
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

11-14-2005

Grid-Enabling a Vibroacoustic Analysis
Application
Brian Bentow

Jon Dodge

Aaron Homer

Christopher D. Moore

Robert M. Keller
Harvey Mudd College

See next page for additional authors

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more
information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Bentow, Brian, Jon Dodge, Aaron Homer, Christopher D. Moore, Robert M. Keller, Matthew T. Presley, Robert Davis, Jorge Seidel,
Craig Lee, and Joseph Betser. "Grid-Enabling a Vibroacoustic Analysis Application." Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, Seattle (13-14 November 2005): 33-39. DOI: 10.1109/GRID.2005.1542721

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Authors
Brian Bentow, Jon Dodge, Aaron Homer, Christopher D. Moore, Robert M. Keller, Matthew T. Presley,
Robert Davis, Jorge Seidel, Craig Lee, and Joseph Betser

This conference proceeding is available at Scholarship @ Claremont: http://scholarship.claremont.edu/hmc_fac_pub/256

http://scholarship.claremont.edu/hmc_fac_pub/256

Grid-Enabling a Vibroacoustic Analysis Application
Brian Bentow

Jon Dodge
Aaron Homer

Christopher D. Moore
Robert M. Keller

Harvey Mudd College
Claremont, CA

bbentow@cs.hmc.edu
jdodge@cs.hmc.edu
ahomer@cs.hmc.edu

cdmoore@cs.hmc.edu
keller@cs.hmc.edu

Matthew Presley
Robert Davis
Jorge Seidel
Craig Lee

Joseph Betser

The Aerospace Corporation
El Segundo, CA

presley@aero.org
robdavis@aero.org

seidel@aero.org
lee@aero.org

Joseph.Betser@aero.org

Abstract— This paper describes the process of grid-enabling a
vibroacoustic analysis application using the Globus Toolkit 3.2.1.
This is the first step in a project intended to grid-enable a suite of
tools being developed as a service-oriented architecture for space-
craft telemetry analysis. Many of the applications in the suite are
compute intensive and would benefit from significantly improved
performance. In this paper we show the advantage of using
Globus to grid-enable a single tool in a vibroacoustic analysis
flow, with the result that using as few as eleven nodes, that tool’s
runtime improved by a factor of eight. While communication
overhead does affect performance, these results also indicate
that coordinated communication and execution scheduling as
part of workflow management would be able to significantly
improve overall efficiency. In the larger context, our experience
also shows that the service-oriented architecture approach, using
grid computing tools, can provide a more flexible system design,
in addition to improved performance and increased utilization
of resources. We also provide some lessons learned in using the
Globus Toolkit.

I. INTRODUCTION

Space launches are costly, high-risk, multi-discipline en-
deavors, and mission payloads must be carefully engineered to
ensure success. Simply surviving the launch is an important
hurdle since satellite payloads are subjected to intense me-
chanical vibration and acoustic noise. In order to monitor, un-
derstand, and better predict this environment, The Aerospace
Corporation is developing a Java-based tool suite called Vi-
broacoustic Intelligent System for Predicting Environments,
Risk, and Specifications (VISPERS) that has tools to allow
analysts to clean-up, filter and analyze vibroacoustic data
[1]. Certain components of VISPERS are compute-intensive,
however, and performance could be improved by parallelizing
those applications and running them on whatever resources
are available. It would also be very useful to allow multiple
telemetry analysts to use the tools in an interactive fashion and
process data from different launches simultaneously. Hence, it
was decided to investigate the implementation of VISPERS

as a grid-enabled service-oriented architecture to accomplish
these goals.

This paper reports on the first sub-task, which is to deter-
mine the feasibility of parallel grid-enabling one component of
VISPERS, a utility called VAIL, using the Globus Toolkit 3.2.1
[2] in order to achieve a significant performance enhancement.
The grid-enabled version is called gVAIL.

II. MOTIVATION

A. Telemetry Collection

When a spacecraft is launched it contains many sensors, in-
cluding accelerometers to measure vibration and microphones
to measure acoustic noise. The data provided by these sensors
is converted from analog to digital, then consolidated into a
single stream of digital data and sent by radio to telemetry data
receiving stations (TDRS) along the path of the spacecraft, as
illustrated in Figure 1. This telemetry stream will be picked
up by the nearest receiving station, but will likely include
static and other anomalies. For example, the signal may briefly
disappear (drop out) due to the antenna on the spacecraft
rotating away from the receiving station.

The data that VISPERS is used to analyze is provided
by all of the telemetry stations along the flight path, both
fixed stations and temporary stations on aircraft or ships. The
multiple telemetry streams are placed in files in a telemetry
database. Once there, they need to be scrubbed for noise,
and consolidated into a single, best data stream prior to final
processing. It is possible that hundreds of telemetry streams
may have to consolidated and analyzed to identify episodes of
excessive vibration during launch.

This sequence of steps is illustrated in Figure 2. From the
desktop, an analyst can select telemetry streams from the data-
base front-end, construct probability density functions (PDFs)
for later comparisons, and use gTACT (Telemetry Alignment
and Consolidation Tool) to combine streams. (gTACT is not

Grid Computing Workshop 2005330-7803-9493-3/05/$20.00 2005 IEEE

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 13, 2008 at 19:20 from IEEE Xplore. Restrictions apply.

Fig. 1. Telemetry Collection.

discussed here.) Then gVAIL is run to identify possible
episodes of interest. Additional tools are available to look
for maximum vibrational episodes, analyze damage to the
telemetry stream and also edit streams by hand. The ultimate
goal is, of course, to help engineers design parts that are
unlikely to break in this severe environment.

As part of the VISPERS tool suite, a group at The
Aerospace Corporation is looking at using Artificial Intelli-
gence techniques, specifically neural nets, to locate anomalies
in the telemetry streams and to suggest to the human analyst
ways to fix them. This group has developed a utility called
VAIL (VISPERS AI Lab). VAIL looks at the data stream by
doing a DSP analysis, and one or more neurons fire when
an anomaly is detected. If the human analyst agrees on the
location and type of anomaly the behavior of those neurons
is reinforced as necessary. VAIL then suggests a fix for the
anomaly from several possible tools based on the choice the
human analyst has made for similar anomalies in the past.

VAIL is extremely compute-intensive. Not only does it look
at (do a DSP analysis of) every point in the waveform and the
neighborhood around that point, but different neurons look for
different anomalies (noise spikes, data drop-out, DC drift or
signal bleed-through to name just a few) so it is useful to split
VAIL’s computation across multiple machines. This task is
facilitated by VAIL’s highly parallelizable algorithm. Because
VAIL’s analysis on one part of a file does not depend on its
analysis on another part of the file, a task can be divided
so that each machine analyzes a separate section of a data
file. To leverage the computational power of machines across
heterogeneous networks, it is advantageous to employ grid
computing, distributed computing that allows computational
resources to be shared across disparate networks and organi-
zations [3].

Analyst’s

Computer

Grid

Grid

Beowulf Cluster

gTACT

gVAIL

dbFRONT

Predictor

MaxiMax

Damage Based

Analysis

Time History

Editor

Fig. 2. The VISPERS Workflow.

III. GVAIL DESIGN

A. gVAIL Components

gVAIL consists of the following components: a client pro-
gram, a scheduler service, an analyzer factory service, a node
information publisher service, and Globus’s index service [4].
The client program, dubbed the Time History Editor, has a GUI
that allows a user to view and modify data files (known as time
histories). It hooks into the rest of gVAIL to allow the user to
look for anomalies in the data. The client submits analyses to
the scheduler service, which queries Globus’s index service to
find out which nodes are available. The scheduler (or resource
broker) then decides which node should perform which part of
the analysis. Currently, it makes this decision using a round-
robin algorithm in which each node is assigned an equal
amount of work, defined by the number of data points the
node is to analyze. Each node runs both the analyzer service,
which provides an interface into the VAIL neural network
code, as well as the node information publisher service. The
node information publisher exposes a service data element
(SDE) called gVAILNodeInfo and causes the index service
to subscribe to this SDE. Currently, gVAILNodeInfo has
no used data fields. Instead, the scheduler uses the SDE’s
originator attribute to determine the node’s IP address
and its goodUntil attribute to determine whether the node
is available. In the future, more information could be published
through gVAILNodeInfo, such as the node’s load, which the
scheduler could use to implement a more complicated resource
brokering algorithm.

The sequence of steps taken when the user submits an
analysis is depicted in Figure 3. The steps are as follows:

1) When the user tells the client to begin an analysis, the
client talks to the scheduler, telling it which data file the
user wants to analyze.

2) The scheduler queries the index service, asking for a list
of machines available to perform analyses.

3) The index service responds with the list of nodes.
4) The scheduler decides which node should perform which

part of the analysis and passes this information on to the
client.

34

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 13, 2008 at 19:20 from IEEE Xplore. Restrictions apply.

Index Service

GVAILClient

GVAILScheduler

GVAILAnalyzer

1 4

3

2

8

7

6

5

GVAILAnalyzer

GVAILAnalyzer

Fig. 3. gVAIL component interactions during an analysis.

5) The client tells the analyzer service on each node to
perform its assigned portion of the analysis.

6) Each node spawns off an instance of the analyzer service
to perform the analysis, sending status messages to the
client to keep it informed of the node’s progress.

7) When the node indicates that it has finished, the client
requests the results.

8) The node sends the results to the client.

B. gVAIL Code

The gVAIL class structure is depicted in Figure 4.
Classes GVAILBatchModeDriver, GVAILBatchRun,
and GVAILBatchFile compose gVAILBatchModeClient,
a special client designed to perform many consecutive
gVAIL analyses (IV-B). gVAILBatchModeClient reads
an XML configuration file that describes the analyses
to be run. It then executes each analysis sequentially.
GVAILBatchModeDriver, the interface into the
program, uses an instantiation of GVAILBatchFile
to parse the XML configuration file and then instantiates a
GVAILBatchRun object to run either a gVAIL analysis
or a VAIL analysis (for performance comparison). If a
gVAIL analysis is to be run, GVAILBatchRun creates
a GVAILTimeHistoryAnalyzer object, which calls
the scheduler’s ScheduleAnalysis() method to
divide the analysis. The scheduler is implemented in
GVAILSchedulerImpl. Its ScheduleAnalysis()
method uses an object of type GVAILQueryHelper
to query the index server for a list of nodes available
to perform the analysis. It schedules the analysis and
returns a list of ChunkAssignments to the client,
specifying which node should analyze each region
of the file. GVAILTimeHistoryAnalyzer then
creates a GVAILAnalyzerTask, which invokes the
runAnalysis() method on each analyzer (implemented
by GVAILAnalyzerImpl). This method creates a
thread (GVAILAnalyzerThread) to perform the
analysis and periodically sends updates in the form
of GVAILServiceObjects to the client. The

+ScheduleAnalysis() : ChunkAssignment

GVAILSchedulerImpl

+runAnalysis()

-GVAILResultDataValue

-GVAILErrorDataValue

-GVAILDoneDataValue

-GVAILPercentDataValue

GVAILAnalyzerImpl

+createAnalyzerTask()

+doAnalysis()

+deliverNotification()

-schedulerGSH

-chunkAssignment

-currentTask

GVAILTimeHistoryAnalyzer

+getNodes() : string[]

GVAILQueryHelper

-startIndex : int

-endIndex : int

-node : string

ChunkAssignment

1 *

1

1

1

+run()

-startIndex

-endIndex

-TimeHistoryFileID

-templates

GVAILAnalyzerThread

1
1

GVAILNodeInfoPublisherImpl

-results

-templateList

-services

GVAILAnalyzerTask

1
1

-templates

GVAILTemplateList

1

1

-fracCompleted

+gsh

+GVAILAnalyzer

GVAILServiceObject
1

*

GVAILNotificationTimerTask

1

1

+main()

GVAILBatchModeDriver

+runGVAILAnalyzer()

+runVAILAnalyzer()

GVAILBatchRun

1 *
1

*

+readBatchRunConfigFile()

GVAILBatchFile

1
1

1

1

+run()

SubscriptionTimerTask

1

*

Fig. 4. gVAIL UML Diagram.

node information publisher is implemented in class
GVAILNodeInfoPublisherImpl and uses a timer
(implemented in SubscriptionTimerTask) to
periodically resubscribe itself to the index service.

C. Service Model vs. Job Model

The primary objective of the project was to determine
the feasibility of using the Globus Toolkit to grid-enable
applications in a production environment. Consequently, the
authors looked at both the job [5] and service models [6] for
grid-enabling an application. Eventually, however, the service
model was chosen.

The models differ in a number of ways, but most important
for this project are their internode communication mecha-
nisms. In the job model, the process sending information
outputs it to stdout, which is sent to the receiving node.
This node must then parse the stream of text. Using grid
services, nodes can communicate through either grid service
function calls or through SDEs. Grid services may publish
SDEs, and other services can subscribe to these. Subscribers
may be notified when the SDE’s value changes.

The service model has many advantages over the job model
that make it a more attractive candidate for grid-enabling
VAIL. It is desirable to have nodes send status messages
to the client as they are performing an analysis, and SDE
notifications work well for sending such small messages. As
discussed in the next section, SDEs are also useful when
the client retrieves results. In addition, comparatively more
documentation is available for the services model [10] than
the job model in Globus 3.2.1. It also appeared that by
adopting the Web Service Resource Framework [7] and Web
Service Notification [8] specifications, the Globus team was

35

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 13, 2008 at 19:20 from IEEE Xplore. Restrictions apply.

concentrating its efforts on the services component of Globus
in the next major release, Globus Toolkit 4 [9]. Therefore,
from a future supportability perspective, grid services seemed
the prudent choice. Finally, the service model is more object-
orientated and can be used to grid-enable existing Java appli-
cations more seamlessly than the job model.

As an aside, it is important to note that the job model has
some advantages over the service model. It has been used
more extensively, so more third party schedulers and tools are
available for it. The authors anticipate from reading the Globus
press releases that the next version of Globus will have a much
more extensive and integrated set of tools, possibly including
a scheduler framework. Finally, the job component of Globus
has gone through many more stable releases and has been
more thoroughly tested.

D. Grid Communication

Using grid services, Globus provides support for commu-
nication between different parts of the grid through three
different mechanisms: function calls, SDE exposure, and SDE-
based notifications. Each has advantages and disadvantages,
and gVAIL utilizes all three.

1) Function Calls: Globus 3.2.1 provides support for func-
tion calls according to the standard grid service model:
function (method) names for the grid service are exposed
and can be invoked directly by the client. When the client
makes a remote function call on the service, the service
performs some computation and returns a value. The primary
limitation of function calls is that the essential nature of
most grid applications calls for a high degree of concurrency,
while function calls block. This can be dealt with by using
threading either on the client, the service, or possibly some
combination of the two. gVAIL’s client uses function calls
to invoke the scheduler and accepts the blocking behavior,
since it needs the scheduling results before it can proceed. It
needs to communicate with multiple gVAILAnalyzer services
in parallel, however, so gVAIL must use threading for this.
For the sake of simplicity, gVAIL uses threading exclusively
on the service end. gVAIL client makes a function call that
returns immediately to start the analysis. Once the analysis
is started on the grid nodes, the other two mechanisms are
utilized for further communication.

2) SDE Exposure: Globus grid services also support SDEs,
which behave essentially like public fields in a object. In this
case, the service itself is the object. The service can store
data in them, and the client can retrieve that data. Clients
can also set the values of SDEs, although gVAIL does not
utilize this feature. The gVAIL analyzer service stores the
results it generates in SDEs. Once the client determines that a
service has completed its analysis (see next section for how), it
retrieves the results from the appropriate SDE on the service.

3) Notifications: In addition to simply storing and exposing
data, SDEs form the basis for notifications in Globus 3.2.1. To
receive notifications, the client subscribes to individual SDEs
on a specific service. The service can, at any time, notify
all listeners of a change to its SDEs, even if no change has

actually taken place. These are push notifications in that the
data stored in the SDE is sent to the client with the notification.
Pull notifications differ in that the only data sent is a notice
indicating that a change has occurred.

There are two points worth noting about notifications. First,
they operate on the principle of status updates, meaning newer
notifications will overwrite older notifications if they arrive at
the client out of order. For example, if the service sends the
notification messages AB, the client may receive either AB or
BB. Thus, notifications are not a useful mechanism for passing
discrete messages between the client and the service.

Second, the mechanism by which notifications are handled
on the client is fairly complex and poorly documented,
making it difficult to determine even what type of notification
the client received, much less the value it stores. A
method called delieverNotification(...) is
called on the client and is passed an object of type
org.gridforum.ogsi.ExtensibilityType,
which encapsulates the SDE and its metadata. The
ExtensibilityType class is largely undocumented,
and extracting information from it is difficult at best. gVAIL
uses notifications both to keep the client up-to-date on the
status of the services and to inform the client when services
complete.

E. Reliable Index Service

One of the goals of grid computing is to make computational
resources as transparent and easy-to-use as the electrical power
grid. In order for this to become a reality, however, the grid
community needs to provide a reliable cataloging service for
grid resources. Globus’s index service falls short of this goal,
and the authors were forced to use several work-arounds to
make the cataloging of grid nodes more robust.

1) Dynamic Resubscription: One issue that complicated
reliable indexing has to do with Globus’s handling of SDE
subscriptions. If an attempt at establishing a subscription
fails, there is no convenient way to have Globus retry the
subscription at regular intervals. This was a problem for gVAIL
because it meant that the index service must start before the
node information publisher service on any of the nodes. When
node info publisher starts, it attempts to register the node with
the index service by establishing a subscription between one
of its SDEs, gVAILNodeInfo, and the index service. If the
index service is not running, the subscription will fail, and
Globus will never attempt it again. Thus, the index service will
never know about the node. The authors solved this problem
by using a timer in node info publisher to periodically renew
the subscription, whether it is active or not. This solved another
problem in that if the index service went down, all node
information would be lost. Globus provides a solution to this
through the use of the xindiceEnabled option to make
the index service’s database persistent between restarts. Using
dynamic resubscription, however, this was unnecessary.

2) goodUntil Attribute: Essential for reliable dynamic in-
dexing of grid resources is the ability to handle resource
dropouts. The index service catalogs grid resources through

36

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 13, 2008 at 19:20 from IEEE Xplore. Restrictions apply.

the use of SDE subscriptions, so it is essential that those
subscriptions remain valid only for a certain amount of time.
Nodes must periodically renew subscriptions, but if a node
goes down and doesn’t renew its subscription that data should
disappear from the index service. However, Globus’s mecha-
nism for causing SDE subscriptions to expire leaves much to
be desired. Each SDE subscription has a lifetime attribute
that specifies how long the subscription should last. However,
it seems that if the index service subscribes to the same
SDE (gVAILNodeInfo) on multiple nodes [11], service data
will disappear only after all gVAILNodeInfo subscriptions
expire. If only one of the subscriptions expire, its data will still
be published by the index service. Thus, if a node crashes
and does not renew its gVAILNodeInfo subscription, the
index service will still think it was available and will give this
incorrect information to the scheduler.

To get around this, the authors uses the goodUntil
attribute [12] associated with each SDE. When the node
information publisher renews the index service’s subscription
to gVAILNodeInfo, it updates the SDE’s goodUntil
value to reflect the current time, plus a configurable lifetime
for the data. When the scheduler receives a list of nodes from
the index service, it checks to ensure that goodUntil for
each node does not contain a time before the current time and
discards any nodes with such goodUntil values.

IV. GVAIL PERFORMANCE

A. Deployment Architecture

To test gVAIL’s performance, it was deployed on four 2.8
GHz Pentium 4 machines with 640 MB RAM running Redhat
Linux 9. Each machine ran Globus Toolkit 3.2.1 (web service
base only) from a local drive. After this initial deployment,
another sixteen machines (2.8 GHz Pentium 4’s with 1 GB
RAM) that form part of a Beowulf cluster at Harvey Mudd
College were added. These machines used Redhat Enterprise
Linux and the same versions of Globus mentioned above.
Globus was placed on a network drive shared among all
sixteen machines, and data files were distributed a priori on
the shared drive. All twenty machines were connected via 100
Mbps ethernet switches to a 1 Gbps ethernet backbone.

B. Testing Apparatus

Software testing was performed using gVAILBatchMode-
Client, a special client designed to perform many consecutive
gVAIL analyses. gVAILBatchModeClient reads an XML con-
figuration file that describes the analyses to be run. It then
executes each analysis sequentially.

A few factors that affect the runtime of gVAIL should be
noted. First, VAIL uses short circuit evaluation to determine
if a particular point can be identified as an anomaly, so the
overall runtime is dependent on the number of anomalies in a
file. Thus, if one node receives an unfair number of anomalies,
it will take much longer than the rest of the nodes, delaying
completion of the analysis. Finally, in order to minimize the
systematic error that may be introduced by repeatedly using

the same machine, the scheduler randomly selected which
nodes to use.

C. Experimental Process

Four data files with varying total points and anomalous
points were analyzed using a variable number of nodes. The
characteristics of these files are shown in Table I. The number
of nodes ranged from one to twenty in increments of one,
and for each number of nodes, each file was analyzed twenty
times. Finally, a serial VAIL analysis was performed on each
file forty times to establish a performance baseline.

Total Anomalous
points points

File 1 3,200,000 72
File 2 1,784,000 640
File 3 1,783,993 629
File 4 219,071 813

TABLE I

CHARACTERISTICS OF THE SAMPLE FILES

The runtimes (in seconds) for each file using 1 to 20
nodes are shown in Figure 5. On each graph, the serial VAIL
performance baseline is shown as the “zero node” point. The
speedup curves for all files are shown in Figure 6(a).

D. Results and Analysis

As expected, analyzing the smaller file using gVAIL on one
node was slower than analyzing it using serial VAIL. However,
analyzing any other file using gVAIL on one node was slightly
faster on average than using serial VAIL. This is not statisti-
cally significant, however, because the baseline measurement’s
standard deviation in all cases nearly encompasses the standard
deviation of the one node point.

Files 2 and 3 show similar results. This is expected because
they contain comparable numbers of both total data points and
anomalous points. However, note that File 2’s absolute runtime
is much lower due to the type and distribution of anomalies.
For testing purposes, File 2 was generated artificially so that
it would have an even distribution of anomalies. Thus, when
the scheduler divides up the file based on number of points,
it more evenly divides the actual work.

During the analyses of File 4, it started to behave erratically
as the number of nodes increased beyond eight. This behavior
was also seen, to a lesser degree, in the other waveforms.
Part of this is due to the large number of back-to-back
analyses performed. The erratic analyses were performed after
200 back-to-back analyses, and the performance of the grid
degraded noticeably over time unless the nodes were restarted
periodically. The period required varied with the size of the
file. For instance, with the large file, services begin to fail
at the file load stage after approximately eighty analyses.
With the smaller file, services began to fail at this stage after

37

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 13, 2008 at 19:20 from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

Fig. 5. Runtime Results

(a) (b)

Fig. 6. Speedup and Communication Time Graphs

approximately five hundred analyses. The dependence on file
size suggests that garbage collection is not working perfectly.
It is also likely that some of the erratic behavior was caused
by load on the Beowulf Cluster nodes from other projects.
Load on the Beowulf nodes would produce more pronounced
aberrations as the number of nodes utilized increased.

However, most of the contribution to increasing runtime
seems to be communication costs, as demonstrated by Fig-
ure 6(b). Also, from Figure 6(b) it is possible to observe
that the communications time is file size independent. Thus, a
more advanced scheduler for future work in this project might
consider how to balance communication cost with analysis

38

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 13, 2008 at 19:20 from IEEE Xplore. Restrictions apply.

cost for more efficiency.
Overall, grid-enabling VAIL increased its performance.

Moreover, the number of nodes at which speedup reaches
a plateau varies with file size and anomaly distribution, as
expected.

V. NEXT STEPS

As indicated in the Introduction, gVAIL is the first part
of an effort to create a service architecture for VISPERS
using the Globus toolkit. Many of the VISPERS tools will
benefit from parallelization. More importantly, there are a large
number of telemetry streams for each launch that could be
split among several grid nodes. The goal here is that from the
human analysts perspective, they select a sensor and process
the data using VISPERS to clean-up the data (VAIL and other
tools), then they filter and run any appropriate analysis tools.
They can see that the tools run more quickly, but the way the
speedup is achieved is invisible to them. This work will be
reported on in a future paper.

The next step in this task is to create a grid workflow engine
to manage both the VISPERS applications and to ensure that
the individual tools use the grid effectively. Since the gVAIL
project was started, there have been significant enhancements
to VAIL and other tools that will help with the data clean-
up have been developed or enhanced. The goal will be to
make the entire data clean-up process run seamlessly from
data acquisition using dbFront, through anomaly removal and
the consolidation of multiple telemetry streams into one good
stream. Once that stream is created, individual analysis tools
can be invoked, the results analyzed, and, if necessary, the data
can be re-scrubbed based on those results.

This project was undertaken after the release of Globus 3.2.1
but before the release of Globus 4.0. In May 2004, the
Web Service Resource Framework (WSRF) and Web Service
Notification (WSN) specifications were submitted to OASIS
[13] for comments, and the Globus team decided to develop a
refactored version of the Globus services component based
on that standard. Many of the trials and tribulations that
were endured during this project can hopefully be avoided
by utilizing Globus 4.0. According to the Globus website,
Globus 4.0 will be much easier to install and use, will include
documentation, and will be standards-compliant. Because of
the switch to web services in Globus 4.0, one will be able
to develop grid applications in any language using familiar
tools. Therefore, the next step in this project is to port gVAIL
to Globus 4.0.

VI. CONCLUSION

Grid-enabling VAIL using Globus Toolkit is a viable way
to improve performance. Using as few as eleven grid nodes,
gVAIL’s runtime improved by a factor of eight. With little
prior grid computing experience, however, the authors found
the grid-enablement process to be difficult using Globus 3.2.1.
This was due in part to its very steep learning curve, sparse
documentation, unintuitive handling of SDE subscription life-
times, and awkward notification mechanisms. Globus shows

much promise, however, and the authors believe that the
Globus developers will address these issues in future versions.

In the larger context, however, our experience shows that the
service-oriented architecture approach, using grid computing
tools, can provide a more flexible system design, in addition to
improved performance and increased utilization of resources.
With proper communication and execution scheduling, per-
formance and utilization could be improved even further. We
also wish to emphasize that gVAIL is only one component in
the larger VISPERS tool suite that we are currently bringing
under the control of a workflow manager where we will
investigate the use of integrated communication and execution
scheduling. When this is done, we expect to have a powerful
yet flexible system that can process more data more quickly
than previously possible, enabling a greater understanding of
the launch vehicle environment.

REFERENCES

[1] Bradford, K. B., Wong, D. and Bartosisk, J., July 2002, “The Vi-
broacoustic Intelligent System for Predicting Environments, Reliability
and Specifications (VISPERS),” Proceedings of the Ninth International
Congress on Sound and Vibration.

[2] Globus Toolkit 3.2.1 Documentation. http://www-
unix.globus.org/toolkit/docs/3.2/

[3] Foster, Ian and Kesselman, Carl, ed., The Grid 2, Morgan Kaufmann,
United States, 2004.

[4] WS Information Services: Key Concepts. http://www-
unix.globus.org/toolkit/docs/3.2/infosvcs/ws/key/index.html

[5] GRAM: Key Concepts. http://www.globus.org/toolkit/docs/3.2/gram/key/
index.html

[6] The Open Grid Services Architecture, Version 1.0. Global
Grid Form Document GFD-I.030. 29 January 2005.
http://www.ggf.org/documents/GWD-I-E/GFD-I.030.pdf

[7] OASIS Web Services Resource Framework (WSRF) TC.
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf

[8] OASIS Web Services Notification (WSN) TC. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsn

[9] GT4.0 Common Runtime Components. http://www-
unix.globus.org/toolkit/docs/4.0/common/key/index.html

[10] Globus Toolkit 3 Programmer’s Tutorial. http://gdp.globus.org/gt3-
tutorial/

[11] Globus-discuss Mailing List Archive. http://www-
unix.globus.org/mail archive/discuss/2004/04/msg00335.html

[12] Index Grid Services Using Globus Toolkit 3.0. http://www-
106.ibm.com/developerworks/grid/library/gr-indexgrid/

[13] OASIS. http://www.oasis-open.org/home/index.php

39

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 13, 2008 at 19:20 from IEEE Xplore. Restrictions apply.

	Claremont Colleges
	Scholarship @ Claremont
	11-14-2005

	Grid-Enabling a Vibroacoustic Analysis Application
	Brian Bentow
	Jon Dodge
	Aaron Homer
	Christopher D. Moore
	Robert M. Keller
	See next page for additional authors
	Recommended Citation
	Authors

	Title

