
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

HMC Senior Theses HMC Student Scholarship 

2021 

The Slice Rank Polynomial Method The Slice Rank Polynomial Method 

Thomas C. Martinez 
Harvey Mudd College 

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Martinez, Thomas C., "The Slice Rank Polynomial Method" (2021). HMC Senior Theses. 245. 
https://scholarship.claremont.edu/hmc_theses/245 

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator 
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/245?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu


The Slice Rank Polynomial Method

Thomas Martinez

Mohamed Omar, Advisor

Arthur Benjamin, Reader

Department of Mathematics

May, 2021



Copyright © 2021 Thomas Martinez.

The author grants Harvey Mudd College and the Claremont Colleges Library the

nonexclusive right to make this work available for noncommercial, educational

purposes, provided that this copyright statement appears on the reproduced

materials and notice is given that the copying is by permission of the author. To

disseminate otherwise or to republish requires written permission from the author.



Abstract

Suppose you wanted to bound the maximum size of a set in which every

k-tuple of elements satisfied a specific condition. How would you go about

this? Introduced in 2016 byTerenceTao, the slice rankpolynomialmethod is a

recently developed approach to solving problems in extremal combinatorics

using linear algebraic tools. We provide the necessary background to

understand this method, as well as some applications. Finally, we investigate

a generalization of the slice rank, the partition rank introduced by Eric

Naslund in 2020, along with various discussions on the intuition behind the

slice rank polynomial method and other possible avenues for generalization.
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Chapter 1

Introduction

The field of extremal combinatorics obtains its name from the types of

questions it studies, generally of the form: if a collection of finite objects

satisfies certain restrictions, how small or how large can it be? A classic

example of this is an introductory problem in Ramsey theory, which any

HMC student who just took Discrete Mathematics could answer: what is

the maximum number of people that can go to a party such that there is

not a collection of 3 people who either all know each other or all do not

know each other?1 There are countless examples of problems in extremal

combinatorics, some more familiar than others, and various ways to solve

them – the principle of inclusion-exclusion, the pigeonhole principle, or

induction to name a few. This thesis concerns itself with one of the more

modern methods: the slice rank polynomial method.

In May of 2016, Croot et al. (2017) introduced a powerful technique named

the polynomial method, which Ellenberg and Gĳswĳt (2017)2 used to settle

the long-standing cap-set problem (more about this in subsection 3.1.2).

In August of the same year, Tao, in one of his blog posts, presented a

symmetrized reformulation of the polynomial method, now known as the

slice rank3 method. As you can see by the timeline, this was an exciting

period in the field of extremal combinatorics. Already in its short history,

the slice rank polynomial method has been used to produce exciting results

like the proof of a special case of a 50 year-old conjecture posed by Erdös

1The answer is 5.

2Discovered independently but wrote the ensuing paper together

3The name "slice rank" is due to Blasiak et al. (2017).

https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/
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and Szemerédi by Naslund and Sawin (2017) (more about this in subsection

3.1.1).

The slice rank polynomial method is a natural generalization of a manifesta-

tion of the linear algebra method4 in extremal combinatorics that can solve

problems of the form: "how large (or how small) can a family of sets be such

that there is a restriction on single set and/or pairs of sets." For example, we

can restrict the size of sets and/or the size of their pairwise intersections.

The slice rank polynomial method provides a manner in which linear

algebra can be used to solve problems in extremal combinatorics involving

restrictions on more than two sets from the family. In general, the slice rank

polynomial method works as follows, assuming we wish to solve a problem

with a restriction on a k-tuple of sets:

1. Suppose we find the largest such set family S that satisfies such a

restriction.

2. Create a diagonal k-tensorT : Sk → F , where F is a field, with non-zero

diagonal entries that encapsulates the restrictions of the k-tuple of sets.

3. By the slice rank lemma, we have that the slice rank of T is equal to |S|.

4. We can now upper bound the slice rank of this k-tensor to achieve an

upper bound5 on |S|.

The focus of this expository thesis is to cultivate a deeper understanding

on the slice rank polynomial method. Where might we be able to apply it?

Will it provide stronger bounds that those that already exist due to classical

methods? Can we generalize this method even further? In order to answer

these questions, our thesis beginswith background on k-tensors and presents

a proof of the key slice rank lemma, proved by Tao (2016b) in Chapter 2.

Chapter 3 then provides some of the existing applications of the slice rank

polynomial method, like that of Ellenberg and Gĳswĳt (2017) and Naslund

and Sawin (2017), as well as some examples of what may "go wrong" when

attempting to apply the slice rank polynomial method. We end Chapter 3

4As you can imagine, there are numerous "linear algebra methods" in solving extremal

combinatorics. We leave the textbook by Babai and Frankl (1988) which focuses solely on

linear algebra methods in combinatorics and, for a shorter introduction, this set of notes

taken from an eight lecture series for graduate students in combinatorics at UCSD during

the Fall 2019 Quarter.

5We can suppose we find the smallest set family T that satisfies the restrictions, and then

find a lower bound the slice rank of the k-tensor to achieve a lower bound on |T |.

http://www.math.ucsd.edu/~sspiro/Abacus/AbacusF19.pdf
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with a discussion of what we may expect the slice rank to be, given the form

the k-tensor we define takes. Lastly, Chapter 4 discusses the partition rank,

a generalization of the slice rank introduced by Naslund (2020b), as well as

a short discussion on other possible avenues for generalizations of the slice

rank polynomial method.

This thesis presumes basic knowledge in linear algebra, so the reader has

sufficient background if they are an undergraduate math major who just

took an introductory course or two in linear algebra.





Chapter 2

Tensors

Before exploring the slice rank polynomial method, wewill discuss the linear

algebra method which is well-equipped for handling extremal problems

with restrictions on individual sets and/or pairs of sets.

2.1 Oddtown

Let us imagine a scenario: the case of Oddtown.1 Oddtown has N residents

and they love forming clubs and maximizing the number of them. However,

they follow an odd tradition when forming these clubs:

(i) No two clubs may have exactly the same members;

(ii) Each club must have an odd number of people;

(iii) Any two clubs must share an even number of people.

The mayor of Oddtown would like to know how many clubs he may create,

given N residents. Before we can provide the mayor with an answer, we

require some notation.

1The problem with Oddtown is usually presented and contrasted with Eventown, where

the set of rules are slightly different, in that we have each club with an even number of people

but leads to a much larger maximal number of sets (an upper bound of 2
n/2

). The case of

Eventown does not interest us as the manifestation of the linear algebra method is not what

we call the matrix method. However, for the motivated reader, we leave this set of notes by

Tibor Szabó and this set of notes by Calum Buchanan.

http://discretemath.imp.fu-berlin.de/DMII-2019-20/Week10.pdf
http://www.uvm.edu/~cjbuchan/Oddtown_and_Eventown_Module.pdf
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Definition 2.1.1. Let [n] denote the set {1, 2, . . . , n} for every n ∈ N+. Also, let
2
[n] denote the collection of subsets of [n].

We can now provide the mayor with their long-awaited answer.

Theorem 2.1.2 (Berlekamp (1969)). Let F ⊆ 2
[n] be a set family satisfying

Oddtown’s rules. Then, |F | ≤ n.

Before moving on to the proof, it is important to understand the connection

between linear algebra and combinatorics. What’s stopping us from solving

this problem purely combinatorially?2 As it turns out, in a typical extremal

combinatorics problem, the greater the number of extremal families, the

less likely a purely combinatorial proof leads to fruition. This is because

a combinatorial proof has to consider all extremal families, and if these

families are very combinatorially different, it may lead to an unmanageable

number of case distinctions (this explanation is due to Szabó (2019)). The

Oddtown theorem is one of these situations. In fact, one can prove that the

number of extremal families is super-exponential3 (see Babai and Frankl

(1988)[Exercise 1.1.14]).

As it turns out, the Oddtown theorem is extremely suitable to linear algebraic

methods. The connection — for this problem and, as we will see, for many

others — between linear algebra and combinatorics is provided through the

characteristic vector.

Definition 2.1.3. The characteristic vector of a subset T of a set S is the vector

xT :� (xs)s∈S ,

such that xs � 1 if s ∈ T and xs � 0 if s < T. For example, taking S � {1, 2, 3, 4}
and T � {2, 3}, our characteristic vector is xT � (0, 1, 1, 0). We also use the
notation (xT)i to denote the ith value of xT . For example, (xT)2 � 1 and (xT)4 � 0.

The reader may realize that the square of the length of the characteristic

vector xT gives us the size of our set T. So, we can easily grab hold of

the condition that |T | is an odd number. However, notice that the rules of

Oddtown also has a condition on the sizes of pairs of sets. We must then

take advantage of another algebraic object, the dot product.

2As it turns out, there exists a combinatorial proof, due to Petrov (2016), presented in

Buchanan’s notes. However, we aren’t always so lucky!

3A function is super-exponential if it grows faster than any exponential function. That is,

for every constant c, lim

n→∞
f (n)/cn

� ∞.

http://www.uvm.edu/~cjbuchan/Oddtown_and_Eventown_Module.pdf
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Definition 2.1.4. The dot product of two vectors a � [a1 , a2 , . . . , an] and b �

[b1 , b2 , . . . , bn] of the same dimension is

a · b �

n∑
i�1

ai bi � a1b1 + a2b2 + · · · + an bn .

For example, let a � [1, 2, 3] and b � [2, 5, 8]. Then a · b � (1 ·2)+ (2 ·5)+ (3 ·8) �
2 + 10 + 24 � 36.

The key insight for the Oddtown problem is to realize that for two sets

A, B ∈ 2
[n]

,

|A ∩ B | �
n∑

i�1

(vA)i(vB)i � vA · vB .

Indeed, this is due to how (vA)i(vB)i � 1 if and only if (vA)i � (vB)i � 1. That

is, (vA)i(vB)i � 1 if and only if i ∈ A ∩ B. In the context of the Oddtown

problem, we have the condition that, for any two sets A, B in a set family

that satisfies Oddtown’s rules,

vA · vB �

{
odd, if i � j;
even, if i , j.

We can simplify this further if we work in F2, the finite field of 2 elements,

where our elements are just 0 and 1 and the arithmetic operations are

performed modulo 2. With this, we obtain

vA · vB �

{
1, if i � j;
0, if i , j.

We can now prove the Oddtown theorem.

Proof of Theorem 2.1.2. Let F � {Ci | 1 ≤ i ≤ m} be a set family satisfying

Oddtown’s rules. For each set Ci , we will associate vCi as its characteristic

vector. Working over F2, we note thatwe have vCi ·vCi � 1 for every 1 ≤ i ≤ m,

and vCi · vC j � 0 for all i , j.

Suppose we have a linear combination

∑m
i�1
αi vCi � 0, with αi ∈ F2. For

every 1 ≤ j ≤ m, we take the dot product of this linear combination and

obtain

0 � 0 · vC j �

(
m∑

i�1

αi vCi

)
· vC j �

m∑
i�1

αi(vCi · vC j ) � α j .
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This implies that α j � 0 for all 1 ≤ j ≤ m, which implies that the characteristic

vectors form a linearly independent set. So, their number cannot exceed the

dimension of the space, we have m ≤ dim F n
2
� n. �

As you can see from this proof and discussion, we are well-equipped for

handling problems which handle restrictions on single sets and/or pairs of

sets, thanks to the connection to objects like the characteristic vector and

the dot product. There are numerous examples of problems in extremal

combinatorics being solved in this manner, like Fisher’s Inequality, and the

neighboring Eventown problem. An issue arises, however, when we wish to

go beyond that, and handle restrictions on, say, triples of sets. Thankfully,

this is precisely what the slice rank polynomial method is equipped for.

Before we introduce the slice rank polynomial method, we require some

introduction to k-tensors and what slices actually are.

2.2 Basics

As we have seen before, there are methods, using linear algebra, to bound

the size of a family of sets F , where there were restrictions on each set, or

each pair of sets. However, how can we generalize this idea, so we can place

restrictions on each triple of sets, or quadruple of sets, and so on. To do so,

we provide a generalization of a matrix, a k-tensor.4

Definition 2.2.1. Let X be a finite set and F a field. A k-tensor is a function
T : Xk → F . A k-tensor is diagonal if T(x1 , . . . , xk) , 0 implies x1 � · · · � xk .

It may come as a surprise, but there is no restrictions on our function T for it

to be a k-tensor. That is, it does not have to be linear or injective or anything

of the sort. To aid with this definition, let us look at some simple examples.

Example 1 (The Zero Tensor). The function Z : Xk → F where Z(x1 , . . . , xk) �
0 for all x1 , . . . , xk ∈ X is a k-tensor for all k ≥ 1.

Example 2. The function M : {1, 2, 3}3 → R where M(x , y , z) � x y + yz
for all x , y , z ∈ {1, 2, 3} is a 3-tensor. We note that M is not diagonal as
M(1, 2, 1) � 1 ∗ 2 + 2 ∗ 1 � 2 + 2 � 4 , 0.

4This chapter will focus on building an intuition for the reader. For a more rigorous

introduction, using the notion of tensor products and other concepts in exterior and

multilinear algebra, see Tao’s original blog post and this follow-up blog post dedicated to the

slice rank.

https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/
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Definition 2.2.2. Let X be a finite set and F a field. Then, for any k-tensors, f , g,
and any scalar c ∈ F , we have

i. ( f + g)(x1 , . . . , xn) � f (x1 , . . . , xn) + g(x1 , . . . , xn), and

ii. (c · f )(x1 , . . . , xn) � c · f (x1 , . . . , xn).

That is, the sum of two k-tensors and the scalar multiple of a k-tensor is still a
k-tensor.

These definitions are relatively natural to make. More abstractly, the sum of

two functions with the same domain and co-domain will still be a function
with the same domain and co-domain, and the scalar multiplication property

is obtained due to F being a field. A natural question may be how multi-

plication works, and this is a little more complicated. We provide another

definition as to how multiplication works, justifying these definitions in

another section. First, some notation. Given variables x1 , . . . , xn and a set

S ⊆ {1, . . . , n} with S � {s1 , . . . , sk}, we use the notation xS to denote the

subset of variables

xs1
, . . . , xsk .

So, for a function f of k variables, we have

f (xS) � f (xs1
, . . . , xsk ).

We can now define multiplication of k-tensors.

Definition 2.2.3. Let X be a finite set and F a field. I , J ⊆ {1, . . . , n}, |I | � k1,
| J | � k2, and I ∩ J � ∅. Then, for a k1-tensor f (xI) where and a k2-tensor g(x J),
we have,

( f · g)(x1 , . . . , xn) � f (xI) · g(x J).

Let us further illuminate this definition with a couple of examples.

Example 3. Let f : F2

3
→ R be the 2-tensor f (x1 , x3) � x1 + x3, and let

g : F3 → R be the 1-tensor defined by g(x2) � x2. Then, we see that

( f · g)(x1 , x2 , x3) � f (x1 , x3) · g(x2) � (x1 + x3)(x2) � x1x2 + x2x3.

We see that f · g is indeed a 3-tensor. It also has a special property, we will investigate
shortly, so stay tuned.
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Example 4. Let f : F2

3
→ R be the 2-tensor f (x1 , x3) � x1 + x3, and let

g : F2

3
→ R be the 2-tensor defined by g(x2 , x4) � x2 − x4. Then, we see that

( f · g)(x1 , x2 , x3 , x4) � f (x1 , x3) · g(x2 , x4) � (x1 + x3)(x2 − x4)
� x1x2 − x1x4 + x2x3 − x3x4.

We see that f · g is indeed a 4-tensor.

Now that we have defined a tensor, we want a way to understand how

"complicated" a k-tensor is. This leads to a nominal notion of the rank of a

tensor.

Definition 2.2.4. Let T be a k-tensor. The tensor rank of T is the smallest
non-negative integer r such that we can write

T(x1 , . . . , xk) �
r∑

i � 1

k∏
j � 1

fi , j(x j),

where each fi , j is a 1-tensor. For notational purposes, we denote r � trk(T).

In general, calculating the tensor rank is very difficult. Håstad (1989) showed

that, even for 3-tensors, calculating the tensor rank is an NP-Complete5

problem, and while we do not go into detail as to what exactly that means

for this thesis, one may imagine it as a difficult problem.

However, there is more than one way to define the rank of a tensor. To do so,

we introduce another object.

Definition 2.2.5. A k-tensor S is a slice if there exists a 1-tensor f and a (k − 1)-
tensor g such that for some 1 ≤ i ≤ k,

S(x1 , . . . , xk) � f (xi) g(x1 , . . . , xi−1 , xi+1 , . . . , xk),

for all x1 , . . . , xk ∈ X.

What is so special about a slice? Intuitively, if a k-tensor f is a slice, we can

imagine is as a simpler tensor, a (k − 1)-tensor g, where we are modifying g
very slightly. Let’s give a more concrete example as to how to think about it.

Imagine R3
for a moment, and a function f : R3 → R. If we can describe f

5For a short explanation for what it means to be an NP-Complete problem, we refer the

reader to this Stack Overflow post.

https://tinyurl.com/fr8tw74
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as the product of two functions g1 : R2 → R and g2 : R→ R, it is a slice.

That is, if f can instead be defined on a plane, which is one dimension lower

than a three-dimensional manifold, multiplied some other function that

keeps into account our final coordinate, it is a slice. Essentially, we can think

of f being encoded in a lower dimensional space, which makes it a much

simpler kind of tensor.

a. The slice f (x , y) � x2 y + y.

1+ x2

y

b. It’s components g1(x) � x2 + 1

and g2(y) � y

Figure 2.1 A visualization of a slice into its components.

We can now define the slice rank.

Definition 2.2.6. Let T be a k-tensor. The slice rank of T is the smallest non-
negative integer r such that T can be written as the sum of r slices. For notational
purposes, we denote r � srk(T).

Let us compute the slice rank of a simple tensor.

Example 5. Let us consider the 3-tensor T : X3 → F where T(x , y , z) � x y + yz.
We see that

T(x , y , z) � F(y)G(x , z),

where F : X → F is a 1-tensor with F(y) � y and G : X2 → F is a 2-tensor with
G(x , z) � x + z. So, srk(T) ≤ 1. Also, clearly srk(T) > 0 as T is not the zero
tensor. So, T is a slice and srk(T) � 1.

Example 6. Let us consider the 3-tensor M : X3 → F where M(x , y , z) �
x y + yz + xz. We note that M is not a slice because we cannot factor out a variable
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from this sum. So, srk(M) ≥ 2. However, we can write

M(x , y , z) � x(y + z) + yz.

So, srk(M) � 2.

The slice rank may seem to be a completely new idea, but in fact, it is more

familiar than it may seem. Let us recall some linear algebra. In a matrix

M of rank 1, each row is a constant multiple of some vector vT
, so we can

write M � uvT
for some vector u. The rank of a matrix M is just the smallest

number r such that M is the sum of r rank 1 matrices. Rewriting in the

language of 2-tensors, we note that a slice S is just a matrix of rank at most

1. So, a slice S can be written as the product of the two vectors u and v, if
we write them as 1-tensors. This argument also works for the tensor rank,

as when k � 2, the tensor rank is the minimal sum of the product of two

1-tensors. From this, we see the slice rank and the tensor rank of a 2-tensor is

just the usual matrix rank. From this, we see that these two notions of rank

are just different ways of generalizing the matrix rank to larger k.

We see that the tensor rank and the slice rank agree when k � 2. Let us now

compare the slice rank and the tensor rank in a more general sense.

Proposition 2.2.7. Let T be a k-tensor. Then srk(T) ≤ trk(T). If k � 1 or k � 2,
then srk(T) � trk(T).

Proof. Let trk(T) � m. Then, we see that

T �

m∑
i�1

f 1

i (x1) f 2

i (x2) . . . f k
i (xk) �

m∑
i�1

f 1

i (x1)gi(x2 , . . . , xk),

for some (k − 1)-tensor gi , which is the product of the k − 1 1-tensors

f 2

i , . . . , f k
i . We see that each term on the right is a slice. From this, we have

srk(T) ≤ trk(T).

Note that if k � 1, then srk(T) � trk(T) � 1. If k � 2, then T �∑m
i�1

fi(x1)gi(x2) so, srk(T) � m � trk(T). �

We now have a relation between the slice rank and the tensor rank. However,

our end goal is to relate the slice rank and our set X. The following

proposition captures an important truth of the slice rank.

Proposition 2.2.8. Let T : Xk → F be a k-tensor. Then, srk(T) ≤ |X |.
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Proof. Every k tensor T : Xk → F can be written as

T(x1 , . . . , xk) �
∑
x∈X

δx1xT(x , x2 , . . . , xk),

where δi j denotes the Kronecker delta function. We see each term on the

right hand side is indeed a slice. �

It is interesting to note that while we always have this upper bound for the

slice rank of a k-tensor T, the tensor rank can be much larger. In fact, Lickteig

(1985) proved that the tensor rank of a typical6 k-tensor T is ≈ |X |2/3 if

|X | , 3 and our field F is algebraically closed.

Proposition 2.2.8 gives us an avenue to lower bound |X |, by providing a lower

bound for srk(T) where T : Xk → F is a k-tensor. We have no restrictions

on our k-tensor here, any T will work. However, we cannot provide an

upper bound with this method. Although we have srk(T) ≤ trk(T) and
srk(T) ≤ |X | for any k-tensor T : Xk → F , we do not have always have a

relation between trk(T) and |X |. Naturally, we can ask when is equality for

either of these values achieved, and we provide precisely that. This result,

due to Tao, is the crux of our thesis.

Lemma 2.2.9 (Slice Rank Lemma, Tao (2016b)). Let T : Xk → F be a diagonal
k-tensor with non-zero diagonal entries. Then srk(T) � |X |.

Proof. We prove this lemma by induction. When k � 2, we note that the slice

rank is equivalent to the matrix rank. So, we can recall from linear algebra

that the rank of an |X | × |X | diagonal matrix with non-zero entries is |X |.

In order to simplify notation, we prove this lemma for k � 3, as the proof of

the general case is similar.

Let T : X3 → F be a diagonal 3-tensor with non-zero diagonal entries. By

Proposition 2.2.8, we see that srk(T) ≤ |X |. Suppose toward a contradiction

that γ � srk(T) < |X |. That is

T(x , y , z) �
α∑

i � 1

fi(x)Gi(y , z) +
β∑

i � α+1

fi(y)Gi(x , z) +
γ∑

i � β+1

fi(z)Gi(x , y),

6The word typical here is somewhat of a misnomer. This is to say the set of k-tensors with

this tensor rank is non-empty and Zariski-open. We do not go into much detail as to what a

Zariski-open set is, but the important property is that this set is a dense set in the set of all

k-tensors.
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where 0 ≤ α ≤ β ≤ γ < |X | are integers, each fi is a 1-tensor, and each Gi is

a 2-tensor on X.

Consider the subspace V orthogonal to the vectors f1 , . . . , fα. That is,

V :�
〈

f1 , . . . , fα
〉⊥

�

{
v : X → F

���� ∑
x∈X

v(x) fi(x) � 0 for all 1 ≤ i ≤ α
}
.

Let v ∈ V be a vector with the largest support Sv � {x ∈ X | v(x) , 0}. We

claim that |Sv | ≥ dim V .

Suppose that |Sv | < dim V , and consider the subspace W � {w : X →
F | w(x) � 0 for all x ∈ Sv}. From this, we see that if we were to represent

each w as a vector, it can only be non-zero for all x < Sv . This gives us

dim W � |X | − |Sv | > |X | − dim V.

Therefore, there exists a non-zero vector w ∈ V such that w(x) � 0 for all

x ∈ Sv . So, we see that |Sv+w | ≥ |Sv |, as for every x ∈ Sv , (v + w)(x) �
v(x) + w(x) � v(x) , 0. However, as w is a non-zero vector, we see there

exists some x < Sv such that (v + w)(x) � v(x) + w(x) � w(x) , 0. Thus,

|Sv+w | > |Sv |, contradicting the maximality of Sv .

So, we see that

|Sv | ≥ dim V � |X | − dim

〈
f1 , . . . , fα

〉
≥ |X | − α > γ − α.

Now, consider the 2-tensor Q : S2

v → F defined by

Q(y , z) �
∑
x∈X

v(x)T(x , y , z).

By substituting T as the sum of γ slices, we see that

Q(y , z) �
∑
x∈X

v(x)T(x , y , z)

�

∑
x∈X

v(x) ©­«
α∑

i�1

fi(x)Gi(y , z) +
β∑

i�α+1

fi(y)Gi(x , z) +
γ∑

i�β+1

fi(z)Gi(x , y)ª®¬
�

α∑
i � 1

Gi(y , z)
∑
x∈X

v(x) fi(x) +
β∑

i � α+1

fi(y)
∑
x∈X

v(x)Gi(x , z)

+

γ∑
i � β+1

fi(z)
∑
x∈X

v(x)Gi(x , y).
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However, note that, by definition, for 1 ≤ i ≤ α, ∑x∈X v(x) fi(x) � 0, and

thus,

Q(y , z) �
β∑

i � α+1

fi(y)
∑
x∈X

v(x)Gi(x , z) +
γ∑

i � β+1

fi(z)
∑
x∈X

v(x)Gi(x , y)

�

β∑
i � α+1

fi(y)gi(z) +
γ∑

i � β+1

fi(z)gi(y),

for some 1-tensors gi . So, we see that srk(Q) ≤ γ − α.

Let us now try examining srk(Q) via direct substitution. Since T is diagonal,

we have that Q(y , z) � ∑
x∈X v(x)T(x , y , z) � 0 whenever y , z. So, for

y ∈ Sv , we have Q(y , y) � ∑
x∈X v(x)T(x , y , y). Again, the diagonality of

T implies that for all x , y, we see that v(x)T(x , y , y) � 0, so, Q(y , y) �
v(y)T(y , y , y) , 0. Thus, Q is a diagonal matrix with non-zero diagonal

entries, so srk(Q) � |Sv | > γ − α, which is a contradiction. �

This result is what allows us to solve problems in extremal combinatorics.

Recalling from the introduction, a problem, in which we consider restrictions

on k-tuple of sets, we may solve it in the following manner:

1. Suppose we find the largest such set family S that satisfies such a

restriction.

2. Create a diagonal k-tensorT : Sk → F , where F is a field, with non-zero

diagonal entries that encapsulates the restrictions of the k-tuple of sets.

3. By the slice rank lemma, we have that srk(T) � |S|.

4. We can now upper bound the slice rank of this k-tensor to achieve an

upper bound7 on |S|.

As we will see in the next chapter, it will require great ingenuity to create

diagonal k-tensors which encapsulate the restrictions of the problem while

simultaneously having "small" slice rank. It will also require somemachinery

to bound srk(T), but we will go over those steps in due time.

7We can suppose we find the smallest set family T that satisfies the restrictions and then

find a lower bound the slice rank of the k-tensor to achieve a lower bound on |T |.





Chapter 3

Slice Rank Polynomial Method

This chapter is focused on the slice rank polynomial method itself. We begin

by providing some applications due to other mathematicians, then with

some examples in which the slice rank polynomial method does not provide

any meaningful improvement of previous results. We end with a discussion

on how the slice rank grows, and what we may expect the slice rank of a

given k-tensor to be.

3.1 Applicationsof theSliceRankPolynomialMethod

Now that we have introduced the basics of the slice rank polynomial method,

let us put it to use. These next two examples offermeaningful insight as to the

power of the method, as well as where the difficulties lie. In fact, the second

example can be regarded as the birthplace of the slice rank polynomial

method. We go into more detail on the short history in subsection 3.1.2.

Without further ado, let us get our hands dirty.

3.1.1 Sunflowers

This first application features the Erdős-Rado Sunflower Conjecture, which

asks about the maximum number of sets a k-uniform family can contain

without containing a sunflower with ` petals, that is, an `-sunflower. To this

end, let us define what a sunflower is mathematically.
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Definition 3.1.1. Let a family F ⊆ 2
[n] be given.

1. We say that F is k-uniform if every set S ∈ F satisfies |S | � k.

2. We say thatF contains an `-sunflower if there exists subsets {S1 , S2 , . . . , S`}
of [n] such that for any i , j, Si ∩ S j � S for some set S ∈ 2

[n]. That is, the
pairwise intersection of ` sets in F is the same set S.

1

2
3

4

5

Figure 3.1 Visualization of the 3-sunflower {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}

While these objects are easy to define, the conjecture is very much open,

and has been since its formulation in 1960.1 In order to get a handle on

this problem, Erdős and Szemerédi suggested to obtain a non-trivial upper

bound involving the number n instead of the uniformity. The best they

could come up with was that the maximum size of a 3-sunflower-free family

on [n] was at most 2
n/e c

√
n
, but unfortunately, this was not much better

than the trivial bound of 2
n
. However, Erdős and Szemerédi did believe an

exponential factor improvement should be true.

Conjecture (Erdös and Szemerédi (1978)). For every ` ∈ N+, there exists a
constant c` < 2 such that for every family F ⊆ 2

[n] of size at least cn
` contains an

`-sunflower.

Erdős and Szemerédi proved that the Erdős-Rado Conjecture implied their

conjecture. However, similarly to the Erdős-Rado Conjecture, this conjecture

is hard to prove, and was only recently proved for ` � 3. The problem is still

unsolved for ` > 3.

1Excitingly, there has been recently progress due to Alweiss, Lovett, Wu and Zhang (2019)

and Rao (2020), however the methods used in those arguments are not of interest for this

thesis.
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Theorem 3.1.2 (Naslund and Sawin (2017)). Let c �
3

3
√

4

< 1.89. Then every
family F ⊆ 2

[n] of size at least cn contains a 3-sunflower.

Proof. Let S ⊆ 2
[n]

be a 3-sunflower-free family. In order to create our

3-tensor, we wish to find a characterization of when 3 distinct sets do not

form a sunflower. We see that three distinct sets, A, B, C, do not form a

sunflower if and only if an element of [n] is shared with exactly two of A, B,
or C. Less colloquially, 3 distinct sets A, B, C ∈ S do not form a 3-sunflower

if and only if there exists i ∈ [n] such that (vA + vB + vC)i � 2. We are now

closer to defining our diagonal 3-tensor. We define the function

T(x , y , z) �
n∏

i � 1

(2 − (x + y + z)i),

where x , y , z ∈ F [n]. From this definition, we see that T(vA , vB , vC) � 0 for

any three distinct members A, B, C ∈ S. However, we still need to take care

of the cases where two of the three sets are equal in order to make T diagonal.

To this end, we partitionS into antichains, classifying the elements according

to their size, say Sj � {S ∈ S | |S | � j}. If we now consider A, B, C ∈ Sj ,

where we have A � B , C, then, we necessarily have A, B * C. This

necessarily implies that there exists an i such that (vA + vB + vC)i � 2. From

this, we see that T is a diagonal 3-tensor on Sj .

We must finally ensure that our diagonal entries are non-zero. However,

if we work in a field with characteristic not equal to 2, say R, we see that

T(vA , vA , vA) � (−1)|A|2n−|A|
, which is non-zero. We can now apply Lemma

2.2.9 to our 3-tensor T on Sj , we obtain that |Sj | � srk(T). What is left is

bounding srk(T).

We note that T is polynomial of total degree n in the 3n variables x1 , . . . , xn ,

y1 , . . . , yn , z1 , . . . , zn . Expanding, we obtain

T(x , y , z) �
∑

ItJtKtL�[n]
2
|L |xI yJ zK ,

where wI �
∏

i∈I wi . To break this up into slices, we classify the terms

according to the smallest of the sizes |I |, | J |, |K |, with ties broken arbitrarily.
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Since I , J, and K are disjoint, the minimum size is at most n/3. So, we write

T(x , y , z) �
∑

ItJtKtL�[n]
|I |≤n/3

2
|L |xI yJ zK +

∑
ItJtKtL�[n]
| J |≤n/3

2
|L |xI yJ zK

+

∑
ItJtKtL�[n]
|K |≤n/3

2
|L |xI yJ zK

�

∑
I⊆[n]
|I |≤n/3

xI fI(y , z) +
∑
J⊆[n]
| J |≤n/3

yJ g J(x , z) +
∑

K⊆[n]
|K |≤n/3

zK hK(x , y),

for some 2-tensors fI , g J , hK . We see that each of these terms are slices, so

srk(T) ≤ 3

∑n/3
i�0

(n
i

)
. Thus,

|S| �
n∑

j � 0

|Sj | ≤ 3 (n + 1)
n/3∑
i � 0

(
n
i

)
.

We analyze this using probability theory.2 We need only consider the sum

of binomials, since the other terms grow linearly, and this term will grow

exponentially.

Let X ∼ Bin(n , 1

2
) be a binomial distribution with n trials, where the proba-

bility of success is 1/2. Then, for 0 < λ < 1, we have

λn∑
k�0

(n
k

)
2

n �

λn∑
k�0

(
n
k

) (
1

2

) k (
1

2

)n−k

︸               ︷︷               ︸
P[X � k]

� P[X ≤ λn],

where, in general P[X � m] is the probability that X has m successes in n
trials. We then see, in our sum,

n/3∑
i � 0

(
n
i

)
� 2

n P

[
X ≤ 1

3

n
]
.

So, we just need to analyzeP
[
X ≤ 1

3
n
]
. However, note that X can be written

as the sum of indicator variables Yi , where Yi ∼ Bin(1, 1

2
), is a Bernoulli

2We do not provide an introduction to probability theory in this thesis. For the curious

reader, see texts like Ross (2014) for an introduction.
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distribution. Then, by the theory of large deviations,

P

[
X ≤ 1

3

n
]
� P

[
X
n
≤ 1

3

]
︸       ︷︷       ︸

average of the Y′i s

≈ e−n I( 1
3
) ,

where, for a binomial distribution,

I
(
1

3

)
�

1

3

ln

(
1

3

)
+

(
1 − 1

3

)
ln

(
1 − 1

3

)
+ ln 2.

Therefore, we find that

P

[
X ≤ 1

3

n
]
≈ e−n( 1

3
ln( 1

3
)+(1− 1

3
) ln(1− 1

3
)+ln 2)

� e−n ln

(
2·22/3

3

)
�

(
e ln

(
3

2·22/3

) )n

�

(
3

2 · 22/3

)n

.

We are now able to bound the sum of binomials, in turn, giving us a bound

of |S|:
n/3∑
i � 0

(
n
i

)
� 2

n P

[
X ≤ 1

3

n
]
� 2

n
(

3

2 · 22/3

)n

�

(
3

2
2/3

)n

< 1.89
n .

As you can see from this example, the difficulty in the proof was constructing

a desirable diagonal k-tensor. However, once the problem is formulated

in a manner in which we can define a diagonal k-tensor, relatively simple

combinatorial reasoning can be used to bound the slice rank.

3.1.2 SET!

In the family-friendly visual card game SET 3, one plays with a deck of 81

unique cards, each having 4 features with 3 possibilities each. The features

3To play online, visit https://www.setgame.com/set/puzzle.

https://www.setgame.com/set/puzzle
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are the shape (diamond, squiggle, or oval), number of shapes (one, two, or

three), color (red, green, or purple), and shading (solid, striped, or open). To

make a set, you must have a combination of three cards, where each feature

is either (1) all the same, or (2) all different.

Figure 3.2 Example of a set.

Normally, one plays by laying out twelve cards, and the players try to find a

set, and if that happens, they call "set!" and then the three cards they took

are replaced. If there is no set from the twelve cards, three more are added,

and the process is repeated until a set is found. One may ask, how many

cards need to be on the table until a set is guaranteed. As mathematicians

are playful by nature, you are probably not surprised to hear that this has

been studied, and in fact was proven before the invention of the game by

Pellegrino (1970), who showed that number is 21.

Thinking about the cards in SET mathematically, we can encode them as

vectors in F4

3
, as each card has 4 features, each taking three possible values.

One may ask: what does it mean to have a SET in this sense? Taking three

elements a , b , c ∈ F3, sum to 0 if they are all distinct, or all the same. However,

if a , b � c, then a + b + c � a + 2b � a − b , 0 in F3. So, we can see that

three distinct cards corresponding to the vectors x , y , z ∈ F4

3
form a set if and

only if x + y + z � 0. So, if we had a SET-free set S ⊆ F4

3
, we see that there

would not exist three distinct elements a , b , c ∈ S such that a + b + c � 0,

where 0 denotes the zero vector. Before we continue with our analysis, a

quick definition.

Definition 3.1.3. Let a field F be given. Then, a 3-AP-free set S is a set such that
no three distinct elements in S form an arithmetic progression.

What is the relation of a 3-AP-free set and a SET-free set? Well, we can see

the relation with the following lemma.

Lemma 3.1.4. For any a , b , c ∈ F3, a + b + c � 0 if and only if a , b , c form an
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arithmetic progression.

Proof. (−→) Suppose that a + b + c � 0. From the above analysis, we see that

either a , b , c are all distinct, or a � b � c. If a � b � c, then we have a trivial

arithmetic progression. If a , b , c are all distinct, then we have a � 0, b � 1,

and c � 2, as there are only 3 elements in F3. We see this is also an arithmetic

progression.

(←−) Suppose that a , b , c form an arithmetic progression. Then, we claim

that b � a + n and c � a + 2n with n � 0 or n � 1. However, then we have

a + b + c � a + (a + n) + (a + 2n) � 3a + 3n � 0 ∈ F3. �

With this lemma, we see that a SET-free set of vectors in F4

3
is just a 3-AP-free

set of vectors. We can generalize this to higher dimensions. It we were to

add more features to our cards, say we have d features, we can still note

that a SET-free set of vectors in F d
3
is just a 3-AP-free set of vectors. We will

let r3(F d
3
) denote the largest number such there is a 3-AP-free set of that

size in F d
3
. So, in order to guarantee a set, if we have d features, we need to

lay out r3(F d
3
) + 1 cards on the table. This problem was recently solved by

Ellenberg and Gĳswĳt, using a method that is equivalent to the slice rank

polynomial method. Their motivation, perhaps unsatisfyingly, originated in

finite geometry, with something known as the capset problem.

Theorem 3.1.5 (Ellenberg and Gĳswĳt (2017)). For large d,

r3 (F d
3
) < 2.76

d .

Proof. Let S ⊆ F d
3
be a 3-AP-free set. From our discussion above, we see that

this is equivalent to that for every distinct a , b , c ∈ S, a + b + c , 0. So, we

define the following function

T(x , y , z) �
d∏

i�1

(xi + yi + zi − 1)(xi + yi + zi − 2).

We see that T(a , b , c) � 0 for any distinct a , b , c ∈ S. We also see that the

same also holds for any a , b � c, as a + 2β , 0 for any a , β in F3. Thus,

T is a diagonal 3-tensor on S, and since T(a , a , a) � 2
d , 0 for any a ∈ F d

3
,

Lemma 2.2.9 applies, and we have |S | � srk(T).

We now bound srk(T). In doing so, we note that T is a polynomial in the

3d variables x1 , . . . , xd , y1 , . . . , yd , z1 , . . . , zd . The total degree is 2d and the
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degree in each variable is 2. So, we have

T(x , y , z) �
∑

α,β,γ∈{0,1,2}d
cα,β,γ

(
d∏

i�1

xαi
i

) (
d∏

i�1

yβi
i

) (
d∏

i�1

zγi
i

)
,

where cα,β,γ is some constant depending on α, β, γ. We can now classify the

terms according to which of x, y, or z has the smallest total degree. As the

overall total degree is 2d, we see that at least one of

∑
αi ,

∑
βi and

∑
γi is at

most 2d/3. From this, we see

T(x , y , z) �
∑

α,β,γ∈{0,1,2}d∑
αi≤2d/3

cα,β,γ

(
d∏

i�1

xαi
i

) (
d∏

i�1

yβi
i

) (
d∏

i�1

zγi
i

)

+

∑
α,β,γ∈{0,1,2}d∑

βi≤2d/3

cα,β,γ

(
d∏

i�1

xαi
i

) (
d∏

i�1

yβi
i

) (
d∏

i�1

zγi
i

)

+

∑
α,β,γ∈{0,1,2}d∑

γi≤2d/3

cα,β,γ

(
d∏

i�1

xαi
i

) (
d∏

i�1

yβi
i

) (
d∏

i�1

zγi
i

)

�

∑
α∈{0,1,2}d∑
αi≤2d/3

(
d∏

i�1

xαi
i

)
fα(y , z) +

∑
β∈{0,1,2}d∑
βi≤2d/3

(
d∏

i�1

yβi
i

)
gβ(x , z)

+

∑
γ∈{0,1,2}d∑
γi≤2d/3

(
d∏

i�1

zγi
i

)
hγ(x , y)

for some 2-tensors fα , gβ , hγ. We note that as all these terms are slices, we

see that the slice rank of T is bounded by 3 times the number of ways to select

a vector α ∈ {0, 1, 2}d such that the sum of its coordinates is at most 2d/3.
Letting a , b , c represent the number of 0, 1, 2 coordinates of α respectively,

we see that this is equal to

3 ·
∑

a+b+c�d
b+2c≤2d/3

d!

a!b!c!

.
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To estimate this multinomial coefficient, consider the expression

(1 + x + x2)d �

∑
a ,b ,c∈N0

a+b+c�d

d!

a!b!c!

xb+2c ,

which is true for every real x. To make the terms of interest, b + 2c ≤ 2d/3,
the dominating ones, we first divide through by x2d/3

and then estimate

when 0 < x < 1. To this end, we obtain

f (x) � (x−2/3
+ x1/3

+ x4/3)d >
∑

a+b+c�d
b+2c≤2d/3

d!

a!b!c!

xb+2c− 2

3
d >

∑
a+b+c�d

b+2c≤2d/3

d!

a!b!c!

.

In the first inequality, we used that x > 0, and in the second, we used

that x < 1. To obtain the best upper bound, we minimize the function

f (x) � x−2/3 + x1/3 + x4/3
on the interval 0 < x < 1. We see that f ′(x) �

(4x2 + x − 2)/3x5/3
. From this, we note that f ′(x) � 0 when 4x2 + x − 2 � 0,

which is if x � −1/8 ±
√

33/8. However, we desire 0 < x < 1, so this implies

we have x � (
√

33 − 1)/8, which gives us f ((
√

33 − 1)/8) ≈ 2.755 < 2.76. This

gives us the bound of 2.76
d
.

3.2 What can go Awry?

Given the previous examples, the slice rank polynomial method is promising;

however, like everything, it is not perfect. In this subsection, we provide

two examples in which the slice rank polynomial method, at least in the

manner used, provide worse bounds than the trivial bounds. We hope this

illuminates some of the possible drawbacks and difficulties that may arise

when solving an extremal problem using the slice rank polynomial method.

3.2.1 Sunflower Generalization

As we saw in Section 3.1.1, Naslund and Sawin were able to prove Erdös

and Szemerédi’s conjecture in the special case of a 3-sunflower. In this

subsection, we (perhaps naïvely) attempt to generalize their proof for all

k-sunflowers, in hopes to prove the Erdös and Szemerédi conjecture. In the

end, the bounds we attain are not better than the trivial bounds, even for
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k � 4, however, let us explore the failed attempt and learn more about the

slice rank polynomial method.

Proof Attempt of the Erdös and Szemerédi’s conjecture. Let S ⊆ 2
[n]

be a family

with no k-sunflowers. In order to create our k-tensor, we wish to find a

characterization of when k distinct sets do not form a sunflower. We see

that k distinct sets, A1 ,A2 , . . . ,Ak , do not form a sunflower if and only if an

element of [n] is shared with 2, 3, ..., k − 1 of A1 ,A2 , . . . ,Ak . Reframing this,

k distinct sets A1 ,A2 , . . . ,Ak ∈ S do not form a k-sunflower if and only if

there exists i ∈ [n] such that (vA1
+ vA2

+ · · · + vAk )i ∈ {2, 3, . . . , k − 1}. We

are now closer to defining our diagonal k-tensor. We define the function

Tk(x1 , x2 , . . . , xk) �
n∏

i � 1

k−1∏
j � 2

( j − (x1 + x2 + · · · + xk)i),

where x1 , x2 , . . . , xk ∈ F [n]. From this definition, our tensor equals zero

for any k distinct members A1 ,A2 , . . . ,Ak ∈ S. However, we still need to

take care of the cases where some of these sets are equal in order to make

Tk diagonal. To this end, we partition S into antichains, classifying the

elements according to their size, say Sj � {S ∈ S | |S | � j}. Now, in any case

that is not A1 � A2 � · · · � Ak or A1 ,A2 , . . . ,Ak all distinct, there must exist

an i such that (vA1
+ vA2

+ · · · + vAk )i ∈ {2, 3, . . . , k − 1}. From this, we see

that Tk is a diagonal k-tensor on Sj .

We must finally ensure that our diagonal entries are non-zero. However,

working inR, ensures this as (vA+vA+ · · ·+vA)i ∈ {0, k} for all i. We can now

apply Lemma 2.2.9 to our k-tensor Tk on Sj , we obtain that |Sj | � srk(Tk).
What is left is bounding srk(Tk).

We note that Tk is polynomial of total degree (k − 2)n in the kn variables

x1,1 , . . . , x1,n , x2,1 , . . . , x2,n , . . . , xk ,1 , . . . , xk ,n . Expanding, we obtain

Tk(x1 , . . . , xk) �
∑

α1 ,...,αk∈{0,1,...,k−2}n
cα1 ,...,αk

(
d∏

i�1

xα1,i
1,i

)
. . .

(
d∏

i�1

xαk ,i
k ,i

)
,

where cα1 ,...,αk is some constant depending on α1 , . . . , αk . We can now

classify the terms according to which of x1 , . . . , xk has the smallest total

degree. As the overall total degree is (k − 2)n, we see that at least one of
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∑
α1,i , . . . ,

∑
αk ,i is at most (k − 2)n/k. From this, we see

Tk(x1 , . . . , xk) �
∑

α1 ,...,αk∈{0,1,...,k−2}n∑
α1,i≤(k−2)n/k

cα1 ,...,αk

(
d∏

i�1

xα1,i
1,i

)
. . .

(
d∏

i�1

xαk ,i
k ,i

)

+ . . . +
∑

α1 ,...,αk∈{0,1,...,k−2}n∑
αk ,i≤(k−2)n/k

cα1 ,...,αk

(
d∏

i�1

xα1,i
1,i

)
. . .

(
d∏

i�1

xαk ,i
k ,i

)

�

∑
α1 ,...,αk∈{0,1,...,k−2}n∑

α1,i≤(k−2)n/k

cα1 ,...,αk

(
d∏

i�1

xα1,i
1,i

)
fα1
(x2 , . . . , xk)

+ . . . +
∑

α1 ,...,αk∈{0,1,...,k−2}n∑
αk ,i≤(k−2)n/k

cα1 ,...,αk

(
d∏

i�1

xαk ,i
k ,i

)
fαk (x1 , . . . , xk−1

)

for some (k − 1)-tensors fα1
, fα2

, . . . , fαk . We note that as all these terms are

slices, we see that the slice rank of Tk is bounded by k times the number

of ways to select a vector α ∈ {0, 1, . . . , k − 2}n such that the sum of its

coordinates is at most (k − 2)n/k. Letting a1 , a2 , . . . , ak−1
represent the

number of 0, 1, . . . , k − 2 coordinates of α, we see that this is equal to

k ·
∑

a1+a2+···+ak−1
�n

a2+2a3+···+(k−2)ak−1
≤(k−2)n/k

n!

a1!a2! . . . ak−1
!

.

When k � 3, we obtain

3 ·
∑

a1+a2�n
a2≤n/3

n!

a1!a2!

� 3 ·
∑

a2≤n/3

n!

(n − a2)!a2!

� 3 ·
∑

k≤n/3

(
n
k

)
.

which is the same bound as Naslund and Sawin in their proof of Theorem

3.1.2. When k � 4, we obtain

4 ·
∑

a+b+c�n
b+2c≤n/2

n!

a!b!c!

.

We also notice that for k > 4,

k ·
∑

a1+a2+···+ak−1
�n

a2+2a3+···+(k−2)ak−1
≤(k−2)n/k

n!

a1!a2! . . . ak−1
!

> 4 ·
∑

a+b+c�n
b+2c≤n/2

n!

a!b!c!

,
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so, we first bound srk(T4) using a similar method to Ellenberg and Gĳswĳt’s

slice rank analysis in Theorem 3.1.5. Consider the expression

(1 + x + x2)n �

∑
a ,b ,c∈N0

a+b+c�n

n!

a!b!c!

xb+2c ,

which is true for every real x. To make the terms of interest, b +2c ≤ n/2, the
dominating ones, we first divide through by xn/2

and then estimate when

0 < x < 1. To this end, we obtain

f (x) � (x−1/2
+ x1/2

+ x3/2)n >
∑

a+b+c�n
b+2c≤n/2

n!

a!b!c!

xb+2c− n
2 >

∑
a+b+c�n
b+2c≤n/2

n!

a!b!c!

.

In the first inequality we used that x > 0 and in the second we used

that x < 1. To obtain the best upper bound, we minimize the function

f (x) � x−1/2+x1/2+x3/2
on the interval 0 < x < 1.Wesee that f ′(x) � 3x2+x−1

2x3/2 .

From this, we note that f ′(x) � 0 when 3x2 + x− 1 � 0, which is if x �
−1±
√

13

6
.

However, we desire 0 < x < 1, so this implies we have x �
−1+
√

13

6
, which

gives us the maximum of f
(
−1+
√

13

6

)
� 2.4626... < 2.47. So, we have

srk(T4) < 2.47
n
. �

Again, note that for k > 4, we have srk(Tk) > srk(T4), however even for

k � 4, the bound we obtain is not as strong as the trivial bound of 2
n
. There

are various possible reasons for this: the approximations for srk(T4) were

too loose, the decomposition of T4 into slices is not optimal, or T4 itself

has too large of a slice rank. In turn, there are various possible remedies

assumingwe still desire to solve this problem using the slice rank polynomial

method: improve the approximations for srk(T4), attempt to analyze the

srk(T4) via another decomposition of T4 into slices, define a different tensor

T4 entirely using a similar framework, or attempt the problem using a

different framework for k-sunflower sets and a characterization for when we

do not have a k-sunflower.

3.2.2 Coloring Rn

In this section we revisit an application of the slice rank polynomial method

due toNaslund, but this time in the context of coloring problems in Euclidean
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spaces. We begin by introducing the nature of the problem, and some

important objects.

Definition 3.2.1. A configuration of points S ⊂ Rk is said to be exponentially
Ramsey if, in order to guarantee no monochromatic copies of S in any coloring of
Rn , we need exponentially many colors as a function of n.

Definition 3.2.2. A k-simplex is a k-dimensional polytope which is the convex
hull of its k + 1 vertices. More intuitively, a k-simplex is the generalization of a
triangle (k � 2) to k-dimensional space. We say that a k-simplex is regular if its
side lengths are the same. We illustrate some examples.

k � 0

Point

k � 1

Line

k � 2

Triangle

k � 3

Tetrahedron

Figure 3.3 First four regular k-simplexes

Why are we so interested in exponentially Ramsey sets and k-simplexes?

Frankl and Rödl (1987) proved that every k-simplex is exponentially Ramsey.

Specifically, for any k, there exists εk > 0 such that any coloring of Rn
with

less than (1 + εk + o(1))n colors contains a monochromatic regular k-simplex

with side-length 1.

Let us examine the case k � 3 and let χ∆(Rn) denote the minimum number

of colors needed to color Rn
so that it does not contain a monochromatic

equilateral triangle of side lengths 1. Currently, the best lower bound for ε3

is due to Sagdeev (2018), with ε3 � 0.00085...

In 2020, Naslund attempted to improve this lower bound, using the slice

rank polynomial method. Unfortunately, we believe there was an error in the

proof that removes the novelty of the result. We state the original theorem

from Naslund, and show where we believe the error to be.

Theorem 3.2.3 (Naslund (2020a)). We have that

χ∆(Rn) > (1 + c + o(1))n ,

where c � 0.01446 . . .
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The modified version of Theorem 3.2.3 should instead by stated as follows.

Theorem 3.2.4. We have that

χ∆(Rn) > (1 + c + o(1))n ,

where c � −0.141 . . .

In order to prove this modified theorem, we need a proposition.

Proposition 3.2.5. For k ≤ n
2
, let S ⊂ {0, 1}n be the set of elements with exactly

k ones, and let p be the smallest odd prime such that p > k
4
. Suppose that A ⊂ S

does not contain x , y , z with

x − y




2
�



y − z




2
� ‖z − x‖

2
�

√
2p.

Let ε0 � n0.525 denote an error term. Then for sufficiently large n

|A| ≤ 3 · min

0<t<1

(1 + t + t2 + t3)n

t
n
3
+

k
6
+ε0

.

Proof. The bounds given by Baker et al. (2001) for the largest prime gap

imply that for sufficiently large n

p <
k
4

+ ε0.

For x , y , z ∈ S consider the polynomial

F : S × S × S→ Fp

defined by

F(x , y , z) �
n∏

i�1

(
xi + yi + zi − 1

)
.

If x , y , z satisfy F(x , y , z) , 0, that is if there is no i such that xi + yi + zi � 1,

then we must have ‖x − y‖2 � ‖y − z‖2 � ‖z − x‖2, and so they form an

equilateral triangle. To see this, we do not provide a full proof, but rather a

simple explanation.

For each j ∈ {0, 1, 2, 3} let a j � #

{
i : xi + yi + zi � j

}
. Note that a1 � 0 since

F(x , y , z) , 0. Since each vector has exactly k 1’s, if we have xi + yi � 2 with

zi � 0 for some i, we must have x j + z j � 2 with y j � 0 and yk + zk � 2 with
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xk � 0 for some distinct i , j, k, because there are no such i such that xi � 1

but yi � zi � 0.

When considering the difference of the vectors, these are the only such i
which contribute to the distance. Since these i occur the same number of

times for each vector x , y , z, we must have that these distances are the same.

Furthermore, if F(x , y , z) , 0, then we can upper bound the distance

‖x − y‖2
2
< 2p.

Since there are n coordinates, and 3k total entries equal to 1, we have that

a0 + a2 + a3 � n and 2 · a2 + 3 · a3 � 3k.

Subtracting 3 times the first equation from the second, we obtain

a2 � 3n − 3k − 3a0.

The only coordinates that contribute to the distance are counted by a2, and

so

‖y − z‖2
2
+ ‖z − x‖2

2
+ ‖x − y‖2

2
� 2a2.

Hence

‖x − y‖2
2
� 2n − 2k − 2a0.

The smallest a0 can be is if a3 � 0 and all 3k ones are used by coordinates

where the sum is 2. That is, a0 ≥ n − 3k
2
, and hence

‖x − y‖2
2

2

≤ k
2

< 2p. (3.1)

Let G : S × S→ Fp be given by

G(x , y) � ©­«1 −
(
‖x − y‖2

2

2

)p−1ª®¬ ,
and note that

1

2
‖x − y‖2

2
will always be an integer for x , y ∈ S. If if x , y are

such that
1

2
‖x − y‖2

2
< 2p, then G(x , y) , 0 if and only if

1

2
‖x − y‖2

2
� p. For

x , y , z ∈ S define

H(x , y , z) B F(x , y , z)G(x , y).
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This function will be non-zero when x � y � z, and will be zero whenever

x , y , z do not form an equilateral triangle with side length

√
2p. Suppose

that A ⊂ S contains no equilateral triangles of side length

√
2p. Then H

restricted to A × A × A will be a diagonal tensor with non-zero diagonal

elements, and so by Lemma 2.2.9

|A| ≤ srk(H).
The polynomial H will have degree at most n + 2p < n +

k
2
+ ε0, and we may

expand it as a linear combination of monomials of the form(
xd1

1
· · · xdn

n

) (
ye1

1
· · · xen

n
) (

z f1
1
· · · z fn

n

)
where di , ei ∈ {0, 1, 2, 3} and fi ∈ {0, 1} for each i. This is where we differ

from the proof by Naslund. Originally, it was stated that di , ei , fi ∈ {0, 1},
however, if we expand G(x , y), we obtain

G(x , y) � ©­«1 −
(
‖x − y‖2

2

2

)p−1ª®¬
�

(
1 −

( (x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2
2

)p−1

)
.

From this, we see that when multiplying F(x , y , z) and G(x , y), it is possible
to obtain the term x3

1
f (x , y , z) in your monomial. For example, let n � 4,

p � 2, and k � 2, then we have

F(x , y , z)G(x , y)

�

4∏
i�1

(xi+yi+zi−1)
(
1 −

( (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2
2

))
.

Instead of attempting to expand this, we find that if we "chose" x1 from

the first term in our product of F(x , y , z), −1 from the remaining three, and

multiplied by the non-constant part of G(x , y), we would obtain

x1 ·
( (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2

2

)
.

In which, when expanding into monomials, and only considering the first

term in our expansion, we would obtain

x1 ·
(x1 − y1)2

2

�
x3

1
− 2x2

1
y1 + x1 y2

1

2

.
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With this example, it is clear that the polynomial in G(x , y)may contribute

up to an additional 2 powers of xi and yi for any i. Now, using a similar

argument as that of Naslund, we find(
n∑

i�1

di

)
+

(
n∑

i�1

ei

)
+

(
n∑

i�1

fi

)
≤ n +

k
2

+ ε0.

For each monomial, one of these sums will be at most
1

3
(n +

k
2
+ ε0), and

hence by always slicing off the lowest degree piece we have

srk(H) ≤ 3 · #
{

v ∈ {0, 1, 2, 3}n :

n∑
i�1

vi ≤
n
3

+
k
6

+
ε0

3

}
.

For any 0 < t < 1,

#

{
v ∈ {0, 1, 2, 3}n :

n∑
i�1

vi ≤ r

}
�

∑
k0+k1+k2+k3�n
k1+2k2+3k3≤r

(
n

k0 , k1 , k2 , k3

)
≤ t−r

∑
k0+k1+k2+k3�n

(
n

k0 , k1 , k2 , k3

)
tk1(t2)k2(t3)k3

�
(1 + t + t2 + t3)n

tr

since the coefficient tk1+2k2+3k3−r
will be greater than 1 for k1 + 2k2 + 3k3 ≤ r.

Taking theminimum over t, for r �
n
3
+

k
6
+
ε0

3
, we obtain the stated result. �

Proof of Theorem 3.2.3. Let S ⊂ {0, 1}n be the subset of vectors with exactly k
ones, for k ≤ n

2
, and let A ⊂ S be the largest subset that does not contain an

equilateral triangle of side length

√
2p. Then we need at least

|S |
|A| sets that do

not contain an equilateral triangle of side lengths

√
2p to cover S. Rescale

every point in Rn
by a factor of

√
2p so that these points are at distance 1.

As
1√
2p

S ⊂ Rn
, it follows that

χ∆(Rn) ≥ |S ||A| ,

and by Proposition 3.2.5

χ∆(Rn) ≥ 1

3

(
n
k

)
max

0<t<1

t
n
3
+

k
6
+ε0

(1 + t + t2 + t3)n .
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Since this bound holds for any 0 ≤ k ≤ n
2
, we may take the maximum and

write

χ∆(Rn) ≥ 1

3

max

0<t<1

[(
t

1

3
+
ε
0

n

1 + t + t2 + t3

)n

max

0≤k≤ n
2

(
n
k

)
t

k
6

]
.

Expanding (1 + x)n , we have that for any 0 < x < 1

(1 + x)n
n + 1

< max

0≤k≤ n
2

(
n
k

)
xk < (1 + x)n ,

and hence

max

0≤k≤ n
2

(
n
k

)
t

k
6 >

1

n + 1

(
1 + t

1

6

)n
.

We must have t
1

3 > 1

2
, since otherwise the value of the function we are

maximizing will be less than 1. Hence t will be bounded away from 0, which

implies that t
ε
0

n � 1 + o(1). Simplifying the result, we obtain

χ∆(Rn) >
©­­«max

0<t<1

t
1

3

(
1 + t

1

6

)
1 + t + t2 + t3

+ o(1)
ª®®¬

n

and the desired bound follows by computing the maximum. In fact, we get

this maximum is c � 0.859. �

Originally, in the proof given by Naslund, we had the result

χ∆(Rn) >
©­­«max

0<t<1

t
1

3

(
1 + t

1

6

)
1 + t

+ o(1)
ª®®¬

n

,

which would give us the maximum c � 1.01446...With this result, we would

indeed improve on the previous result given by Sagdeev (2018), which was

that of 1.00085..., however, this does not seem to be the case with the new

proof.

Assuming our modification is correct, it seems as though the slice rank

polynomial method is not as precise as one would hope, the more specific

method from Sagdeev seem to win out. However, not all hope is lost! It may



What can go Awry? 35

be the case that our approximations of

|S |
|A| � max

0≤k≤ n
2

(
n
k

)
#

{
v ∈ {0, 1, 2, 3}n :

n∑
i�1

vi ≤
n
3

+
k
6

+
ε0

3

} ,
are too loose. Before we set out to improve the approximations, we check

computationally via Sage, whether the value above provides us with an

exponential function in n, with a base strictly greater than 1. We outline

how what our functions computed, followed by their outputs. There are two

main functions.

1: function sizeOfSet(n, k)
2: Create a list L of all 3-tuples (v1 , v2 , v3)where v2+2v3+3v4 ≤ n

3
+

k
6
+
ε0

3
,

and each vi ≥ 0.

3: Sum the appropriate multinomial coefficients and store it in the

integer Sum.
4: return the nth root of

(n
k

)
/(3 · Sum).

5: end function

1: function maxSizeOfSet(n)
2: Loop over all values of 0 ≤ k ≤ n/2.
3: return the maximum value of sizeOfSet(n, k).
4: end function

Running this, for n up to 10, 000, we never achieved a maximum greater

than 0.9. We provide a table of values given by the code we ran.

n value of k value of |S |/|A|
100 47 (0.822)100

1000 457 (0.847)1000

5000 2258 (0.854)5000

10000 4517 (0.855)10000

Table 3.1 Explicit values provided by code, for n up to 10,000.

From this, we believe the error not to lie in the approximations. It simply

seems to be the case that the slice rank polynomial method is not strong

enough to provide a bound better than the optimized methods for this
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specific problem. Of course, as before, there are many possible reasons

for this. It may be due to how we decomposed our tensor in slices or the

definition of the tensor itself. However, with this in mind, we turn to the

next section which will provide a short but meaningful discussion on what

we may expect the slice rank of a tensor to be given its definition.

3.3 Expectations of the Slice Rank

In this section we discuss heuristics for bounding the slice rank. There are

three key features of a tensor that govern the slice rank. These are:

1. k itself,

2. the total degree of the k-tensor,

3. and the multiplicity of each variable.

For the sake of our analysis in this chapter, we let the total degree of our

k-tensor be m. We also suppose, like in many of the applications above,

that the k variables in our k-tensor are elements of F [n], for some field F

and a fixed integer n. Typically, in these problem, we have the slice rank of

our k-tensor in terms of n, something like the form srk(T) ≤ sn
, for some s.

Finally, suppose you are given the slice rank of a k-tensor T, say srk(T) � cn
.

We would like to analyze the slice rank of related k-tensors.

Suppose we are given a k′-tensor, T′, that is intimately related to T with

k′ > k. For example, let T be Naslund and Sawin’s sunflower 3-tensor

T(x , y , z) �
n∏

i�1

(2 − (xi + yi + zi)),

and let T′ be

T′(x , y , z , w) �
n∏

i�1

(2 − (xi + yi + zi + wi)).

In this case, the total degree of the two tensors are the same, n. The key

difference between these two tensors, in the analysis of their slice rank,

lies in the bound of each term into slices, which in this case is n/k or n/k′
(in the examples above, we saw this bound was usually the total degree

over k, and this follows that trend). When analyzing the slice rank for T,
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we obtained the bound 3(n + 1)∑n/3
k�0

(n
k

)
, but for T′, we would obtain the

bound 4(n + 1)∑n/4
k�0

(n
k

)
. Since we are mainly considering how this bound

grows exponentially, the difference between 3 and 4 is negligible, we mainly

consider the difference between summing the binomial terms to n/4 and

summing to n/3.

From this, we see that the slice rank (or, at least, the bound we may attain

for it) of T′ is smaller than that of T. This tells us that if k increases then, in

turn, the bound for each slice term would decrease, leading to a decrease of

the slice rank. Of course, the notion of generalizing a k-tensor to a k′-tensor
is not necessarily a well-defined notion, as there can be many choices that

"make sense", but in cases like the one above, we may apply this heuristic to

understand what we may expect of the slice rank.

In a similar manner, we may imagine what would happen if the total degree,

m, of our k-tensor T increased in our new k-tensor T′. If this is the only

change, then using the same analysis as above, the bound of each term into

slices would increase, which would lead to an increase in the slice rank.

We now consider the possible multiplicity of each variable. Suppose that

in our k-tensor T the possible multiplicity of each variable was at most a,
and we are now given a k-tensor T′ in which the possible multiplicity of

each variable is a′ > a. Then, there are two aspects to consider. Typically,

when the multiplicity of each variable increases, this necessarily implies that

the total degree of our tensor increases. For example, if T is Naslund and

Sawin’s sunflower 3-tensor and we define T′ as

T′(x , y , z) �
n∏

i�1

(2 − (xi + yi + zi))(3 − (xi + yi + zi)),

then the multiplicity of each variable went from at most 1 to at most 2, and

the total degree increased from n to 2n. As we saw above, an increase in

the total degree necessarily leads to an increase of the slice rank via the

increase of the bounds of each term into slices. However, there is also

another change when we increase the multiplicity of our variables: the

types of multinomial coefficients we consider. If you take the above as an

example, the Naslund and Sawin tensor considered binomial coefficients,

namely the sum

∑n/3
k�0

(n
k

)
, but with our tensor T′, we would have to consider

trinomial coefficients, namely the sum

∑
k1+k2+k3�n
k2+2k3≤2n/3

n!

k1!k2!k3!
. The bounds we

attain for T is srk(T) < 1.89
n
, but using the Ellenberg-Gĳswĳt method (T′
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is intimately related to their tensor), we find that we obtain srk(T′) < 2.76
n
.

This is a big increase. Even if the total degree stayed the same and we only

considered those terms in which k2 + 2k3 ≤ n/3, we would obtain the bound

srk(T′) < 2.08
n
. From this analysis, we see that an increase in multiplicity of

each variable will typically lead to an increase to the slice rank, especially if

the total degree happens to increase as well.

Natural questions arise from this kind of analysis. For example, what can

we expect to occur to the slice rank if the multiplicity increases, but the

total degree of our polynomial (somehow) decreases? Questions of this

nature are difficult to answer in full generality, but we hope that this set of

heuristics helps the reader understand what they may expect from the slice

rank analysis before they embark on it.



Chapter 4

The Partition Rank

This section dedicates itself to an existing generalization of the slice rank, due

to Naslund (2020b), called the partition rank, as well as a short discussion

on possible directions in the generalization of the slice rank method.

4.1 Preliminaries

Recall that we use the notation, where given variables x1 , . . . , xn and a set

S ⊆ {1, ..., n} with S � {s1 , . . . , sk}, we use the notation xS to denote the

subset of variables xs1
, . . . , xsk . So, for a function f of k variables, we have

f (xS) � f (xs1
, . . . , xsk ).

For example, if S � {1, 3, 4}, then f (xS) � f (x1 , x3 , x4). We now provide

some important definitions necessary for introducing the partition rank.

Definition 4.1.1. A partition of [n] is a collection P of non-empty, pairwise
disjoint, subsets of [n] such that ⋃

A∈P

A � [n].

We say that P is the trivial partition if it only consists of a single set, [n].
Definition 4.1.2. Let X be a finite set, let F be a field and suppose that we are given
a k-tensor T : Xk → F . If there exists some non-trivial partition P such that

T(x1 , . . . , xn) �
∏
A∈P

fA(xA),
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for some functions fA, that T is said to have partition rank 1.

Another manner of thinking about a partition rank 1 k-tensor T is if the

variables can be split into disjoint non-empty sets S1 , . . . , St , with t ≥ 2 such

that

1. S1 ∪ · · · ∪ St � [n], and

2. T(x1 , . . . , xn) � f1(xS1
) f2(xS2

) . . . ft(xSt ), for some tensors f1 , . . . , ft .

That is, our k-tensor T will have partition rank 1 if and only if it can be

written as

T(x1 , . . . , xn) � f (xI)g(x J)

for some tensors f , g and some disjoint I , J , ∅ where I ∪ J � [n]. Notice

that T will be a slice (equivalently, have slice rank 1), if it can be written in

the above form at |S | � 1 or |T | � 1. In this frame of mind, we note that

a k-tensor having partition rank 1 is a “less restrictive” requirement than

being a slice.

Example 7. Let X be a finite set and F a field. The function T : X8 → F given by

T(x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8) � f1(x1 , x3 , x8) f2(x2 , x7) f3(x4 , x6) f4(x5)

will have partition rank 1, with partition P given by the sets S1 � {1, 3, 8},
S2 � {2, 7}, S3 � {4, 6}, and S4 � {5}.

We can now discuss the partition rank.

4.2 The Partition Rank and Other Directions

We begin by defining the partition rank itself.

Definition 4.2.1. Let X be a finite set, let F be a field and suppose that we are given
a k-tensor T : Xk → F . The partition rank of T is the minimal r such that

T �

r∑
i�1

gi ,

where each gi has partition rank 1. For notational purposes, we denote r � prk(T).
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The partition rank is the minimal such rank where we partition or separate

the variables. However, keeping inmind that wewant to find generalizations

of the slice rank, it may prove useful to have notation for the rank of a k-tensor
where we restrict to a specific subset of partitions P.
Definition 4.2.2. Let X be a finite set, let F be a field, let P be a collection of
non-trivial partitions of [n] and suppose that we are given a k-tensor T : Xk → F .
We say that T has P-rank 1 if there exists a partition P ∈ P such that

T(x1 , . . . , xn) �
∏
A∈P

fA(xA)

for some function fA. The P-rank of a function F : Xk → F is the minimal r such
that

F �

r∑
i�1

gi ,

where each gi has P−rank 1.

Before we continue our discussion, we provide an important definition.

Definition 4.2.3. Consider two partitions P, P′ of the set [n]. We say that P′ is a
refinement ofP if every set S′ ∈ P′ is a subset of some set S ∈ P. For example, letting
P′ � {{1, 2}, {3, 4}, {5, 6}, {7}} and P � {{1, 2, 3, 4}, {5, 6, 7}}, we see that P′

is a refinement of P as {1, 2}, {3, 4} ⊂ {1, 2, 3, 4} and {5, 6}, {7} ⊂ {5, 6, 7}.

As discussed in subsection 2.2, wewere able to compare the slice rank and the

tensor rank of generic k-tensors. In fact, in general, we have srk(T) ≤ trk(T),
and we are guaranteed equality when k � 1, 2. We would like to ask the

same with the partition rank. To do so, we state and prove the following

proposition, from Naslund (2020b).

Proposition 4.2.4 (Proposition 9 in Naslund (2020b)). Let P ,P′ be two collec-
tions of non-trivial partitions of [n]. Suppose that every partition P ∈ P is refined
by some partition P′ ∈ P′. Then we have, for any k-tensor T : Xk → F ,

P-rank(T) ≤ P′-rank(T).

Proof. Suppose that T has P′-rank 1. Then, there exists P′ ∈ P′ and fA such

that

T �

∏
A∈P′

fA .
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However, since P′ refines some P ∈ P, we may write

T �

∏
B∈P

gB ,

where

gB �

∏
A∈P′
A⊂B

fA .

�

Again, we note that the partition rank is the P-rank when P is the set of all

non-trivial partitions. Similarly, the slice rank is the Pslice-rank where Pslice
denotes the set of partitions of [n] into a set of size 1 and a set of size n − 1.

From this, we see that Pslice ⊆ P, and thus, for any k-tensor T,

prk(T) ≤ srk(T).

Finally, we note that the tensor rank is the Ptensor-rank where Ptensor denotes
the set of partitions of [n] into a n sets of size 1. However, this partition is a

refinement of every partition in Pslice, so by Proposition 4.2.4, we have that,

for any k-tensor T,
prk(T) ≤ srk(T) ≤ trk(T).

When k � 2, using the same analysis as in subsection 2.2, we note that

these three notions of rank are equivalent, since there is only one non-trivial

partition of 2. When k � 3, the partition rank and the slice rank are equivalent,

as the non-trivial partitions of 3 either split up into two sets, one of size 1

and the other of size 2, or into three sets of size 1. However, we notice that if

we were to write a function as the product of three 1-tensors, we can always

multiply those tensors together to create one 2-tensor. We note that, usually,

the tensor rank is different when k � 3. When k � 4, these three notions of

rank are usually all different, however, the partition rank can be substantially

lower than the slice rank. Consider this example from Naslund (2020b).

Example 8. Consider k � 4. The only partitions of [4] that do not refine partitions
appearing in Pslice are {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, and {{1, 4}, {2, 3}}. For
a finite set X and a field F , consider the 4-tensor F : X4 → F defined by

F(x , y , z , w) �
{

1, x � y and z � w ,
0 otherwise.
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That is,
F(x , y , z , w) � δ(x , y)δ(z , w)

where δ(x , y) is the function that is 1 when x � y and 0 otherwise. Then, by
definition we note that prk(F) � 1. However, by Theorem 4.6 of Blasiak et al.
(2017) and methods that are not of direct interest for this thesis, we can find that
srk(F) � |X |.

This new notion of the rank of a k-tensor is interesting in it of itself, however,

for it to be a generalization of the slice rank of interest, we need a similar

relationship between prk(T) and |X |. From the analysis above, we note that

we always have, as a result of 2.2.8, prk(T) ≤ srk(T) ≤ |X |. However, the

following lemma is the relationship that we ultimately desire.

Lemma 4.2.5 (Partition Rank Lemma, Lemma 11 in Naslund (2020b).).
Let T : Xk → F be a diagonal k-tensor with non-zero diagonal entries. Then
prk(T) � |X |.

Proof. As we have already shown that the partition rank is at most |A|, our
goal is to prove the lower bound. The proof proceeds by induction on the

number of variables. When n � 2, this is the usual notion of rank, and so

the result follows. Suppose that F has partition rank r < |A|, that is suppose
that we can write

F(x1 , . . . , xn) �
r∑

i�1

fi(xSi )gi(xTi )

for some sets Si , Ti with Si∩Ti � ∅ and Si∪Ti � {1, . . . , n}. Assumewithout

loss of generality that |Si | ≤ n
2
for each i. If there is no i such that |Si | � 1,

then choose an arbitrary variable, say x1, and average over that coordinate.

Then∑
x1∈X

F(x1 , . . . , xn) �
∑
a∈A

caδa(x2) · · · δa(xn) �
r∑

i�1

˜fi(xSi\{1}) g̃i
(
xTi\{1}

)
,

for functions
˜f , g̃ given by averaging f , g over x1. This contradicts the

inductive hypothesis since

∑
a∈A caδa(x2) · · · δa(xn)will have partition rank

equal to |A| > r.

Suppose that there exists some Si such that |Si | � 1. Then Si � { j} for some

j ∈ {1, . . . , n}. Let U be the set of indices u for which Su � { j}. Consider
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the annihilator of U, defined to be

V �

h : X → F :

∑
x j∈X

fu(x j)h(x j) � 0 for all u ∈ U

 .
This vector space has dimension at least |X | − |U |, and this will be positive

since |U | ≤ r < |A| ≤ |X |. Let v ∈ V have maximal support, and set

Σ � {x ∈ X : v(x) , 0}. Then |Σ| ≥ dim V ≥ |X | − |U |, since otherwise there

exists non-zero w ∈ V vanishing on Σ, and the function v + w would have

a larger support than v. Multiplying both sides of our expression by v(x j)
and summing over x j reduces the dimension by 1. Indeed∑

x j∈X

v(x j)F(x1 , . . . , xn)

�

∑
a∈A

caδa(x1) · · · δa(x j−1)δa(x j+1) · · · δa(xn)
©­«
∑
x j∈X

v(x j)δa(x j)
ª®¬ ,

and since the sum

∑
x j∈X v(x j)δa(x j) will be non-zero for at least |X | − |U |

values of a ∈ X, the partition rank of the above must be at least |A| − |U | by
the inductive hypothesis. Since∑

x j∈X

v(x j) fi(xSi ) � 0

for each i ∈ U, it follows that∑
x j∈X

v(x j)
r∑

i�1

ci fi(xSi )gi(xTi )

will be a sum of at most r − |U | partition rank 1 functions, and hence it has

partition rank at most r − |U |. This implies that |A| − |U | ≤ r − |U |, which is

a contradiction, and the lemma is proven. �

As a direct result of the Partition Rank Lemma, we can use the partition

rank as we have been using the slice rank in previous applications. As for a

diagonal k-tensor T : Xk → F , we have prk(T) � |X | � srk(T), it may seem

that using the partition rank does not lead to an improvement as opposed

to using the slice rank. However, in practice, the analysis of the partition
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rank allows for tighter bounds on |X |. In fact, with the introduction of the

partition rank, Naslund (2020b) was able to generalize the work of ?, which

provided a bound on the size of a set A ⊂ F n
q which contained no right

corners, to k-right corners for fields F n
q , where q � pr

for some prime p > k.
The analysis used in Naslund’s proof would not have been possible using

the slice rank, the full generality was a necessity.

From the formulation of the partition rank, we have a generalization in the

direction of how we partition the variables of our k-tensor. That is, for the
slice rank, given a k-tensor, we would consider how to write our k-tensor as
the sum of the product of 1- and (k − 1)- tensors. However, with the partition

rank, we are not limited to just this form in our product, we are free to choose

any partition of [n]. It is also worth noting, however, that the P-rank allows

for control as to what types of partition we do and don’t allow for. At the

moment, there does not exist a criterion for equality between the P-rank
and |X |, however, this allows for a possible avenue for generalization.

Another possible avenue of generalization is to understand the relationship

between the slice rank (or any generalization of the slice rank) of a k-tensor
T : Xk → F and |X | if our k-tensor is not diagonal. For example, is it the case

that srk(T) � |X | ifT is a block-diagonal k-tensor (withwhatever it maymean

for a k-tensor to be block-diagonal), or if T is a upper- or lower-triangular

k-tensor? If we can say something to that extent, then we would be less

restricted in the construction of our k-tensors before applying the slice rank

method, or any of its generalizations like the partition rank. This would

allow for a definition of a k-tensor with necessarily smaller slice rank and

thus, a tighter bound on |X |. The question just becomes if a relationship of

this manner exists with k-tensors that are not diagonal.
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