �)
1�(1)(B, �)

=

�−2∏
9=2

(� − 9 + � − 2)(� − 9)
(� − 9 + � − 1)(� − 9 − 1)

=
(� − 2)�
� + � − 3 .
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Note that for the last step I simplified the expression using Mathematica.
Thus the coefficient of <(�−2,2,0) in %(�−1,1,0) is

1
(�−2,2,0)
(�−1,1,0)(�) =

(� − 2)�
� + � − 3 .

�



Bibliography

[1] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford
university press, 1998.

[2] Claudio Procesi. Lie groups. an approach through invariants and
representations. Bull. Amer. Math. Soc., 2007.

[3] AN Sergeev and AP Veselov. Generalised discriminants, deformed
quantum calogero-moser system and jack polynomials. arXiv preprint
math-ph/0307036, 2003.

[4] Bruce E Sagan. The symmetric group: representations, combinatorial
algorithms, and symmetric functions, volume 203. Springer Science &
Business Media, 2013.

[5] Friedrich Knop and Siddhartha Sahi. Difference equations and sym-
metric polynomials defined by their zeros. arXiv preprint q-alg/9610017,
1996.

[6] Andrei Okounkov and Grigori Olshanski. Shifted jack polynomials,
binomial formula, and applications. arXiv preprint q-alg/9608020, 1996.

[7] Havi Ellers and Xiaomin Li. Lie algebras report. Avail-
able at https://mysite.science.uottawa.ca/hsalmasi/report/report-
FUSRP2019.pdf.

[8] Karin Erdmann andMark J Wildon. Introduction to Lie algebras. Springer
Science & Business Media, 2006.

[9] James E Humphreys. Introduction to Lie algebras and representation theory,
volume 9. Springer Science & Business Media, 2012.

[10] Siddhartha Sahi, Hadi Salmasian, andVera Serganova. Capelli operators
for spherical superharmonics and the dougall-ramanujan identity, 2019.



60 Bibliography

[11] George E Andrews, Richard Askey, and Ranjan Roy. Special functions,
volume 71. Cambridge university press, 1999.

[12] H. Weyl and P. Pesic. Levels of Infinity: Selected Writings on Mathematics
and Philosophy. Dover books on mathematics. Dover Publications,
Incorporated, 2012.


	On the Mysteries of Interpolation Jack Polynomials
	Recommended Citation

	Abstract
	Acknowledgments
	Symmetric Polynomials and Partitions
	Symmetric Polynomials
	Partitions
	Symmetric Polynomials Indexed by Partitions

	Interpolation Jack Polynomials: What Are They?
	First Definition
	Combinatorial Formula

	Summer Exploits and Thesis Goals
	Some More Background
	Previous Work: the Two Variable Case
	Previous Work: Conjectures

	Results
	Coefficients of Monomial Symmetric Functions
	A General Formula for the c
	Coefficient of P(D-1,1,0) in P(D,0,0)
	Coefficient of P(D-1,0,0) in P(D,0,0)
	Coefficient of P(D-2,2,0) in P(D,0,0)
	A Further Conjecture
	A Matrix Formula for Coefficients

	Further Directions
	Alternative Proofs for Various Coefficients
	The Coefficient of m(D-1,1,0) in P(D,0,0)
	The Coefficient of m(D-2,2,0) in P(D,0,0)
	Coefficient of m(D-2,2,0) in P(D-1,1,0)

	Bibliography

