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Abstract

Mac Lane’s Coherence Theorem is a subtle, foundational characterization
of monoidal categories, a categorical concept which is now an important
and popular tool in areas of pure mathematics and theoretical physics. Mac
Lane’s original proof, while extremely clever, is written somewhat confusingly.
Many years later, there still does not exist a fully complete and clearly written
version of Mac Lane’s proof anywhere, which is unfortunate as Mac Lane’s
proof provides very deep insight into the nature of monoidal categories. In
this thesis, we provide brief introductions to category theory and monoidal
categories, and we offer a precise, clear development of Mac Lane’s ideas
towards a complete proof of the coherence theorem. This thesis will hopefully
provide future readers a thorough introduction to monoidal categories and a
clearly written proof of Mac Lane’s Coherence Theorem, saving those who
are interested in truly understanding Mac Lane’s theorem dozens of hours of
their time.
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Chapter 1

Introduction to Category
Theory

Category theory is a beautiful language for many useful concepts of math.
Here we present the axioms of category theory and introduce the concepts
of categories, functors, and natural transformations, as well as examples of
these concepts.

1.1 Categories

Definition 1.1.1. A category C consists of

• a collection of objects Ob(C)

• a collection of morphisms Hom(C) of the form f : A ! B, with
A,B objects. We write Hom(A,B) for the collection of all morphisms
between A,B.

This data is equipped with a binary operator ◦ known as composition such
that for any objects A,B,C,

◦ : Hom(A,B)×Hom(C,A)! Hom(C,B)

Furthermore, the following laws must be obeyed.

(1) Identity. For each A ∈ Ob(C), there exists an identity idA : A ! A

in Hom(C)

(2) Closed under Composition. Let A,B,C be objects on C. If g : A!
B and f : B ! C, then g ◦ f : A! C is in Hom(A,C).
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(3) Associativity under Composition. For objects A,B,C and D such
that

A B C D
f g h

we have the equality

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(4) Identity Action. For any f ∈ Hom(C) where f : A! B we have that

1B ◦ f = f = f ◦ 1A.

We now introduce some examples of categories.

Example 1.1.2. The canonical example of a category is the category of
sets, denoted as Set, which we can describe as

Objects. All sets X.1

Morphisms. All functions between sets f : X ! Y .

We can check that this construction satisfies the axioms of a category

(1) Each set X has an identity function idX : X ! X where idX(x) = x for
each x ∈ X.

(2) The composition of two functions f : X ! Y and g : Y ! Z is again a
function g ◦ f : X ! Y where (g ◦ f)(x) = g(f(x)).

(3) Function composition is associative.

(4) If f : X ! Y then idY ◦ f = y ◦ idX = f .

Because most of mathematics is based in set theory, we shall see that while
this is a fairly simple category, it is one of the most useful.

Example 1.1.3. The second canonical example is the category of groups,
denoted as Grp. This can be described as

Objects. All groups (G, ·). Here, · : G×G! G is the group operation.
1One must be careful in saying things like “The objects are all (blank).” We will address

this later.
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Morphisms. All group homomorphisms ϕ : (G, ·)! (H, ·). Specifically, set
functions ϕ : G! H where ϕ(g · g′) = ϕ(g) · ϕ(g′).

We again check this satisfies the axioms of a category.

(1) Each group (G, ·) has a identity group homomorphism idG : (G, ·) !
(G, ·) where idG(g) = g.

(2) The function composition of two group homomorphisms ϕ : (G, ·) !
(H, ·) and ψ : (H, ·) ! (K, ·) is again a group homomorphism where
(ψ ◦ ϕ)(g) = ψ(ϕ(g)). This is because

(ψ ◦ ϕ)(g · g′) = ψ(ϕ(g · g′))
= ψ(ϕ(g) · ϕ(g′))
= ψ(ϕ(g)) · ψ(ϕ(g′))
= (ψ ◦ ϕ)(g) · (ψ ◦ ϕ)(g).

(3) Function composition is associative; therefore, composition of group
homomorphisms is associative.

(4) If ϕ : (G, ·)! (H, ·) is a group homomorphism, then idH ◦ϕ = ϕ◦ idG =
ϕ.

Therefore we see that this is a category.

Example 1.1.4. The third canonical example is the category of topolog-
ical spaces, denoted Top. We describe this as

Objects. All topological spaces (X, τ) where τ is a topology on the set X.

Morphisms. All continuous functions f : (X, τ)! (Y, τ ′).

The reader can show that this too satisfies the axioms of a category.

There is a minor issue with the presentation of the previous examples.
For each of the categories, we said that the objects consisted of all sets,
groups, or topological spaces. The first observation about this remark is that
these collection of objects are not sets. For example, in Set, the objects do
not form a set by Russell’s paradox, and neither do the morphisms. Thus we
need to make distinctions between categories based on their size.

Definition 1.1.5. Let C be a category. We say that C is
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• Finite if there are only finitely many objects and finitely many mor-
phisms.

• Locally Finite if, for every pair of objects A,B, the set HomC(A,B)
is finite.

• Small if the collection of objects and collections of morphisms assemble
into a set.

• Locally Small if HomC(A,B) is a set for every pair of objects A,B.

• Large if C is not locally small. That is, the objects and morphisms do
not form a set.

We now introduce the concept of a subcategory, which is also extremely
useful to include in our vocabulary.

Definition 1.1.6. Let C be a category. We say a category S is a subcate-
gory of C if

(1) S is a category, with composition the same as C

(2) The objects and morphisms of S are contained in the collection of objects
and morphisms of C.

Furthermore, we say S is a full subcategory if we additionally have that

(3) For each pair of objectsA,B ∈ S, we have that HomS(A,B) = HomC(A,B).

More informally, S is full if it “contains all of its morphisms.”

Example 1.1.7. Let Ab be the category described as

Objects. All abelian groups (G, ·)

Morphisms. Group homomorphisms.

Then Ab is a subcategory of Grp. Futhermore, Ab is a full subcategory of
Grp. This observation also applies to

• FinGrp, the category of finite groups

• FinAb, the category finite abelian groups

• AbTF, the category of torsion-free abelian groups
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However, none of these categories are subcategories of Set. In fact, many
categories which are based in set theory are not actually subcategories of Set.
This is because the objects of categories such as Grp or Top are not just
sets, but are sets with extra data (such as a binary operation or a topology).

Definition 1.1.8. In a category C, diagrams are directed graphs with
vertices representing objects and edges representing morphisms between
objects. For example, below we technically have a diagram

A B
f

although our diagrams will usually be more complicated like the one below

B A D

C E

g′
h′

f ′ f

h
g

If A,B,C,D,E are sets, we can visualize the action on the elements in this
diagram as

f ′(a) a f(a)

g′(f ′(a)) ?= h′(a) g(f(a)) ?= h(a)

Note that in the above diagram it may not be the case that g′◦f ′ = h′ or g◦f =
h. In the case that both hold, we would call the diagram commutative.
We could express the commutativity by rewriting the diagram as below.

B′ A B

C ′ C

g′

h′=g′◦f ′

f ′ f

h=g◦f

g

For a general diagram, if traversal between every pair of objects, via morphism
composition, is equivalent, then the diagram is commutative and is said to
commute.
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Definition 1.1.9. A category P is said to be thin or a preorder if there
is at most one morphism f : A! B for each A,B ∈ P.

The simplest thin categories are of the form below

A B C · · ·

P

but they may also have more complex shapes such as the category below.

B C D

A

E F G

. . .. . .

. . .

. . .

...

...

P

Thin categories are very common since we often only care about keeping
track of a single, binary (on or off) type of relation between any two objects.
An example of such a relation is comparison of real numbers: for any two
real numbers x, y ∈ R, we know that either x ≤ y or y ≤ x.

In fact, given a thin category P, we can define the binary relation ≤ on
the objects Ob(P) as follows. For any pair of objects A,B ∈ P , we have that

A ≤ B if and only if there exists an morphism A! B.

Some things are to be said about this relation:

• For each object A, there always exists a morphism A ! A (namely,
the identity). This implies that A ≤ A for all objects A, so that ≤ is
reflexive.

• If f : A ! B and g : B ! C, then we have that A ≤ B and B ≤ C.
Since we may compose morphisms, we have that g ◦ f : A ! C.
Therefore, A ≤ C, so that ≤ is transitive.
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Hence, P is really just a set with a reflexive and transitive binary relation.
However, this is exactly the definition of a preorder! Therefore, preorders
P can be regarded as categories with at most one morphism between any
two objects, and vice versa.

Preorders can also turn into partial orders, which have the axiom that

if p ≤ p′ and p′ ≤ p then p = p′.

or linear orders, where for any p, p′ we have that p ≤ p′ or p′ ≤ p.

Example 1.1.10. Here we introduce some examples of thin categories.

Natural Numbers. The sets {1, 2, . . . , n} for any n ∈ N are linear orders,
each of which forms a category as pictured below.

1 2 3 . . . n

In this figure, the loops represent the trivial identity functions.
This example can also be generalized to include N,Z,Q, and R.

Subsets. Let X be a set. Then one can form a category Subsets(X)
where the objects are subsets of X and the morphisms are inclusion
morphisms. Hence, there is at most one morphism between any two
sets.
Since there is at most one morphism between any two objects of the
category, we see that this forms a thin category, and hence a partial
ordering. What this then tells us is that subset containment determines
an ordering, specifically a partial ordering.

Open Sets. Let (X, τ) be a topological space. Define the categoryOpen(X)
to be the category whose objects are the open sets of X and morphisms
U ! V are inclusion morphisms i : U ! V whenever U ⊆ V . Hence,
there is at most one morphism between any two open sets, so that this
also forms a preorder.

Subgroups. Let G be a group. We can similarly define the category
SbGrp(G) to be the category whose objects consists of subgroups
H ≤ G, and whose morphisms are inclusion homomorphisms. This
is just like the last example; and, as in the last example, there is at
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most one morphism between any two subgroups H,K of G (either
i : H ! K or i : K ! H). Hence, we can place a partial ordering on
this, so that subgroup containment is a partial ordering.

Ideals. Let R be a ring. Then we can form a category Ideals(R) whose
objects are the ideals I of R and whose morphisms are inclusion
morphisms. As we’ve seen, this forms a thin category.

Some more examples of categories are familiar constructions we’ve en-
countered throughout our mathematical journeys. All of these may be
different; but category theory exposes their similarities and relationships to
one another.

Category Objects Morphisms
Set Sets Functions
FinSet Finite Sets Functions
FinOrd Finite Ordinals Functions
Grp Groups Group Homomorphisms
Ab Abelian Groups Group Homomorphisms
Rng Rings Ring Homomorphisms
Vct Vector Spaces Linear Transformations
(Ω, E)−Alg (Ω, E)-Algebras (Ω, E)-Homomorphisms
Top Topological Spaces Continuous functions
CHaus Compact Hausdorff Spaces Continuous functions
Mann Manifolds n-continuously diff. functions
Met Metric Spaces Metric-preserving functions
Grph Graphs Graph homomorphisms
Mon Monoids Monoid homomorphisms
Th Propositional Theories Translations
Bool Boolean Algebras Boolean Alg Homomorphisms
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1.2 Morphisms

Definition 1.2.1. Let f : A ! B be a morphism between two objects A
and B. Then we say that f is an isomorphism if there exists a morphism
f−1 : B ! A such that

f ◦ f−1 = idA f−1 ◦ f = idB.

In this case, f−1 is unique, and we call A,B isomorphic. For any two
isomorphisms f : A! B and g : B ! C, we have that

(g ◦ f)−1 = f−1 ◦ g−1.

Note here that we are generalizing the definition of an isomorphism. In
the contexts of sets, a bijection is enough to say that two sets are isomor-
phic. In the contexts of groups, invertible group homomorphisms establish
isomorphisms. However, our above definition can be returned to an original
category of interest to give rise to the relevant notion of an “isomorphism.”

We can also generalize the concept of injective and surjective morphisms.
Definition 1.2.2. Let f : A! B be a morphism. Then

1. f is a monomorphism (or is monic) if

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

for all g1, g2 : C ! A, with C in C.

2. f is a epimorphism (or is epic) if

g1 ◦ f = g2 ◦ f =⇒ g1 = g2

for all g1, g2 : B ! C, with C in C.

C A

B

f◦g1=f◦g2

g1

g2

f

A

B C

f
g1◦f=g2◦f

g1

g2

We demonstrate these concepts with the following example, which demon-
strates that a monic, epic morphism is not always an isomorphism.

Example 1.2.3. Consider the category Haus, consisting of Hausdorff topo-
logical spaces as our objects with continuous functions between them as
morphisms. Let D be a dense subset of a topological space X and let
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i : D ! X be the inclusion map. We’ll show that this function is both epic
and monic.

To show it is epic, let f1, f2 : X ! Y be continuous maps form X to
another (Hausdorff) topological space Y . Suppose that

f1 ◦ i = f2 ◦ i.

Now Im(i) = D, so the above equation tells us that f1(d) = f2(d) for all
d ∈ D. That is, the functions agree on the dense subset. However, we know
from topology that this implies that f1 = f2.

Proof: Suppose that f1(x) 6= f2(x) for some x /∈ D. Since the points
are distinct, and since Y is Hausdorff, there must exist disjoint open
sets U, V in Y such that f1(x) ∈ U and f2(x) ∈ V . Since both f1, f2 are
continuous, there must exist open sets U ′, V ′ in X such that f(U ′) ⊆ U
and g(V ′) ⊆ V .

However, since D is dense in X, both U ′ and V ′ must intersect with
some portion of D; that is, there is some y ∈ U ′ and z ∈ V ′ such that
y, z ∈ D. Therefore, we see that f1(y) ∈ U and f2(z) ∈ V , and since
y, z ∈ D we have that f1(y) = f2(z). But this contradicts the fact that
U ∩ V = ∅. Therefore, we have a contradiction and it must be the case
that f1(x) = f2(x) for all x ∈ X, as desired.

�

Therefore, we see that i is epic. To show that it is monic, suppose g1, g2 :
Y ! A are two parallel, continuous functions, and that

i ◦ g1 = i ◦ g2.

Since i is nothing more than an inclusion map, we immediately have that
g1 = g2. Therefore, i is also monic.

However, note that i : D ! X is not an isomorphism. It is injective,
but by no means is it surjective, so it is certainly not an invertible map.
Hence i is a counter-example to such any claim that monic, epic morphisms
are isomorphisms.

Lemma 1.2.4. The composition of monomorphisms (epimorphisms) is a
(an) monomorphism (epimorphism).
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Proof: Let f : A ! B and g : B ! C be monomorphisms, and
suppose h1, h2 : D ! A are two parallel morphisms. Suppose that
(g ◦ f) ◦ h1 = (g ◦ f) ◦ h2. Note that we can rewrite the equation to obtain
that

g ◦ (f ◦ h1) = g ◦ (g ◦ h1) =⇒ f ◦ h1 = f ◦ h2.

as g is monic, and hence it is left cancellable. But once again, f is monic,
so we cancel on the left to obtain that h1 = h2 as desired.

The proof for epimorphisms follows similarly.
�
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1.3 Functors

In singular homology, we know that given a topological space X, we can
generate an associated n-th singular homology group Hn(X) and a chain of
maps:

· · · Hn−1(X) Hn(X) Hn+1(X) · · ·

where the maps are the reduced boundary maps. However, suppose we have
a continuous mapping f : X ! Y of topological spaces. Then it turns out
for each n, we obtain a mapping f∗ : Hn(X)! Hn(Y ) induced from f . If we
have another continuous map g : Y ! Z between topological spaces, which
gives us g∗ : Hn(Y )! Hn(Z), it is true that

(g ◦ f)∗ = g∗ ◦ f∗ : Hn(X)! Hn(Y ).

This behavior consistently arose among different constructions in the early
development of algebraic topology. It was in 1945 that Eilenberg and Mac
Lane observed that these mappings could be described as a functor, which
we define below.

Definition 1.3.1. Let C and D be categories. A (covariant) functor
F : C ! D is a “mapping” such that

• Every C ∈ Ob(C) is assigned uniquely to some F (C) ∈ D

• Every morphism f : C ! C ′ in C is assigned uniquely to some morphism
F (f) : F (C)! F (C ′) in D such that

F (1C) = 1F (C) F (g ◦ f) = F (g) ◦ F (f)

If you have seen a graph homomorphism before, this definition might
seem similar. This is no coincidence, and the concepts are similar given the
relationship between graphs and categories. But with that intuition in mind,
we can visualize the action of a functor. Below we have arbitrary categories
C,D with F : C ! D a functor.
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C

· · · · · ·

· · · · · ·

...

...
...

A

B C

f g◦f

g

D

· · · · · ·

· · · · · ·

...

...
...

F (A)

F (B) F (C)

F (f) F (g◦f)

F (g)

Example 1.3.2. In the introduction, we saw that topological spaces X can
correspond to abelian groups Hn(X). This actually satisfies the properties
of a functor, so we can construct an n-th Singular Homology functor
Hn : Top! Ab which acts as

X 7−! Hn(X)
f : X ! Y 7−! f∗ : Hn(X)! Hn(Y )

where f : X ! Y is a continuous mapping of topological spaces.
Example 1.3.3. Consider the power set P(X) on a set X. Then we can
create a functor P : Set! Set as follows.

For any set X, P(X) is of course another set. So define the action on
objects X as

X 7−! P(X).
As for morphisms, let f : X ! Y be a function between two sets X and Y .
Then we define Pf : P(X) ! P(Y ) to be the function which sends a set
S ⊆ X to its image f(S) ∈ P(Y ). Now we must show that this function
respects identity and composition properties.
Identity. Consider the identity function on a set X, i.e. idX : X ! X.

Then observe that for any S ∈ P(X), we have that

P(idX)(S) = idX(S) = S

Therefore, P(idX) = 1PX so that P respects identities.

Composition. Let X,Y, Z be sets and f : X ! Y and g : Y ! Z be
functions. Let S ∈ P(X). Observe that

P(g ◦ f) = P(g ◦ f)(S) = (g ◦ f)(S)
= g(f(S))
= P(g) ◦ P(f)(S).



14 Introduction to Category Theory

Therefore we see that P(g ◦ f) = P(g) ◦ P(f), so that P() describes a
functor from Set to Set.

Example 1.3.4. Let G be a group. Denote the commutator subgroup as
[G,G]. One can also show that [G,G]EG for any group G, which indicates
we may talk about the quotient group G/[G,G].

We’ll show now that the projection

pG : Grp! Ab

which acts on groups and group homomorphisms as

G 7−! G/[G,G]
ϕ : G! H 7−! ϕ∗ : G/[G,G]! H/[H,H]

satisfies the conditions of a functor.
To do this, for a group homomorphism ϕ : G! H, define ϕ∗ : G/[G,G]!

H/[H,H] as
ϕ∗(g + [G,G]) = ϕ(g) + [H,H].

Note that this is well-defined since ϕ([G,G]) ⊆ [H,H].
Now, in total, what we have is that (1) pG : Grp ! Ab successfully

sends objects G of Grp to objects G/[G,G] of Ab, and (2) pG sends homo-
morphisms ϕ : G! H in Grp to homomorphisms pG(ϕ) = ϕ∗ : G/[G,G]!
H/[H,H] in Ab. Now we just have to check that pG(idG) = idG/[G,G]
and pG(f ◦ g) = pG(f) ◦ pG(g) for all groups G ∈ Grp and morphisms
f, g ∈ Hom(Grp).

Identity Let G be a group and 1G the identity on G. Let g + [G,G] ∈
G/[G,G]. Then

pG(idG)(g + [G,G]) = idG(g) + [G,G]
= g + [G,G].

Therefore, pg(idG) = idG/[G,G]; that is, it is the identity on G/[G,G].

Composition. Now let ϕ : G1 ! H and ψ : H ! G2 be homomorphisms
in Grp. Suppose g + [G,G] ∈ G/[G,G]. Then

pG(f2 ◦ f1)(g + [G,G]) = f2 ◦ f1(g + [G,G]) + [G2, G2]
= pG(f2)(f1(g + [G,G]) + [H,H]))
= pG(f2) ◦ pG(f1)(g + [G,G]).

Hence, we see that pG(f2 ◦ f1) = pG(f2) ◦ pG(f1).
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Therefore, pG : Grp! Ab is a functor.

The action of a functor can also be dualized to give rise to the notion of
a contravariant functor.

Definition 1.3.5. Let C and D be categories. A contravariant functor
is a mapping F : C ! D where

• Every object C of C is mapped to some object F (C) in D

• Every morphism f : C ! C ′ is mapped to some morphism F (f) :
F (C ′)! F (C) in Hom(D). We also require the identity and composi-
tion laws:

F (1C) = 1F (C) F (g ◦ f) = F (f) ◦ F (g).

Note that a contravariant functor is just a covariant functor with the
“arrows turned around.” That is, it is the opposite definition, and this is
overall an example of the inherent duality present in category theory.

Duality arises because category theory abstracts mathematics by con-
sidering arrows between objects. But when writing down definitions, the
direction in which one decides to points arrows eventually gets arbitrary.
That is, in every definition, one has two choices in deciding where to point
arrows. This constantly leads to two dual notions in almost every concept
available in category theory.

A nice example of a contravariant functor is as follows.

Example 1.3.6. Let X be a topological space. Let us begin constructing
a functor C : Top ! Rng, by assigning topological spaces X to the ring
C(X) of continuous real-valued functions h : X ! R.

To do this, consider a continuous function f : X ! Y between topological
spaces in Top. Then observe that f induces a function C(f) : C(Y )! C(X)
where

C(f)(h) = h ◦ f

where h : Y ! R is in C(Y ). Note that h ◦ f : X ! R for all h ∈ C(Y ).
Now we check the identity and composition rules.
Let f = idX for a topological space X. Then for any h ∈ C(X),

C(idx)(h) = h ◦ idX = h
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so that C(idX) = idC(X). Further, suppose f : X ! Y and g : Y ! Z. Then
for h ∈ C(Z),

C(g ◦ f)(h) = h ◦ (g ◦ f)
= (h ◦ g) ◦ f
= C(f)(h ◦ g)
= C(f) ◦ C(g)(h).

Hence we see that C(g◦f) = C(f)◦C(g), so we see that C(−) : Top! Rng
behaves as a contravariant functor from Top to Rng.

Many contravariant functors can be found in algebraic geometry; we
introduce three such functors.

Example 1.3.7. Let R be a commutative ring. Recall that Spec(R) is the
set of all prime ideals of R. In addition, recall that if ϕ : R ! S is a ring
homomorphism and if P is a prime ideal of S, then ϕ−1(P ) is also a prime
ideal in R. This then allows us to define a functor

Spec : CRing! Set

where on objects R 7! Spec(R) and on morphisms ϕ : R ! S 7! ϕ∗ :
Spec(S)! Spec(R) where ϕ∗(P ) = ϕ−1(P ).

However, we can go even deeper than this. Recall from algebraic geometry
that Spec(R) can be turned into a topological space, using the Zariski
topology. However, because ϕ−1(P ) is a prime ideal whenever P is, we see
that ϕ∗ : Spec(S)! Spec(R) is actually a continuous function between the
topological spaces. Hence we can view this as a functor

Spec : CRing! Top.

Usually this is phrased more naturally as a functor Spec : CRing! Sch
where Sch is the category of schemes.

Example 1.3.8. Let k be an algebraically closed field. Recall that An(k) is
the set of tuples (a1, a2, . . . , an) with ai ∈ k. In algebraic geometry, it is of
interest to associate each subset S ⊆ An(k) with the ideal

I(S) = {f ∈ k[x1, . . . , kn] | f(s) = 0 for all s ∈ S}.

of k[x1, . . . , xn]. Observe that this is always non-empty since 0 ∈ I(S) for
any S. In additional, it is clearly an ideal of k[x1, . . . , xn], since for any
p ∈ k[x1, . . . , xn],q ∈ I(S), we have that

(p · q)(s) = p(s) · q(s) = p(s) · 0 = 0 for all s ∈ S.
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so that p · q ∈ I(S). Now it’s usually an exercise to show that if S1 ⊆ S2 are
two subsets of An(k), then one has that I(S2) ⊆ I(S1). Hence this defines a
functor

I : Subsets(An(k))op ! Ideals(k[x1, . . . , xn]).

where Subsets(An(k)) is the category of subsets with inclusion morphisms,
and Ideals(k[x1, . . . , xn]) is the category of ideals with inclusion ring homo-
morphisms; that is, these are partial orders.

Example 1.3.9. Consider again k as an algebraically closed field. In alge-
braic geometry, one often wishes to associate each ideal of k[x1, . . . , xn] with
its “zero set”

Z(I) = {s = (a1, . . . , an) ∈ An(k) | f(s) = 0 for all s ∈ I}.

It is usually an exercise to show that if I1 ⊆ I2 are two ideals, then Z(I2) ⊆
Z(I1). Hence we see that this defines a functor

Z : Ideals(k[x1, . . . , xn])! Subsets(An(k)).

Functors can be composed, just like functions.

Definition 1.3.10. Let A,B and C be categories and F,G functors as below.

A B CF G

Then we can define the composite functor

A CG◦F

where
C 7! G(F (C)) ∈ C f 7! G(F (f)) ∈ Hom(C).

Composition of functors is associative. Hence we may form the large
category of all categories Cat, whose objects are categories and whose
morphisms are functors between them.

Definition 1.3.11. Let F : C ! D be a functor. Then F is said to be an
isomorphism if there exists a functor G : D ! C such that G ◦ F is the
identity on C and F ◦G is the identity on D.
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Next, we introduce the notion of full and faithful functors. Towards
that goal, consider a functor F : C ! D between locally small categories.
Then for every pair of objects A,B ∈ C, there is a function

FA,B : HomC(A,B)! HomD(F (A), F (B))

where a morphism f : A ! B is sent to its image F (f) : F (A) ! F (B)
under the functor F .

A

B

gf ··· ··· h

FA,B
F (A)

F (B)

F (g)··· ···F (f) F (h)

C D

As we have a family of functions FA,B , we can ask: when is this function
surjective or injective? This motivates the following definitions.

Definition 1.3.12. Let F : C ! D be a functor between locally small
categories. We say F is

• Full if FA,B is surjective

• Faithful if FA,B is injective

for all A,B ∈ C. If FA,B is an isomorphism, we say F is fully faithful.

Now we completely ignored the situation for when C,D are not locally
small. This was just out of pedagogical interest; if C,D are not locally small
then we do not have the function described above. However, the concept of
full and faithful can still be described; it’s just not as nice of a description
as before.

Definition 1.3.13. Let F : C ! D be a functor.

• Full if for all A,B, every morphism g : F (A) ! F (B) in D is the
image of some f : A! B in C
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• Faithful if for all A,B, we have that if f1, f2 : A! B with F (f1) =
F (f2), thenf1 = f2.

We then say F is a fully faithful if it is both full and faithful.

Example 1.3.14. Let (G, ·) and (H, ·) be a group. Regard both groups as
one object categories C and D with objects • and • where we set

HomC(•, •) = G HomC(•, •) = H

so that each g ∈ G is now a morphism g : • ! •, and vice versa for every
h ∈ G, so that composition is given by the group structure. If we have a
functor F : C ! D between these categories, then the function we introduced
simply becomes a set function

F•,• : HomC(•, •)! HomD(•, •).

However, the functorial properties allow this to extend to a group homomor-
phism from G to H. Therefore, we see that if F : C ! D is full, it extends to
a surjective group homomorphism. If it is faithful, it extends to an injective
group homomorphism.

Finally, we introduce a special and important type of functor in category
theory.

Definition 1.3.15. Let U : C ! D be a functor. Then F is said to be
forgetful whenever F does not preserve some axioms or structure present
in C (whether it be algebraic or some kind of ordering) in mapping objects
of C to D.

Example 1.3.16. Let (R,+, ·) be a ring. Recall that (R,+) (alone with
its addition) is an abelian group. Hence we can forget the structure of
· : R×R! R and, in a forgetful sense, treat every ring as an abelian group.

This then defines a forgetful functor F : Ring ! Ab which simply
maps a ring to its abelian group. This works on the morphisms, since
every ring homomorphism ϕ : (R,+, ·)! (S,+, ·) is a group homomorphism
ϕ : (R,+)! (S,+) on the abelian groups.

Example 1.3.17. Consider the category Top. Each object in top is a pair
(X, τ) where τ is a topology on X. Moreover, continuous functions are simply
functions. This forgetful process is also functorial:

(X, τ) 7! X f : (X, τ)! (Y, τ ′) 7! f : X ! Y.

This then gives us the forgetful functor F : Top! Set.
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1.4 Natural Transformations

Definition 1.4.1. Let F,G : C ! D be two functors. Then we define a
mapping2 between the functors

η : F ! G

to be a natural transformation if it associates each C ∈ Ob(C) with a
morphism

ηC : F (C)! G(C)

in D such that for every f : A! B, we have that

A F (A) G(A)

B F (B) G(B)

f

ηA

F (f) G(f)

ηB

which amounts to ηB ◦ F (f) = G(f) ◦ ηA.

Thus we can imagine that η translates the diagram produced by the
functor F to a diagram produced by G. For example; if η is a natural
transformation between F and G, then we also see that the diagram on the
right commutes

A

B

C

h

f

g

F (A) G(A)

F (B) G(B)

F (C) G(C)

F (h)

F (f)

η(A)

G(h)
G(f)

η(B)

F (g) G(g)
η(C)

2Think “morphism” instead of mapping, because the word mapping here doesn’t
rigorously mean anything. That’s because we don’t really have a word to describe what a
natural transformation really is. We have axioms, which we present, but we don’t have a
nice word. That nice word will turn out to be morphism, and you will see soon why.
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if the above diagram on the left commutes. In addition, the diagram on the
right commutes

A B

C D

h

f

g

k

F (A) G(A)

F (B) G(B)

F (C) G(C)

F (D) G(D)

if the above diagram on the left commutes. Note that the arrows in black in
the above diagram on the right represent the morphisms ηA, ηB, ηC and ηD.

Example 1.4.2. Let K be a commutative ring in CRing, the category of
commutative rings. We can define the functors

GLn(−) : CRing! Grp (−)× : CRing! Grp

where GLn(−) maps commutative rings to GLn(K), the group of invertible
n× n matrices with entries in K, and (−)× maps a commutative ring to its
group of units K×.

Consider a commutative ring K. Recall that for matrix M ∈ GLn(K),
we can take the determinant of K; we are usually more familiar with this
concept when K = R. However, it is a fact from ring theory that a matrix
M is invertible if and only if the determinant det(M) of M is in K×. Since
GLn(K) is the set of all such invertible matrices, we see that we may associate
each K with its determinant function

detK : GLn(K)! K×

which sends an invertibleM ∈ GLn(K) to its determinant inK×. To see that
this morphism is a group homomorphism, we simply recall the determinant
property

det(AB) = det(A) det(B).

The claim is now that this family of morphisms assembles into a natural
transformation. Specifically, that det : GLn(−) ! (−)×. To see, this, let
f : K ! K ′ be a homomorphism between commutative rings. Recall from
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ring theory that the determinant of a matrix M = [aij ] with aij ∈ K is given
by

det(M) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n).

where Sn is the symmetric group, and sgn(σ) is the sign of a permutation.
Now for det to form a natural transformation, we’ll need that the diagram
below commutes.

K GLn(K) K×

K ′ GLn(K ′) K ′×

f

detK

GLn(f) f×

detK′

Note that f : K ! K ′ is a commutative ring homomorphism. To show this
diagram commutes, consider any M = [aij ] ∈ GLn(K). Observe that

(f× ◦ detK)(M) = f×(detK(M))

= f×

∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)


=
∑
σ∈Sn

sgn(σ)f(a1σ(1)) · · · f(anσ(n))

= detK′([f(aij ]))
= detK′ ◦GLn(f)(M).

Hence we see that the diagram commutes, so that the determinant det :
GLn(−)! (−)× assembles into a natural transformation between the func-
tors.

Example 1.4.3. Earlier, we showed that pG : Grp ! Ab in which G 7!
G/[G,G] was a functor. It turns out that we can formulate a natural
transformation between the identity functor 1Grp : Grp ! Grp and the
functor pG : Grp! Grp. Define η : 1Grp ! pG where

ηG : G! G/[G,G]

is the natural projection g 7! g + [G,G]



Natural Transformations 23

To show this is a natural transformation, consider the morphism f : G!
H in Grp. We know that pG induces a morphism f∗ : G/[G,G]! H/[H,H]
defined as

f∗(g + [G,G]) = f(g) + [H,H].
Now let g ∈ G.

ηH ◦ f(g). On one hand, observe that

ηH ◦ f(g) = f(g) + [H,H].

f∗ ◦ ηG(g). On the other hand, observe that

f∗ ◦ ηG(g) = f∗(g + [G,G]) = f(g) + [H,H].

Hence, we see that
ηH ◦ f = f∗ ◦ ηG

so that the following diagram commutes

G G/[G,G]

H H/[H,H]

f

ηG

f∗

ηH

and hence η is a natural transformation.

Example 1.4.4. The categories FinOrd and FinSet, are closely related
categories. Recall that FinOrd has finite ordinals n = {0, 1, 2, . . . , n − 1}
as objects with morphisms all functions f : m! n where m,n are natural
numbers, and the objects of FinSet are all finite sets (of some universe U)
with morphisms all functions between such sets.

Obviously the objects and morphisms of FinOrd are in FinSet. Thus
let S : Finord! SetF be the inclusion functor.

Define a functor # : SetF ! FinOrd as follows. Assign each X ∈ SetF
to the ordinal #X = n, the number of elements in X. We can represent this
bijective mapping as

θX : X ! #X.
Furthermore, if f : X ! Y is a morphism in FinSet, associate f with the
morphism #f : #X ! #Y in FinOrd defined by

#f = θY ◦ f ◦ θ−1
X .

Thus we have that the following diagram is commutative:
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X #X

Y #Y

f

θX

#f

θY

and θ acts a natural transformation between the two functors.
Note that if X is an ordinal number, we define θX to be the identity

function, which ensures that # ◦ S is the identity functor on FinOrd.
However, S ◦ # is not the identity on FinSet, since the input will be X
while the output will just be #X (as S is just the inclusion functor.)

Example 1.4.5. Observe that for a fixed group H, we have that

H ×− : Grp! Grp

is a functor. In this case, it turns out that any group homomorphism
f : H ! K is a natural transformation between the functors H × − and
K ×−.

Let ϕ : G! G′ be a group homomorphism between two groups in Grp.
Then we know that H ×− and K ×− induce homomorphisms

ϕH×G : H ×G! H ×G′

and
ϕK×G : K ×G! K ×G′.

Let (h, g) ∈ H × G. If we associate f : H ! K with the function fG :
H × G ! K × G where fG(h, g) = (f(h), g), then fG defines a natural
transformation between the functors. That is, we see that on one hand,

ϕK×G ◦ fG(h, g) = ϕH×G(f(h), g)
= (f(h), ϕ(g))

while on the other,

fG′ ◦ ϕK×G(h, g) = fG′(h, ϕ(g))
= (f(h), ϕ(g)).

Therefore we see that

ϕK×G ◦ fG = fG′ ◦ ϕH×G

so that the following diagram commutes:
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G H ×G K ×G

G′ H ×G′ K ×G′

f

fG

ϕH×G ϕK×G

fG′

Therefore, we see that every homomorphism f : H ! K forms a natural
transformation between the functors H ×− and K ×− from Grp to Grp.
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1.5 Initial, Terminal, and Zero Objects

We can also be more specific in discussing the nature of the objects of a
given category C.

Definition 1.5.1. Let C be a category.

• An object T of C is said to be terminal if for each object A of C there
exists exactly one morphism tA : A! T .

• Let I be an object of C. Then I is said to be initial if for each object
A of C there exists exactly one morphism iA : I ! A.

• An object Z of C is said to be a zero object if it is both terminal and
initial.
Equivalently, an object Z is zero if for any objects A,B of C there exists
exactly one morphism f : A! Z and exactly one morphism g : Z ! B.
Hence, for any two objects there exists a morphism between them,
namely given by by g ◦ f , called the zero morphism from A to B.

Note that by these definitions, a terminal or initial object are necessarily
unique. Thus, a zero object is unique as well.

Example 1.5.2. Recall that in the categoryGrp, there exists a trivial group
{e}. Moreover, for each group G, there exist unique group homomorphisms

iG : {e}! G e 7! eG

and
tG : G! {e} g 7! eG.

Note that both are group homomorphisms since they both behave on identity
elements and are trivially distributive across group operations. This then
shows that Grp, the trivial group is initial and terminal and hence a zero
object.

This makes sense since for any two groups G,H, there exists a unique
map

z : G! H g 7! eH

which could be factorized as
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{e}

G H

iH

z

tG

which demonstrates the existence of a zero object (the name "zero" makes
sense now, right?), which we already know is {e}. Note in this example, we
did not actually use much group theory. In fact, this could be repeated for
the categories R-Mod, Ab, and other similar categories.

The next two examples demonstrate that terminal and initial objects of
course don’t always have to coincide like they did in the previous example.

Example 1.5.3. Let n be a finite set. Recall that we can create a category,
specifically a preorder, by taking our objects to be positive integers with our
morphisms being size relations.

1 2 3 · · · n

Then 1 is an initial object while n is a terminal object. This is because
for any number 1 ≤ m ≤ n, there exists a unique morphism from 1 to m,
and a unique morphism m to n, both which may be obtained by repeated
composition.

Example 1.5.4. Consider the category Set. Let X be a given set in this
category. Then there are two unique maps which we may construct. First,
there is the map

tX : X ! {∗}

where everything is mapped to the one element ∗ of the one point set. This
is clearly a function, and hence a morphism in our category. Now secondly,
we may construct

iX : ∅! X

which doesn’t do anything. Thus we have that ∅ is an initial object while {∗}
is a terminal object. However, one may wonder at this point: How exactly is
iX a true, set theoretic function? And doesn’t this mean we can obtain a
unique morphism i′X : X ! ∅, so that ∅ is a terminal object as well?
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The second question is easy to answer; if ∅ we terminal, then we’d have
that {∗} ∼= ∅ which is not true. Since this is a bit of a boring answer, we’ll
explain both in detail.

First, recall that a function in f : A! X between two sets A and X is a
relation R ⊆ A×X which satisfies two properties.

1. (Existence.) For each a ∈ A, there exists a x ∈ X such that (a, x) ∈ R

2. (Uniqueness. Or, if you’d like, the vertical line test.) If (a, x) ∈ R and
(a, x′) ∈ R then x = x′.

Now observe that if A = ∅, then R ⊆ ∅ ×X = ∅. Hence (1) and (2) are
satisfied because each is trivially true. However, we don’t get a function
f : X ! ∅, since (1) fails. Specifically, (1) demands the existence of elements
in our codomain, a demand we cannot meet if it is empty.

Thus we see that ∅ is initial, but not terminal as our intuition may
suggest, and that {∗} is terminal.
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1.6 Products of Categories, Functors

As one may expect, the product of categories can in fact be defined.

Definition 1.6.1. Let C and D be categories. Then the product category
C × D is the category where

Objects. All pairs (C,D) with C ∈ C and D ∈ D

Morphisms. All pairs (f, g) where f ∈ Hom(C) and g ∈ Hom(D).

To define composition in this category, suppose we have composable mor-
phisms in C and D as below.

C

· · · C1 C2 C3 · · ·
f

f ′◦f

f ′

D

· · · D1 D2 D3 · · ·
g

g′◦g

g′

Then the morphisms (f, g) and (f ′, g′) in C × D are composable too, and
their composition is defined as (f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g).

C × D

· · · (C1, D1) (C2, D2) (C3, D3) · · ·(f,g)

(f ′,g′)◦(f,g)=(f ′◦f,g′◦g)

(f ′,g′)

We also define the projection functors πC : C×D ! C and πD : C×D ! D
with the property that

πC(f, g) = f πD(f, g) = g.

Consider a pair of functors F : B ! C and G : B ! D. Then these
functors determine a unique functor H : B ! C × D where

πC ◦H = F πD ◦H = G.

That is, we see that for any arrow f in B we have that H(f) = (F (f), G(f)).
Hence the following diagram commutes
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B

C C × D D

F G
H

πC πD

and we dash the middle arrow to represent that H is induced, or defined, by
this process.

We can also take the product of two different functors.

Definition 1.6.2. Let F : C ! C′ and G : D ! D′ be two functors. Then
we define the product functor to be the functor F ×G : C × D ! C′ ×D′
for which

1. If (C,D) is an object of C × D then (F ×G)(C,D) = (F (C), G(D))

2. If (f, g) is a morphism of C × D then (F ×G)(f, g) = (F (f), G(g))
Additionally, we can compose the product of functors (of course, so
long as they have the same number of factors). Thus suppose G,F and
G′, F ′ are composable functors. Then observe that

(G×G′) ◦ (F × F ′) = (G ◦ F )× (G′ ◦ F ′).

Note that in this formulation we have that

πC′ ◦ (F ×G) = F ◦ πC πC′ ◦ (F ×G) = G ◦ πD

Hence, we have the following commutative diagram.

C C × D D

C′ C′ ×D′ D′

F

πC πD

F×G G

πC′ πD′

Again, the dashed arrow is written to express that F × G is the functor
defined by this process and makes this diagram commutative.

With all of this said, note that following: × is a function which maps
categories to categories. It does this in the same that a group operation
· : G × G ! G maps a group to itself. Furthermore, it maps functors,



Products of Categories, Functors 31

which are morphisms between categories, to other categories, and it preserves
composition and identity functors. Therefore, we see that × is itself a functor.

× : Cat×Cat! Cat

The functor × is mapping small categories to itself, similarly to how a group
operation maps a group to itself. Since we encounter this type of situation
often, we make the following definition.

Definition 1.6.3. If F is a functor such that F : B × C ! D, that is, its
domain is a product category, then F is said to be a bifunctor.

Bifunctors are the generalization of two variable functions. It can be
thought of as a functor of two variables, since if you fix either of the variables
you get a regular, normal functor.

An example of a bifunctor is the cartesian product ×, which we can apply
to sets, groups, and topological spaces. In these instances we know that
value of a cartesian product is always determined uniquely by the values of
the individual factors, which holds more generally for bifunctors.

Proposition 1.6.4. Let B, C and D be categories. For B ∈ B and C ∈ C,
define the functors

HC : B ! D KB : C ! D

such that HC(B) = KB(C) for all B,C. Then there exists a functor F :
B × C ! D where F (B,−) = KB and F (−, C) = HC for all B,C if and and
only if, for every pair of morphisms f : B ! B′ and g : C ! C ′ we have that

KB′(g) ◦HC(f) = HC′(f) ◦KB(g).

Diagrammatically, this condition is

HC(B) = KB(C) HC′(B) = KB(C ′)

HC(B′) = KB′(g) HC′(B′) = KB′(C ′)

KB(g)

HC(f) HC′ (f)

KB′ (g)
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Proof:

( =⇒ ) Suppose such a bifunctor F : B×C ! D exists and that it agrees
with HC and KB; that is, F (B,−) = KB and F (−, C) = HC for
all B,C. Then observe that for any f : B ! B′ and g : C ! C ′,

(1B′ , g) ◦ (f, 1C) = (1B′ ◦ f, g ◦ 1C)
= (f, g)
= (f ◦ 1B, 1C′ ◦ g)
= (f, 1C′) ◦ (1B, g)

Applying the functor F to the equation, we see that

F (1B′ , g) ◦ F (f, 1C) = F (f, 1C′) ◦ F (1B, g)

Observe that F (B′,−) = MB′ , and also that

F (1B′ , g) : F (B′, C)! F (B′, C ′).

However, since the first variable is fixed to B′, we can write this as
KB′(g) : F (B′, C)! F (B′, C ′). In addition, we see that F (f, 1C) =
F (B,C)! F (B′, C). In this case the second variable is fixed to C,
so we see that HC(f) : F (B,C)! F (B′, C). Therefore, we see that

KB′(g) ◦HC(f) = HC′(f) ◦KB(g)

which proves that this condition is necessary. Furthermore, the
equality implies the following diagram:

F (B,C) F (B,C ′)

F (B′, C) F (B′, C ′)

F (1B ,g)

F (f,1C) F (f,1C′ )

F (1B′ ,g)

(⇐= ) Suppose on the other hand that KB and HC do not constitute a
unique functor. Then there exist distinct functors F1, F2 : B×C ! D
such that

F1(B,−) = KB = F2(B,−)
F1(−, C) = HC = F2(−, C).
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However, we stated that KB(C) = HC(B) for all B,C. Therefore
both equations imply that

F1(B,C) = F2(B,C)

for all B,C. Hence if we define F (B,C) = KB(C) = HC(B), we
obtain a consistent definition, and this does formulate a unique
functor on objects. To show that this behaves on morphisms, let
1B and 1C be identity morphisms. Then

F (1B, 1C) = (KB(1B), HC(1C)) = idF (1B ,1C)

and if (f, g) is composable with (f ′, g′), then

F ((f, g) ◦ (f ′, g′)) = (KB(f ◦ f ′), HC(g ◦ g′))
= (KB(f) ◦KB(f ′), HC(g) ◦HC(g′))
= (KB(f), HC(g)) ◦ (KB(f ′), HC(g′))
= F (f, g) ◦ F (f ′, g′).

Hence F : B × C ! D is a unique bifunctor.
�

Example 1.6.5. We now introduce what is probably one of the most im-
portant examples of a bifunctor. Note that for any (locally small) category
C, we have for each object A a functor.

Hom(A,−) : C ! Set

We also have a functor from Cop (we at the op simply for convenience) for
each B ∈ Cop.

Hom(−, B) : Cop ! Set

As an application of the proposition, one can see that that these two functors
act as the KB and HC functors in the above proposition, and give rise to
bifunctor

Hom : Cop × C ! Set.

This is because for any h : A! A′ and k : B ! B′, the diagram,
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Hom(A′, B) Hom(A,B)

Hom(A′, B′) Hom(A,B′)

h∗

k∗ k∗

h∗

commutes. Hence the proposition guarantees that Hom : Cop × C ! Set
exists and is unique.

Example 1.6.6. Recall that for an integer n and for a ring R with identity
1 6= 0, we can formulate the group GL(n,R), consisting of n × n matrices
with entry values in R. As this takes in arguments, we might guess that we
have a bifunctor

GL(−,−) : N×Ring! Grp

where N is a the discrete category with elements as natural numbers. This
intuition is correct: for a fixed ring R, we have a functor

GL(−, R) : N! Grp

while for a fixed natural number n we have a functor

GL(n,−) : Ring! Grp.

Below we can visualize the activity of this functor:

...
... · · ·

... · · ·

GL(1, S) GL(2, S) · · · GL(k, S) · · ·

...
... · · ·

... · · ·

GL(1,Z) GL(2,Z) · · · GL(k,Z) · · ·

n = 1 n = 2 · · · n = k · · ·
R = Z

...

R = S

...

Above, we start with Z since the this is the initial object of the category
Ring.

Now that we understand products of categories a functors, and we have
a necessary and sufficient condition for the existence of a bifunctor, we
describe necessary and sufficient conditions for the existence of a natural
transformation.
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Definition 1.6.7. Suppose F,G : B × C ! D are bifunctors. Suppose that
there exists a morphism η which assigns objects of B × C to morphisms of D.
Specifically, η assigns objects B ∈ B and C ∈ C to the morphism

η(B,C) : F (B,C)! G(B,C).

Then η is said to be natural in B if, for all C ∈ C,

η(−,C) : F (−, C)! G(−, C)

is a natural transformation of functors from B ! D.

With the previous definition, we can now introduce the necessary condi-
tion for a natural transformation to exist between bifunctors.

Proposition 1.6.8. Let F,G : B × C ! D be bifunctors. Then there exists
a natural transformation η : F ! G if and only if η(B,C) is natural in B
for each C ∈ C, and natural in C for each B ∈ B.

Proof:

( =⇒ ) Suppose that η : F ! G is a natural transformation. Then every
object (B,C) is associated with a morphism η(B,C) : F (B,C) !
G(B,C) in D, and this gives rise to the following diagram:

(B,C)

(B′, C ′)

(f,g)

F (B,C) G(B,C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,g) G(f,g)

η(B′,C′)

Now let C ∈ C and observe that

η(−,C) : F (−, C)! G(−, c)

is a natural transformation for all B. On the other hand, for any
B ∈ B,

η(B,−) : F (B,−)! G(B,−)

is a natural transformation for all C. Therefore, η is both natural
in B and C for all objects (B,C)
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(⇐= ) Suppose on the other hand that η is a function which assigns ob-
jects (B,C) to a morphism F (B,C)! G(B,C) in D. Furthermore,
suppose that η(B,C) is natural in B for all C ∈ C and natural in
C for all B ∈ B.

Consider a morphism (f, g) : (B,C) ! (B′, C ′) in B × C. Then
since η is natural for all B ∈ B, we know that for all C ∈ C,

η(−,C) : F (−, C)! G(−, C)

is a natural transformation. In addition, η is natural for all C ∈ C
since for all B ∈ B

η(B,−) : F (B,−)! G(B,−)

is a natural transformation. Hence consider the natural transfor-
mation η(−,C) acting on (B,C) and η(B′,−) acting on (B′, C). Then
we get the following commutative diagrams.

F (B,C) G(B,C)

F (B′, C) G(B′, C)

η(B,C)

F (f,1C) G(f,1C)

η(B′,C)

F (B′, C) G(B′, C)

F (B′, C ′) G(B′, C ′)

η(B′,C)

F (1B′ ,g) G(1B′ ,g)

η(B′,C′)

Observe that the bottom row of the first diagram matches the top
row of the second. Also note that f : B ! B′ and g : C ! C ′, and
that the diagrams imply the equations

G(f, 1C) ◦ η(B,C) = η(B′,C) ◦ F (f, 1C) (1.1)
G(1B′ , g) ◦ η(B′,C) = η(B′,C′) ◦ F (1B′ , g). (1.2)

Now suppose we compose equation (1.1) with G(1B′ , g) on the left.
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Then we get that

G(1B′ , g) ◦G(f, 1C) ◦ η(B,C) =
replace via equation (2)︷ ︸︸ ︷
G(1B′ , g) ◦ η(B′,C) ◦F (f, 1C)

= η(B′,C′) ◦ F (1B′ , g) ◦ F (f, 1C)
= η(B′,C′) ◦ F (1B′ ◦ f, g ◦ 1C)
= η(B′,C′) ◦ F (f, g).

where in the second step we applied equation (1.2), and in the third
step we composed the morphisms. Also note that we can simplify
the left-hand side since

G(1B′ , g) ◦G(f, 1C) = G(1B′ ◦ f, g ◦ 1C) = G(f, g).

Therefore, we have that

G(f, g) ◦ η(B,C) = η(B′,C′) ◦ F (f, g)

which implies that eta itself is a natural transformation. Specifically,
it implies the following diagram.

(B,C)

(B′, C ′)

(f,g)

F (B,C) G(B,C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,g) G(f,g)

η(B′,C′)

�

Note: A way to succinctly prove the reverse implication of the previous
proof is as follows. Since we know the diagrams on the left are commutative,
just "stack" them on top of each other to achieve the diagram in the upper
right corner, and then "squish" this diagram down to obtain the third diagram
in the bottom right.
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F (B,C) G(B,C)

F (B′, C) G(B′, C)

η(B,C)

F (f,1C) G(f,1C)

η(B′,C)

F (B′, C) G(B′, C)

F (B′, C ′) G(B′, C ′)

η(B′,C)

F (1B′ ,g) G(1B′ ,g)

η(B′,C′)

F (B,C) G(B,C)

F (B′, C) G(B′, C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,1C) G(f,1C)

η(B′,C)

F (1B′ ,g) G(1B′ ,g)

η(B′,C′)

F (B,C) G(B,C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,g) G(f,g)

η(B′,C′)

This is essentially what we did in the proof, although this is more crude
visualization of what happened, and we were more formal throughout the
process.
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1.7 Functor Categories

In the proof for the last proposition, we used a trick of forming a desired
natural transformation by composing two composable natural transforma-
tions. Hence, we see that natural transformations can be composed.

Let C and D be categories and consider the functors F,G,H : C ! D.
Suppose further that σ : F ! G and τ : G! H are natural transformations
between the functors. Using these natural transformations, we construct the
morphism τ · σ : F ! H which for each C ∈ C is defined as

(τ · σ)C = τC ◦ σC : F (C)! H(C).

What we are visually doing for a given morphism f : c! c′ in C is defining
the morphism (τ · σ)C as below.

F (C) F (C ′)

G(C) G(C ′)

H(C) H(C ′)

(τ · σ)C

σC

F (f)

σC′

(τ · σ)c′

τC

G(f)

τC′

H(f)

One way to view this is that the property of the existence of a natural
transformation is transitive due to commutativity. In addition, we see that
for any functor F : C ! D there exists an identity natural transformation
1F : F ! F , which simply associates an object c with the arrow 1F (c). And
since natural transformations are associative under composition, we see that
this actually forms a category.

Definition 1.7.1. Let C and D be small categories and consider set of
all functors F : C ! D. Then the functor category, denoted as DC or
Fun(C,D), is the category where

Objects Functors F : C ! D

Morphisms Natural transformations η : F ! G between functors F,G :
C ! D.
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Example 1.7.2. Let 1 be the one element category with a single identity
arrow. Then for any category C, the functor category C1 is isomorphic to C.
This is because each functor F : 1! C simply associates the element 1 ∈ 1
to an element C ∈ C, and the identity 11 : 1! 1 to the identity morphism
1C in C.

Example 1.7.3. Let 2 be the category consisting of two elements, containing
the two identities and one nontrivial morphism between the objects.

1 2

id1

f

id2

The category 2.

Now consider the functor category C2 where C is any category. Each functor
F : 2! C maps the pair of objects to objects F (1) and F (2) in C. However,
since functors preserve morphisms, we see that

f : 1! 2 =⇒ F (f) : F (1)! F (2).

This is what each F ∈ C2 does. Hence, every morphism g ∈ Hom(C)
corresponds to an element in C2. Hence, we call C2 the category of arrows of
C.

Proof: Let g : C ! C ′ be any morphism between objects C,C ′ in
C. Construct the element G ∈ C2 as follows: G(1) = C, G(2) = C ′

and G(f) : G(1) ! G(2) = g. Hence, Hom(C) and C2 are isomorphic.
Moreover, Hom(C) determines the members of C2.

A crude way to visualize this proof is imaging 1! 2 is a "stick" with
1 and 2 on either end, and so the action of any functor is simply taking
the stick and applying it to anywhere on the direct graph generated by
the category C. Hence, this is why we say Hom(C) determines the functor
category C2.

�

Example 1.7.4. Let X be a set. Hence, it is a discrete category, which if
recall, it’s objects are elements of X and the morphisms are just identity
morphisms.

Now consider {0, 1}X , the category of functors F : X ! {0, 1}. Then
every functor assigns each element of x ∈ X to either 0 or 1, and assigns the
morphism 1x : x! x to either 10 : 0! 0 or 11 : 1! 1.
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One way to view this is to consider P(X), and for each S ∈ P, assign x
to 1 if x ∈ S or x to 0 if x 6∈ S. All of these mappings may be described by
elements of P , but we can also realize that each of these mappings correspond
to the functors in {0, 1}X . Hence, we see that {0, 1}X is isomorphic to P(X).

Example 1.7.5. Recall that, given a group G and a ring R (with identity),
we can create a group ring R[G] with identity, in a functorial way, establishing
a functor

R[−] : Grp! Ring.

However, we then noticed that the above functor establishes a process where
we send rings R to functors R[−] : Grp ! Ring. It turns out that this
process is itself a functor, and we now have the appropriate language to
describe it:

F : Ring! RingGrp

Specifically, let ψ : R ! S be a ring homomorphism. Now observe that ψ
induces another ring homomorphism

ψ∗G : R[G]! S[G]
∑
g∈G

agg 7!
∑
g∈G

ϕ(ag)g.

As a result, we see that such a ring homomorphism induces a natural
transformation. To show this, let ϕ : G ! H be a group homomorphism.
Then observe that we get the diagram in the middle.

G

H

ϕ

R[G] S[G]

R[H] S[H]

R(ϕ)

ψ∗G

S(ϕ)

ψ∗H∑
g∈G agg

∑
g∈G ψ(ag)g

∑
g∈G agϕ(g)

∑
g∈G ψ(ag)ϕ(g)

However, we can follow the elements as in the diagram on the right, which
shows us that the diagram commutes. Hence we see that ψ∗ is a natural



42 Introduction to Category Theory

transformation between functors R[−]! S[−]. Overall, this establishes that
we do in fact have a functor

F : Ring! RingGrp

which we wouldn’t be able to describe without otherwise introducing the
notion of a functor category.

Example 1.7.6. Let M be a monoid category (one object) and consider
the functor category SetM . The objects of SetM are functors F : M ! Set,
each of which have the following data:

F (f) : F (M)! F (M)

where f : M !M is an morphism in M . Now if we interpret ◦ as the binary
relation equipped on M , we see that for any g : M !M ,

F (g ◦ f) = F (g) ◦ F (f)

by functorial properties. Hence, each functor F maps M to a set X which
induces the operation of M on X. Therefore the objects of SetM are other
monoids X in Set equipped with the same operation as M and as well as
the morphisms between such monoids.
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Monoidal Categories

2.1 Monoidal Categories.

Definition 2.1.1. Amonoidal category (M,⊗, I) is a categoryM equipped
with a bifunctor ⊗ : M×M ! M, a special object I of M, and three
natural isomorphisms

αA,B,C : A⊗ (B ⊗ C) −!∼ (A⊗B)⊗ C (Associator)
λA : I ⊗A −!∼ A (Left Unit)
ρA : A⊗ I −!∼ A (Right Unit)

such that the following coherence conditions hold. For any objects
A,B,C,D ofM, the following diagrams must commute.

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D)) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA⊗B,C,DαA,B,C⊗D

1A⊗αB,C,D

αA,B⊗C,D

αA,B,C⊗1D

(2.1)
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For all A,B, the diagram below must commute.

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

αA,I,B

1A⊗λB ρA⊗1B

(2.2)

We also define some terminology within this definition.

• We call the bifunctor ⊗ the monoidal product

• We refer to I as the identity object

We say a strict monoidal category is one in which the associator, left
unit and right unit are all identities.

A very natural question is: What are those mysterious coherence condi-
tions? Unfortunately, the answer to the question is not simple. Any thorough,
accurate answer to that question will be an extremely long one. Thus, the
short answer is that the diagrams are the minimum requirements for Mac
Lane’s Coherence theorem to be true.

Purposefully being vague, we will only say at this point that the theorem
guarantees that a large class of diagrams in our monoidal category will
commute. We will eventually give a very precise statement of the theorem.

The modern definition of a monoidal category is somewhat deceptive
since it implies many things that one would probably not guess to be implied
by the initial axioms. One such result is the following proposition.

Proposition 2.1.2. Let (M,⊗, I) be a monoidal category. For all A,B ∈
M, the unitor diagrams

I ⊗ (A⊗B) (I ⊗A)⊗B

A⊗B

αI,A,B

λA⊗B λA⊗1B

(2.3)
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A⊗ (B ⊗ I) (A⊗B)⊗ I

A⊗B

αA,B,I

1A⊗ρB
ρA⊗B

(2.4)

are commutative.

The above two unitor diagrams were initially part of the original definition
of a monoidal category. Thus, the original definition had three unitor
diagrams. It was GM Kelly who pointed out in [Kel64] that the the pentagon
axiom and Diagram 2.2 imply the other two unitor diagrams. In fact, any
one of the three unitor diagrams imply the other two, a fact one would not
immediately guess.

Proof: First we show 2.3 commutes. We take the pentagon, and substi-
tute the monoidal identity I in the first two entries:

I ⊗ (I ⊗ (A⊗B)) (I ⊗ I)⊗ (A⊗B) ((I ⊗ I)⊗A)⊗B

I ⊗ ((I ⊗A)⊗B) (I ⊗ (I ⊗A))⊗B

αI,I,A⊗B

1I⊗αI,A,B

αI⊗I,A,B

αI,I⊗A,B

αI,I,A⊗1B

We append an instance of I ⊗ (A⊗B) and (I ⊗A)⊗B in our diagram
to obtain

I ⊗ (I ⊗ (A⊗B)) (I ⊗ I)⊗ (A⊗B) ((I ⊗ I)⊗A)⊗B

I ⊗ (A⊗B) (I ⊗A)⊗B

I ⊗ ((I ⊗A)⊗B) (I ⊗ (I ⊗A))⊗B

αI,I,A⊗B

1I⊗αI,A,B

1I⊗λA⊗B

αI⊗I,A,B

ρI⊗(1A⊗1B)
(ρI⊗1A)⊗1B

αI,I⊗A,B

αI,I,A⊗1B

(1I⊗λA)⊗1B
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We can connect I ⊗ (A⊗B) and (I ⊗A)⊗B with the morphism

αI,A,B : I ⊗ (A⊗B) −!∼ (I ⊗A)⊗B

In addition, we can connect (I ⊗ (I ⊗A)⊗B) with I ⊗ (A⊗B) with

1I ⊗ λI⊗(A⊗B) : I((I ⊗A)⊗B) −!∼ I ⊗ (A⊗B).

This results in the diagram below which may not commute; our concerns
are outlined in red.

I ⊗ (I ⊗ (A⊗B)) (I ⊗ I)⊗ (A⊗B) ((I ⊗ I)⊗A)⊗B

I ⊗ (A⊗B) (I ⊗A)⊗B

I ⊗ ((I ⊗A)⊗B) (I ⊗ (I ⊗A))⊗B

αI,I,A⊗B

1I⊗αI,A,B

1I⊗λA⊗B

αI⊗I,A,B

ρI⊗(1A⊗1B)

(ρI⊗1A)⊗1B
αI,A,B

αI,I⊗A,B

1I⊗(λA⊗1B)

αI,I,A⊗1B

(1I⊗λA)⊗1B

However, both of these red diagrams must necessarily commute due
to the naturality of α. Our entire diagram almost commutes except for
one final concern on the left, outlined in red.

I ⊗ (I ⊗ (A⊗B)) (I ⊗ I)⊗ (A⊗B) ((I ⊗ I)⊗A)⊗B

I ⊗ (A⊗B) (I ⊗A)⊗B

I ⊗ ((I ⊗A)⊗B) (I ⊗ (I ⊗A))⊗B

αI,I,A⊗B

1I⊗αI,A,B

1I⊗λA⊗B

αI⊗I,A,B

ρI⊗(1A⊗1B)
(ρI⊗1A)⊗1B

αI,A,B

αI,I⊗A,B

1I⊗(λA⊗1B)

αI,I,A⊗1B

(1I⊗λA)⊗1B

The commutativity of this diagram in red is forced since (1) every
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other diagram commutes, (2) all morphisms are isomorphisms. Thus we
conclude that

I ⊗ (A⊗B) (I ⊗A)⊗B

A⊗B

αI,A,B

λA⊗B ρA⊗1B

must commute.
Next, we show that Diagram 2.4

A⊗ (B ⊗ I) (A⊗B)⊗ I

A⊗B

αA,B,I

1A⊗ρB
ρA⊗B

commutes for all objects ofM.
First we take the pentagon diagram and insert the monoidal identity

I to obtain the commutative diagram below.

A⊗ (B ⊗ (I ⊗ I)) (A⊗B)⊗ (I ⊗ I) ((A⊗B)⊗ I)⊗ I

A⊗ ((I ⊗B)⊗ I) (A⊗ (B ⊗ I))⊗ I

αA,B,I⊗I

1A⊗αB,I,I

αA⊗B,I,I

αA,B⊗I,I

αA,B,I⊗1I

We append A⊗ (B ⊗ I) and (A⊗B)⊗ I to obtain the diagram below.

A⊗ (B ⊗ (I ⊗ I)) (A⊗B)⊗ (I ⊗ I) ((A⊗B)⊗ I)⊗ I

A⊗ (B ⊗ I) (A⊗B)⊗ I

A⊗ ((I ⊗B)⊗ I) (A⊗ (B ⊗ I))⊗ I

αA,B,I⊗I

1A⊗αB,I,I

1A⊗(1B⊗ρI)

αA⊗B,I,I

(1A⊗1B)⊗ρI
ρ(A⊗B)⊗I

αA,B⊗I,I

1A⊗(ρB⊗1I)

αA,B,I⊗1I
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We can connect A⊗ (B ⊗ I) with (A⊗B)⊗ I with the morphism αA,B,I ,
and we may connect (A⊗ (B⊗I))⊗I with A⊗ (B⊗I) via (1A⊗ρB)⊗1I .
However, if we do this, we don’t know if certain diagrams will commute;
we will outline these concerns in red.

A⊗ (B ⊗ (I ⊗ I)) (A⊗B)⊗ (I ⊗ I) ((A⊗B)⊗ I)⊗ I

A⊗ (B ⊗ I) (A⊗B)⊗ I

A⊗ ((I ⊗B)⊗ I) (A⊗ (B ⊗ I))⊗ I

αA,B,I⊗I

1A⊗αB,I,I

1A⊗(1B⊗ρI)

αA⊗B,I,I

(1A⊗1B)⊗ρI

ρ(A⊗B)⊗I

αA,B,I

αA,B⊗I,I

1A⊗(ρB⊗1I)

αA,B,I⊗1I

(1A⊗ρB)⊗1I

Observe that the top and bottom diagrams must commute by naturality
in α. Our diagram so far is:

A⊗ (B ⊗ (I ⊗ I)) (A⊗B)⊗ (I ⊗ I) ((A⊗B)⊗ I)⊗ I

A⊗ (B ⊗ I) (A⊗B)⊗ I

A⊗ ((I ⊗B)⊗ I) (A⊗ (B ⊗ I))⊗ I

αA,B,I⊗I

1A⊗αB,I,I

1A⊗(1B⊗ρI)

αA⊗B,I,I

(1A⊗1B)⊗ρI

ρ(A⊗B)⊗I

αA,B,I

αA,B⊗I,I

1A⊗(ρB⊗1I)

αA,B,I⊗1I

(1A⊗ρB)⊗1I

Our remaining concern is the diagram outlined in red. However, this
diagram must commute since (1) every other diagram commutes and (2)
each morphism is an isomorphism. Hence we see that

A⊗ (B ⊗ I) (A⊗B)⊗ I

A⊗B

αA,B,I

1A⊗ρB
ρA⊗B
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commutes for all A,B ∈M.
�
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2.2 Examples of Monoidal Categories

We now introduce a barrage of examples of monoidal categories.

Example 2.2.1. Consider the category (Set, ×, {•}) equipped with the
cartesian bifunctor × : Set× Set! Set and the terminal object {•} (the
one element set). We’ll show that this forms a monoidal category.

First we require an associator. To demonstrate the existence of one, we
first start with the products A×B and B×C which have the usual universal
diagrams

C ′

A A×B BπA πB

C ′

B B × C C
π′B

πC

Now just like other products, the products A× (B × C) and (A×B)× C
have projection maps to their factors

π′A : A× (B × C)! A πA×B : (A×B)× C ! A×B
πB×C : A× (B × C)! B × C π′C : (A×B)× C ! C

However, note that πB×C can be composed with π′B : B × C ! B to give a
map πC ◦ πB×C : A× (B × C)! B. Similarly, πA×B can be composed with
πB : A×B ! B to give a map πB ◦ πA×B : (A×B)× C ! B. As a result,
the universal property of both of these products yield unique maps ϕ and ψ
such that the diagrams below commute.

A× (B × C)

A A×B B

π′B◦πB×Cπ′A ψ

πA πB

(A×B)× C

B B × C C

πCπB◦πA×B ϕ

πB πC



Examples of Monoidal Categories 51

Now both A× (B ×C) and (A×B)×C have their own universal properties
which we can take advantage of. Using the newly created maps and the
projection maps, we have

ϕ : A× (B × C)! A×B ψ : (A×B)× C ! B × C
πC ◦ πB×C : A× (B × C)! C πA ◦ πA×B : (A×B)× C ! A

which, by the universal property of both of our products, give rise to the
existence of the morphisms α and α′ which make the diagrams below com-
mute.

A× (B × C)

A×B (A×B)× C C

πC◦πB×Cψ
α

πA×B π′C

(A×B)× C

B A× (B × C) C

ϕπA◦πA×B
α′

π′A
πB×C

At this point it is a simple diagram chase to show that α and α′ are the
are inverses, and that they are natural so that they can be defined as our
associator.

At this point, we have our associator

αA,B,C : A× (B × C) −!∼ (A×B)× C (a, (b, c)) 7! ((a, b), c).

To demonstrate the existence of left and right unitors, first regard the identity
object {•} as a terminal object T . Then for any object A, the product T ×A
comes with a universal diagram

A

T T ×A A

1ATA f

TA λA
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This is because a terminal object guarantees the existence of one morphism
TA : A ! T . Therefore for the unique morphism f we have that λA ◦ f .
However, observe that f ◦ λA ◦ TT×A : T ×A! T . Since this must be equal
to TT×A, we see that f ◦ λA = 1T×A. Hence

λA : T ×A −!∼ A (∗, a) 7! a

is an isomorphism. With a similar construction we can produce

ρA : A× T −!∼ A (a, ∗) 7! a

and in both cases it is simple to show that these isomorphisms are natural.
One can then verify the diagrams by repeatedly using the universal properties
of the product.

While we worked in Set, we avoided referencing the elements of our
sets explicitly. As a result this can be generalized. Every category C with
finite products and a terminal object T forms a monoidal category (C,×, T ).
Therefore, (Top,×, {•}), (Ab,×, {e}), and (R-Mod,×, {0}) form monoidal
categories via the cartesian product.

Example 2.2.2. Let R be a commutative ring. Then the category of all
R-modules, (R-Mod, ⊗, {0}), forms a monoidal category under the tensor
product. This is again the R-module which satisfies the universal diagram

M ×N M ⊗N

K

ϕ

f
h

Now consider a third R-module P ; then we have two ways of constructing
the tensor product. To demonstrate that we may identify these objects up
to isomorphism, construct the maps

f : (M ⊗N)× P !M ⊗ (N ⊗ P )
(∑

i

mi ⊗ ni, p
)
7!
∑
i

mi ⊗ (ni ⊗ p)

and

f ′ : M×(N⊗P )! (M⊗M)⊗P

m,∑
j

nj ⊗ pj

 7!∑
j

(m⊗nj)⊗pj .

These maps are bilinear due to the bilinearity of ⊗. Hence we see that the
universal property of the tensor product gives us unique map α and α′ such
that the diagrams below commute.
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(M ⊗N)× P (M ⊗N)⊗ P

M ⊗ (N ⊗ P )

ϕ

f
α

M ⊗ (N × P ) M ⊗ (N ⊗ P )

(M ⊗N)⊗ P

ϕ′

f ′
α′

Based on how we defined f and f ′, and since we know that ϕ and ϕ′ is, we
can determine that α and α′ are “shift maps”, i.e,

α

(∑
i

(mi ⊗ ni)⊗ pi

)
=
∑
i

mi ⊗ (ni ⊗ pi) α′
(∑

i

mi ⊗ (ni ⊗ pi)
)

=
∑
i

(mi ⊗ ni)⊗ pi.

Hence we see that α and α′ are inverses, so what we have is an associator:

αM,N,P : (M ⊗N)⊗ P −!∼ M ⊗ (N ⊗ P ).

Now consider the trivial R-module, denoted I = {0}. For any R-module M
we have evident maps∑

i

0⊗mi 7! mi

∑
i

mi ⊗ 0 7! 0

which provide isomorphisms, so that we have left and right associators

λM : I ⊗M −!∼ M ρM : M ⊗ I −!∼ M.

Finally, the triangular and pentagonal diagrams are commutative since
shifting the tensor product on individual elements does not change (up to
isomorphism) the value of the overall elements.

Example 2.2.3. Consider the categoryGrModR which consist of graded R-
modulesM = {Mn}∞n=1 Then this forms a monoidal category (GrModR,⊗, I)
where I = {(0)n}∞n=1 is the trivial graded R-module and where we define the
monoidal product as M ⊗N = {(M ⊗N)n}∞n=1 where

(M ⊗N)n =
⊕
i+j=n

Mi ⊗Nj .
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To show that this is monoidal, the first thing we must check is that we
have an associator. Towards this goal, consider three graded R-modules
M = {Mn}∞n=1, N = {Nn}∞n=1 and P = {Pn}∞n=1. Then the m-th graded
module of M ⊗ (N ⊗ P ) is

[M ⊗ (N ⊗ P )]m =
⊕

i+j=m
Mi ⊗ (N ⊗ P )j =

⊕
i+j=m

Mi ⊗

 ⊕
h+k=j

Nh ⊗ Pk


=

⊕
i+h+k=m

Mi ⊗ (Nh ⊗ Pk)

∼=
⊕

i+h+k=m
(Mi ⊗Nh)⊗ Pk

=
⊕

l+k=m

 ⊕
i+h=l

Mi ⊗Nh

⊗ Pk
=

⊕
l+k=m

(M ⊗N)l ⊗ Pk

= [M ⊗ (N ⊗ P )]m

where in the third step we used the fact that the tensor product commutes
with direct sums and in the fourth step we used the canonical associator
regarding the tensor products of three elements. Thus we see that we have
an associator

α : M ⊗ (N ⊗ P ) −!∼ (M ⊗N)⊗ P
which as a graded module homomorphism, acts on each level as

αm : [M ⊗ (N ⊗ P )]m −!∼ [(M ⊗N)⊗ P ]m

where in each coordinate of the direct sums we apply an instance of the
associator α′ between the tensor product of three R-modules. The naturality
of this associator is inherited from α′. In addition, we have natural left and
right unitors

λM : I ⊗M −!∼ M ρM : M ⊗ I −!∼ M

where on each level we utilize the natural left and right unitors for non-graded
R-modules.

Example 2.2.4. Let (M,⊗, I, α, ρ, λ) be a monoidal category, C any other
category. Then the functor category CM is a monoidal category. We treat
the constant functor I : C !M where

I(A) = I for all A
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as the identity element, and we can define a tensor product on this category
as follows: on objects F,G : C !M , we define F �G as the composite

F �G : C C × C M ×M M∆ (F×G) ⊗

which can be stated pointwise as (F�G)(C) = F (C)⊗G(C). On morphisms,
we have that if η : F1 ! F2 and η′ : G1 ! G2 are natural transformations,
then we say η � η′ : F1 �G1 ! F2 �G2 is a natural transformation, where
we define

(η � η′)A = ηA ⊗ η′A : F1(A)⊗G1(A)! F2(A)⊗G2(A).

Note that such a natural transformation is well-defined as the diagram below
commutes

A

B

f

F1(A)⊗G1(A) F2(A)⊗G2(A)

F1(B)⊗G1(B) F2(A)⊗G2(A)

ηA⊗η′A

F1(f)⊗G1(f) F2(f)⊗G2(f)

ηB⊗η′B

since ⊗ : M ×M !M is a bifunctor. Finally, for functors F,G,H : C !M

define the associator α′F,G,H : F � (G�H) −!∼ (F � (G�H)) as the natural
transformation where for each object A

(α′F,G,H)A = αF (A),G(A),H(A) : F (A)⊗(G(A)⊗H(A))! (F (A)⊗G(A))⊗H(A)

and the unitors λ′F : I � F ! F and ρ′F : F � I ! F as the natural
transformations where for each object A

(λ′F )A = λA : I ⊗ F (A)! F (A) (ρ′F )A = ρA : F (A)⊗ I ! F (A).

One can then show that these together satisfy the pentagon and unit axioms.

Example 2.2.5. Let M be a monoid with identity e and multiplication
· : M ×M !M . Suppose we treat M as discrete category, with all arrows
being identity arrows. Then we can trivially turn this into a monoidal
category by setting the identity object to e and defining the tensor product
⊗ on objects to be m⊗m′ = m ·m, while identity morphisms are trivially
sent to identity morphisms. Then M forms a monoidal category.
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Example 2.2.6. Consider the category P whose objects are the natural
numbers (with 0 included) and whose morphisms are the symmetric groups
Sn. That is,

Objects. The objects are n = 0, 1, 2, . . . .

Morphisms. For any objects n,m we have that

HomP(n,m) =

Sn if n = m

∅ ifn 6= m.

Note that there are many ways of constructing this category; we just present
the simplest. In general terms this is the countable disjoint union of the
symmetric groups. Even more generally, this can be done for any family of
groups (or rings, monoids, semigroups).

What is interesting about this category is that it intuitively forms a strict
monoidal category. That is, we can formulate a bifunctor + : P× P! P on
objects as addition of natural numbers and on morphisms as

σ ⊗ τ ∈ Sn+m

where σ ∈ Sn and τ ∈ Sm and where σ ⊗ τ denotes the direct sum
permutation. I could tell you in esoteric language and notation what that
is, or I could just show you: σ and τ , displayed as below

(1, 2, . . . , n) (1, 2, . . . ,m)

(σ(1), σ(2), . . . , σ(n)) (τ(1), τ(2), . . . , τ(m))

become σ ⊗ τ which is displayed as below.

(1, 2, . . . , n, n+ 1, n+ 2, . . . , n+m)

(σ(1), σ(2), . . . , σ(n), n+ τ(1), n+ τ(2), . . . , n+ τ(m))

To make this monoidal, we specify that 0 is our identity element whose
associated identity morphism is the empty permutation. Now clearly this
operation is strict on objects. On morphisms, it is also strict in the same
way that stacking three Lego pieces together in the two possible different
ways are equivalent. Hence the associators and unitors are all identities and
this forms a strict monoidal category.
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2.3 Monoidal Functors and Examples

We now end this chapter by discussing the concept of a monoidal functor.
Various names are associated with different types of monoidal functors,
since the degree to which you ask a functor between monoidal categories to
“preserve” the monoidal structure can be varied and hence give rise to different
types of monoidal functors. These concepts are of particular importance to
the rest of the study of monoidal categories, since many proofs are achieved
by constructing these types of functors, and many theorems are stated in
terms of monoidal functors.
Definition 2.3.1. Let (C,⊗, I) and (D,�, J) be monoidal categories. A
(lax) monoidal functor is a functor F : C ! D equipped with

• For each pair A, B in C, we have a natural morphism

ϕA,B : F (A)� F (B)! F (A⊗B)

such that for any third object C, the diagram below commutes. (Note
that we suppress the subscripts for clarity.)

F (A)�
(
F (B)� F (C)

) (
F (A)� F (B)

)
� F (C)

F (A)� F (B ⊗ C) F (A⊗B)� F (C)

F
(
A⊗

(
B ⊗ C

))
F
((
A⊗B

)
⊗ C

)

α

1�ϕ ϕ�1

ϕ ϕ

F (α)

• A unique morphism ε : J ! F (I) such that, for any object A of C,
the diagrams below commutes. (Again, we suppress the subscripts for
clarity.)

F (A)� J F (A)

F (A)� F (I) F (A⊗ I)

ρ

1�ε

ϕ

F (ρ)

J � F (A) F (A)

F (J)� F (A) F (I ⊗A)

λ

ε�1

ϕ

F (λ)
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We say the F is strict if ϕ and ε are identities and strong if ϕ and ε are
isomorphisms.

We also define a monoidal natural transformation between two
monoidal functors η : F ! G to be a natural transformation between
the functors such that, for every A,B, the diagram below commutes.

F (A)� F (B) F (A⊗B)

G(A)�G(B) G(A⊗B)

ϕF

ηA�ηB ηA⊗B

ϕG

Example 2.3.2. Consider the power set functor P : Set ! Set which
associates each set X with its power set P(X). We may ask if this yields a
monoidal functor

P : (Set,×, {•})! (Set,×, {•})

in any sense of lax, strong, or strict. It turns out that we may define a lax
monoidal functor, but not a strong or strict.

Towards defining a lax monoidal functor, let A,B two sets. Define
ϕA,B : P(A)×P(B)! P(A×B) to be a function where if U, V are subsets
of A,B respectively, then

ϕA,B(U, V ) = U × V.

In addition, we define the function ε : {•}! P ({•}) where

ε(•) = {•}.

Observe that with this data we have that for any sets A,B,C, the diagram
below commutes

P(A)×
(
P(B)× P(C)

) (
P(A)× P(B)

)
× P(C)

P(A)× P(B × C) P(A×B)× P(C)

P
(
A×

(
B × C

))
P
((
A×B

)
× C

)

α

1×ϕ ϕ×1

ϕ ϕ

P(α)
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and that for any set A the diagrams below commute.

P(A)× {•} P(A)

P(A)× P({•}) P(A× {•})

ρ

1×ε

ϕ

P(ρ)

{•} × P(A) P(A)

P({•})× P(A) P({•} ×A)

λ

ε×1

ϕ

P(λ)

Note that our choice that ε(•) = {•} was necessary in order for the above
two diagrams to commute.

We now show that this cannot be a strong or strict monoidal functor. To
see this, let A,B be two sets. Observe that

|P(A)× P(B)| = 2|A| · 2|B| = 2|A|+|B|

while
|P(A×B)| = 2|A×B|.

We see that in general these two sets are not of the same cardinality, and
therefore one cannot establish an isomorphism between these two sets for
all A,B, which we would need to do to at least construct a strong monoidal
functor. Hence, we cannot regard this functor as strong or strict monoidal.

Example 2.3.3. The category of pointed topological spaces Top∗ is the
category where

Objects. Pairs (X,x0) with X a topological space and x0 ∈ X

Morphisms. A morphism f : (X,x0) ! (Y, y0) is given by a continuous
function f : X ! Y such that f(x0) = y0.

This category is what allows us to characterize the fundamental group of a
topological space as a functor

π1 : Top∗ ! Grp

which sends a pointed space (X,x0) to its fundamental group π1(X,x0) with
x0 as the selected basepoint. We demonstrate that this can be regarded as a
monoidal functor

π1 :
(
Top∗,×, ({•}, •)

)
! (Grp,×, {e})
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where {e} is the trivial group. The reader may be wondering how we are
putting a cartesian product structure on the Top∗, so we explain: For two
topological spaces X,Y , we define

(X,x0)× (Y, y0) = (X × Y, (x0, y0))

where X × Y is given the product topology. The identity object ({•}, •) is
the trivial topological space with basepoint •.

For any two pointed topological spaces (X,x0), (Y, y0), define the function
ϕX,Y : π1(X,x0) × π1(Y, y0) ! π(X × Y, (x0, y0)) where for two loops β, γ
based as x0, y0 respectively, then

ϕX,Y (β, γ) = β × γ : [0, 1]! X × Y

which is in fact a loop in X × Y based at (x0, y0). The above function is
bijective; an inverse can be constructed by sending a loop δ in X × Y based
at (x0, y0) to the tuple (p ◦ δ, q ◦ δ) where

p : X × Y ! X q : X × Y ! Y

are the projection maps. It is not difficult to see that this preserves group
products, so that ϕX,Y establishes the isomorphism

π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0)

a fact usually proved in a topological course. In addition, this isomorphism
to be natural: for two pointed topological spaces (X,x0) and (Y, y0), and for
a pair of base-point preserving continuous functions f : (X,x0) ! (W,w0)
and g : (Y, y0)! (Z, z0), the following diagram commutes.

π1(X,x0)× π1(Y, y0) π1(X × Y, (x0, y0))

π1(W,w0)× π1(Z, z0) π1(W × Z, (w0, z0))

ϕX,Y

π1(f)×π1(g) π1(f×g)

ϕW,Z

Thus ϕX,Y is our desired natural isomorphism.
Next, define ε : {e} ! π1({•}, •) to be the group homomorphism that

takes e to the trivial loop at •. As in the previous example, we are actually
forced to define ε in this way since {e} is initial in Grp.

With this data, one can easily check that the necessary diagrams are
commutative, so that the fundamental group functor π1 is strong monoidal.
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Example 2.3.4. Recall that a Lie algebra is a vector space g over a field
k with a bilinear function [−,−] : g× g! g such that

Antisymmetry. For all x, y ∈ g, [x, y] = −[y, x]

Jacobi Identity. For all x, y, z ∈ g we have that

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

For every Lie algebra g, we may create the universal enveloping algebra
U(g). This is the algebra constructed as follows: If T (g) is the tensor algebra
of g, i.e.,

T (g) = k ⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · ·
and I(g) is the ideal generated by elements of the form x⊗ y− y⊗ x− [x, y],
then

U(g) = T (g)/I(g).
By Corollary V.2.2(b) of [Kas95], this construction is actually a functor

U : LieAlg! k-Alg.

Both categories can be regarded monoidal: (LieAlg,⊕, {•}) is the monoidal
category where we apply the cartesian product between Lie algebras, and
(k-Alg,⊗, k) is the monoidal category where we apply tensor products
between k-algebras over the field k. The associators and unitors are the same
that we have encountered in previous examples of monoidal categories with
cartesian and tensor products.

We demonstrate that the universal enveloping algebra functor is strong
monoidal:

U : (LieAlg,⊕, {•})! (k-Alg,⊗, k)

• By Corollary V.2.3 of [Kas95], we have that if g1 and g2 are two Lie
algebras then U(g1 ⊕ g2) ∼= U(g1) ⊗ U(g2). One can use Corollary
V.2.3(a) to show that this isomorphism is natural in both g1 and g2.
We let this morphism be our required isomorphism

ϕg1,g2 : U(g1 ⊕ g2)! U(g1)⊗ U(g2).

• Note that U({•}) = k. Therefore, we let ε : k ! k be the identity.

As the associators and unitors are simple for monoidal categories with
cartesian and tensor products, it is not difficult to show that the required
diagrams commute. In this case, what is more difficult is obtaining naturality
in ϕ, although this is taken care of (in a long proof) in Kassel’s text.





Chapter 3

Proving Mac Lane’s
Coherence Theorem

3.1 Step Zero: Motivation

In the next few sections, we will take many steps which will culminate in
a complete proof of Mac Lane’s Coherence Theorem, an important theorem
that informs us of the structure of a general monoidal category.

The proof of the Coherence Theorem can be found in [Mac71], and any
research paper that concerns itself with monoidal categories will usually cite
Mac Lane’s book (or a similar source like Joyal and Street) for the theorem.
While there is no doubt as to the veracity of Mac Lane’s proof, his exposition
is confusingly written and more of a proof outline. Because Mac Lane’s work
is very in depth, it would require a huge amount of time and work to perform
a clear rewrite and restructuring. This is what this thesis does and we now
offer such a complete proof.

To motivate the direction of Mac Lane’s approach, we will discuss the
structure of a general monoidal category, and the natural questions that arise
regarding this structure.

Let (M,⊗, I, α, ρ, λ) be a monoidal category. For objects A,B,C,D,E of
M, we can use the monoidal product ⊗ to generate various new expressions,
such as A⊗B. For example, there are two ways to combine three objects:

A⊗ (B ⊗ C) (A⊗B)⊗ C.
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There are five ways to multiply 4 objects:

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D) ((A⊗B)⊗ C)⊗D
A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D.

And there are 14 ways to combine 5 objects. We will not list them here.
On the surface, we don’t really know what the relationship is between

the various expressions we are generating. For example, do

A⊗ (B ⊗ C) and (A⊗B)⊗ C

or
A⊗ (B ⊗ (C ⊗D)) and A⊗ ((B ⊗ C)⊗D)

have any relation with each other? In practice when A,B,C,D are sets,
vector spaces, groups, or whatnot, the above expressions do have something to
do with each other. That relationship is usually an isomorphism. Therefore,
if we are to develop some kind of theory of monoidal categories, we ought to
make sure that these objects are isomorphic in some way.

Fortunately, monoidal categories do provide isomorphisms between differ-
ent choices of multiplying together a set of objects. For example, from the
axioms of a monoidal category, we know that the objects A⊗ (B ⊗ C) and
(A⊗B)⊗ C are related via the isomorphism αA,B,C .

A⊗ (B ⊗ C) (A⊗B)⊗ C
αA,B,C

We also know from the axioms of a monoidal category that the 5 products
of 4 objects are related via the diagram consisting of natural isomorphisms
as below.

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

1A⊗αB,C,D

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗1D

Moreover, this diagram is guaranteed to be commutative for all A,B,C,D in
M (we will elaborate why this is a profound, useful fact).

Finally, repeatedly using instances of α, the 14 ways to multiply 5 objects
are related via the 3 dimensional diagram as below.
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Front. Note that the symbol ⊗ has been suppressed.

Back.

A((BC)(DE))

A(((BC)D)E) • (A(BC))(DE)

A((B(CD))E) ((AB)C)(DE)
• •

(A((BC)D))E ((A(BC))D)E
•

(A(B(CD)))E (((AB)C)D)E

((AB)(CD))E

1A⊗αBC,D,E αA,BC,DE

αA,B(CD),E

αA,B,C⊗(1D⊗1E)

αA(BC),D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E α(AB)C,D,E

αA,BC,D⊗1E

(αA,B,C⊗1D)⊗1E(1A⊗αB,C,D)⊗1E

αA,B,CD⊗1E αAB,C,D⊗1E

A((BC)(DE))

(A(BC))(DE) A(B(C(DE))) A(((BC)D)E)

((AB)C)(DE) A((B(CD))E)
(AB)(C(DE)) A(B((CD)E)

• •
(AB)((CD)E)

(((AB)C)D)E (A(B(CD)))E

((AB)(CD))E

1A⊗αBC,D,EαA,BC,DE

αA,B,C⊗(1D⊗1E)

1A⊗αB,C,DE

αA,B,C(DE) 1A⊗(1B⊗αC,D,E)

α(AB)C,D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E

αAB,C,DE

(1A⊗1B)⊗αC,D,E

1A⊗αB,CD,E

αA,B,(CD)E

αAB,CD,E

αA,B,CD⊗1EαAB,C,D⊗1E
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However, it is not an axiom of monoidal categories that this last diagram is
commutative (with a ton of work, one could prove it to be commutative).

To understand what’s going on, let us first understand why commutativity
is important. The axioms of a monoidal category grant us the commutativity
of the pentagon, which connects the five different ways of multiplying four
objects A,B,C,D. This tells us the following principle: while there are 5
different ways we can multiply four objects A,B,C,D, each such choice is
canonically isomorphic to any other choice.

To see this, suppose you and I want to multiply objects A,B,C,D
together. Suppose my favorite way to do it is (A⊗B)⊗ (C ⊗D), while you
choose (A⊗ (B⊗C))⊗D. Then we might be in trouble: I have two possible
ways, displayed below in blue and orange, to “reparenthesize” my product to
get your object.

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

α−1

1⊗α

α

α

α−1⊗1

Fortunately, the commutativity of the pentagonal diagram enures that the
two paths are equal. That is,

α ◦ ((1⊗ α) ◦ α−1) = (α−1 ⊗ 1) ◦ α.

so that, in reality, I actually have one unique isomorphism (i.e., a canonical
isomorphism) from my object to yours, and you can also canonically get
from your object to mine by inverting the unique isomorphism.

However, our choice of two different parenthesizations was arbitrary. The
commutativity of the entire diagram therefore tells us that any choice of
“parenthesizing” A⊗B⊗C⊗D, the product of 4 objects inM, is canonically
isomorphic to any other possible choice. This brings up a few questions.

• What do we mean by “parenthesizing?”
• What about a product with n-many objects A for n > 4?

We will rigorously specify what we mean by parenthesizing in a bit. To
answer the second question, we state that this result holds for n > 4; this is
one version of the Coherence Theorem.
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3.2 Step One: Category of Binary Words

To begin the proof of the coherence theorem, we need to first state the
theorem itself. This task itself is quite laborious, although it is a worthwhile
investment to establish clear terminology and notation, especially in writing
the proof itself. Our primary tool will be the abstract concept of a binary
word.

Definition 3.2.1. Let x0, x1 be two distinct symbols. A binary word w

is an element defined recursively as follows.

• x0 and x1 are binary words.
• If u, v are binary words, then (u)⊗ (v) is a binary word.

More precisely, a binary word is any element in the free magma M =
F ({x0, x1}) generated by x0, x1, but we will see that the first definition we
offered is more useful and transparent.

Example 3.2.2. Since x0, x1 are binary words so is the expression:

(x0)⊗ (x1)

Similarly, the expressions

(x0)⊗ ((x0)⊗ (x1)) ((x0)⊗ (x1))⊗ x1

are binary words.
From the previous example, we see that the notation is a bit clunky. On

one hand, our definition, which states that (u)⊗ (v) is a binary word if u, v
are, is required so that we can logically manage our parentheses. On the
other, it makes notation clunky.

To remedy this, we will often omit parentheses. Given an expression of a
binary word, we will always omit the parentheses around individual symbols
in the expression. With this rule, we have that:

(x0)⊗ (x1) = x0 ⊗ x1

(x0)⊗ ((x0)⊗ (x1)) = x0 ⊗ (x0 ⊗ x1)
((x0)⊗ (x1))⊗ (x1) = (x0 ⊗ x1)⊗ x1

That is, we keep the parentheses which group together individual products,
and throw away the ones which our smart human brains can don’t need.
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Next, we move onto an important quantity that we will often perform
induction on.

Definition 3.2.3. We define the length of a binary word w, denoted as
L(w), recursively as follows.

• L(x0) = 0 and L(x1) = 1
• If w = u⊗ v for two binary words u, v, we set:

L(w) = L(u) + L(v)

Example 3.2.4. The binary words

(x1 ⊗ x0)⊗ x1, (x1 ⊗ x1)⊗ x0, (x0 ⊗ (x1 ⊗ x1))⊗ x0

all have length 2.

More informally, the length of binary word is simply the number of x1
symbols that appear in its expression.

Example 3.2.5. For any binary word w, we have that

L(w ⊗ x0) = L(x0 ⊗ w) = L(w).

If additionally u, v are binary words, we also have that

L(u⊗ (v ⊗ w)) = L(u) + (L(v) + L(w))
= (L(u) + L(v)) + L(w)
= L((u⊗ v)⊗ w).

We will use the observations made in the previous example later in
this section. We now demonstrate that these binary words assemble into a
category.

Definition 3.2.6. The category of binary words is the categoryW where

Objects. All binary words w of length n = 0, 1, 2, . . . ,
Morphisms. For any two binary words w and v, we have that

HomW(v, w) =

{•} if v, w are the same length
∅ otherwise.

where {•} denotes the one point set.
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What the above definition tells us is that any two binary words share
a morphism if and only if they are of the same length. Moreover, they will
only ever share exactly one morphism. Since there is always at most one
morphism between any two objects inW , we see thatW is a thin category.
Moreover, it is monoidal. To prove that it is monoidal, we will need the
following small lemma.

Lemma 3.2.7. The multiplication of binary words extends to a bifunctor
⊗ :W ×W !W.

Proof: First, we explain how ⊗ :W×W !W operates on objects and
morphisms. If (u, v) is an object of W×W , we set ⊗(u, v) = u⊗ v. Next,
consider two morphisms in W.

γ : u! u′ β : v ! v′.

Note that this implies L(u) = L(u′) an L(v) = L(v′), which also imply
that

L(u⊗ v) = L(u) + L(v) = L(u′) + L(v′) = L(u′ ⊗ v′).
Therefore, we define the image of (γ, β) under the functor, ⊗(γ, β), which
we more naturally denote as γ ⊗ β, to be the unique morphism between
u⊗ v ! u′ ⊗ v′.

We can picture the action of this functor on objects and morphisms
more clearly as below.

(u1, v1) (u2, v2)(γ,β)
W ×W

maps to u⊗ v u′ ⊗ v′γ⊗β
W

In addition, for any (u, v) in W × W, the identity morphism 1(u,v) :
(u, v) ! (u, v) is mapped to the identity 1u⊗v : u ⊗ v ! u ⊗ v. Finally,
to demonstrate that this respects composition, suppose that (γ, β) is
composable with (γ′, β′) as below.

(u1, v1) (u2, v2) (u3, v3)(γ,β) (γ′,β′)
W ×W

As both (γ′, β′) ⊗ (γ, β) and (γ′ ◦ γ) ⊗ (β′ ◦ β) are parallel morphisms
acting as (u1, v1) ! (u3, v3), they must be equal because W is a thin
category (and hence parallel morphisms are equal).

Therefore, we see that ⊗ :W ×W !W is a bifunctor.
�
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We now show that W assembles into a monoidal category.

Proposition 3.2.8. (W,⊗, x0) is a monoidal category with monoidal prod-
uct ⊗ :W ×W !W and identity object x0.

Proof: First, we define our product to be given by the bifunctor ⊗ :
W×W !W . Second, we define our identity object to be x0. With these
two conditions we now need to find unitors, an associator, and check that
the necessary diagrams commute.

Now as any two binary words of the same length share a unique
morphism, all morphisms are isomorphisms. Therefore, by Example 3.2.5,
the isomorphisms

αu,v,w : u⊗ (v ⊗ w) −!∼ (u⊗ v)⊗ w
λw : x0 ⊗ w −!∼ w

ρw : w ⊗ x0 −!∼ w

are forced to exist. Further, these isomorphisms are natural because
all diagrams commute in a thin category. In addition, since W is a
thin category, all diagrams commute, and so, in particular, the required
diagrams

u⊗ (x0 ⊗ v) (u⊗ x0)⊗ v

u⊗ v

αu,x0,v

1u⊗λv ρu⊗1v

u⊗ (v ⊗ (w ⊗ z)) (u⊗ v)⊗ (w ⊗ z) ((u⊗ v)⊗ w)⊗ z

u⊗ ((v ⊗ w)⊗ z) (u⊗ (v ⊗ w))⊗ z

αu,v,w⊗z

1u⊗αv,w,z

αu⊗v,w,z

αu,v⊗w,z

αu,v,w⊗1z

also commute, so that (W,⊗, x0) satisfies the axioms of a monoidal
category.

�

We now make a few important comments on how to interpret α, ρ, and λ.

• Each αu,v,w : u⊗(v⊗w)! (u⊗v)⊗w can be thought of as an operator
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which shifts the parentheses to the left. Dually, α−1
u,v,w shift them to

the right.
• Each λw : x0⊗w −!∼ w can be thought of as an operator that removes

an identity from the left. Dually, λ−1
w adds an identity to the left.

• Each ρw : w⊗x0 −!∼ w can be thought of as an operator that removes
an identity from the right. Dually, ρ−1

w adds an identity to the right.

Hence, this very primitive monoidal category W encodes some basic and
useful operators on binary words.
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3.3 Step Two: Pure Binary Words

In this section we begin discussing a specific subset of binary words,
namely the one which lack an identity x0. As the theorem is quite complex,
this initial restriction allows us to develop intuition and some tools that
simplify the proof later.

Definition 3.3.1. A pure binary word w of length n is a binary word w
of length n which has no instance the empty word x0.

Example 3.3.2. The only pure binary word of length 1 is x1. There is also
only one pure binary word of length 2, which is x1 ⊗ x1. The pure binary
words of length 3 are

x1 ⊗ (x1 ⊗ x1) (x1 ⊗ x1)⊗ x1

and the pure binary words of length 4 are as below.

x1 ⊗ (x1 ⊗ (x1 ⊗ x1)) x1 ⊗ ((x1 ⊗ x1)⊗ x1) ((x1 ⊗ x1)⊗ x1)⊗ x1

x1 ⊗ ((x1 ⊗ x1)⊗ x1) (x1 ⊗ (x1 ⊗ x1))⊗ x1

Lemma 3.3.3. For each n ≥ 1, there are finitely many pure binary words
of length n.

Proof: First, there is clearly only one pure binary word of length 1.
Now note that every pure binary word of length n > 1 will always have
the form

w = u⊗ v

where u, v are binary words with L(u) = i, L(v) = n − i, for some
i = 1, 2, . . . , n− 1. Therefore, if there are Bi many binary words of length
i, and Bn−i many of length n− i, then there are

Bn =
n−1∑
i=1

Bi ·Bn−i

many words of length Bn. Since B1 = 1 is finite, we see that Bn must
also be finite for all n > 1.

�
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Interestingly, the above recurrence can generate the Catalan Numbers.
Specifically, Bn+1 is exactly the n-th Catalan number

Cn = 1
n+ 1

(
2n
n

)
1, 2, 5, 14, 42, 132, 429, · · ·

However, we make no critical use of this fact in our proofs.
Next, we form a category of pure binary words.

Definition 3.3.4. The category of pure binary words WP is the full
subcategory of W constructed by restricting the objects of W to its pure
binary words.

More explicitly, WP is the category defined as:

Objects. All pure binary words w of length n = 0, 1, 2, . . . ,
Morphisms. For any two pure binary words u, v of the same length, we

have that HomWA
(u, v) = {•}, the one point set. No other morphisms are

allowed.

We now focus on a particular set of morphisms in WP. Recall that we
may think of each αu,w,v as a “shift map”

αu,w,v : u⊗ (v ⊗ w)! (u⊗ v)⊗ w

which makes a single change in the parenthesis of a binary word. However,
α itself does not characterize all possible always in which we make a single
change of parentheses within a larger, more complex binary word. An
example of this is the morphism

1s ⊗ αu,v,w : s⊗ (u⊗ (v ⊗ w))! s⊗ ((u⊗ v)⊗ w)

which makes an internal change of parentheses. As we will need to focus on
these more complicated morphisms, we rigorously define them below.

Definition 3.3.5 (α-arrows). A forward α-arrow of WP is a morphism
in WP which we recursively define as follows.

• For any triple of pure binary words w1, w2, w3 in WP, the morphism

αw1,w2,w3 : w1 ⊗ (w2 ⊗ w3)! (w1 ⊗ w2)⊗ w3

is a forward α-arrow.
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• If β : w ! w′ is a forward α-arrow, and u is an arbitrary pure binary
word, then the morphisms

1u ⊗ β : u⊗ w ! u⊗ w′ β ⊗ 1u : w ⊗ u! w′ ⊗ u

are forward α-arrows.

We also define a backward α-arrow to be the inverse of a forward α-arrow.

Example 3.3.6. Below are a few simple examples of α-arrows. The first
two are forward, while the third is backward.

x1 ⊗ (x1 ⊗ x1)

(x1 ⊗ x1)⊗ x1

αx1,x1,x1

x1 ⊗ (x1 ⊗ (x1 ⊗ x1))

x1 ⊗ ((x1 ⊗ x1)⊗ x1)

1x1⊗αx1,x1,x1

(x1 ⊗ x1)⊗ (x1 ⊗ x1)

x1 ⊗ (x1 ⊗ (x1 ⊗ x1))

α−1
x1,x1,x1⊗x1

We can have even more complicated examples; for example, the morphism
below

(u⊗ (x1 ⊗ (x1 ⊗ x1)))⊗ v

(u⊗ ((x1 ⊗ x1)⊗ x1)⊗ v

(1u⊗αx1,x1,x1 )⊗1v

is an α-morphism for any pure binary words u, v. For example, setting
u = (x1⊗ x1)⊗ x1 and v = x1⊗ x1, we obtain the forward α-arrow as below.

((x1 ⊗ x1)⊗ x1 ⊗ (x1 ⊗ (x1 ⊗ x1)))⊗ (x1 ⊗ x1)

((x1 ⊗ x1)⊗ x1 ⊗ ((x1 ⊗ x1)⊗ x1)⊗ (x1 ⊗ x1)

(1(x1⊗x1)⊗x1⊗αx1,x1,x1 )⊗1(x1⊗x1)

We emphasize that α-arrows only ever involve a single instance of α or
α−1 in their expression.

Next, we introduce a particularly important instance of a pure binary
word that will become essential to our proof.

Definition 3.3.7. We define the terminal word w(n) of length n recursively
as follows.

• x1 is the terminal word of length 1.
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• If w(k) is the terminal word of length k, then w(k+1) = wk ⊗ x1 is the
terminal word of length k + 1.

More informally, the terminal word is the unique pure binary word of length
n for which all parentheses begin on the left.

Example 3.3.8. Below we list the terminal words by length.

Length Terminal Word
1 x1
2 x1 ⊗ x1
3 (x1 ⊗ x1)⊗ x1
4 ((x1 ⊗ x1)⊗ x1)⊗ x1
5 (((x1 ⊗ x1)⊗ x1)⊗ x1)⊗ x1

We now introduce a quantity which provides a “distance-measure” be-
tween a pure binary word of length n and the terminal word w(n).

Definition 3.3.9. We (recursively) define the rank of a binary word as
follows.

• r(x1) = 0.
• For a pure binary word of the form w = u⊗ v, we set

r(u⊗ v) = r(u) + r(v) + L(v)− 1.

Example 3.3.10. We compute the ranks on the pure binary words of length
4.

r(x1(x1(x1x1))) = 3 r(x1((x1x1)x1)) = 2
r((x1x1)(x1x1)) = 1 r((x1(x1x1))x1) = 1
r(((x1x1)x1)x1) = 0

Note that w(4) = ((x1x1)x1)x1 and r(((x1x1)x1)x) = 0. Hence we see
that our intuition of the rank being a distance measure from w(n) so far
makes sense.

An important property of distance-measuring functions is nonnegativity,
which we will now see is satisfied by the rank function.

Lemma 3.3.11. Let w be a pure binary word of length n. Then r(w) ≥ 0.
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Proof: We prove this by induction on n. First observe that this clearly
holds for n = 0 since r(x1) = 0.

Now let w be a pure binary word of length k, and suppose the statement
is true for all pure binary words with length less than k. Since k > 1, we
may write w = u⊗ v for some pure binary words u, v, in which case

r(w) =
≥0 by induction︷ ︸︸ ︷
r(u) + r(v) +L(v)− 1.

Since L(v) ≥ 1, we see that r(w) ≥ 0 as desired.
�

Keeping with the analogy of the rank being a distance measure, we ought
to verify that it is zero if and only if the input, which is being measured
from w(n), is w(n) itself. We verify that this is the case for the rank function.

Proposition 3.3.12. Let w be a pure binary word of length n. Then
r(w) = 0 if and only if w = w(n).

Proof: We proceed by induction. In the simplest case, when n = 1, we
have that r(x1) = 0 by definition. As x1 = w(1), we see that this satisfies
the statement.

Let w be a pure binary word of length k, and suppose the statement
is true for all pure binary words with length less than k. Then we may
write our word in the form w = u⊗ v, and we have that

r(w) = r(u) + r(v) + L(v)− 1.

By Lemma 3.3.11 we know that r(u), r(v) ≥ 0. Therefore, if L(v) > 1
then r(w) 6= 0. Hence, consider the case for when L(v) = 1, so that
v = x1. Then

r(u⊗ v) = r(u) + r(x1) + L(x1)− 1 = r(u)

Therefore, r(w) = 0 if and only if if r(u) = 0. But by induction, this
holds if and only if u = w(k−1). So we see that w = w(k−1) ⊗ x1 = w(k),
which proves our result for all n.

�

Lemma 3.3.13. Let β : v ! w be a forward α-arrow. Then r(v) < r(w).
In other words, forward α-arrows decrease rank.
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Proof: To demonstrate this, we perform induction on the structure of
forward α-arrows.

Our base case is β = αu,v,w : u ⊗ (v ⊗ w) −!∼ (u ⊗ v) ⊗ w for some
arbitrary words u, v, w. With this case, observe that

r(u⊗ (v ⊗ w)) = r(u) + r(v ⊗ w) + L(v ⊗ w)− 1
= r(u) + (r(v) + r(w) + L(w)− 1)
+ L(v ⊗ w)− 1

while

r((u⊗ v)⊗ w) = r(u⊗ v) + r(w) + L(w)− 1
= r(u) + r(v) + r(w) + L(v)− 1 + r(w)
+ L(w)− 1.

If we subtract the quantities, we observe that

r(u⊗ (v ⊗ w))− r((u⊗ v)⊗ w) = L(v ⊗ w)− L(w) > 0

since v has at least length 1. Therefore αu,v,w decreases length as desired.
Next, we reach our inductive step: let β = 1u ⊗ γ : u ⊗ v ! u ⊗ w

where γ : v ! w is a forward α-arrow for which the statement is already
true. In this case we have that

r(u⊗ v) = r(u) + r(v) + L(v)− 1.

while

r(u⊗ w) = r(u) + r(w) + L(w)− 1.

Since L(v) = L(w) and r(v) > r(w), we see that r(u ⊗ v) > r(u ⊗ w).
Therefore, we see that β = 1u ⊗ γ decreases rank whenever γ is a forward
α-arrow that also decreases rank.

Finally, let β = γ⊗1u where γ : v ! w is a forward α arrow for which
the statement is already true. Then we may write β : v⊗ u! w⊗ u Now
observe that

r(v ⊗ u) = r(v) + r(u) + L(u)− 1
while

r(w ⊗ u) = r(w) + r(u) + L(u)− 1.
Since γ : v ! w decreases rank, we see that r(v) > r(w) and therefore
r(v ⊗ u) > r(w ⊗ u), as desired.

This completes the proof by induction, so that the statement is true
for all forward α-arrows.

�
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Thus what we have on our hands is the following. We know that the
rank of word w is zero if and only if w = w(n). Further, we know that
applying α-arrows to a pure binary word will decrease its rank. In other
words, shifting the parentheses of a pure binary word w brings w “closer” to
w(n) (whose parentheses are all on the left). Therefore, the rank of a pure
binary word gives us a measure for how far a binary word w is away from
w(n).

The following lemma demonstrates our interest in the word w(n).

Proposition 3.3.14. Let w be a pure binary word of length n. If w 6= w(n),
then there exists a finite sequence of forward α-arrows from w to w(n).

Proof: We first show that for every pure binary word w 6= w(n) there
exists a forward α-arrow β with domain w. We prove this statement by
induction on length.

Observe the result is immediate for n = 1, 2. Suppose the result is
true for binary words with length less than n ≥ 3. Let w be a pure binary
word with length n. Then w = u⊗ v, with u, v other pure binary words.
We now consider two cases for u and v.

(1) The first case is when L(v) = 1, so that v = x1. As w 6= w(n) we
know that u 6= w(n−1), and since u has length less than w, we see
that by induction there exists a forward α-arrow β : u! u′. Using
β, we can construct the forward α-arrow

β ⊗ 1x1 : u⊗ x1 ! u′ ⊗ x1.

Hence β ⊗ 1x1 is our desired forward α-arrow with domain w.

(2) The second case is when L(v) > 1. In this case we may write
w = u⊗ (r⊗ s). A natural choice for a forward α-arrow in this case
is simply

αu,v,s : u⊗ (r ⊗ s)! (u⊗ r)⊗ s

so that this case is also satisfied.

As we see, in all cases for w 6= w(n), we can find a forward α-arrow with
domain w. As α-arrows decrease rank, and r(w) = 0 if and only if w(n),
this guarantees a sequence of α-arrows from w to w(n), which is what we
set out to show.

�
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The previous proposition has an immediate, useful corollary. It will be
used as one of the building blocks for the next section.

Corollary 3.3.15. Every morphism in WP can be expressed as a finite
composition of α-arrows.

Proof: Let v, w be arbitrary pure binary words. Denote ϕv,w : v ! w

to be the unique morphism from v to w. By Proposition 3.3.14 there
exists chains of forward α-arrows whose composite we denote as Γ1 : v !
w(n),Γ2 : w ! w(n). Our situation is pictured below.

v w

w(n)

ϕv,w

Γ1 Γ−1
2

However, WP is a thin category, so parallel morphisms must be equal.
Therefore

ϕv,w = Γ−1
2 ◦ Γ1.

Hence ϕv,w is a composition of α-arrows. As ϕv,w was arbitrary, we see
that every morphism in WP is a finite composition of α-arrows.

�

What this corollary says is that every morphism in WP can be expressed
as a composite of forward and backward α-arrows. However, we emphasize
that there can be many different ways to represent a morphism in WP via
α-arrows. This will be an issue which we discuss later in the next section.
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3.4 Step Three: Coherence for A⊗n in α

Using our results from the previous section, we are almost ready to take
our first major step in the proof of Mac Lane’s Coherence Theorem. Before
we do so, we need to introduce terminology to even state the theorem which
we will prove in this section. Towards that goal we introduce a few more
definitions.

Definition 3.4.1. Let (M, α, λ, ρ, I,⊗) be a monoidal category. For an
object A ofM, we define the proxy map of A to be a partial functor

(−)A :WP !M

as follows. Note by partial functor, we mean a functor defined on all objects
of WP, but only a subset of all morphisms of WP.

Objects. We define the action on objects recursively as follows.

• We set (x1)A = A.
• For a binary word w = u⊗ v, we define

(w)A = (u⊗ v)A = (u)A ⊗ (v)A

Morphisms. We define the partial functor only on α-arrows. We do this
recursively as follows.

• For αu,v,w with u, v, w as pure binary words, we set:

(αu,v,w)A = α(u)A,(v)A,(w)A

(α−1
u,v,w)A = α−1

(u)A,(v)A,(w)A

• For 1u ⊗ β and β ⊗ 1u with β an α-arrow, we set:

(1u ⊗ β)A = 1(u)A
⊗ (β)A

(β ⊗ 1u)A = (β)A ⊗ 1(u)A

We now introduce the theorem of the section. This theorem is the first
major step in the proof of the coherence theorem, and the rest of this section
will be dedicated to proving it.
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Theorem 3.4.2 (Coherence in α.). Let (M,⊗, I, α, λ, ρ) be a monoidal
category. For every object A, there exists a unique functor ΦA :WP !M
which restricts to the proxy map (−)A on objects and α-arrows of WP.

We address the question the reader most likely has in mind right now:
Why did we only define the proxy map on α-arrows? Why not define it on
all of the morphisms of WP to get a functor to begin with? We did this to
avoid a potential well-definedness issue, which we now elaborate on.

Let us attempt to naturally extend the proxy map to a functor. With
Corollary 3.3.15, it is clear how to proceed on defining (−)A on general
morphisms.

Let γ : v ! w be any morphism in WP. By Corollary 3.3.15, there exist
forward and backward α-arrows γ1, . . . , γn such that

γ = γn ◦ · · · ◦ γ1.

Since the proxy map is in fact defined on α-arrows, and since functors
preserve composition, we are required to define

(γ)A = (γn)A ◦ · · · ◦ (γ1)A.

However, we need to be careful. Suppose that we can also express γ as the
finite composition of α-morphisms δ1, . . . , δm.

γ = δm ◦ · · · ◦ δ1.

While γn ◦ · · · ◦γ1 = δm ◦ · · · ◦ δ1 becauseWP is a thin category, and therefore
parallel morphisms are equal, we have no idea if

(γn)A ◦ · · · ◦ (γ1)A = (δm)A ◦ · · · ◦ (δ1)A

is true in M. That is, we do not know if equivalent morphisms in WP
are mapped to equal morphisms under the proxy map. Our issue is one of
well-definedness.

This issue is similar to one which arises in group theory. When one
attempts to define a group homomorphism on a quotient group, they must
understand that there are different, equivalent ways to represent an element.
In this situation they must make sure that the equivalent elements are
mapped to the same target in the codomain.

Example 3.4.3. To illustrate our point, we include a concrete example
of our problem which also demonstrates its nontriviality. For notational
convenience, we suppress the instances of the monoidal product ⊗. Let

γ : x1((x1x1)(x1x1))! ((x1(x1x1))x1)x1.
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Then we have many possible ways of expressing γ in terms of our α-arrows.
Some potential ways we could express γ are displayed below in purple, blue,
or orange.

x1((x1x1)(x1x1))

x1(((x1x1)x1)x1) (x1(x1x1))(x1x1)

x1((x1(x1x1))x1) ((x1x1)x1)(x1x1)

(x1((x1x1)x1))x1 ((x1(x1x1))x1)x1

(x1(x1(x1x1)))x1 (((x1x1)x1)x1)x1

((x1x1)(x1x1))x1

γ

1x1⊗αx1x1,x1,x1 αx1,x1x1,x1x1

αx1,x1(x1x1),x1

αx1,x1,x1⊗(1x1⊗1x1 )αx1(x1x1),x1,x1
(1x1⊗α

−1
x1,x1,x1 )⊗1x1

αx1,x1x1x1,x1 α(x1x1)x1,x1,x1

αx1,x1x1,x1⊗1x1

(α−1
x1,x1,x1⊗1x1 )⊗1x1

(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1,x1x1⊗1x1 αx1x1,x1,x1⊗1x1

As this is a thin category, we know that the composition of these paths are
equal in WP. However, we now have many ways to define γ under the proxy
map (−)A. We could write

(γ)A = ((α−1
x1,x1,x1 ⊗ 1x1)⊗ 1x1)A ◦ · · · ◦ (1x1 ⊗ αx1x1,x1,x1)A

= (α−1
A,A,A ⊗ 1A)⊗ 1A ◦ · · · ◦ 1A ⊗ αAA,A,A

or

(γ)A = (αx1,x1x1,x1 ⊗ 1x1)A ◦ · · · ◦ (1x1 ⊗ αx1x1,x1,x1)A
= αA,AA,A ⊗ 1A ◦ · · · ◦ 1A ⊗ αAA,A,A

or

(γ)A = (αx1(x1x1),x1,x1)A ◦ (αx1,x1x1,x1x1)A
= αA(AA),A,A ◦ αA,AA,AA

But as morphisms inM, we don’t know if these compositions inM, displayed
below, are all equal.
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A((AA)(AA))

A(((AA)A)A) (A(AA))(AA)

A((A(AA))A) ((AA)A)(AA)

(A((AA)A))A ((A(AA))A)A

(A(A(AA)))A (((AA)A)A)A

((AA)(AA))A

(γ)A

1A⊗αAA,A,A αA,AA,AA

αA,A(AA),A

αA,A,A⊗(1A⊗1A)αA(AA),A,A
(1A⊗α−1

A,A,A)⊗1A

αA,AAA,A α(AA)A,A,A

αA,AA,A⊗1A

(α−1
A,A,A⊗1A)⊗1A(1A⊗αA,A,A)⊗1A

αA,A,AA⊗1A αAA,A,A⊗1A

Hence we need to show that the purple, blue, and orange compositions are
equal inM. While we could perform tedious diagram chases to show that
they are equal in M, that would only address three of the many possible
ways to express γ. It also would not take care of the case for much larger
binary words! Hence, this problem is very nontrivial in general; we need
higher level techniques to get what we want.

Therefore, to define a functor in the first place, we need to prove the
following fact.

Proposition 3.4.4. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let A
be an object ofM. Let v, w be binary words of the same length. If β1, . . . , βk
and γ1, . . . , γ` are α-arrows with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : v ! w

then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.

To prove this proposition, we will see that it actually suffices to prove the
the special case with w = w(n) and with β1, . . . , βk and γ1, . . . , γ` all forward
α-arrows. That is, it suffices to prove the following proposition.
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Proposition 3.4.5. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let
A be an object ofM. Let w be a pure binary word of length n. If β1, . . . , βk
and γ1, . . . , γ` are forward α-arrows with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : w ! w(n)

in WP, then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.

To prove this it will suffice to prove the Diamond Lemma (stated below).
It will turn out the bulk of the overall proof toward our theorem will be spent
on the Diamond Lemma. At the risk of downplaying its importance, we leave
the proof of the Diamond Lemma to the end since it is very tedious and
involved, and we do not want to disrupt the flow of the current discussion.

We summarize our plan on how to prove Theorem 3.4.2. The uncolored
boxes, and the implications between them, are what is left to do.

thisisareallyreallyreallyrealyreallyreallyreallyreallylong︸ ︷︷ ︸

Work of Section 1.7 Diamond Lemma

Proposition 3.3.14 Proposition 3.4.5

Proposition 3.4.4

Theorem 3.4.2

Lemma 3.4.6 (Diamond Lemma). Let w be a pure binary word and suppose
β1, β2 are two forward α-arrows as below.

w

w1 w2

β1 β2

There exists a pure binary word z and two γ1 : w1 ! z, γ2 : w2 ! z, with
γ1, γ2 a composition of forward α-arrows, such that for any monoidal category
(M,⊗, I, α, λ, ρ) the diagram below is commutative inM.
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(w)A

(w1)A (w2)A

(z)A

(β1)A (β2)A

(γ1)A (γ2)A

Since the above lemma is an existence result, we emphasize this fact by
coloring the arrows, which we are asserting to exist, Green. This is a practice
we will continue.

As promised, we now prove Proposition 3.4.5 using the Diamond lemma.
We restate the statement of the proposition for the reader’s convenience.

Proposition 3.4.5. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let
A be an object ofM. Let w be a pure binary word of length n. If β1, . . . , βk
and γ1, . . . , γ` are forward α-arrows with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : w ! w(n)

in WP, then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.

Proof: To prove the desired statement, we proceed by induction on the
rank of a pure binary word w. In what follows we write we will write
w = u⊗ v since L(w) ≥ 3.

For our base case let w be a word of rank 0. Then by Proposition
3.3.12 we see that w = w(n) so that this statement is trivial.

Next suppose the statement is true for all words with rank at most
k where k ≥ 0. Let w be a pure binary word of rank k + 1. We want to
show that the diagram inM

(w)A

(u1)A (v1)A

(w(n))A

(β1)A (γ1)A

(βk)A◦···◦(β2)A (γ`)A◦···◦(γ2)A

is commutative. By the Diamond Lemma 3.4.6, there exists exist a pure
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binary word z and two composites of forward α-arrows β′ and γ′ such
that the diagram below is commutative inM.

(w)A

(u1)A (v1)A

(z)A

(β1)A (γ1)A

(β′)A (γ′)A

Let Γz : z ! w(n) by any composition of forward α-arrows from z to w(n);
at least one must exist by Proposition 3.3.14. We can now combine our
two diagrams inM to obtain the diagram below.

(w)A

(u1)A (v1)A

(z)A

w(n)

(β1)A (γ1)A

(β′)A

(βk)A◦···◦(β2)A

(γ′)A

(γ`)◦···◦(γ2)A(Γz)A

By Lemma 3.3.13, we know that forward α-arrows decrease rank, so that
r(u1) < r(w) and r(v1) > r(w). Hence we invoke our induction hypothesis
to conclude that both the lower left and lower right triangles commute in
M. As the original upper diamond already commutes via the Diamond
Lemma, we see that the entire diagram is commutative. Therefore we
have that

(βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A
inM. This completes our induction and hence the proof.

�
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As promised, we use the above proposition to prove Proposition 3.4.4.

Proposition 3.4.4. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let A
be an object ofM. Let v, w be binary words of the same length. If β1, . . . , βk
and γ1, . . . , γ` are α-arrows with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : v ! w

then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.
Proof: We begin by denoting the domain and codomain of the α-arrows
to make our discussion clear. Let u0, . . . , uk, t0, . . . , t` be the pure binary
words such that u0 = t0 = v, vk = u` = w and

βi : ui−1 ! ui, i = 1, 2, . . . , k
γj : tj−1 ! tj , j = 1, 2, . . . , `

Note that each morphism may either be forward or backward. With this
notation we can picture our parallel α-arrows in WP as below.

β1

β2
β3

βk

v

u1
u2

· · ·

w

γ1

γ2
γ3

γ`

t1
t2

· · ·

Now consider the image of this diagram inM, which we do not yet know
to be commutative.

(β1)A

(β2)A
(β3)A (βk)A

(v)A

(u1)A
(u2)A

· · ·

(w)A

(γ1)A

(γ2)A
(γ3)A

(γ`)A

(t1)A
(t2)A

· · ·
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Our goal is to show that this diagram inM is in fact commutative. This
will then show our desired equality.

By Proposition 3.3.14, we can connect each pure binary word ui and
ti to the terminal word w(n) with forward α-arrows Γui : ui ! w(n) and
Γti : ti ! w(n). If we add these to our diagram (and suppress the notation
on the Γ’s), it becomes

β1

β2
β3

βk

v

u1
u2

· · ·

w

γ1

γ2
γ3

γ`

t1
t2

· · ·

w(n)

whose image under the proxy map inM is

(β1)A

(β2)A
(β3)A (βk)A

(v)A

(u1)A
(u2)A

· · ·

(w)A

(γ1)A

(γ2)A
(γ3)A

(γ`)A

(t1)A
(t2)A

· · ·

(w(n))A
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Thus the diagram has become a cone, with apex w(n), which is sliced by
the triangles. The base of this cone is the original diagram. We now show
that each triangle is commutative.

Note that each triangle is of two possible forms: it either consists of
βi or γi. Without loss of generality, consider a triangle with an instance
of βi, as below.

(ui−1)A (ui)A

(w(n))A

(Γui−1 )A

(βi)A

(Γui )A

Now if βi is a forward α-arrow, observe that by Proposition 3.4.5 it is a
commutative diagram inM.

On the other hand, suppose βi is a backward α-arrow. Then β−1
i is a

forward α-arrow. Then we may rewrite the triangle as

(ui−1)A (ui)A

(w(n))A

(Γui−1 )A

(β−1
i )A

(Γui )A

so that it now consists entirely of forward α-arrows. This then allows us
to apply Proposition 3.4.5 to guarantee that it is a commutative diagram
in M. Thus, what we have shown is that each triangle in the above
diagram is commutative inM. This literally means that for each i,

(Γui)A ◦ (βi)A = (Γui−1)A =⇒ (βi)A = (Γui)−1
A ◦ (Γui−1)A

(Γti)A ◦ (γi)A = (Γti−1)A =⇒ (γi)A = (Γti)−1
A ◦ (Γti−1)A

Therefore, we see that (βk)A ◦ · · · ◦ (β1)A can be written as(
(Γuk

)−1
A ◦ (Γuk−1)A) ◦

(
(Γuk−1)−1

A ◦ (Γuk−2)A
)
◦ · · · ◦

(
(Γu1)−1

A ◦ (Γu0)A
)

which is a “telescoping” composition that reduces to

(Γuk
)−1
A ◦ (Γu0)A.
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Similarly, we can expression (γ`)A ◦ · · · ◦ (γ1)A as(
(Γt`)

−1
A ◦ (Γt`−1)A

)
◦
(
(Γt`−1)−1

A ◦ (Γt`−2)A
)
◦ · · · ◦

(
(Γt1)−1

A ◦ (Γt0)A
)

which also reduces to
(Γt`)

−1
A ◦ (Γt0)A.

However, uk = t` and u0 = t0, so that

(Γuk
)−1
A ◦(Γu0)A = (Γt`)

−1
A ◦(Γt0)A =⇒ (βk)A◦· · ·◦(β1)A = (βk)A◦· · ·◦(β1)A

Thus we have that our original diagram inM

(β1)A

(β2)A
(β3)A (βn)A

(v)A

(u1)A
(u2)A

· · ·

(w)A

(γ1)A

(γ2)A
(γ3)A

(γm)A

(t1)A
(t2)A

· · ·

is commutative. Therefore we have that parallel sequences of α-arrows
are equal inM, as desired.

�

Finally, we use all of our previous work to prove Theorem 3.4.2. In this
case, the proof is simply the definition of our desired functor. We state the
theorem here for the reader’s convenience.

Theorem 3.4.2 (Associator Coherence.). Let (M,⊗, I, α, λ, ρ) be a monoidal
category. For every object A, there exists a unique functor ΦA :WP !M
which agrees with the proxy map (−)A on the objects and α-arrows.

To define this functor, we will (in this order) define the functor on (1)
object, (2) α-arrows, (3) general morphisms of WP, and then finally show
that our definition preserves composition.

Objects. For a pure binary word w, we define ΦA(w) = (w)A.
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Morphisms. (1) If β is an α-arrow, we define ΦA(β) = (β)A.
(2) Now we define our functor on a general morphism v ! w in WP.

For convenience denote this as ϕv,w : v ! w.
We know by Corollary 3.3.15 that there exist finitely many forward
and backward α-arrows γ1, . . . , γk such that

ϕv,w = γk ◦ · · · ◦ γ1.

Therefore, define

ΦA(ϕv,w) = Φ(γk ◦ · · · ◦ γ1) = (γk)A ◦ · · · ◦ (γ1)A.

By Proposition 3.4.4, we see that this definition is well-defined.
Note that this definition allows the functor to also be well-defined on
identities, i.e., in all instances, ΦA(1u) = 1uA .
We now show that this definition of our functor behaves under compo-
sition. Let ϕu,v : u! v and ϕv,w : v ! w be morphisms in WP. Then
there exist sequences of α-arrows β1, . . . , βk and γ1, . . . , γ` such that

ϕu,v = βk ◦ · · · ◦ β1 ϕv,w = γ` ◦ · · · ◦ γ1.

Then we can write

Φ(ϕv,w ◦ ϕu,v) = Φ(γ` ◦ · · · ◦ γ1 ◦ βk ◦ · · · ◦ β1)
= (γ`)A ◦ · · · ◦ (γ1)A ◦ (βk)A ◦ · · · ◦ (β1)A
= Φ(γ` ◦ · · · ◦ γ1) ◦ Φ(βk ◦ · · · ◦ β1)
= Φ(ϕv,w) ◦ Φ(ϕu,v)

Hence we see that our definition on morphisms behaves appropriately
on composition, so that Φ is in fact a functor.

We conclude this section by proving the Diamond Lemma, which we have
now seen to play a critical role in this proof.

Lemma 3.4.6 (Diamond Lemma). Let w be a pure binary word and suppose
β1, β2 are two forward α-arrows as below.

w

w1 w2

β1 β2
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There exists a pure binary word z and two γ1 : w1 ! z, γ2 : w2 ! z, with
γ1, γ2 a composition of forward α-arrows, such that for any monoidal category
(M,⊗, I, α, λ, ρ) the diagram below is commutative inM.

(w)A

(w1)A (w2)A

(z)A

(β1)A (β2)A

(γ1)A (γ2)A

is commutative.

As we said before, the above lemma is an existence result, so we emphasize
this fact by coloring the arrows, which we are asserting to exist, Green.

Proof: We will prove this using induction on the length of w = u⊗ v.
Therefore, throughout the proof, suppose the result is already true for all
words of length less than that of w.

We proceed in a case-by-case basis, exhausting the possible forms
of β1 and β2. For our purposes, we will express w = u ⊗ v. Whenever
L(v) > 1, we write v = s⊗ t.

Let β1, β2 be forward α-arrows. Then β1 could be of the forms

αu,s,t 1u ⊗ γ1 γ1 ⊗ 1v

and β2 could be of the forms

αu,s,t 1u ⊗ γ2 γ2 ⊗ 1v.

with γ1, γ2 already forward α-arrows. Therefore, our cases for β1, β2,
displayed in tuples, are listed in the table below.

(β1, β2) αu,s,t 1u ⊗ γ2 γ2 ⊗ 1v
αu,s,t (αu,s,t, αu,s,t) (αu,s,t, 1u ⊗ γ2) (αu,s,t, γ2 ⊗ 1v)

1u ⊗ γ1 (1u ⊗ γ1, αu,s,t) (1u ⊗ γ1, 1u ⊗ γ2) (1u ⊗ γ1, γ2 ⊗ 1v)

γ1 ⊗ 1v (γ1 ⊗ 1v, αu,s,t) (γ1 ⊗ 1v, 1u ⊗ γ2) (γ1 ⊗ 1v, γ2 ⊗ 1v)

While there are 9 cases displayed above, we have pointed out via color
the pairs of cases which are logically equivalent to each other due to the
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symmetry of our problem. Therefore, we actually have 6 cases to check
We now proceed to the proof.
Case 1: (αu,s,t, αu,s,t).
In this case, we have that β1 = β2, for which the statement is trivially true.

Case 2: (γ1 ⊗ 1v, 1u ⊗ γ2)
Suppose β1 = γ1⊗ 1v and β2 = 1u⊗ γ2. Here, γ1 : u! u′ and γ2 : v ! v′

for some pure binary words u′, v′. Then we get the diagram

u⊗ v

u′ ⊗ v u⊗ v′

u′ ⊗ v′

1u⊗γ2γ1⊗1v

1u′⊗γ2 γ1⊗1v′

which commutes by the bifunctoriality of ⊗.

Case 3: (γ1 ⊗ 1v, γ2 ⊗ 1v)
Suppose β1 = γ1 ⊗ 1v and β2 = γ2 ⊗ 1v with γ1 : u! u1 and γ2 : u! u2
both forward α-arrows. Then in this case we have the triangle below in
M.

(u⊗ v)A

(u1 ⊗ v)A (u2 ⊗ v)A

(γ2)A⊗1(v)A
(γ1)A⊗1(v)A

Note that the above diagram is the image of diagram

(u)A

(u1)A (u2)A

(γ2)A(γ1)A

under the functor (−) ⊗ (v)A. As L(u) < L(u ⊗ v), we know by our
induction hypothesis that there exists a pure binary word z and a pair of
composite, forward α-arrows σ1 : u1 ! z and σ2 : u2 ! z such that the
diagram below commutes inM.



94 Proving Mac Lane’s Coherence Theorem

(u)A

(u1)A (u2)A

(z)A

(γ2)A(γ1)A

(σ1)A (σ2)A

Therefore we can apply the functor (−)⊗ (v)A on the above diagram to
obtain the commutative diagram below

(u)A ⊗ (v)A

(u1)A ⊗ (v)A (u2)A ⊗ (v)A

(z)A ⊗ (v)A

(γ1)A⊗(1v)A(β2)A⊗(1v)A

(σ1)A⊗(1v)A (σ2)⊗(1v)A

which proves this case.

Case 4: (1u ⊗ γ1, 1u ⊗ γ2)
The next case is when β1 = 1u ⊗ γ1 and β2 = 1u ⊗ γ2 with γ1 : v ! v1
and γ2 : v ! v2. However, this can be proved in a similar manner as the
previous case using the induction hypothesis and the functor (u)A ⊗ (−).
Case 5: (αu,s,t, γ2 ⊗ 1v)
Let β1 = αu,s,t, so that w = u ⊗ (s ⊗ t). Let β2 = γ2 ⊗ 1v = γ2 ⊗ 1s⊗t
with γ2 : u! u′ a forward α-arrow. Then we will have the diagram inM

(u⊗ (s⊗ t))A

((u⊗ s)⊗ t)A (u′ ⊗ (s⊗ t))A

((u′ ⊗ s)⊗ t)A

(γ2⊗(1s⊗1t))A(αu,s,t)A

((γ2⊗1s)⊗1t)A (αu′,s,t)A

which commutes inM by naturality of α.



Step Three: Coherence for A⊗n in α 95

Case 6: (αu,s,t, 1u ⊗ γ2)
Let β1 = αu,s,t, β2 = 1u ⊗ γ with γ a forward α-arrow with domain s⊗ t.
By the recursive definition of a forward α-arrow, we have three possible
cases for γ.

Case 6.1: γ = 1s ⊗ γ′
With γ = 1s ⊗ γ′ with γ′ : t! t′ already a forward α-arrow, we have the
diagram inM

(u⊗ (s⊗ t))A

((u⊗ s)⊗ t)A (u⊗ (s⊗ t′))A

((u⊗ s)⊗ t′)A

(1u⊗(1s⊗γ))A(αu,s,t)A

((1u⊗1s)⊗γ)A (αu,s,t′ )A

which commutes inM by naturality of α.

Case 6.2: γ = γ′ ⊗ 1t
If γ = γ′ ⊗ 1t with γ′ : s! s′ already a forward α-arrow, we can create
the diagram

(u⊗ (s⊗ t))A

((u⊗ s)⊗ t)A (u⊗ (s′ ⊗ t))A

((u⊗ s′)⊗ t)A

(1u⊗(γ′⊗1t))A(αu,s,t)A

((1u⊗γ′)⊗1t)A (αu,s′,t)A

which also commutes inM by naturality of α.
Case 6.3: γ = αs,p,q
The third case for γ is when γ = αs,p,q. In this case, we express w =
u⊗ (s⊗ (p⊗ q)). We can then construct the diagram
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(u⊗ (s⊗ (p⊗ q)))A

((u⊗ s)⊗ (p⊗ q))A (u⊗ ((s⊗ p)⊗ q))A

(((u⊗ s)⊗ p)⊗ q)A ((u⊗ (s⊗ p))⊗ q)A

(αu,s,p⊗q)A (1u⊗αs,p,q)A

(αu⊗s,p,q)A (αu,s⊗p,q)A

(αu,s,p⊗1q)A

which is always commutative inM. In this case, the word ((u⊗s)⊗p)⊗q
acts as our vertex z which completes the diagram.

As we have exhausted all possible cases, we see that the statement is
true for pure binary words of rank k + 1 if it is true for all pure binary
words with rank at most k. By induction, the statement is true for all
binary words of any rank, so that we have proved the theorem.

�
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3.5 Step Four: Binary Words

So far we have established a unique functor ΦA : WP ! M for each
object A of any given monoidal category M, and this functor grants us
coherence in the associators between iterated monoidal products of a single
object. We now consider such monoidal products with the identity I as well,
so that we may say something about coherence with regard to the unitors λ
and ρ in a general monoidal category. Towards that goal, we now consider
binary words (not just pure binary words) and introduce some definitions.

Recall that L calculates the length of a binary word, or more informally,
the number of x1’s in a binary word. We now introduce a dual quantity
which instead counts the number of x0

Definition 3.5.1. Let w be a binary word. Define the identity length of
w, denoted E , recursively as follows.

• E(x0) = 1 and E(x1) = 0.

• E(u⊗ v) = E(u) + E(v).

Similarly to how L(−) counts the number of x1’s in a binary word, E(−)
counts the number of x0’s in a binary word.

Next, we introduce the following concept that will later on be key to our
proof of Mac Lane’s Coherence Theorem.

Definition 3.5.2. Let w be a binary word. We define the clean word
derived from w, denoted w, recursively as follows.

• We set x1 = x1.

• If L(w) = 0 (i.e., it has no instance of x1) then w = x0.

• Let u, v be binary words with L(u) = 0 and L(v) > 0. Then

u⊗ v = v ⊗ u = v

• Let u, v be binary words with L(u),L(v) > 0. Then u⊗ v = u⊗ v.

Note that for a pure binary word w, we have that w = w. Informally,
the clean word of a binary word of nonzero length is simply the pure binary
word obtained by removing all instances of the identity from its expression.
In the case for a binary word with zero length, we naturally define the clean
word to be x0 .
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Example 3.5.3. We offer some examples of clean words obtained from
binary words.

Word Clean Word
x0 ⊗ (x0 ⊗ x0) x0
x0 ⊗ (x1 ⊗ x0) x1
(x1 ⊗ x0)⊗ x1 x1 ⊗ x1

((x1 ⊗ x0)⊗ x0)⊗ x1 x1 ⊗ x1
(x1 ⊗ x0)⊗ ((x1 ⊗ x0)⊗ x1) x1 ⊗ (x1 ⊗ x1)

The above example also shows that two different binary words can have the
same clean word.

Definition 3.5.4 (Monoidal Arrows). A forward monoidal arrow of W
is defined recursively as follows.

• For any triple of binary words u, v, w, the morphisms

αu,v,w : u⊗ (v ⊗ w) −!∼ (u⊗ v)⊗ w
λu : x0 ⊗ u −!∼ u

ρu : u⊗ x0 −!∼ u

are, respectively, forward α-, λ-, and ρ-arrows. They are collectively
defined to be forward monoidal arrows.

• For any binary word u and forward monoidal arrow µ, the morphisms

1u ⊗ µ µ⊗ 1u

are forward monoidal arrows.

Finally, we say a backward monoidal arrow is the inverse of a forward
monoidal arrow.

We also establish the following terminology to distinguish our α-arrows
from our λ and ρ arrows.

Definition 3.5.5. A forward unitor arrow is either a forward λ-arrow
or a forward ρ-arrow. Similarly, a backward unitor arrow is the inverse
of a forward unitor arrow.

As we have already seen forward α-arrows, we provide examples of forward
and backward λ, ρ-arrows.
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Example 3.5.6. Below we have a forward and backward λ-arrow.

x1 ⊗ ((x0 ⊗ x1)⊗ x1)

x1 ⊗ (x1 ⊗ x1)

1x1⊗(λx1⊗1x1 )

(x1 ⊗ x1)⊗ x1

x0 ⊗ ((x1 ⊗ x1)⊗ x1)

λ−1
(x1⊗x1)⊗x1

We also have forward and backward ρ-arrows below.

(x1 ⊗ x0)⊗ x1

x1 ⊗ x1

ρx1⊗1x1

x1 ⊗ (x1 ⊗ x1)

x1 ⊗ ((x1 ⊗ x1)⊗ x0)

1x1⊗ρ
−1
x1⊗x1

We now move onto proving some important lemmas regarding monoidal
arrows that we will use for the coherence theorem.

The first three are quick, but have particular importance.

Lemma 3.5.7. Let w be a binary word, w 6= x0. Then E(w) = 0 if and only
if w = w.

Note that w = x0 is the only case for which the above proposition is not
true, since x0 = x0 but E(x0) 6= 0. Hence, our reasoning for excluding it
(and it is not a case we will need to concern ourselves with).

Proof: Suppose E(w) = 0, and let us prove the forward direction by
induction on the length of the word. Let us write w = u ⊗ v, suppose
that the statement is true for all pure binary words with length less than
w. Observe that

w = u⊗ v = u⊗ v = u⊗ v = w.

where we used the induction hypothesis on u, v which have smaller length
than w. Thus we see that w = w.

Conversely, suppose w = w, w 6= x0, and suppose the statement is
true for binary words with length less than w. Write w = u⊗ v. By the
definition of a clean word, the only way we can have w = w is if u, v are
binary words with nonzero length. Therefore, if w = w we see that

u⊗ v = u⊗ v.

Since u, v have smaller length than w, we may use the induction hypothesis
to conclude that E(u) = E(v) = 0. Hence, E(w) = 0, as desired.

�
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Lemma 3.5.8. Let w be a binary word. Suppose ι : w ! w′ is a forward
unitor arrow. Then E(w′) = E(w)− 1.

In other words, any unitor arrow always takes away exactly one identity.

Proof: We prove this by examining the possible cases for ι. Write
w = u⊗ v. As ι is a forward unitor arrow, it has four possible forms.

(1) Suppose ι = λv : x0 ⊗ v ! v. As

E(v) = E(v) + E(x0)− 1 = E(v ⊗ x0)− 1

we see that the statement is satisfied in this case.

(2) If ι = ρu : u⊗ x0 ! u, we can use a similar argument as in (1) to
prove the statement.

(3) Suppose ι = 1u ⊗ κ : u ⊗ v ! u ⊗ v′ where κ : v ! v′ is a
forward unitor arrow for which the statement is already true. Then
E(v′) = E(v)− 1. Hence,

E(u⊗ v′) = E(u⊗ v)− 1.

Therefore the statement is satisfied for 1u ⊗ κ if it is true for κ.

(4) If ι = κ ⊗ 1v : u ⊗ v ! u′ ⊗ v where κ is a forward unitor for
which the statement is already true, then we may prove this case
by following a similar argument as in (3).

As we have examined all cases, we may conclude that for every forward
unitor ι : w ! w′, we have that E(w′) = E(w)− 1 as desired.

�

Lemma 3.5.9. Let ι : w ! w′ be a forward unitor arrow. Then w = w′.

In other words, unitor arrows do not alter the particular format of a
clean word.

Proof: First, observe that the result is trivial if L(w) = L(w′) = 0.
Therefore, let w = u⊗ v be such a binary word with E(w) > 0. Suppose
the statement is true for binary words v such that E(v) < E(w). Let
ι : w ! w′ be a forward unitor arrow. By the recursive definition of ι,
our forward unitor arrow has four possible forms.
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(1) Suppose ι = λv : x0 ⊗ v ! v. However, note that x0 ⊗ v = v, so
that this case is true.

(2) If ι = ρu : u ⊗ x0 ! u, then this case may be proven in a similar
manner as case (1).

(3) Suppose ι = 1u ⊗ κ : u ⊗ v ! u ⊗ v′ where κ is a forward unitor
arrow for which the result is already true. Since L(u⊗ v) < 0, we
have a few subcases.
Suppose L(v) > 0. Then by our assumption on κ, v = v′. Therefore,
if L(u) = 0, we see that

u⊗ v = v = v′ = u⊗ v′

which satisfies this case. If instead L(u) > 0, then

u⊗ v = u⊗ v = u⊗ v′ = u⊗ v′

which again satisfies the case.
Finally, suppose L(v) = 0. Then u⊗ v = u = u⊗ v′.
In all cases we see that u⊗ v = u⊗ v′ as desired.

(3) Our third case if when ι = κ⊗ 1v : u⊗ v ! u′ ⊗ v with κ a forward
unitor for which the result is already true. However, this case can
be proved similarly as in case (2).

In all instances, we see that for a forward unitor arrow ι : w ! w′, we
have that w = w′, as desired.

�

The following lemma is an important existence result that will be used
in the next proposition.

Lemma 3.5.10. Let w be a binary word with E(w) > 0. Then there exists
a forward unitor with domain w.

Proof: We prove this by induction on the total length of a binary word
L(w) + E(w). Thus, let w = u⊗ v be a binary word with E(w) > 0 and
suppose the statement is true for all binary words z with

L(z) + E(z) < L(w) + E(w).
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Then we have a few cases for w.

(1) Suppose u = x0. Then we take the forward unitor λv : x0 ⊗ v ! v.

(2) Suppose v = x0. We may similarly take ρu : u ⊗ x0 ! u, so that
this case is satisfied.

(3) Suppose u, v 6= x0. Since E(w) > 1, either E(u) or E(v) > 0.
Without loss of generality, suppose E(u) > 0. Since

L(u) + E(u) = L(u) + E(u)

we may apply our induction hypothesis to conclude that there exists
a forward unitor ι : u! u′ with domain u. Hence, the morphism

ι⊗ 1v : u⊗ v ! u′ ⊗ v

is a forward unitor with domain u⊗ v = w.

As we have evaluated all cases, we see that the statement is true for all
binary words as desired.

�

The previous four lemmas now give rise to the following proposition.

Proposition 3.5.11. Let w be a binary word with E(w) = `. Then there
exists a composable sequence of `-many forward unitor arrows ι`, · · · , ι1 as
below:

ι` ◦ · · · ◦ ι1 : w ! w′.

Moreover, for every such chain, we have that w′ = w.

Proof: To prove existence of such a chain for every binary word with
nonzero identity length, we may proceed by induction. Let w be a binary
word with E(w) > 0, and suppose that such a chain exists for binary
words v with E(v) < E(w). Then by Lemma 2.5.10, there exists a forward
unitor ι : w ! w′. By Lemma 2.5.8, E(w′) = E(w)−1, so by our induction
hypothesis, there exists a chain of forward unitor arrows

ι`−1 ◦ · · · ◦ ι1 : w′ ! w′.

Hence, ι ◦ ι`−1 ◦ · · · ◦ ι1 : w ! w is a forward chain of unitors with initial
domain w, which proves existence.
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To prove that w′ = w, denote the domain and codomain of our
unitors ιi : wi−1 ! wi, so that w0 = w. By Lemma 2.5.9, for each i we
have that wi−1 = wi. Hence w = w`. By Lemma 2.5.8, we have that
E(wi) = E(wi−1)− 1. Therefore,

E(w`) = E(w)− ` = 0.

However, by Lemma 2.5.7, we see that this implies w` = w` = w. Hence
we see that

ι` ◦ · · · ◦ ι : w ! w

as desired.
�

The previous proposition immediately implies the next.

Proposition 3.5.12. Let w be a binary word with L(w) > 0. Then there
exists a sequence of forward monoidal arrows from w to w(n).

Proof: By Lemma 3.5.10, we have a sequence of forward unitor arrows
from w to w.

µk ◦ · · · ◦ µ1 : w ! w

Since w is a pure binary word, we can then use Proposition 3.3.14 to
guarantee a sequence of forward α-arrows from w to w(n).

β` ◦ · · · ◦ β1 : w ! w(n)

Composing these morphisms then gives us our desired monoidal arrow:

β` ◦ · · · ◦ β1 ◦ µk ◦ · · · ◦ µ1 : w ! w(n)

so that such a sequence of forward monoidal arrows exists.
�

And the previous proposition gives us the following corollary.

Corollary 3.5.13. Every morphism inW can be expressed as a composition
of a sequence of forward and backward monoidal arrows.
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Proof: The proof is the same exact proof as that of Corollary 3.3.15.
We use the previous proposition with the fact that W is a thin category
to conclude this.

�



Step Five: Coherence for A⊗n for ρ, λ 105

3.6 Step Five: Coherence for A⊗n for ρ, λ

In this section, we extend the work we’ve completed with the associators
to now include the unitors. We will obtain a theorem similar to Theorem
3.4.2. To even state the theorem, we need to introduce a new definition.

Definition 3.6.1. Let (M,⊗, I, α, λ, ρ) be a monoidal category. For each
object A inM, we define the general proxy map of A to be the partial
functor (−)A :W !M defined as follows.

Objects We define the general proxy map on objects recursively.

• We set (x0)A = I and (x1)A = A

• For a binary word w = u⊗ v we set:

(w)A = (u⊗ v)A = (u)A ⊗ (v)A

Morphisms We define the partial functor only on α-, λ-, and ρ-arrows.
This is also done recursively.

• For binary words u, v, w, we set:

(αu,v,w)A = α(uA,vA,wA) : uA ⊗ (vA ⊗ wA) −!∼ (uA ⊗ vA)⊗ wA
(λu)A = λuA : I ⊗ uA −!∼ uA

(ρu)A = ρuA : uA ⊗ I −!∼ uA

• For a more general α, λ, or ρ-arrow of the form 1u ⊗ β or β ⊗ 1u
we set:

(1u ⊗ β)A = 1uA ⊗ (β)A
(β ⊗ 1u)A = (β)A ⊗ 1uA

Before concluding this definition, we note that there is some potential
ambiguity in our definition on the unitors. This is because sometimes
a forward unitor arrow in W can be expressed in two ways. The reader may
check that all possible cases for ambiguity are the three cases below.

x0 ⊗ x0

x0

λx0ρx0

x0 ⊗ (x0 ⊗ v)

x0 ⊗ v

1x0⊗λv λ(x0⊗v)

(u⊗ x0)⊗ x0

u⊗ x0

ρ(u⊗x0)ρu⊗1x0
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As parallel morphisms in W , they are equal. Therefore, in order for our defi-
nition to be well-defined, we need that the corresponding pairs of morphisms

I ⊗ I

I

λIρI

I ⊗ (I ⊗ (v)A)

I ⊗ (v)A

1I⊗λ(v)A
λ(I⊗(v)A)

((u)A ⊗ I)⊗ I

(u)A ⊗ I

ρ(u)A
⊗1I ρ((u)A⊗I)

to be equal inM. One can show that these morphisms are equal inM using
the unitor diagrams 2.2, 2.3, and 2.4.

Regarding our notation, note that we are recycling the same notation from
the proxy map to the general proxy map. This is because the only difference
between the two is that the general proxy map is simply an extension of the
proxy map which is now defined on identity elements x0 and unitors.

The goal of this section is to prove the following theorem, which can be
thought of as an extension of Theorem 3.4.2.

Theorem 3.6.2 (Coherence in Unitors). Let (M,⊗, I, α, λ, ρ) be a monoidal
category. For each object A, there exists a unique strict monoidal functor
∆A : W ! M which agrees with the general proxy map on objects and
monoidal morphisms.

The above theorem is implied by Proposition 3.6.3 (stated below), in the
same way that Theorem 3.4.2 followed from Proposition 3.4.4.

Proposition 3.6.3. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and con-
sider two binary words v, w. Let µ1, . . . , µk and η1, . . . , η` be monoidal arrows
with:

µk ◦ · · · ◦ µ1, η` ◦ · · · ◦ η1 : v ! w

Then (µk)A ◦ · · · ◦ (µ1)A = (η`)A ◦ · · · ◦ (η1)A inM.

The above proposition is implied by Proposition 3.6.4 (stated below), in
the same way that Proposition 3.4.4 followed from Proposition 3.4.5

Proposition 3.6.4. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and con-
sider a binary word w. Let µ1, . . . , µk and η1, . . . , η` be forward monoidal
arrows with:

µk ◦ · · · ◦ µ1, η` ◦ · · · ◦ η1 : w ! w(n)

Then (µk)A ◦ · · · ◦ (µ1)A = (η`)A ◦ · · · ◦ (η1)A inM.
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Once we have the above proposition, we can prove Proposition 3.6.3, and
hence our desired theorem, using the same technique as in in the Proof of
Proposition 3.4.4.

We briefly recall such techniques: We consider two parallel chains of
monoidal arrows. We then connect each object in the chain to w(n) with
a chain of forward monoidal arrow (recall that a chain must exist for each
object). We then have a bunch of adjacent triangles with apex w(n) and we
can conclude via the Proposition 3.6.4 that each such triangle commutes.
We then conclude that the original two parallel chains form a commutative
diagram inM. Thus, our two chains have the same composite inM. This
then proves Proposition 3.6.3, which then grants us Theorem 3.6.2.

As our goal has been reduced to proving Proposition 3.6.4, we prove this
proposition using the following two results.

The first result is the following proposition.

Proposition 3.6.5 (Arrow Reorganization). Let µ1, . . . , µk be composable
forward monoidal arrows with `-many unitor arrows. Then there exist com-
posable forward unitor arrows η1, . . . , η` and forward α-arrows η`+1, . . . ηm
such that, for any monoidal categoryM with object A, we have that

(µk)A ◦ · · · ◦ (µ1)A =
Forward α′s︷ ︸︸ ︷

(ηm)A ◦ · · · ◦ (η`+1)A ◦
Unitors in front︷ ︸︸ ︷

(η`)A ◦ · · · ◦ (η1)A

inM.

The above proposition basically states that monoidal arrows can be
reorganized in a particular way with all of the unitors in the front. The
second result that we need in order to prove Proposition 3.6.4 is the following
proposition.

Proposition 3.6.6 (Unitor-Chain Equivalence). Let w be a binary word
with nonzero length and with E(w) = k. Suppose µ1, . . . , µk and η1, . . . , ηk
are a composable sequence of forward unitor arrows:

µk ◦ · · · ◦ µ1, ηk ◦ · · · ◦ η1 : w ! w

Then (µk)A ◦ · · · ◦ (µ1)A = (ηk)A ◦ · · · ◦ (η1)A inM.

For the sake of organization, we will assume the validity of these two
results now so that we may prove 3.6.4 We will then prove these two results
in the next section.
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Proof of Proposition 3.6.4 Hello!
Let

µn1 ◦ · · · ◦ µ1, ηn2 ◦ · · · ◦ η1 : w ! w(n)

be any two composites of forward monoidal arrows from w to w(n). Since
E(w) = k and E(w(n)) = 0, we know by Lemma 3.5.8 that there are
exactly k-many forward unitors in each expression. We can then use
Proposition 3.6.5 to find forward unitor arrows γ1, . . . γk, δ1, . . . , δk and
forward α-arrows γk+1, . . . , γm1 , δk+1, . . . , δm2 such that:

(µn1)A ◦ · · · ◦ (µ1)A =
Forward α′s︷ ︸︸ ︷

(γm1)A ◦ · · · ◦ (γk+1)A ◦
Unitors in front︷ ︸︸ ︷

(γk)A ◦ · · · ◦ (γ1)A

(ηn2)A ◦ · · · ◦ (η1)A =
Forward α′s︷ ︸︸ ︷

(δm2)A ◦ · · · ◦ (δk+1)A ◦
Unitors in front︷ ︸︸ ︷

(δk)A ◦ · · · ◦ (δ1)A
By Proposition 3.5.11, we know that the domain of the composition of
our unitors is w:

γk ◦ · · · ◦ γ1, δk ◦ · · · ◦ δ1 : w ! w

Diagramatically, our situation is displayed below.

(w)A

(r1)A (s1)A

...
...

(w)A

(rk+1)A (sk+1)A

...
...

(
w(n)

)
A

(γ1)A (δ1)A

(γ2)A (δ2)A

(γk)A (δk)A

(γk+1)A (δk+1)A

(γk+2)A (δk+2)A

(γm1 )A (δm2 )A
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By Proposition 3.7.3, the upper half of this diagram (above (w)A) must
commute. By Proposition 3.4.4, the bottom half of this diagram (be-
low (w)A), which consists entirely of forward α-arrows, must commute.
Therefore, the entire diagram commutes, and this completes the proof.

�
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3.7 Step Six: Arrow Reorganization and Unitor Chain
Equivalence

We now discuss what it takes to prove the Arrow Reorganization and
Unitor-Chain Equivalence results.

To prove the Arrow Reorganization result, it suffices to prove a special
case which is precisely stated in the following lemma.

Lemma 3.7.1 (Associator-Unitor Swap.). Let µ : w ! w1 be a forward
α-arrow and let ι : w1 ! w2 be a forward unitor arrow. Then either one of
the following two situations must occur.

• There exists a binary word z, a forward unitor arrow ι′ : w ! z and a
forward α-arrow µ′ : z ! w2 such that, for any monoidal categoryM,
the diagram below commutes.

(w)A

(w1)A (z)A

(w2)A

(µ)A (ι′)A

(ι)A (µ′)A

• There exists a forward unitor arrow ι′ : w ! w2 such that, for any
monoidal categoryM, the diagram below commutes.

(w)A

(w1)A (w2)A

(µ)A (ι′)A

(ι)A

As before, the above lemma is an existence result, so we emphasize this
fact by coloring the arrows that we are asserting to exist Green.

Assuming the above lemma, we prove the Arrow Reorganization Proposi-
tion.
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Proof of Arrow Reorganization (Proposition 3.6.5). We summa-
rize rather than introducing too much notation, since the proof strategy
is rather simple. Consider a sequence of monoidal arrows µ1, . . . , µk.
Suppose µj is a unitor arrow. If µj−1 is an α-arrow, we perform an
associator-unitor swap, obtaining a new chain whose composite is the
same inM. If not, we leave it alone and check the other unitor arrows.

We perform this reorganization, swapping associator arrows and unitor
arrows one at a time, until we have a sequence of morphisms in which no
unitor arrow is preceded by an α-arrow (and hence all unitors begin at
the front of our chain). The repeated application of the Associator-Unitor
swap guarantees that the composite of this new chain is equal to the
composite of our original chain.

�

We now understand how to prove the Arrow Reorganization Proposition:
it relies critically on the Associator-Unitor Swap. As we now understand
how the Associator-Unitor swap is used, we offer its proof.

Proof of Associator-Unitor Swap (Lemma 3.7.1). We prove this
using a case-by-case basis. For our proof, we write w = u⊗ v. Whenever
L(v) > 1, we write w = u ⊗ (s ⊗ t). If L(t) > 1, we will write w =
u⊗ (s⊗ (p⊗ q)).

Since µ is a forward α-arrow, it could be of the forms

α 1u ⊗ η1 η1 ⊗ 1v
with η1 a forward α-arrow. Since ι is a forward unitor arrow, it could be
of the forms

λv ρu 1u ⊗ η2 η2 ⊗ 1v
with η2 either a forward unitor arrow. We display our table below, this
time coloring the entries in order to group together similar cases.

(µ, ι) 1u ⊗ η2 η2 ⊗ 1v λv ρu

α (αu,s,t, 1u ⊗ η2) (αu,s,t, η2 ⊗ 1v) (αu,s,t, λv) (αu,s,t, ρu)

1u ⊗ η1 (1u ⊗ η1, 1u ⊗ η2) (1u ⊗ η1, η2 ⊗ 1v) (1u ⊗ η1, λv) (1u ⊗ η1, ρu)

η1 ⊗ 1v (η1 ⊗ 1v, 1u ⊗ η2) (η1 ⊗ 1v, η2 ⊗ 1v) (η1 ⊗ 1v, λv) (η1 ⊗ 1v, ρu)

Case 1: (αu,s,t, 1u⊗s ⊗ η2)
First consider µ = αu,s,t : u⊗ (s⊗ t)! (u⊗ s)⊗ t and ι = 1u⊗s⊗ η2 with



112 Proving Mac Lane’s Coherence Theorem

η2 : t ! t′ either a forward λ or ρ arrow. We select the forward unitor
arrow 1uA ⊗ (1sA ⊗ (η2)A) and the forward α-arrow αuA,sA,t

′
A
to obtain

the diagram

uA ⊗ (sA ⊗ tA)

(uA ⊗ sA)⊗ tA uA ⊗ (sA ⊗ t′A)

(uA ⊗ sA)⊗ t′A

αu,s,t 1uA
⊗(1sA

⊗(η2)A)

(1uA
⊗1sA

)⊗(η2)A
αuA,sA,t′

A

which commutes by naturality of α.
Case 2: (αu,s,t, η2 ⊗ 1t).
In this case, µ = αu,s,t : u⊗ (s⊗ t)! (u⊗ s)⊗ t, while ι = η2⊗1t. Hence,
η2 must act on (u⊗ s). With that said, η2 must be of the form

λs ρu τ ⊗ 1s 1u ⊗ σ

with τ : u ! u′ and σ : s ! s′ either forward λ or ρ arrows. Thus we
check each of these cases are satisfied.
Case 2.1: η2 = λsA

In this case, u = I. We can construct a triangular diagram by appending
λsA⊗tA : I ⊗ (sA ⊗ tA)! sA ⊗ tA as below.

I ⊗ (sA ⊗ tA)

(I ⊗ sA)⊗ tA sA ⊗ tA

αI,sA,tA λsA⊗tA

λsA
⊗1tA

which commutes inM by Proposition 2.1.2.
Case 2.2: η2 = ρu
In this case, sA = I. We can append the morphism 1uA ⊗ λtA : uA ⊗ (I ⊗
tA)! uA ⊗ tA to create a triangular diagram as below.

uA ⊗ (I ⊗ tA)

(uA ⊗ I)⊗ tA uA ⊗ tA

αuA,I,tA 1uA
⊗λtA

ρuA
⊗1tA
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The above diagram is guaranteed to commute by unitor-axiom (Diagram
2.2) in any monoidal categoryM.
Case 2.3: η2 = τ ⊗ 1s
In this case, η2 = τ ⊗ 1s with τ a forward λ or ρ-arrow. We can first
apply the forward arrow τ ⊗ (1sA ⊗ 1tA) followed by αu′A,sA,tA to obtain
the diagram

uA ⊗ (sA ⊗ tA)

(uA ⊗ sA)⊗ tA u′A ⊗ (sA ⊗ tA)

(u′A ⊗ sA)⊗ tA

αuA,sA,tA
τ⊗(1sA

⊗1tA
)

(τ⊗1sA
)⊗1tA

αu′
A

,sA,tA

which commutes by naturality of α.
Case 2.4: η2 = 1u ⊗ σ. This case is nearly identical to the previous,
creating a desired diagram which commutes by naturality of α.

This proves all of our cases for when µ = αuA,sA,tA and ι = (η2)A⊗1tA ,
and so we move onto our other cases.
Case 3: (αu,s,t, λt)
This case cannot happen, since we cannot apply λ : x0 ⊗ t ! x0 after
αu,s,t : u⊗ (s⊗ t)! (u⊗ s)⊗ t as u⊗ s 6= x0 for any binary words u, s.
Case 4: (αu,s,t, ρu⊗s)
In this case, we’ll have that µ = αuA,sA,tA and ι = ρuA⊗sA . This implies
that tA = I. We can then append the forward ρ-arrow 1uA⊗ρsA to obtain
the diagram

uA ⊗ (sA ⊗ I)

(uA ⊗ sA)⊗ I uA ⊗ sA

αuA,sA,I 1uA
⊗ρsA

ρuA⊗sA

which we know commutes due to Proposition 2.1.2.
Case 5: (1u⊗η1, 1u⊗η2). In this case µ = 1uA⊗(η1)A and ι = 1uA⊗(η2)A
with η1 a forward α-arrow and η2 either a forward λ or ρ-arrow. We can
prove this case by induction.
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Suppose the statement is true for word of length less than n, and let
w = u⊗ v be a binary word of length n. Then we have the diagram on
the left

uA ⊗ vA

uA ⊗ v′A

uA ⊗ v′′A

1uA
⊗(η1)A

1u⊗(η2)A

vA

v′A

v′′A

(η1)A

(η2)A

which is the image of the diagram on the right under the functor uA⊗ (−).
By induction, there exists either a binary word z, and a forward λ or
ρ arrow η′ : vA ! z and a forward α-arrow η′′ : z ! v′′A such that the
diagram below commutes inM.

vA

v′A z

v′′A

(η1)A (η′)A

(η2)A (η′′)A

We can then take the image of this under the functor uA ⊗ (−) to obtain
the commutative diagram below.

uA ⊗ vA

uA ⊗ v′A uA ⊗ z

uA ⊗ v′′A

1uA
⊗(η1)A 1uA

⊗(η′)A

1uA
⊗(η2)A 1uA

⊗(η′′)A

As 1uA⊗(η′)A is a forward λ or ρ arrow since (η′)A is, and since 1uA⊗(η′′)A
is a forward α-arrow since (η′′)A is, we have that the case must be true
for all words by induction.
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Case 6: (1u ⊗ η1, η2 ⊗ 1v′)
In this case, µ = 1uA ⊗ (η1)A with η1 : v ! v′ a forward α-arrow, and
ι = (η2)A⊗1v′ with η2 : u! u′ either a forward λ or ρ arrow. We can use
the forward λ or ρ arrow (η2)A⊗ 1vA followed by the α-arrow 1u′A ⊗ (η1)A
to obtain the diagram below.

uA ⊗ vA

uA ⊗ v′A u′ ⊗ v

u′A ⊗ v′A

1uA
⊗(η1)A (η2)A⊗1vA

(η2)A⊗1v′
A

1u′
A
⊗(η1)A

The above diagram commutes by functoriality of ⊗, completing this case.
Case 7: (1u ⊗ η1, λv′)
In this case we’ll have µ = 1u ⊗ η1 with η1 a forward α-arrow and ι = λv′ .
This then implies that u = I. We can then append the λ-arrow λvA

followed by the α-arrow (η1)A : vA ! v′A to obtain the diagram

I ⊗ vA

I ⊗ v′A vA

v′A

1I⊗(η1)A λvA

λv′
A

(η1)A

which commutes by naturality of λ.
Case 8: (1u ⊗ η1, ρu)
This case cannot happen, since to apply ρu after 1u ⊗ η1 implies that the
codomain of η1 is x0, which is not possible if η1 is an α-morphism.
Case 9: (η1 ⊗ 1v, 1u ⊗ η2)
Equivalent to Case 5.
Case 10: (η1 ⊗ 1v, η2 ⊗ 1v)
Equivalent to Case 6.
Case 11:(η1 ⊗ 1v, λv)
This case cannot happen, since to apply λv after η1 ⊗ 1v implies that the
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codomain of η1 is x0, which is not possible for an α-arrow.
Case 12: (η1 ⊗ 1v, ρu)
In this case, we have that µ = (η1)A ⊗ 1vA and η2 = ρuA . This implies
that vA = I. We can then append the forward ρ arrow ρuA followed by
the forward α-arrow (η1)A to the diagram to obtain

uA ⊗ I

u′A ⊗ I uA

u′A

(η1)A⊗1vA ρuA

rhou′
A

(η1)A

which commutes by naturality of ρ.
This proves all the cases, which completes the proof.

�

Thus we have proven the Associator-Unitor Swap. Our final task is
to prove the Unitor-Chain Equivalence. To do so, it suffices to prove the
following lemma.

Lemma 3.7.2. (Unitor Diamond Lemma.) Let w be a binary word, and
µ1, µ2 a pair of forward unitor arrows as below.

w

w1 w2

µ1 µ2

There there exists a binary word z and a pair of forward unitor arrows η1 :
w1 ! z, η2 : w2 ! z such that for any monoidal category (M,⊗, I, α, λ, ρ),
the diagram below is commutative inM.
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(w)A

(w1)A (w2)A

(z)A

(µ1)A (µ2)A

(η1)A (η2)A

As before, we color the arrows which we are asserting to exist Green.

Proof: To prove this, we do a case-by-case basis again. In general, we
will write w = u⊗ v, and if L(v) > 1, we write w = u⊗ (s⊗ t).

Now since µ1, µ2 are forward unitor arrows, µ1 could be of the form

1u ⊗ η1 η1 ⊗ 1v λv ρu

while µ2 could be of the form

1u ⊗ η2 η2 ⊗ 1v λv ρu

with η1, η2 both forward unitor arrows. Therefore, our possible cases are
as follows. We could have µ1 = µ2. Or, we could have any of the cases
below. The paired-coloring indicates logically equivalent cases due to the
symmetry of our problem.

(β1, β2) 1u ⊗ η2 η2 ⊗ 1v λv ρu

1u ⊗ η1 (1u ⊗ η1, 1u ⊗ η2) (1u ⊗ η1, η2 ⊗ 1v) (1u ⊗ η1, λv) (1u ⊗ η1, ρu)

η1 ⊗ 1v (η1 ⊗ 1v, 1u ⊗ η2) (η1 ⊗ 1v, η2 ⊗ 1v) (η1 ⊗ 1v, λv) (η1 ⊗ 1v, ρu)

λv (λv, 1u ⊗ η2) (λv, η2 ⊗ 1v) (λv, λv) (λv, ρu)

ρu (ρu, 1u ⊗ η2) (ρu, η2 ⊗ 1v) (ρu, λv) (ρu, ρu)

Since we’ve already implemented this case-by-case proof strategy
several times, we will point out the cases which we’ve seen before, and
take care of the cases that are new.
Case 1: (1u ⊗ η1, 1u ⊗ η2) This case can be proven by induction on total
length L(w) + E(w), using a similar argument as in Case 3 of Lemma
3.4.6.
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Case 2: (1u ⊗ η1, η2 ⊗ 1v) This case can be proven via functoriality,
in a similar manner as Case 2 of Lemma 3.4.6.

Case 3: (1u ⊗ η1, λv).
With µ1 = 1u ⊗ η1 and µ2 = λv, denote η1 : v ! v′. In this case, we can
use the morphisms λ(v′)A

and η1 to obtain the diagram

I ⊗ (v)A

I ⊗ (v′)A v

v′

1I⊗η1 λ(v)A

λ(v′)A

η1

which commutes by naturality of λ.
Case 5: (1u ⊗ η1, ρu).
With µ1 = 1u ⊗ η1, µ2 = ρu, note that the only choice for η1 is η1 = 1x0 .
However, there is no unitor arrow with domain x0, so this does not result
in a valid case for us to consider.
Case 6: (η1 ⊗ 1v, λv).
With µ1 = η1 ⊗ 1v, µ2 = λv, note that the only choice for η1 is again 1x0 .
Once again, there is no unitor arrow with domain x0, so this is also not a
valid case that we need to consider.
Case 7: (η1 ⊗ 1v, ρu).
With µ1 = η1 ⊗ 1v, µ2 = ρu, we can use the morphisms ρ(u′)A

and η1 to
obtain

(u)A ⊗ I

(u′)A ⊗ I (u)A

(u′)A

η1⊗1I
ρ(u)A

ρ(u′)A
η1

which commutes by naturality of ρ.
Case 8: (λv, λv). In this case, we see that µ1 = µ2, so that the

statement is trivially satisfied in this case.
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With all cases verified, we see that the statement must be true for all
binary words, as desired.

�

We now show how this proves the Unitor-Chain Equivalence, which we
restate for the readers convenience.

Proposition 3.7.3 (Unitor-Chain Equivalence). Let w be a binary word
with nonzero length and with E(w) = k. Suppose µ1, . . . , µk and η1, . . . , ηk
are forward unitors and that:

µk ◦ · · · ◦ µ1, ηk ◦ · · · ◦ η1 : w ! w

Then (µk)A ◦ · · · ◦ (µ1)A = (ηk)A ◦ · · · ◦ (η1)A inM.
Proof: We prove this by induction on E(w). Suppose the result is true
for binary words v with E(v) < E(w), and consider two composable chains
of forward unitors µ1, . . . , µk, η1, . . . , ηk as described above. We seek to
show that the diagram

(w)A

(u1)A (v1)A

(w)A

(µ1)A (η1)A

(µk)A◦···◦(µ2)A (ηk)A◦···◦(η2)A

is commutative in M. By the Unitor Diamond Lemma, there exists a
binary word z and two forward unitors ι1 : u ! z and ι2 : v ! z such
that

(w)A

(u1)A (v1)A

(z)A

(µ1)A (η1)A

(ι1)A (ι2)A

is commutative inM. Now, by Lemma 3.5.9, we have that z = w. By
Lemma 3.5.8, E(z) = k − 2. Hence, by Proposition 3.5.11, there exists a



120 Proving Mac Lane’s Coherence Theorem

chain of forward unitors ν1, . . . , νk−2 such that νk−2 ◦· · ·◦ν1 : z ! w. Our
situation is displayed below. For clarity, we suppress νk−2◦· · ·◦ν1 : z ! w

in the diagram below.

(w)A

(u1)A (v1)A

(z)A

(w)A

(µ1)A (η1)A

(ι1)A

(µk)A◦···◦(µ2)A

(ι2)A

(ηk)A◦···◦(η2)A

By Lemma 3.5.8, we know that E(u1), E(v1) < E(w). Therefore, we may
apply our induction hypothesis to conclude that the lower left and lower
right triangles must commute. As the original upper square commutes by
the Unitor Diamond Lemma, this implies that

(µk)A ◦ · · · ◦ (µ1)A = (ηk)A ◦ · · · ◦ (η2)A

as desired.
�

At this point, we have formally filled in all of the potential gaps in the
proof of Theorem 3.6.2. We have completed the hard work required to prove
Mac Lane’s Coherence Theorem. We will use the next section to see how
our previous results immediately apply our desired coherence result.
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3.8 Step Seven: Proving the Main Theorem

At this point we have proven coherence in associators and unitors, but
only when considering iterated monoidal products of a single object. We have
not yet achieved our desired result, which should say something about more
general monoidal products with different objects in the expression. However,
our previous work quickly implies our desired theorem. We first introduce a
definition and perform a clever trick.

In what follows, we let 1 denote the terminal category whose sole object
is denoted •.

Definition 3.8.1. Let (M,⊗, I) be a monoidal category. Define the it-
erated functor category1 of M, denoted as It(M), to be the category
where:

Objects. Functors F :Mn !M for all n = 0, 1, 2, . . . When n = 0, we let
M0 = 1.

Morphisms. Natural transformations η : F ! G between such functors.

We will give this category a monoidal structure. Towards that goal, we
introduce the following bifunctor

� : It(M)× It(M)! It(M)

whose behavior we describe on objects and morphisms as follows.

On objects. For two functors F :Mn !M, G :Mm !M, we define the
functor F �G :Mn+m !M pointwise as

(F �G)(A1, . . . , An+m) = F (A1, . . . , An)⊗G(An+1, . . . , An+m)

where ⊗ is the monoidal product ofM.

On morphisms. Let F1, G1 : Mn !M and F2, G2 : Mm !M. Given
natural transformations

η : F1 ! G1 µ : F2 ! G2

we define the natural transformation η � µ : F1 � G1 ! F2 � G2
pointwise as

(η � µ)(A1,...,An+m) = (η)(A1,...,An) ⊗ (µ)(An+1,...,An+m)
1The notation of this category is due to Mac Lane, but he did not supply a name for

this category. So I made one up. Today, this construction is known as an endomorphism
operad.
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The above bifunctor is what allows us to regard It(M) as a monoidal
category. This is more precisely stated in the following lemma.

Lemma 3.8.2. Let (M,⊗, I, α, λ, ρ) be a monoidal category. Then

(It(M),�, c,α,λ,ρ)

is a monoidal category where

• The monoidal product is the bifunctor � : It(M)× It(M)! It(M)

• The identity object is the functor c : 1!M, where c(•) = I

• For functors Fj :Mij !M, j = 1, 2, 3, the associator

αF1,F2,F3 : F1 � (F2 � F3)! (F1 � F2)� F3

is the natural transformation defined pointwise for each (A1, . . . , Ai1+i2+i3) ∈
M(i1+i2+i3) as

(αF1,F2,F3)(A1,...,Ai1+i2+i3 ) = α(F (A1,...,Ai1 ),F (Ai1+1,...Ai1+i2 ),F (Ai1+i2+1,...,Ai1+i2+i3 ))

• For a functor F : Mn ! M, the left unitor λ : c � F ! F is the
natural transformation defined pointwise for (•, A1, . . . , An) ∈ 1×Mn

as
(λF )(•,A1,...,An) = λF (A1,...,An)

while the right unitor ρ : F � c ! F is the natural transformation
defined similarly as

(ρF )(A1,...,An,•) = ρF (A1,...,An)

It is simple to check that these satisfy the axioms of a monoidal category.
We now reach the final theorem.

Theorem 3.8.3 (Coherence Theorem for Monoidal Categories.). For every
monoidal categoryM, there exists a unique, strict monoidal functor

Φid :W ! It(M)

where Φid(x1) = id :M!M.
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Proof: As (It(M),�, c) is a monoidal category by Lemma 3.8.2, the
theorem follows by a simple application of Theorem 3.6.2 to this monoidal
category.

�

A reader might be wondering: How does the above theorem grant us
coherence? Let us first investigate the behavior of this functor.

Under the functor, the morphism in W

x1 ⊗ (x1 ⊗ x1) (x1 ⊗ x1)⊗ x1
αx1,x1,x1

is mapped by Φid to the natural transformation between the functors in
It(M)

id� (id� id) (id� id)� id
αid,id,id

and, as functors fromM3 !M, we may substitute any A,B,C to obtain a
natural isomorphism

αA,B,C : A⊗ (B ⊗ C)! (A⊗B)⊗ C

in M. Next, we know that functors preserve diagrams. Therefore, our
commutative pentagon diagram in W

x1 ⊗ (x1 ⊗ (x1 ⊗ x1)) (x1 ⊗ x1)⊗ (x1 ⊗ x1) (x1 ⊗ x1)⊗ x1)⊗ x1

x1 ⊗ ((x1 ⊗ x1)⊗ x1) (x1 ⊗ (x1 ⊗ x1))⊗ x1

is mapped by Φid to a commutative diagram of natural transformations in
It(M) between the functors below

id� (id� (id� id)) (id� id)� (id� id) ((id� id)� id)� id

id� ((id� id)� id) (id� (id�)id)� id
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and as the above functors are of the formM4 !M, we may substitute any
A,B,C,D ∈M to obtain the commutative diagram

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

1A⊗αB,C,D

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗1D

inM.
So far, our functor makes sense. Moreover, we already knew that the

above pentagon commutes for all A,B,C,D ∈M. Thus, what about diagram
???

Again, functors preserve diagrams. Therefore, the commutative diagram
in W (see next page) is mapped by Φid to the commutative diagram of
natural transformations in It(M) between functors (see second page) and as
functors fromM5 !M, we may substitute any A,B,C,D,E to obtain the
commutative diagram inM (on the third page).
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Front. (Note that the product ⊗ in W has been suppressed).

Back.

x1((x1x1)(x1x1))

x1(((x1x1)x1)x1) • (x1(x1x1))(x1x1)

x1((x1(x1x1))x1) ((x1x1)x1)(x1x1)
• •

(x1((x1x1)x1))x1 ((x1(x1x1))x1)x1
•

(x1(x1(x1x1)))x1 (((x1x1)x1)x1)x1

((x1x1)(x1x1))x1

1x1⊗αx1x1,x1,x1 αx1,x1x1,x1x1

αx1,x1(x1x1),x1

αx1,x1,x1⊗(1x1⊗1x1 )

αx1(x1x1),x1,x1

(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1x1x1,x1 α(x1x1)x1,x1,x1

αx1,x1x1,x1⊗1x1

(αx1,x1,x1⊗1x1 )⊗1x1(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1,x1x1⊗1x1 αx1x1,x1,x1⊗1x1

x1((x1x1)(x1x1))

(x1(x1x1))(x1x1) x1(x1(x1(x1x1))) x1(((x1x1)x1)x1)

((x1x1)x1)(x1x1) x1((x1(x1x1))x1)
(x1x1)(x1(x1x1)) x1(x1((x1x1)x1)

• •
(x1x1)((x1x1)x1)

(((x1x1)x1)x1)x1 (x1(x1(x1x1)))x1

((x1x1)(x1x1))x1

1x1⊗αx1x1,x1,x1αx1,x1x1,x1x1

αx1,x1,x1⊗(1x1⊗1x1 )

1x1⊗αx1,x1,x1x1

αx1,x1,x1(x1x1) 1x1⊗(1x1⊗αx1,x1,x1 )

α(x1x1)x1,x1,x1

(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1x1x1,x1

αx1x1,x1,x1x1

(1x1⊗1x1 )⊗αx1,x1,x1

1x1⊗αx1,x1x1,x1

αx1,x1,(x1x1)x1

αx1x1,x1x1,x1

αx1,x1,x1x1⊗1x1αx1x1,x1,x1⊗1x1
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Front. (Note that the product � and the associators in It(M) are suppressed.)

Back.

id((idid)(idid))

id(((idid)id)id) • (id(idid))(idid)

id((id(idid))id) ((idid)id)(idid)
• •

(id((idid)id))id ((id(idid))id)id
•

(id(id(idid)))id (((idid)id)id)id

((idid)(idid))id

id((idid)(idid))

(id(idid))(idid) id(id(id(idid))) id(((idid)id)id)

((idid)id)(idid) id((id(idid))id)
(idid)(id(idid)) id(id((idid)id)

• •
(idid)((idid)id)

(((idid)id)id)id (id(id(idid)))id

((idid)(idid))id
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Front. (Note that the product ⊗ inM is suppressed.)

Back.

A((BC)(DE))

A(((BC)D)E) • (A(BC))(DE)

A((B(CD))E) ((AB)C)(DE)
• •

(A((BC)D))E ((A(BC))D)E
•

(A(B(CD)))E (((AB)C)D)E

((AB)(CD))E

1A⊗αBC,D,E αA,BC,DE

αA,B(CD),E

αA,B,C⊗(1D⊗1E)

αA(BC),D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E α(AB)C,D,E

αA,BC,D⊗1E

(αA,B,C⊗1D)⊗1E(1A⊗αB,C,D)⊗1E

αA,B,CD⊗1E αAB,C,D⊗1E

A((BC)(DE))

(A(BC))(DE) A(B(C(DE))) A(((BC)D)E)

((AB)C)(DE) A((B(CD))E)
(AB)(C(DE)) A(B((CD)E)

• •
(AB)((CD)E)

(((AB)C)D)E (A(B(CD)))E

((AB)(CD))E

1A⊗αBC,D,EαA,BC,DE

αA,B,C⊗(1D⊗1E)

1A⊗αB,C,DE

αA,B,C(DE) 1A⊗(1B⊗αC,D,E)

α(AB)C,D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E

αAB,C,DE

(1A⊗1B)⊗αC,D,E

1A⊗αB,CD,E

αA,B,(CD)E

αAB,CD,E

αA,B,CD⊗1EαAB,C,D⊗1E
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This process continues for every possible diagram in W . Each diagram in W
is mapped to a corresponding diagram in It(M) made up of identity functors,
and with the identity functor, we are free to substitute whatever instance of
A,B,C, · · · ∈M in it. The arrows between the identity functors are natural
transformations which reduce to instances of α, ρ, λ inM upon substituting
objects in the identity functor. What matters here is the functoriality of
ΦI . It guarantees that all the diagrams obtained as the image of Φid will
commute.

This completes our work towards proving Mac Lane’s Coherence Theorem.
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3.9 Conclusion: What Does The Theorem Actually
Say?

For myself, a significant point of confusion regarding Mac Lane’s Coher-
ence Theorem arose in understanding what it actually says. This is natural
since the original writing of the theorem is somewhat vague and, with all
due respect to Mac Lane, it is confusing in many places.

In writing this thesis, I think the reason for why it was written the way
that it was is because (as I have seen) it takes many definitions and a lot of
notation to clearly state what the theorem is saying. And in a pedagogical
process, the limiting factors are time (from the author and reader) and
space (in the author’s body of text). If one does not have time or space,
they will have to be less rigorous and hence use vague language (otherwise,
they have to rush the audience). For example, in less formal presentations,
mathematicians must be vague about their work since they cannot take the
audience on a 5-year pure mathematics journey in order to bring them up to
perfect speed. Thus, a limitation of time and space appropriately compels
vague language.

We end this thesis by commenting on what the theorem does not say, as
sometimes people walk away from Mac Lane’s Coherence Theorem confused
and think that it says:

• All diagrams built from instances of α, ρ, λ commute.

While the theorem does say a certain class of diagrams commute, it does not
comment on all diagrams. Thus the issue with the above statement is that
it includes diagrams which the theorem does not make comment on. The
theorem only makes comment on diagrams which can by constructed via the
functor in Theorem 3.8.3.

In fact, the above statement can get us in trouble. The canonical example
is Isbell’s counterexample, which I will not repeat since it is frequently
mentioned enough in most discussions of monoidal categories.

What this theorem does say is instead more wordy:

• A binary word w of length n is actually a functor:

Φid(w) :Mn !M

For any other binary word v of length n, there is a unique morphism

ψv,w : v ! w
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in W (because it is a thin category). Moreover, ψv,w corresponds to a
unique natural transformation

Φid(ψv,w) : Φid(v)! Φid(w)

between the functors corresponding to the binary words.
Now, by Corollary 3.5.13, ψv,w is a composition of monoidal arrows in
W . Therefore, the components of the natural transformation Φid(ψv,w)
are the familiar compositions made up of the associators, unitors, and
their recursive instances inM.
The uniqueness of this natural transformation is what guarantees
coherence.

This certainly more wordy than some statement like “a certain class of
diagrams commute”, but it is correct.
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