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Abstract

The Minimum Circuit Size Problem (MCSP) is a problem with a long
history in computational complexity theory which has recently experienced
a resurgence in attention. MCSP takes as input the description of a Boolean
function 5 as a truth table as well as a size parameter B, and outputs whether
there is a circuit that computes 5 of size ≤ B. It is of great interest whether
MCSP is NP-complete, but there have been shown to be many technical
obstacles to proving that it is. Most of these results come in the following
form: If MCSP is NP-complete under a certain type of reduction, then we
get a breakthrough in complexity theory that seems well beyond current
techniques. These results indicate that it is unlikely we will be able to show
MCSP is NP-complete under these kinds of reductions anytime soon.

I seek to add to this line of work, in particular focusing on an approx-
imation version of MCSP which is central to some of its connections to
other areas of complexity theory, as well as some other variants on the
problem. Let 5 indicate an =-ary Boolean function that thus has a truth table
of size 2= . I have used the approach of Saks and Santhanam (2020) to prove
that if on input 5 approximating MCSP within a factor superpolynomial in
= is NP-complete under general polynomial-time Turing reductions, then
E * P/poly (a dramatic circuit lower bound). This provides a barrier to
Hirahara (2018)’s suggested program of using the NP-completeness of a
2(1−&)=-approximation version ofMCSP to show that if NP is hard in the worst
case (P ≠ NP), it is also hard on average (i.e., to rule out Heuristica). However,
using randomized reductions to do so remains potentially tractable.

I also extend the results of Saks and Santhanam (2020) to what I define
as Σ:-MCSP and Q-MCSP, getting stronger circuit lower bounds, namely
E * Σ:P/poly and E * PH/poly, just from their NP-hardness. Since Σ:-MCSP
and Q-MCSP seem to be harder problems than MCSP, at first glance one
might think it would be easier to show that Σ:-MCSP or Q-MCSP is NP-hard,
but my results demonstrate that the opposite is true.
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Chapter 1

Introduction

How hard are computational problems to solve on average, not just in the
worst case? What is the complexity of figuring out the circuit complexity
of Boolean functions? Can we have truly secure cryptography? These may
initially seem to be very different questions, but recent work on theMinimum
Circuit Size Problem has shown that the resolution of any one of them may
give us the answers to all three.

The Minimum Circuit Size Problem (MCSP) is a problem with a long
history in computational complexity theory which has recently experienced
a resurgence in interest. MCSP asks the question: given the truth table of a
Boolean function 5 and size parameter B, is there a circuit of size no greater
than B which computes 5 ? (The size of a circuit is simply the number of
gates in it.) Thus, in a certain sense, the complexity of MCSP captures how
hard it is to determine the circuit complexity of Boolean functions.

MCSP was initially a subject of interest in the USSR starting in the
1950’s as a potential problem that had no better algorithm than brute force
search, before the framework of complexity theory as we know it today
was introduced. In the early ’70’s, both Leonid Levin and Stephen Cook
independently published papers (on the opposite sides of the Iron Curtain)
introducing the concept of NP-completeness, which is central to complexity
theory. Levin has said he delayed publishing his seminal paper because he
wanted to show that MCSP is NP-complete as well (see Allender et al. (2011)).
NP is a class of problems that (complexity theorists think) includes problems
which are hard to solve. Roughly speaking, an NP-complete problem is in
NP and can be used to efficiently solve any problem in NP via what’s called
a reduction, which converts answers to one problem into an answer to the
other. Thus an NP-complete problem encapsulates the hardest problems in
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NP. It is fortuitous that Levin went ahead to introduce this concept without
the additional result, as whether MCSP is NP-complete is still open to this
day.

Why do we even care whether MCSP is NP-complete? In addition to this
history that goes back to before the idea of NP-completeness was introduced,
in recent years MCSP has been shown to have connections to many areas,
such as circuit complexity, Kolmogorov complexity, average-case complexity,
proof complexity, pseudorandomness, cryptography, learning, and more.
We will examine the increasingly central role MCSP seems to play in several
of these areas using the framework of Impagliazzo’s five worlds.

Two special properties of MCSP lead to many of these connections. First,
it is a meta-computational question. The study of the complexity of MCSP
is a study of the meta-mathematics of complexity, while complexity theory
is already a meta project. In determining the complexity of MCSP, we
seek to determine the complexity of determining the circuit complexity of
Boolean functions. Thus, studying MCSP can be seen as a next step on
the historical path that took us from trying to fulfill Hilbert’s program, to
computability, and then to complexity theory. This meta nature is not only
philosophically interesting, but also leads MCSP to behave in some strange
and interestingways. Second, MCSP can distinguish order from chaos, in the
following sense. While the Boolean functions we are practically interested
in utilizing necessarily have small circuits, it is a well-known result that
a randomly selected Boolean function will have high circuit complexity
with high probability. MCSP thus allows us to distinguish random Boolean
functions from pseudorandom ones (which attempt to use small circuits to
imitate truly random functions), a property that suggests its connections to
cryptography and other areas.

These philosophically flavorful properties lead MCSP to have relevance
inmany domains, and the implications it has for them are shaped bywhether
MCSP and approximation variants of it are actually NP-complete or not
under various kinds of reductions. Researchers in the area widely believe
MCSP is indeed NP-complete under at least some general types of reductions.
So, with all of this motivation, why haven’t we been able to prove that MCSP
is NP-complete?

In 2000, a paper by Kabanets and Cai showed that ifMCSP is NP-complete
under “natural”1 reductions like those that had shown the NP-completeness
of virtually every such problem thus far, then this would lead to dramatic

1What this means precisely will be discussed in more detail later.
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results in complexity theory that seem well beyond current techniques (such
as showing strong circuit lower bounds). This resparked interest in MCSP,
and a line of work has continued to explore the implications of various
kinds of reductions being used to show the NP-completeness of MCSP. These
implications are often so strong and beyond current complexity-theoretic
approaches that they are widely interpreted as showing that these kind of
reductions are intractable for us to come up with given current techniques.

Thus, these results suggest that it is “hard” to determine the hardness
of MCSP, which itself determines how hard Boolean functions are, adding
another meta layer. Establishing the implications of MCSP being shown to
be NP-complete under different kinds of reductions confronts the question:
what mathematical barriers are there to using mathematics to understand
how hard it is for computation to determine how hard it is to compute
functions? In this thesis, I will seek to add to this line of work and continue
to better understand under which kinds of reductions it might be more or
less possible to show that MCSP or various variants on the problem are
NP-complete.

A note before we continue. If you have taken a course on complexity
theory, then the second chapter will serve as a refresher, concluding with
a few complexity classes which may or may not be familiar and a formal
introduction of the Minimum Circuit Size Problem. If you have take an
introductory course like Computability and Logic, then this chapter will
serve as a partial refresher on computability which also introduces the ideas
from complexity theory that will be needed for future chapters. If you
have taken neither, then hopefully it will provide a rough understanding
of basic complexity theory which will allow you to to get the big idea of
what this thesis is about and why it is interesting. It is my intention that
in all three of these cases, the second chapter will allow the third to be
generally understandable, at least enough to get a sense for the motivation
behind studying MCSP. While all of the necessary concepts will have been
introduced, the fourth chapter will be most approachable for someone
already familiar with complexity theory, so if this is not the case for you I
recommend not getting bogged down in the details. The concluding chapter
will provide a brief summary and discuss potential future directions.





Chapter 2

Wait, What is Computational
Complexity?

2.1 Origins

In order to proceed in this thesis, we first have to understand the overarching
framework it operates within: computational complexity theory. Computa-
tional complexity theory is a relatively young subfield at the intersection of
computer science and mathematics. One way we can trace its historical ori-
gins is back to Hilbert’s program and the blows it received in the mid-1900’s.
Much of this history can be found in Doxiadis and Papadimitriou (2009).

Going into the 20th century, mathematics was in turmoil. For over two
thousand years, Euclid’s Elements had set the standard for proof, but now
it was coming under increasing scrutiny for assuming that its axioms were
obviously true and relying toomuch on intuition to bridge logical gaps. Many
newareas ofmathematicswere challenging this old understanding of axioms,
going back to the necessity of using imaginary numbers to understand even
real polynomials, and continuing with non-Euclidean geometries and the
characterization of infinity in set theory in the 1800’s. This challenged
mathematics’ understanding of its relationship with certainty and ultimate
capital-T Truth, so in order to shore up the place of mathematics as the
Queen of the Sciences, there was an increasing emphasis on mathematics
as the rigorous study of logically sound axiomatic systems. While the
axioms themselves no longer had any particular relationship to Truth, any
conclusions that were derived from them would be logically required.

The most ambitious version of this new vision of mathematics and
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its quest for secure foundations was encapsulated in Hilbert’s program,
promoted by famous mathematician David Hilbert (1862-1943). Hilbert’s
program sought a broad formal system for all mathematics that could
prove its own consistency (the system entails no logical contradictions),
completeness (all true statements in the systemhave aproof), anddecidability
(we can efficiently determine whether a statement follows from the axioms
via some sort of algorithm). This would banish from mathematics all
dependence on intuition, ensure its logical soundness and completeness,
and allowproofs to bemechanistically generated. TheparadigmofHilbertian
formalism is encapsulated by the conclusion of an influential talk Hilbert
gave in 1930:

For the mathematician there is no Ignorabimus, and, in my
opinion, not at all for natural science either. ... The true reason
why [no-one] has succeeded in finding an unsolvable problem is,
in my opinion, that there is no unsolvable problem. In contrast
to the foolish Ignorabimus, our credo avers: We must know, We
shall know. (Dawson (1997))

This (to some) utopian dream was shattered when Kurt Gödel (1906-
1978) presented his two Incompleteness Theorems less than a year later.
The mathematical community anticipated that Gödel had finally shown
completeness, but they got the opposite. His First Incompleteness Theorem
informally states that for any mathematical system that can describe basic
fundamental objects such as the natural numbers or sets, if it is consistent
there will necessarily be true statements that cannot be proven. Namely,
it is clear that any system which can formally express “this statement is
unprovable" must either be inconsistent or incomplete. Perhaps even more
damningly, Gödel’s Second Incompleteness Theorem shows if any such
system could prove its own consistency it would be inconsistent, implying
that we can never know whether the most fundamental axiomatic system
upon which we rest mathematics is even logically consistent in the first place.
After the talk in which Gödel presented these results, the mathematician
John von Neumann (1903-1957) famously exclaimed “it’s all over!"

But it wasn’t all over—this was just the beginning. The very limitations of
mathematics and computation, shown by their own methodologies, birthed
the fields of computability theory and complexity theory to follow. Gödel
left one component of Hilbert’s program alive, the Entscheidungsproblem,
or Decision Problem. Perhaps it would still be possible to use algorithms to
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decide whether a statement was provable using the system’s axioms, even
though not all true statements would be. As Alan Turing (1912-1954) was
studying the foundations of mathematics in the early 1930’s, he became
interested in this problem. In order to answer it, he first had to come up
with a formal definition of an algorithm—which we now call the Turing
machine. In his famous 1936paper, Turingused this notion to reproveGödel’s
Incompleteness Theorems in a simpler and more intuitive way and answer
the Entscheidungsproblem in the negative, giving the final blow to Hilbert’s
program. In the same stroke, this laid the foundations for the whole field of
computability, which examines what can be computed by Turing machines.
It wasn’t the end for von Neumann either, who himself went on to become a
famous computer scientist and whose von Neumann architecture, drawing
on the work of Turing, remains the basis of computer design to this day. Von
Neumann even credited Turing’s paper on the Entscheidungsproblem as
giving the “fundamental conception" of the modern computer itself.

Following the development of computability theory and the increasing
use of modern computers, it became clear that a more discerning mathemat-
ical theory of which problems are computationally tractable was needed.
Something being computable isn’t very useful if it will take longer than
the age of the universe for the answer to actually be computed. Thus
computational complexity theory was born. This field studies the resources,
such as time and memory, needed to solve problems via computation, and
in particular the complicated relationships between classes of problems
that can be solved within different computational resource bounds, called
complexity classes. (NP is an example of a particularly important complexity
class.) Complexity theory thus extends and complicates computability
theory’s epistemological framework for what problems can be solved via
mathematics and computation when we examine them using these fields’
own metrics and methodologies.

2.2 Formal framework

Now that we have the historical background of computational complexity
theory’s development providing us with context and motivation, we will
define some of its foundational concepts which will be used throughout the
rest of this work.
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2.2.1 Languages and models of computation

Computational complexity theory (like computability theory) is based
around decision problems, or “yes”-“no” problems, which can be asked
in sequence in order to answer more complicated questions and can be
expressed as languages over particular alphabets. Recall that for a set (, (∗
(where ∗ is the Kleene star) consists of all strings which are made up of
concatenated elements of ( (including the empty string).

Definition 2.1. An alphabet Σ is a finite set, whose members are called symbols. A
language ℒ over an alphabet Σ is a subset of Σ∗. Viewing ℒ as a decision problem,
for each G ∈ Σ∗, if G ∈ ℒ, then it is called a “yes” instance, while if G ∉ ℒ, it is a
“no” instance.

Wewill useΣ = {0, 1}, and thus utilize binary strings to encode our problems.
Notice that given a certain finite number of symbols in our alphabet, a fixed
number of bits can be used to encode each symbol, so restricting ourselves
to binary strings will prove immaterial. (Though it is very important that we
only allow finite alphabets.) Thus, for us a language will be some particular
subset of binary strings.

A simple example of a language is PARITY, which consists of all binary
strings with an odd number of 1’s. It thus consists of all strings with a parity
of 1, giving us a decision problem which asks what the parity of a binary
string is. Two more complicated yet ultimately illustrative languages which
we will discuss further later in this section are CIRCUIT EVALUATION and
CIRCUIT SATISFIABILITY. Here we mean logical circuits with the usual
AND, OR, and NOT gates which take an =-ary binary input and output
either 0 or 1. CIRCUIT EVALUATION asks, given such a circuit � (in some
standard encoding) and an binary input G, does � output 1 on G (i.e., does
�[G] = 1)? Thus more precisely, CIRCUIT EVALUATION consists of the set
of binary strings which encode a circuit � followed by a binary input G such
that �[G] = 1. On the other hand, CIRCUIT SATISFIABILITY asks, given
such a circuit �, does there exists any input G such that �[G] = 1? While
this latter question is still certainly computable—we could check all possible
inputs—it seems like a potentially much harder problem, which complexity
theory will allow us to formalize.

In order to do so however, we first need to establish what is means for an
algorithm to decide a language—and what an algorithm even is! As we’ve
alluded to, the most common general model of computation in complexity
theory is the Turing machine. In order to discuss Turing machines, we first
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need to introduce a much simpler model of computation, the finite automaton.

Definition 2.2. A finite automaton is a tuple (Σ, &, @0 , �, �) consisting of an
input alphabet Σ, a finite set of states &, a unique starting state @0, a subset of
accepting states � ⊆ &, and a transition function � : & × Σ→ &. The language
accepted by such a finite automaton is the set of strings in Σ∗ such that starting in
state @0 and following � based on the current state and the next unread symbol in
the input string, when there are no more symbols left to read the automaton is in an
accepting state @ ∈ �.
One can thus think of a finite automaton as modelling a computer with finite
memory. See the following diagram of a simple finite automaton solving
PARITY.

Figure2.1 This finite automaton decides the language PARITY over the alpha-
bet {0, 1}. Note that the triangle indicates @0 is the start state, the double circle
indicates @1 is an accepting state, and the arrows define the transition function.
The program JFLAP was used to produce this image.

However, it is not too difficult to see that finite automata cannot solve
all decision problems, even very simple ones such as ℒ01 = {0:1: | : ∈ ℕ}.
Consider the set ( = {0: | : ∈ ℕ}. If we take any two members of ( 0: and
0:′ for : ≠ :′, appending 1: to the end of each causes the first to become
an accepted string of ℒ01 and the latter to become a rejected one. Thus if
we have a finite automaton for ℒ01 which correctly deals with these two
inputs, 0: and 0:′ must have led to different states because otherwise 0:1:
and 0:′1: would end up at the same state and either both be accepted or both
be rejected. But since this holds for any pair from (, each member of (, an
infinite set, must lead to a different state, contradicting the automaton being
finite. (A generalization of this argument for any language with a pairwise
distinguishable set of this kind is sometimes called the distinguishability



10 Wait, What is Computational Complexity?

theorem.) This limitation with finite automata comes down to the fact that
they have a fixed amount of memory for any input, and for languages like
ℒ01, : might be arbitrarily large and thus we will have to count arbitrarily
high—though always a reasonable amount given the input length.

Any computer can be represented as a (very complicated) finite automa-
ton, but it seem ludicrous to stop here and conclude that such a simple
language as ℒ01 isn’t even computable! To address this, we can add access
to an unbounded amount of memory, though only a finite amount of it will
be used when processing a given single input (as long as our machine halts).
Namely, we can give the finite automaton a one-way infinite tape made up
of cells which it can write symbols from a working alphabet on. It will have
a tapehead on a particular cell so that it can use the symbol it sees there to
decide which state to transition to, what symbol to write in that cell (perhaps
the same one again), and whether to move the tapehead a cell to the left, a
cell to the right, or stay put. The tape will start with the input string written
on it and the rest blanks, and the tapehead will start positioned at the first
symbol of the input.

Figure 2.2 This depiction of a Turing machine in action was sourced from
ℎCC?B : //2><<>=B.F8:8<4380.>A6/F8:8/�8;4 : )DA8=6_<02ℎ8=4.?=6.

Definition 2.3. A Turing machine is a tuple (Σ, Γ, &, @0 , @0224?C , @A4 942C , �) where
Σ is the input alphabet, Γ is the working alphabet, & is a finite set of states, @0 is
the unique starting state, @0224?C and @A4 942C are the unique accepting and rejecting
states respectively, and � : & \ {@0224?C , @A4 942C} × Γ→ & × Γ × {L,R, S} is the
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transition function. The language ℒ accepted by such a Turing machine " is the
set of strings in Σ∗ such that" eventually enters @0224?C (and then halts since there
is no transition out of this state) when following this procedure: Start in state @0
with the input string G ∈ Σ∗ written on the tape (one symbol per cell), the rest of the
tape cells blank (we require that this blank symbol to be in Γ but not Σ so that the end
of the input can be distinguished), and the tapehead looking at the cell containing
the first symbol of G. Then using the current state and the symbol on the cell the
tapehead is looking at, based on �, transition to a new state, write a symbol on the
current cell, and move the tapehead to either the cell to the left, to the right right, or
let it stay where it is. In general, we say " semidecides ℒ. If " always eventually
enters @A4 942C for every string not in ℒ (i.e., that it doesn’t accept), then we say it
decides ℒ.
This gives us access to an unbounded number of possible configurations
by combining different states and symbols written on the tape, while finite
automata only have access to a fixed number. This definition is also intuitively
appealing, as it mirrors how a mathematician might figure out a problem
step-by-step using a piece of paper to write things out. We can think of a
Turing machine as a computer with access to as much time and memory as
it desires.

However, in order to understand Turing machines from a complexity
perspective as well as a computational one, we also need to consider how to
measure, and then bound, the use of computational resources on a Turing
machine. The two primary computational resources here are time and space,
which each have relatively intuitive definitions.
Definition 2.4. The time C(", G) taken by a Turing machine " = (Σ, Γ, &, @0 ,

@0224?C , @A4 942C , �) on input G ∈ Σ∗ is the number of transitions made by � on G
before it enters @0224?C or @A4 942C and halts. The space B(", G) taken by " on G is
the number of cells visited by the tapehead over the course of the computation before
halting.

A Turing machine may not halt on a given input and thus not decide any
language—indeed the Halting Problem, which asks whether a given Turing
machine will halt on a given input, is the notorious original undecidable
problem in computability—so C(", G) or B(", G) can be infinite. To examine
finer notions of complexity, in this work we will be interested in situations
where the Turing machine will halt on all inputs, deciding some language,
and will do so while respecting a bound on the time or space it uses that
is based only on the length of the input = = |G |. We can think of this
as bounding the Turing machine to only use an amount of time or space
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which is reasonable given the length of the input—if we seek for a computer
to handle an input of a certain length, it must be able to operate within
reasonable amounts of time and memory compared to that length. We will
denote the output of a Turing machine " on input G by "(G), so that if "
enters the accepting state when run on input G, "(G) = 1, while if it enters
the rejecting state, "(G) = 0. If " does not halt, this value is undefined, but
we will not encounter this scenario.

2.2.2 The complexity classes P and NP

With this background, we can at last define particular complexity classes
which will be of interest to us. In general, complexity classes are sets of
languages which can be solved by algorithms (of some certain computational
model) which respect some particular computational resource bound, often
on time or space. We will first introduce the two most important complexity
classes in complexity theory.

Definition 2.5. The complexity class

P = {ℒ ⊆ {0, 1}∗ | ∃: ∈ ℕ such that ℒ is decided by a Turing machine "
where ∀G ∈ {0, 1}∗ , C(", G) ≤ |G |:}.

Using big-O notation, we can also describe P by specifying C(", G) ∈ $(|G |:)
for some : ∈ ℕ (this is equivalent since the finite number of small G such that
the bound doesn’t apply can be hardcoded into " so that C(", G) ≤ |G |:+1

always holds). Thus P is the set of languages which can be solved in
polynomial time on a Turing machine, and it is often thought of as the
set of decision problems we can solve within a tractable amount of time.
Once we reach problems that take more time than this (such as time 2|G | , or
exponential time, on some inputs) that is generally no longer considered
tractable. Notice that this is understood with respect to worst-case analysis,
since a language could be solved by a Turing machine that takes polynomial
time on most inputs and yet exponential time on some others, and this
would not be sufficient for the language to be in P.

The other of the two most important complexity classes is closely related
to P.
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Definition 2.6. The complexity class

NP = {ℒ ⊆ {0, 1}∗ | ∃ language ℒ′ ∈ P and constant : ∈ ℕ where ∀G ∈ {0, 1}∗ ,
G ∈ ℒ ⇐⇒ ∃H ∈ {0, 1}∗ such that |H | ∈ $(|G |:) and

(G, H) ∈ ℒ′}.

With a bit of examination, we can see that NP corresponds to the set of
languages with solutions or proofs which can be verified in polynomial time:
Notice that it makes sense to think of H as a proof that G ∈ ℒ with ℒ′ as the
verifier of the proof. First, ℒ′ will not accept (G, H) for any H if G ∉ ℒ, so if ℒ′
accepts (G, H), this means we must have G ∈ ℒ. Thus ℒ′ is a sound verifier.
It is also complete, since for any G ∈ ℒ, there will be some proof H that ℒ′
will accept.

It is often helpful to consider a second characterization of NP, which
also clarifies its name. To do so, first we must define nondeterministic Turing
machines (see Figure 2.3).

Definition 2.7. For a set (, let P(() be the power set of (, consisting of all
subsets of ( (including the empty set). A nondeterministic Turing machine is
a tuple (Σ, Γ, &, @0 , @0224?C , @A4 942C , �) where Σ is the input alphabet, Γ is the
working alphabet, & is a finite set of states, @0 is the unique starting state, @0224?C
and @A4 942C are the unique accepting and rejecting states respectively, and � :
& \ {@0224?C , @A4 942C} × Γ→ P (& × Γ × {L,R, S}) is the transition function. The
language ℒ accepted by such a Turing machine " is the set of strings in Σ∗ such
that for some sequence of guesses (to be described)" eventually enters @0224?C (and
then halts) when following this procedure: Start in state @0 with the input string
G written on the tape (one symbol per cell) and the tapehead looking at the first
symbol of G. Then using the current state and the symbol on the cell the tapehead
is at, based on guessing one of the state-symbol-movement possibilities in the set
given by �, transition to a new state, write a symbol on the current cell, and move
the tapehead to either the cell to the left, to the right right, or let it stay where it is.
In general, we say " semidecides ℒ. If for every string not in ℒ, for all sequences
of guesses " eventually enters @A4 942C , then we say it decides ℒ.
We can think of a nondeterministic Turing machine as guessing which of
several possible computational paths available to it it wants to take; if there
is some sequence of guesses which causes it to reach @0224?C then it accepts
(such a path is called an accepting path), else it rejects. Note that time and
space for nondeterministic Turing machines are each defined by the highest
deterministic value of these along any computational path the machine can
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Figure 2.3 This comparison of deterministic and nondeterministic compu-
tation is by Vectorization: OmenBreeze - Own work based on: Di�erence between
deterministic and Nondeterministic.png by Eleschinski 2000, CC BY-SA 3.0, ℎCC?B :
//2><<>=B.F8:8<4380.>A6/F/8=34G.?ℎ??2DA83 = 84727658.

take on the given input. Thus in order to halt, a nondeterministic Turing
machine must halt along every potential computational path, and in order
to run in polynomial time, it must also do so along all computational paths.
Now we can see that NP is even more closely related to P than was initially
apparent, as we can also define it as follows.

Definition 2.8. The complexity class

NP = {ℒ ⊆ {0, 1}∗ | ∃: ∈ ℕ s.t. ℒ is decided by a nondeterministic Turing
machine " where ∀G ∈ {0, 1}∗ , C(", G) ∈ $(|G |:)}.

We can now make sense of the full names of P and NP, which stand for (de-
terministic) Polynomial time and Nondeterministic Polynomial time respectively.
It also is not too difficult to see that the two definitions for NP are equivalent.
If we have ℒ ∈ NP by the first definition, then to show that it is also in NP by
the second definition, simply use the nondeterminism to guess H and then
run the original" on it to verify whether"((G, H)) = 1—since" is a sound
and complete verifier, we will find such a H and accept if and only if the input
is in ℒ. For the other direction, we can choose to interpret H as identifying a
particular computational path of " and make the appropriate choices to
simulate the original " along this path—if " accepts nondeterministically,
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there will be some appropriate H that identifies the computational path
which leads to @0224?C .

To get a better feel for what problems are in P versus NP, we will consider
a particularly pertinent language in each, namely CIRCUIT EVALUATION
in P and CIRCUIT SATISFIABILITY in NP, which are representative of the
hardness of each class in a certain technical sense. To define these languages
a bit more formally, recall that a logical or Boolean circuit � operates on a
binary input of a fixed length = using AND, OR, and NOT gates, outputting
either 0 or 1 on each input; for a given G ∈ {0, 1}= , this is denoted by �[G] = 0
or �[G] = 1 respectively. We can fix some reasonable binary encoding of
such circuits which records the various gates used and their inputs. We will
denote the encoding of a logical circuit � by 〈�〉. Then
Definition 2.9.

CIRCUIT EVALUATION = {(〈�〉, G) ∈ {0, 1}∗ | �[G] = 1}

where the list (〈�〉, G) is encoded in some particular way in binary

and

Definition 2.10.

CIRCUIT SATISFIABILITY = {〈�〉 ∈ {0, 1}∗ | ∃G ∈ {0, 1}= s.t. �[G] = 1} .

It is not too difficult to see that CIRCUIT EVALUATION can be solved in
P by scanning over the encoding of the circuit, following through what
each gate will compute on the particular input until you get the ultimate
output. This then makes it easy to see that CIRCUIT SATISFIABILITY ∈ NP.
For 〈�〉 ∈ CIRCUIT SATISFIABILITY, we can give a proof that is simply
the input G to the circuit which causes it to be satisfied, which we can
verify using CIRCUIT EVALUATION ∈ P. Thinking nondeterministically,
this corresponds to guessing the input which will satisfy 〈�〉 and then
using CIRCUIT EVALUATION to check our guess. If 〈�〉 ∈ CIRCUIT
SATISFIABILITY, at least one of our guesses will work, and if not, none of
them will. However, it is not clear how to go from this easy verification
procedure to actually solving CIRCUIT SATISFIABILITY in polynomial time.
The naïve solution is simply to go through all 2= possible inputs, but for
many circuits this is exponential in the size of its encoding. While one can
do a bit better than this by applying some tricks, there is no known strictly
subexponential algorithm for the problem. We have thus arrived at the
question: does P = NP? While complexity theorists widely believe the answer
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is no, proving this is the biggest open problem in complexity theory, and
has been for the last 50 years.

Before we go on, it is important to note that there are computable
languages which are neither in P nor in NP. For instance, SUCCINCT
CIRCUIT SATISFIABILITY, which is like CIRCUIT SATISFIABILITY except
that the circuit in question is not encoded as a string, but insteadusing another
circuit, is provably not in NP. Roughly speaking, since the input can be
encodedmuchmore succinctly than before, we no longer have enough time to
verify this problemwithin NP. To give amore intuitive example of a language
which is likely in neither, CIRCUIT UNSATISFIABILITY asks whether all
input strings leave the given circuit unsatisfied. (Thus amongst the set ( of
all strings which validly encode circuits, CIRCUIT UNSATISFIABILITY =
( \ CIRCUIT SATISFIABILITY.) While again for a circuit with = input
variables we can naïvely use CIRCUIT EVALUATION to check all 2= possible
inputs, taking potentially exponential time, it is not clear how to provide a
short proof that this circuit outputs zero on every input. One can likewise do
better here than checking all inputs, but it is nevertheless widely believed
this problem is not even in NP.

2.2.3 Completeness and Reductions

Now, in order to better understand the question of whether P = NP, we will
consider the following one: what does it mean that CIRCUIT EVALUATION
and CIRCUIT SATISFIABILITY are “representative of the hardness" of P
and NP respectively? It turns out that they are what are called complete
languages for each class. As the following definition makes clear, the notion
of a complete class rests on the definition of a certain kind of reduction.
Intuitively speaking, a reduction can be thought of as an efficient way to
use solutions to one problem to solve another (i.e. to reduce solving one
problem to solving a different one).

Definition 2.11. A language ℒ is complete for a complexity class C under '-
reductions if

• ℒ ∈ C, and

• for every language ℒ′ ∈ C, there is an '-reduction from ℒ′ to ℒ.

Thus under the appropriate kind of reduction ', an efficient algorithm for a
complete language ℒ could be used to efficiently solve any other problem in C
as well. A complete language can be thought of as a hardest problem in C
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and is thus representative of the hardness of the complexity class overall.
We can also call a language hard for a class, in which case it fulfills the
second point of the definition for completeness but is not necessarily in the
complexity class itself, in which case it is as hard or harder than any language
in the class.

To understand this better, wewill define the twomain types of reductions,
starting with the many-one (a.k.a. Karp) reduction. Many-one refers to the
fact that such a reduction is a mapping from problems of one kind to another
which is a function (the one) which may not be injective (the many). To
formally define this, first notice that we can modify the definition of a Turing
machine slightly so that it outputs a binary string instead of just accepting
and rejecting, in which case we call it a function Turing machine. We can add
an extra tape (with its own tapehead) that we can use to write the string
we wish to output. This is restricted to be right-only (and thus write-only)
such that once a non-blank symbol is written on a cell of the output tape, we
immediately move our tapehead a cell to the right so we are ready to write
the next symbol and all of the previous symbols are immutable. We also
use a single @ℎ0;C state, instead of @0224?C and @A4 942C , which signals when we
have finished producing the output and halted. The output string produced
by such a function Turing machine " on input G will be denoted by "(G).
Further, it is convenient to use a separate read-only input tape, whereupon
the input will be provided and which cannot be altered, in addition to a
work tape upon which we can both read and write as normal. We then
only measure the amount of space used on the work tape when considering
B(", G). This will allow us to consider function Turing machines that use
sub-linear space, or less space than the input itself takes up (most commonly,
logarithmic space). This is indeed possible: for instance, we could have a
function Turing machine which outputs the length of the input in unary, in
which case we don’t need to use any space on the work tape at all. This is
an example of a function problem, where instead of asking for a “yes”-“no”
response to each input, we ask for a specific output in binary. We can define
function complexity classes with respect to function problems by asking for
all function problems which can be computed by a function Turing machine
operating within certain computational resource bounds. Now,

Definition 2.12. Let C : ℕ → ℕ, B : ℕ → ℕ. A C(=)-time many-one re-
duction from language ℒ′ to ℒ is a function Turing machine " such that
∀G ∈ {0, 1}∗ , C(", G) ≤ C(|G |) and

G ∈ ℒ′ ⇐⇒ "(G) ∈ ℒ.
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Similarly, a B(=)-space many-one reduction from language ℒ′ to ℒ is a function
Turing machine " such that ∀G ∈ {0, 1}∗ , B(", G) ≤ B(|G |) and

G ∈ ℒ′ ⇐⇒ "(G) ∈ ℒ.

Most generally, for a function complexity class �, a � many-one reduction from
language ℒ′ to ℒ is a function algorithm A such that A demonstrates that the
function problem it computes is in � and ∀G ∈ {0, 1}∗ ,

G ∈ ℒ′ ⇐⇒ A(G) ∈ ℒ.

This algorithm is usually a function Turing machine, but can also be a different
model of computation, such as a multi-output circuit family.

Circuit families as models of computation will be discussed later. In essence,
a many-one reduction turns “yes” instances of one problem into “yes”
instances of the other, and likewise with “no” instances. To get the general
idea of a many-one reduction, consider the following figure.

YES

NO

L’ L

A

Figure 2.4 In this depiction of a many-one reduction from ℒ′ to ℒ, A is a
function algorithm under a particular computational resource bound.

To give a simple example of a many-one reduction, we will introduce
a very well-known language which is closely related to one we have seen
before, called SATISFIABILITY, or SAT for short. Recall that a Boolean
expression on variables G1 , G2 , . . . , G= combines these variables using the
logical operators ∧, ∨, and ¬; for example, G1 ∧ ¬(G2 ∨ G3). SAT is the set
of strings encoding Boolean expressions which evaluate to true for some
setting of their G8 variables, and thus, for instance, includes 〈G1 ∧¬(G2 ∨ G3)〉
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Figure 2.5 This di�erentiation of the hardness of problems in NP depend-
ing on whether P = NP is by Behnam Esfahbod, CC BY-SA 3.0, ℎCC?B :
//2><<>=B.F8:8<4380.>A6/F/8=34G.?ℎ??2DA83 = 3532181.

(set G1 = 1, G2 = G3 = 0). SAT is NP since we can guess a satisfying
assignment and then verify it in polynomial time. We can reduce SAT
to CIRCUIT SATISFIABILITY, or CSAT for short, by converting the given
Boolean expression into a Boolean circuit with AND, OR, and NOT gates
in the obvious way, which can easily be done in polynomial time. SAT is
actually the canonical NP-complete problem under polynomial-time many-
one reductions, going back to the initial definition of these ideas by Levin
and Cook. Indeed, the proposition that SAT is NP-complete is called the
Cook-Levin theorem. Thus by providing a polynomial-time many-one
reduction from SAT to CSAT, with the knowledge that SAT is NP-complete
under polynomial-time many-one reductions, we have shown that CSAT is
also NP-complete under polynomial-timemany-one reductions (any problem
in NP can be converted into a SAT problem which can be converted into a
CSAT problem). This demonstrates the power of having at least one complete
problem for a class identified, because now we can show another problem in
the class is also complete by reducing an already-known complete problem
to it.

We can see the importance of different kinds of reductions by further
considering their connections to completeness. Notice that any nontrivial
language is complete for P under polynomial-time many-one reductions
because youhave time to just solve the problemand output a fixed “yes”/“no”
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instance. Thus it is only interesting to consider completeness for P under
more restricted kinds of reductions. For instance, CIRCUIT EVALUATION
is complete for P under logarithmic-space many-one reductions, and indeed
CIRCUIT SATISFIABILITY is NP-complete under this restricted kind of
reduction as well. On the other hand, if any language complete for NP under
the more general polynomial-time many-one reductions was shown to be in
P, then this would prove P = NP! (For any problem in NP, we could convert it
into the complete problem in polynomial time and then solve that problem
in polynomial time, getting an answer to our original problem in polynomial
time overall.) This changes the problem of P versus NP from requiring us to
potentially examine whether every language in NP is in P to just having to
determine whether one NP-complete language is in P or not. See Figure 2.5
for a depiction of the two different scenarios at hand. Note that if P ≠ NP,
then there are problems in NP which are neither in P nor NP-complete. These
are called NP-intermediate, and would be contained in the gap between P
and NP-complete problems on left side of the diagram.

A more general type of reduction is the Turing (a.k.a Cook) reduction. To
understand this kind of reduction, we need to define oracle Turing machines.
Such a Turing machine is depicted below.

Figure 2.6 This depiction of an oracle Turing machine
is by Fschwarzentruber - Own work, CC BY-SA 4.0, ℎCC?B :
//2><<>=B.F8:8<4380.>A6/F/8=34G.?ℎ??2DA83 = 51793814.

An oracle Turing machinewith access to a language ℒ, called the oracle, has
three extra designated states, @@D4AH , @H4B , and @=> , as well as an additional
query tape. It can write something on the query tape and then enter @@D4AH ,
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upon which it will automatically enter either the state @H4B or @=> depending
on whether the string on the query tape is in ℒ or not, respectively. Thus
it gets to automatically access whether a given string it writes out is in ℒ
in a single step, without needing to do any computation to determine this
as it would otherwise need to do. Note that depending on the oracle ℒ
provided to a given oracle Turing machine, that machine may very well
decide different languages. We can also define oracle complexity classes as
follows. For a complexity class C (defined with respect to a computational
resource bound on Turing machines) and language ℒ, the oracle complexity
class Cℒ is the set of languages which can be decided by an oracle Turing
machine with access to ℒ which respects the same computational resource
bound required by C. Then

Definition 2.13. Let C be a complexity class. A C Turing reduction from language
ℒ′ to ℒ is an oracle Turing machine " that decides ℒ′ when given an oracle for
ℒ and demonstrates that ℒ′ is in Cℒ . In other words, ℒ′ C-Turing reduces to ℒ if
ℒ′ ∈ Cℒ .

Note that for two complexity classes C1 and C2, CC2
1 denotes languages

recognizable by a C1-bounded oracle Turing machine with access to some
particular oracle in C2.

Now, notice that we can think of amany-one reduction as a very restricted
kind of Turing reduction where we only ask the oracle one question at the
very end and must answer the same way it does. However, it is still the
case that if any language complete for NP under polynomial-time Turing
reductions was shown to be in P, this would prove P = NP. In this case,
we could simulate the oracle Turing machine of the reduction for a given
language in NP by actually using our polynomial-time algorithm for ℒ to
compute the answer to each query, keeping the simulation polynomial-time
overall and thus solving the language in P.

This examination of reductions also further clarifies why we are so
interested in P versus NP. Not only is the question of whether all problems
with small proofs can also be solved efficiently philosophically interesting, it
is also practically significant, as many important problems we would very
much like to be able to solve efficiently are NP-complete under polynomial-
time Turing reductions, and are thus solvable in P if and only if P = NP in
general. Beyond SAT and CSAT, another famous example is the Traveling
Salesperson Problem, and there are many, many others. Even just examining
the question of P versus NP to this extent, it becomes clear why reductions
and completeness are of central importance to complexity theory. They will
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also be central to the specific topic of this thesis.

2.2.4 A few more complexity classes of note

Before we move on, we will need to know about a few more complexity
classes. First, we will introduce the Σ:P classes and the Polynomial Hierarchy,
or PH.

Definition 2.14. Define Σ0P = P. For : > 0, let Σ:P = NPΣ:−1P. Then

PH =
⋃
:≥0

Σ:P.

The first few levels of this hierarchy are thus Σ0P = P, Σ1P = NPP = NP,
Σ2P = NPNP, Σ3P = NPNPNP , etc. We can also understand these complexity
classes using the idea of alternation. It will be useful for us to note that
equivalently,

Definition 2.15. The complexity class

Σ:P = {ℒ ⊆ {0, 1}∗ | ∃ language ℒ′ ∈ P & constant : ∈ ℕ where ∀G ∈ {0, 1}∗ ,
G ∈ ℒ ⇐⇒ ∃H1 ∈ {0, 1}∗ ∀H2 ∈ {0, 1}∗ ∃H3 ∈ {0, 1}∗

. . . H: ∈ {0, 1}∗ s.t. each |H8 | ∈ $(|G |:)
and (G, H1 , H2 , H3 , . . . , H:) ∈ ℒ′}.

For : = 1, this definition matches our original definition of NP = Σ1P, so
we can see that the two definitions are clearly equivalent in that case. That
this equivalence continues can be shown using induction. The Polynomial
Hierarchy can thus be seen as a further generalization of the ideas that
brought us from P to NP. To get further intuition about these classes, note
that for : ≥ 1 &(�): is complete for Σ:P:

Definition 2.16.

&(�): = {)(G1 , G2 , G3 , . . . , G:) | ) is a Boolean formula, G8 ∈ {0, 1}∗, and
∃G1∀G2∃G3 · · · G: such that )(G1 , G2 , G3 , . . . , G:) = 1}.

We can think of QSAT: as a game between two players, the ∃ player
and the ∀ player, who are presented with a certain Boolean function
)(G1 , G2 , G3 , . . . , G:). The ∃ player goes first and sets G1, which the ∀ player
can examine before going second and setting G2, upon which they continue
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to alternate turns setting the G8 in order until all : are set. The ∃ player wins
if ) is satisfied at the end of the game, and the ∀ player wins if ) is left
unsatisfied. Notice that the ∃ player has a winning strategy exactly when
) ∈ QSAT: .

Additionally, a couple of randomized complexity classes will be useful
for us. These can be defined using nondeterminisitic Turing machines. First
is RP, which stands for Randomized Polynomial time.

Definition 2.17. The complexity class

RP = {ℒ ⊆ {0, 1}∗ | ∃: ∈ ℕ such that there is a nondeterministic Turing
machine " where ∀G ∈ {0, 1}∗, C(", G) ∈ $(|G |:),

≥ 1
2 of "(G)’s computational paths accept if G ∈ ℒ, and

all of "(G)’s computational paths reject if G ∉ ℒ}

or, equivalently,

RP = {ℒ ⊆ {0, 1}∗ | ∃ a language ℒ′ ∈ P taking 2-tuple input (G, H),
: ∈ ℕ, and polynomial ?(=) where
∀G ∈ {0, 1}∗, the fraction of H ∈ {0, 1}?(|G |) which lead

the input to be in ℒ′,
#{H ∈ {0, 1}?(|G |) | (G, H) ∈ ℒ′}

2?(=)
,

is ≥ 1
2 if G ∈ ℒ and is 0 if G ∉ ℒ}.

We can see that these two definitions are equivalent in a similar way as for
the two definitions of NP. With a bit of examination, we can interpret RP as
the set of languages which can be decided by a Turing machine with access
to a source of randomness, or equivalently a polynomial-length random
string, which runs in polynomial time and has a one-sided 1/2 error rate
but must always reject when G ∉ ℒ. Notice that an RP algorithm is also an
NP algorithm, just one where we know many more than one computational
paths will accept if G ∈ ℒ, so clearly RP ⊆ NP.

Second is the more general BPP, which stands for Bounded-Error Proba-
bilistic Polynomial-Time, where we allow two-sided error so that BPP ⊇ RP
and whether it is still contained within NP unknown.
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Definition 2.18. The complexity class

BPP = {ℒ ⊆ {0, 1}∗ | ∃: ∈ ℕ such that there is a nondeterministic Turing
machine " where ∀G ∈ {0, 1}∗, C(", G) ∈ $(|G |:),

≥ 3
4 of "(G)’s computational paths accept if G ∈ ℒ, and

≤ 1
4 of "(G)’s computational paths accept if G ∉ ℒ}

or, equivalently,

BPP = {ℒ ⊆ {0, 1}∗ | ∃ a language ℒ′ ∈ P taking 2-tuple input (G, H),
: ∈ ℕ, and polynomial ?(=) where
∀G ∈ {0, 1}∗, the fraction of H ∈ {0, 1}?(|G |) which lead

the input to be in ℒ′,
#{H ∈ {0, 1}?(|G |) | (G, H) ∈ ℒ′}

2?(=)
,

is ≥ 3
4 if G ∈ ℒ and is ≤ 1

4 if G ∉ ℒ}.

We can again see that these two definitions are equivalent in a similar way as
for the two definitions of NP. With a bit of examination, we can interpret BPP
as the set of languages which can be decided by a Turingmachine with access
to a source of randomness, or equivalently a polynomial-length random
string, which runs in polynomial time and has nomore than a 1/4 error rate.1
Thus BPP is often thought of as consisting of the problems that can feasibly
be solved by an algorithmwith access to true randomness. Another big open
question in complexity theory is whether BPP can be derandomized, i.e.,
whether P = BPP. Unlike with NP, it is generally believed that this should be
possible and P is indeed equal to BPP. However, this would require proving
superpolynomial circuit lower bounds which seem far out of reach.

Another randomized complexity class which will come up is ZPP, which
is short for Zero-Error Probabilistic Polynomial-Time. However, this class is less
important for the topic of this thesis, so we will not need a precise definition.
Roughly speaking, this is the class of problems which can be solved by an
algorithm with access to randomness that always answers correctly and

1The constants used to define RP and BPP are somewhat arbitrary. For RP, any nonzero
error rate strictly less than 1 gives an equivalent class of problems, and for BPP any nonzero
error rate strictly less than 1/2 does. This can be shown by simply repeating the procedure
enough times to drive the error rate back down (this is called probability amplification) while
remaining in polynomial time overall.
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whose expected runtime is polynomial in the length of the input. See Figure
2.7 for a depiction of the relationships between these randomized complexity
classes and some other common complexity classes.

Figure 2.7 This depiction of the relationships between randomized complex-
ity classes and some other common complexity classes is by Bilorv - Own work,
CC0, ℎCC?B : //2><<>=B.F8:8<4380.>A6/F/8=34G.?ℎ??2DA83 = 91765136.

Finally, it will be important to note that languages can be computed
by circuits, or more precisely circuit families, giving us yet another model
of computation. We will consider standard =-input Boolean circuits with
fan-in one NOT gates and fan-in two AND and OR gates which output
a single bit. Clearly, this bit can be interpreted as accept (1) or reject (0).
However, a single circuit can only handle inputs of a fixed length =, so
we will need a series of circuits, or a circuit family, to be able to compute
a language. To this end, let ℒ= denote ℒ ∩ {0, 1}= , or all of the strings in
ℒ of length =. Then we will say that a circuit �= decides ℒ= if for each
G ∈ ℒ= , �=[G] = 1, and for each G ∈ {0, 1}= \ℒ= , �=[G] = 0. Further, a circuit
family {�=} decides ℒ if for each = ∈ ℕ, �= decides ℒ= . Notice that by
allowing each input length to have its own circuit, we are actually giving
circuit families more power than Turing machines, which we require to
deal with all inputs in one. Something interesting and important to note is
that circuit families can compute languages that Turing machines cannot
even when given unbounded computational resources, such as the Halting
Problem. (Since there are only a finite number of binary strings of a given
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length, there are only a finite number of Turing machine encoding-input
pairs of a given length which halt. Thus there is indeed a circuit for each
length which hard-codes in all of these halting Turing machine-input pairs
individually—we just have no chance of figuring out what these circuits
would be.)

Now, in order to to consider the complexity of languages with respect
to circuits, we must define a computational resource of circuits which we
can bound. Recall that the size of a circuit is the number of gates within
it. It turns out that circuit size and Turing machine time are closely related,
and for both we consider a polynomial amount to be feasible. For technical
reasons, the class of languages which can be decided by circuit families of
polynomial size is called P/poly. More precisely,

Definition 2.19. The complexity class

P/poly = {ℒ ⊆ {0, 1}∗ | ∃: ∈ ℕ such that for all = ∈ ℕ, ℒ= is decided by
a circuit �= of size $(=:)}.

We can see why this name is used through an equivalent definition, namely

Definition 2.20. The complexity class

P/poly = {ℒ ⊆ {0, 1}∗ | ∃: ∈ ℕ where for each integer =,
there exists an advice string 0(=) of length $(=:)
s.t. ℒ is decided by a polynomial-time Turing machine
" that takes (G, 0(|G |)) instead of just G as input}.

Thus the name of this class indicates that we are adding polynomial-length
advice to P, where this advice is fixed for each length of input. It is not
too difficult to see why these two definitions are equivalent. If a language
ℒ fulfills the first definition, then 0(=) can just be the encoding of the
polynomial-size circuit �= and " can perform CIRCUIT EVALUATION on
� |G | with input |G | to compute the correct output. For the other direction, by
slightly modifying the reduction used to show that CIRCUIT EVALUATION
is P-complete, it can be seen that any language in P can be decided by a family
of polynomial-size circuits. Thus for any ℒ fulfilling the second definition
there is a family of polynomial-size circuits which decides it when given
access to (G, 0(|G |)). Indeed, since we get a different circuit �= for each =,
we can hard-code 0(=) into �= so that we have a family of polynomial-size
circuits which decides ℒ when given only G as input.
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Note that P ⊆ P/poly since we can just ignore the advice to compute any
language in P as we normally would. Indeed, P/poly is actually strictly larger
than P because it gets to have a circuit tailored to each input length, while P
must use a single Turing machine for all input lengths, so P/poly contains
some undecidable languages (including all unary undecidable languages).
However, it is unknownwhether NP ⊆ P/poly, though generally this thought
not to be the case. Thus if it could be shown that indeed NP * P/poly, this
would prove P ≠ NP.

With this foundation established, we are at last ready to start discussing
MCSP in earnest.

2.3 Introducing the Minimum Circuit Size Problem
(MCSP)

We can now define the Minimum Circuit Size Problem, or MCSP, using the
same standard notion of a circuit and of circuit size (sometimes the number
of wires or length of particular encoding is used instead of the number of
gates, though all of these size measures only differ by at most a logarithmic
factor in the number of input bits, and generally which one you choose is
immaterial). Also note that the truth table of an =-ary Boolean function 5 is a
binary string of length 2= which lists the outputs of 5 to each possible input
organized in lexicographic order of the inputs. For instance, the truth table
of the 2-ary Boolean function G1 ∧ G2 is 0001. Then

Definition 2.21.

MCSP = {( 5 , B) ∈ {0, 1}∗ | 5 is an =-ary Boolean function represented by its
truth table, B is an integer, & there exists a circuit �
of size at most B which computes 5 }.

Throughout this work, we will use # to denote | 5 | so that # = 2= . Notice
that the length of the input is # + log2(B), so a polynomial-time algorithm
for MCSP must have a runtime that is polynomial in # + log(B). Indeed, it is
well-known that all =-ary Boolean functions have circuits of size $(2=/=), so
for B larger than this threshold, any algorithm for MCSP can automatically
accept. Thus we can always consider B ∈ $(2=), in which case # + log2(B) ∈
$(# + log2(2=)) = $(# + =) = $(#), so really just # is the relevant input
length for judging the performance of an algorithm for MCSP. (Additionally,
B can be encoded in unary, but this also doesn’t significantly change matters.)
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To see why an =-ary Boolean function 5 will at least have a circuit of
size $(2=), consider the following. It is not too difficult to construct what is
called a conditional gate out of a constant number of ANDs, ORs, and NOTs
that performs the following on input bits 3 (the decision bit), >1 (output
option 1), and >2 (output option 2): if 3, output >1, if if ¬3, output >2. Such a
conditional gate is given by (3 ∧ >1) ∨ (¬3 ∧ >2). Now, to compute a Boolean
function 5 , we can use a tree of conditional gates as follows. First, we have
2= leaves with the value output by each possible input to 5 , i.e., for each
G ∈ {0, 1}= , we have a 0/1 node of value 5 (G). Now for each H ∈ {0, 1}=−1, we
have a conditional gate with decision bit 3 = G= , >1 = 5 (H1), and >2 = 5 (H0).
Thus this layer of conditional gates allows us to pass down the correct value
of 5 assuming the first = − 1 bits are correct, but having distinguished on
the basis of the final bit. The values we have produced can be represented
by 5 (H−), indicating that this is the value of 5 if G starts with H and then
has the correct final bit. Call this layer =, since we conditioned on variable
G= . We repeat this with more layers of conditional gates, which take the
following form: for layer 8, we are given 5 (H−=−8) for each H ∈ {0, 1}8 . Then
for each H′ ∈ {0, 1}8−1, we use a conditional gate with decision bit 3 = G8 ,
>1 = 5 (H′1−=−8), and >2 = 5 (H′0−=−8) to produce 5 (H′−=−(8−1)). By the end,
when we have conditioned on all of the input variables and have only one bit
remaining, we will have selected the correct value of 5 (G), which we output.
Since there are $(2=) conditional gates in this tree and $(1) AND, OR, and
NOT gates being used to make each conditional gate, we have shown that
any =-ary Boolean function is indeed computed by a circuit of size $(#).

Now it is not too difficult to see that MCSP is in NP. Since we can assume
B ∈ $(#) (otherwise accept immediately), we can guess a circuit � of size
B in time polynomial in # . Then for a given possible input to the circuit,
we can use CIRCUIT EVALUATION to check that � outputs the correct bit
indicated by 5 in time polynomial in the size of the circuit B ∈ $(#). There
are 2= = # possible inputs to �, so we have enough time to check every one
to verify that � is indeed computing 5 while ultimately operating within
polynomial time in # overall. Thus MCSP ∈ NP.

Alright, but is MCSP ∈ P? It turns out, probably not. Long story short,
Kabanets and Cai (2000) showed that if MCSP ∈ P then there is no private-
key cryptography (let alone public-key). There are strong candidates for
private-key cryptography which have remained uncracked through decades
of scrutiny, so we conclude that likely MCSP ∉ P. When we have a problem
in NP but probably not in P, this immediately suggests the question: is it
NP-complete?
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Before we explore this possibility for MCSP, there is first the question:
why is it the case that if MCSP ∈ P then there is no private-key cryptography?
Does MCSP’s connection to cryptography end here, or is there something
deeper going on? Looking into these questions will lead us to see that MCSP
and its possible NP-completeness increasingly seem to play a central role
in connecting a subset of what are called Impagliazzo’s five worlds, and
thus unifying our understandings of worst-case complexity, average-case
complexity, and private-key cryptography.





Chapter 3

Why Do We Care About MCSP?

3.1 Impagliazzo’s Five Worlds

The well-known complexity theorist Russell Impagliazzo introduced a
conceptual framework for considering the relationship between worst-case
complexity, average-case complexity, and cryptography in Impagliazzo
(1995). He proposed five aptly named complexity-theoretic worlds we could
be in:

• Algorithmica, where P = NP,

• Heuristica, where P ≠ NP but NP is easy on average for any samplable
distribution,

• Pessiland, whereNP is hard on average and there is no secure private-key
cryptography,

• Minicrypt, where there is secure private- but not public-key cryptogra-
phy, and

• Cryptomania, where there is public-key cryptography. 1

These five worlds are based around whether P = NP, NP is hard on average,
and private-key or public-key cryptography exists, and include all of the
possible combinations of these because of a chain of implications that can be

1Note that the formal technical definitions of each of these worlds can vary based whether
we allow “tractible” algorithms access to randomness and how we precisely interpret
“easy/hard on average.” These worlds are a useful conceptual framework with some
looseness based on context.
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relatively easily seen going oneway. If there is public-key cryptography, then
there is also private-key cryptography. If there is private-key cryptography,
then NP must be hard on average because otherwise we could break private-
key cryptography. If NP is hard on average, it certainly must be hard in the
worst case. Thus we can narrow down the word we are in to one of these
five.

Can we narrow in even further onto our actual world? To rule out the
potential existence of one of these worlds, we must prove implications in
the other direction. Can we prove P ≠ NP with no premise, eliminating
Algorithmica? Does P ≠ NP imply that NP is hard on average, eliminating
Heuristica? Does NP being hard on average mean that there must be private-
key cryptography, eliminating Pessiland? Does the existence of private-key
cryptography imply the existence of public-key cryptography, eliminating
Minicrypt? Or is there simply no public-key cryptography, eliminating
Cryptomania?

Most complexity theorists believe that we are either in Minicrypt or
Cryptomania, and thus should be able to rule out the other worlds. While it
is unlikely we will eliminate Algorithmica anytime soon, there was recent
progress that unexpectedly suggested that MCSP could be used to eliminate
both Heuristica and Pessiland if certain variants of it were shown to be
NP-complete. Even more recently, there was a huge breakthrough that
eliminated (at least one version of) Pessiland by utilizing a problem closely
related toMCSP. MCSP’s connection to private-key cryptography was hinted
at at the end of the previous chapter, so let’s start there.

3.2 MCSP and Pessiland

First, why does the existence of private-key cryptography imply MCSP
∉ P? What exactly is private-key cryptography anyway? The basic idea is
that if a small key is privately shared between two parties beforehand,
they will be able to use an unbreakable code to communicate securely over
an open channel. (In public-key cryptography, a private key needn’t be
securely shared ahead of time in order to accomplish this.) Combining the
results of Impagliazzo and Luby (1989) and Håstad et al. (1999), private-key
cryptography exists if and only if one-way functions do, which are simpler to
define formally. Following the definitions of Impagliazzo and Luby (1989)
and Allender and Hirahara (2019),

Definition 3.1. A function 5 : ℕ→ ℕ is one-way if
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• 5 can be computed in polynomial time, and

• for any algorithm A computed by polynomial-size circuits, the inverting
probability

Pr
{
5
(
A

(
5 (x)

) )
= 5 (x)

}
=

1
=$(1)

,

where x is drawn uniformly at random from {0, 1}= .

Essentially, one-way functions are those which are easy to compute, but
difficult to invert, which is suggestive of their fundamental importance to
cryptography. These two papers also show that the existence of one-way
functions is also equivalent to the existence of pseudorandom generators (PRGs).
Following the definition of Razborov and Rudich (1997),

Definition 3.2. Let �: : {0, 1}: → {0, 1}2: , and define its hardness �(�:) to be
the smallest B such that there exists a circuit � which is of size ≤ B and has

|Pr{�[�:(x)] = 1} − Pr {�[y] = 1}| ≥ 1
B

where x and y are drawn uniformly at random from {0, 1}: and {0, 1}2: respectively.
We will call �: a strong pseudorandom generator, or PRG, if �(�:) ≥ 2:Ω(1) .

Thus, roughly speaking, a strong PRG can extend a random binary string into
a longer one which cannot be distinguished from true randomness by any
circuit of subexponential size. To understand how PRGs and thus one-way
functions and private-key cryptography connect to MCSP, we have to go
back to the famous “natural proofs" framework of Razborov and Rudich
(1997).

One program to prove that P ≠ NP approaches the problem from the
direction of circuit lower bounds. If NP * P/poly, then since of course
P ⊆ P/poly (just ignore the advice), P ≠ NP. While initially there was
progress on this front, by the late ’90’s it had stalled out. The framework of
natural proofs in this paper showed why. A P/poly-natural property against
P/poly is a set of Boolean functions that is (1) constructive (membership can
be determined in P/poly), (2) large (the members constitute a significant
fraction of Boolean functions), and (3) useful (the members are not in P/poly).
A proof is P/poly-natural against P/poly if its proof contains (explicitly or
implicitly) a P/poly-natural property against P/poly.

Razborov and Rudich showed that as far as they could ascertain, all
nonmonotone circuit lower bounds to date were P/poly-natural against
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various circuit classes. However, their paper proves that if a superpolynomial
circuit lower bound was shown for NP via a proof P/poly-natural against
P/poly, then all PRGs in P/poly would be easy to break (and thus one-
way functions would not exist), so that we don’t even have private-key
cryptography. Since it is widely believed that secure cryptography exists,
this has been taken to mean that altogether new techniques for proving
circuit lower bounds will be necessary for this program to be successful.

However, while this framework provided a barrier in this area of com-
plexity theory, it also suggested a new direction withMCSPwhich resparked
interest in the problem. Kabanets and Cai (2000) pointed out that Razborov
and Rudich (1997) implicitly shows

Theorem 3.1. If MCSP ∈ P/poly, then there are no strong PRGs in P/poly.

Proof. Notice that in this case the set of Boolean functions that require circuits
of sizeΩ(2=/=) is P/poly natural against P/poly. This set is constructive since
we can use MCSP ∈ P/poly with B = Ω(2=/=) to determine membership, it
is large since most Boolean functions require large circuits, and it is useful
since clearly no function in this set has polynomial-size circuits. �

This result also holds if MCSP is can be approximated sufficiently well in
P/poly, namely within a factor of =2 for 2 ∈ ℕ, meaning that if a function has
a circuit of size ≤ B the approximation algorithmmust accept, but it only has
to reject if the function requires circuits of size > =2B (otherwise it answer
however it likes). In this case, using B = $(2=/=2+1), the set of functions
which require circuits of size $(2=/=) plus some which require size at least
$(2=/=2+1) is still constructive, at least as large as before, and useful since
all members require superpolynomial circuits. Indeed, this holds for any
approximation factor 0(=) such that 2=/(0(=) · =) is still superpolynomial
in =. This gives strong motivation that MCSP nor certain approximation
versions of it are in P/poly, let alone P.

It also suggests that we should examine the connection between MCSP
and cryptographic objects further. Perhaps not only do one-way functions
not exist if MCSP is easy—perhaps if MCSP is hard, one-way functions must
exist. In order to understand this relationship further, we must introduce
average-case complexity.

Hirahara and Santhanam (2017) use the connection to natural proofs to
show that in fact the existence of one-way functions implies that MCSP is not
only worst-case hard, but is zero-error average-case hard for any fixed size
parameter B ∈ 2Ω(=). Roughly speaking, a zero-error average-case algorithm
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for a language outputs “yes,” “no,” or “?” for each input, is always correct
when it outputs “yes” or “no”, and doesn’t output “?” too often, so it figures
out the correct answer a significant portion of the time but refrains from
making a proclamation either way otherwise. Thus the following definition
of zero-error average-case hardnessmakes sense.

Definition 3.3. A language ℒ is zero-error average-case hard if for any family of
polynomial-size circuits {�=} which outputs “yes,” “no,” or “?” for each input, for
all large enough = either �= outputs “yes” or “no” incorrectly on some input or
outputs “?” for more than 1 − 1/=$(1) of the inputs.

Notice that this is considering “average-case” over the uniform distribu-
tion, which for MCSP means we must use a zero-error notion instead of a
bounded-error notion of average-case performance. This is because when
drawing from the uniform distribution, with high probability we will get a
function with high circuit complexity, so for small sizes an algorithm could
safely answer “no” on all inputs and still have only a small probability of
error, while for large enough sizes it can safely answer “yes.” Thus MCSP is
trivially easy in the bounded-error sense. By requiring zero-error instead,
this tactic can no longer be used. Now, notice that if MCSP isn’t zero-error
average-case hard for some fixed size parameter B ∈ 2Ω(=), while we can’t
use it to necessarily identify all functions which require circuits of size > B,
we still identify enough of them that our natural property is large.

In order to connect the zero-error average-case hardness to the existence
of one-way functions in the other direction, Santhanam (2020) introduces the
UniversalityConjecture. This conjecturehypothesizes that there is auniversal
construction of what are called succinct pseudorandom distributions against
arbitrary polynomial-size adversaries. This is not unreasonable, since there
are indeed universal constructions of a variety of other cryptographic objects
such as one-way functions, PRGs, and hitting set generators (HSGs). Further,
if one-way functions exist, then we have pseudorandom function generators
which can serve as universal succinct PRGs.

In any case, Santhanam (2020) shows that under the Universality Conjec-
ture, one-way functions exist if and only if MCSP is zero-error average-case
hard when the size parameter is set to 2&= for some & > 0, amongst other
equivalences. Thus if the Universality Conjecture holds and this version of
MCSP is shown to be NP-complete, the average-case hardness of NP would
imply the average-case hardness of this version of MCSP, which would imply
one-way functions and thus private-key cryptography exist, eliminating
Pessiland.
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Ren and Santhanam (2021) also construct one-way functions from the
hardness of MCSP, but this time from a particular notion of MCSP being
exponentially hard on average. However, this allows them to eliminate the
use of a conjecture like the Universality Conjecture, the first such result.
Further, MCSP being exponentially hard on average is well-motivated by
viewing it as what is called a Weak Perebor Hypothesis, implying that the
best algorithm for MCSP is essentially brute-force search. The idea that
solving MCSP potentially requires brute-force search is what motivated
interest in the problem in the USSR going back to the 1950’s. This work
constructs a one-way function from MCSP in a very straightforward and
appealing way. Namely, the one-way function takes as input a circuit � and
outputs the size of � and its truth table. Thus if MSCP is sufficiently hard,
this function must be one-way because inverting it requires solving MCSP
(and even more, solving the search version of MCSP).

Very recently, Liu and Pass (2021) showed an NP-complete language
whosemild average-case hardness implies the existence of one-way functions
(building on their other recent breakthrough work Liu and Pass (2020)). The
language they use is a minimization problem that is very closely related
to MCSP, which instead of circuit size considers a certain kind of what is
called Kolmogorov complexity.2 Further, they show that this problem is
mild average-case hard if and only if one-way functions exist. (They also
note a concurrently developed, as-yet-unpublished result showing that the
average-case hardness of a different NP-complete problem, likewise based
on Kolmogorov complexity, also implies the existence of one-way functions,
though this approach does not achieve the if and only if component.)
Their result eliminates (at least one variant of) Pessiland. Since Pessiland
is clearly the least desirable of Impagliazzo’s five worlds, this is a major
accomplishment.

3.3 MCSP and Heuristica

We can also connect the NP-completeness of variants of MCSP to the possi-
bility of eliminating Heuristica, or a world in which NP is hard in the worst

2Defining Kolmogorov complexity and the relationships of minimization problems based
on variants of this notion with each other and with MCSP is beyond the scope of this thesis.
However, these meta-complexity problems share many of the interesting properties of MCSP
including some of its other connections to Impagliazzo’s Five Worlds, and can sometimes be
more approachable to work with because Kolmogorov complexity is better understood than
circuit complexity in many of ways.
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case but not on average, which remains open. This is important since a
common critique of complexity theory is that it typically focuses on worst-
case complexity, when in many applications being able to solve problems
efficiently on average would also be very advantageous. For instance, the
simplex algorithm for linear programming is an example of a very useful
algorithm which takes exponential time in the worst case, but behaves quite
well on average.

Hirahara (2018) presents the first non-black-box worst-case to average-
case reduction from a problem believed to be outside of what’s called
co-NP, namely from an approximation version of MCSP to average-case
MCSP. To do so, they use techniques relating Kolmogorov randomness, true
randomness, and pseudorandomness building on Allender et al. (2006),
as well as connections between natural properties and learning circuits.
Specifically, they show that approximating MCSP within a factor of 2(1−&)=
is in BPP for some fixed & > 0 if, and only if, for any 2 ∈ ℕ, MCSP has a
zero-error average-case BPP algorithm such that “?” is output no more than
1/# 2 of the time when drawing the truth table uniformly at random from
{0, 1}# and with the size parameter is set to 2&= for some 0 < & < 1 (i.e.,
MCSP with this size parameter is in AvgBPP).

Previous results indicated that it was very unlikely that it would be
possible to reduce worst-case hardness for a problem outside co-NP (as
all NP-complete problems seem to be) to average-case hardness for a NP
problem over a certain input distribution by using what are called black-
box techniques. The most straightforward way to exclude the existence of
Heuristica is via a reduction from the worst-case hardness of a NP-complete
problem to the average-case hardness of a distributional NP problem, so
this paper makes progress overcoming a significant obstacle. Notice that if
approximating MCSP within a factor of 2(1−&)= was shown to be NP-complete
under BPP-Turing reductions, then in conjunction with this result (and the
assumption that P = BPP, which is widely believed) Heuristica would be
eliminated.3

Additionally, Hirahara (2020) shows equivalence between the average-
case complexity of the polynomial hierarchy (PH); the worst-case complexity
of an approximation version of the PH-variant on MCSP, MCSPPH; and the
existence of PH-computable hitting set generators, another cryptographic
object. This againprovidesmotivation for how thehardness ofMCSPvariants

3Alternatively, Algorithmica and Heuristica are sometimes sometimes defined with
respect to BPP instead of P in the first place, as these definitions can be considered “morally
equivalent.” See Impagliazzo (1995) for a discussion of this.
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has important implications, and that worst-case complexity, average-case
complexity, and the existence of cryptographic objects could all be connected
through MCSP, leading the paper to conclude that “meta-complexity is
indispensible for studying average-case complexity” (14).

Again reminiscent of Perebor Hypotheses, another line of attack on
ruling out Heuristica is basing the average-case hardness of NP on something
stronger than P ≠ NP (or NP * BPP), like that NP cannot be solved in
deterministic 2$(=/log =) time. Hirahara (2021) shows that if this is the case,
then, roughly speaking, there are distributional NP problems which cannot
be decided by algorithms which have an expected polynomial runtime
such that this runtime on a given instance can be computed in polynomial
time (i.e. DistNP * AvgPP). While being able to compute a runtime upper
bound for such algorithms would be quite useful in practice, this result
would get closer to the desired ruling out of Heuristica if it didn’t restrict
to algorithms with polynomial-time computable runtimes (then the result
of the implication would be DistNP * AvgP), as this additional requirement
places these algorithms somewhere betweenworst-case polynomial time and
average-case polynomial time. (The paper also presents some evidence that
AvgPP and AvgP are ultimately not too dissimilar.) Hirahara (2021) establishes
their result by utilizing a minimum Kolmogorov complexity problem. They
also identify MCSP variants as candidate problems to show NP cannot be
solved in deterministic 2$(=/log =) time.4 As a corollary to their result, they
show that if any C-MCSP cannot be solved in deterministic 2$(=/log =) time,
then DistNP * AvgPP. This result thus utilizes minimization problems related
to MCSP to eliminate a restricted version of Heuristica where NP cannot be
solved in deterministic 2$(=/log =) time but DistNP ⊆ AvgPP.

Between having played a part in ruling out Pessiland and potentially
ruling out Heuristica, it’s clear how impactful provingMCSP and its variants
to be NP-complete would be. Additionally, complexity theorists have been
thinking about this problem starting with Leonid Levin back in the ’70’s.
With all of this time and motivation, why has no one been able to prove
that MCSP is NP-complete? It turns out there are technical barriers in this
direction. We will discuss this in the next chapter.

4Note that for any circuit complexity class C ⊇ DNF, there are no known algorithms for
C-MCSP which run in time 2>(=), and for some C there is evidence against this being possible.
As previously noted for MCSP itself, brute-force search is essentially the best strategy known.
Further, some of these C-MCSP are known to be NP-complete—see the beginning the next
chapter. Thus this is the first result to show that NP is average-case hard in some way if an
NP-complete problem is worst-case hard in a plausible way.
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Why Don’t We KnowWhether
MCSP is NP-complete?

Of course, one possibility is that MCSP is not NP-complete after all. However,
many people working in this area believe it is, and there is a line of work
showing that problems similar to MCSP are indeed NP-complete, such as
DNF-MCSP (Allender et al. (2008)), (DNF ◦ XOR)-MCSP (Hirahara et al.
(2018)), Oracle-MCSP (Ilango (2019)), Multi-Output MCSP (Ilango et al.
(2020)), and Constant-Depth-Formula-MCSP (Ilango (2020)). Why haven’t
we be been able to do the same for MCSP itself? Are there formal barriers
we can find to showing that MCSP is NP-complete?

Well, this chapter title is a little misleading. It turns out that we do know
that MCSP is not NP-complete under certain “local” many-one reductions!
We must always keep in mind that completeness is necessarily defined in
relation to a particular kind of reduction. As the previous chapter made
clear, we’re interested in completeness under reductions as generous as
BPP-Turing reductions.

There is a line of work exploring why it is hard to show that MCSP is
NP-complete under different kinds of reductions, going back to the paper
that reinvigorated interest in the problem, Kabanets and Cai (2000). These
results come mainly in the following form: if MCSP is NP-complete under a
certain kind of reduction, then we get a dramatic result in complexity theory
that seems well beyond our current technical reach. This is interpreted as
showing that it is very unlikely we will showMCSP to be NP-complete under
this kind of reduction anytime soon. Most of these results will simply be
stated with a brief proof idea. We will give the full proof for a couple of
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results that are particularly pertinent precursors to the additions of this
thesis. Note that these are in roughly chronological order of appearance,
despite some seemingly mixed-up dates due to publishing delays for certain
papers.

4.1 Previous Results for MCSP

4.1.1 Kabanets and Cai (2000)

This paper resparked interest in MCSP. Kabanets and Cai define the idea of
a natural many-one reduction.

Definition 4.1. A natural many-one reduction is a polynomial-time many-one
reduction ' such that for all G ∈ {0, 1}∗,

• |'(G)| and the value of any numerical parameters output by it depend only
on |G |, and

• |G | and |'(G)| are polynomially related.

While this definition may appear somewhat arbitrary, the authors note that
at the time of their writing “all ‘natural’ NP-complete problems that we are
aware of are complete under natural reductions; this includes the Minimum
Size DNF Problem" formally presented in Allender et al. (2008).

Note that E is the set of languages decided by deterministic Turing
machines that run in linear exponential time, or time 2$(=). Kabanets and
Cai show that if MCSP is NP-complete via a natural reduction from SAT,
then amongst other results we would prove E * P/poly, a dramatic circuit
lower bound that seems far beyond current techniques. This is widely
interpreted as showing that it is unlikely that we will be able to prove MCSP
is NP-complete in this way. The proof of this is relatively straightforward
and is illustrative of the essence behind many results in this line of work.

Theorem 4.1. If there is a natural many-one reduction from SAT to MCSP, then
E * P/poly.

Proof. We will proceed by cases. First, suppose that NP ⊆ QP, where QP is
the set of languages decided by deterministic Turing machines that run in
quasi-polynomial time, or time =polylog(=). In this case, clearly PH ⊆ QP as



Previous Results for MCSP 41

well. It can be shown that for some : ∈ ℕ, QPΣ:P contains circuits outside of
P/poly,1 so certainly in this case E * P/poly either.

Now, suppose NP * QP. Let ' be the Turing machine computing the
natural reduction from SAT to MCSP. Notice, by the definition of natural,
that the size of any truth table output by ' on an input of length = must
be polynomial in =, so the Boolean function it defines will be on Θ(log(=))
variables.

Also notice that there is a single size parameter B= output by all inputs of
this length. If for all but finitely many =, B= ≤ (log(=))2 for some constant
2, then we can simply use brute-force search to check all polylog(=)polylog(=)
possible circuits on B= ≤ (log(=))2 gates. (There are no more than (log(=))2
gates, a constant number of kinds of gate each can be, and no more than
polylog(=) previously computed values, for polylog(=)polylog(=) possible
circuits.) For each circuit, run CIRCUIT EVALUATION on it in polylog(=)
time for all 2$(log(=)) = poly(=) possible inputs to check whether it indeed
computes the desired function. Notice that this has taken no more than
=polylog(=) time overall. Thus in this case we can decide any language in NP
by reducing it to SAT and then MCSP in polynomial time and deciding these
instances of MCSP in =polylog(=) time, in which case NP ⊆ QP, a contradiction.

Therefore, for all 2, B= > (log(=))2 for infinitely many =. Now, consider an
easily-constructible trivial family of unsatisfiable formulas. On an input of

1We can adapt the argument of Kannan (1982). First, query the oracle with the length
of the input. To compute this oracle, guess a circuit � on = variables of size =3 log(=). Then
query the oracle, which will decide the language consisting of circuits which compute
functions such that no circuit of size =log(=) computes the same function. This language
will be computed by querying an oracle which computes the language consisting of circuits
which compute functions such that there is a circuit of size =log(=) which computes the same
function, and then answering opposite to the oracle. This next language will be computed
by guessing a circuit of size =log(=) and querying an oracle with both circuits, and then
answering opposite to the oracle. This oracle will decide the language consisting of pairs
of circuits which compute different functions by guessing an input which makes them
disagree and using CIRCUIT EVALUATION to check. Notice that we have used four levels to
determine whether there is a circuit of size =log(=) which computes the same function as �.
If there is, we reject. If not, now we also want to know whether there is a lexicographically
earlier circuit of size =3 log(=) that has no circuit of half the size computing the same function,
so that we uniquely identify such a circuit. To check this, we query an oracle which decides
this question by guessing a lexicographically earlier circuit and then goes through this whole
process again to verify whether the function it computes has a half as small circuit, adding
an extra level. If there is such a lexicographically earlier circuit, we reject. Else, use CIRCUIT
EVALUATION to compute the value of � on the original input and return the same. Thus we
have computed a language that can only be decided by a family of circuits of quasipolynomial
size, so QPΣ5P * P/poly.
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length :, we will construct one of these formulas of size = = 2Θ(:), and then
run ' on it to get anMCSP instance. Recall that the Boolean functions output
by the reduction are on Θ(log(=)) = Θ(:) variables. Thus since the answer
to all such MCSP instances is no and for all 2, B= > (log(=))2 = Θ(:2) for
infinitely many =, the language defined by this series of Boolean functions
must not have polynomial-size circuits. Since we were able to compute this
language in 2$(:) time, E * P/poly.

More precisely, since on input = we receive a truth table on E(=) =
Θ(log(=)) variables, not on exactly log(=), we need to take a little more
care. Since E(=) = Θ(log(=)), by defintion, for large enough =, 21 log(=) ≤
E(=) ≤ 22 log(=) for some constants 21 , 22. Thus if we want E(=) = : so
that the original input is the correct length to serve as an input to the truth
table we find, this can only occur for = such that 2:/22 ≤ = ≤ 2:/21 . Since
we’re operating in E, we have enough time to check all such =. We may
not always find an = such that ultimately E(=) = :, but we will infinitely
often, since for each = = 1, 2, 3, . . . you will get some value for E(=)which we
will find when : = E(=), and these E(=) values can’t repeat infinitely often
as E(=) = Θ(log(=)). If we do find an = such that E(=) = :, we output the
same thing as the truth table we’ve found would on our original input of
length :. Further, as for all 2, B= > (log(=))2 for infinitely many =, since all =
(except for finitely many too small ones or values which lead to repeated
E outputs) lead to a E(=)which will be utilized when : = E(=) = Θ(log(=)),
the language defined by this series of Boolean functions will indeed not have
polynomial-size circuits. Since we have still taken 2$(:) time, E * P/poly. �

This proof illustrates how the NP-completeness of MCSP under certain
kinds of reductions has particular repercussions because MCSP is a meta-
computational problem—the answer it gives can have direct implications for
the complexity of the language being computed itself, leading to surprising
results.

Additionally, we can easily extend this result of Kabanets and Cai (2000)
to certain kinds of randomized reductions. Consider that a RP many-one
reduction will take a “yes” instance to a “yes” instance with probability at
least one half and will always take a “no” instance to a “no” instance. We
will let RET stand for Randomized linear Exponential Time in analogy to RP
(RE already stands for the Recursively Enumerable languages).

Corollary 4.1. If there is a natural RP many-one reduction from SAT to MCSP,
then RET * P/poly.
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Proof. To adapt the first case of the previous proof, let RQP stand for Random-
ized Quasi-Polynomial time in analogy to RP. Notice that if NP ⊆ RQP, then
so is PH because RQPRQP ⊆ RQP using probability amplification. This implies
that QPΣ:P ⊆ RQP. Thus since for some : ∈ ℕ, QPΣ:P * P/poly, RQP * P/poly,
so certainly RET * P/poly in this case.

If NP * RQP, for all 2 B= > (log(=))2 for infinitely many = because
otherwise the natural RP many-one reductionwould get us an RQP-algorithm
for anyproblem inNPusing the sameapproach as in the original proof. Again,
consider an easily-constructible trivial family of unsatisfiable formulas. On
an input of length :, we will construct one of these formulas of size = = 2Θ(:),
and then run the reduction ' on it using a randomness string of all 0’s to get
an MCSP instance. Recall that the Boolean functions output by the reduction
are on Θ(log(=)) = Θ(:) variables. Thus since the answer to all such MCSP
instances is no, so the RP many-one reduction must output a “no”-instance
using any randomness string, and for all 2, B= > (log(=))2 = Θ(:2) for
infinitely many =, the language defined by this series of Boolean functions
must not have polynomial-size circuits. Since we were able to compute this
language in 2$(:) time, E * P/poly, so certainly RET * P/poly.

Therefore in either case we get RET * P/poly, as desired. �

Now, notice that it was very crucial for the reasoning we used that
our reduction had no chance of error on a “no“ instance. In the case that
NP * RQP, this led us to the stronger conclusion that E * P/poly, but we had
to loosen this to RET * P/poly to accommodate the result we were able to get
from the other case. This suggests that there might be room to improve this
result, but if we allow a probability of error for “no” instances to generalize
to many-one BPP reductions, we get a significant difficulty. Our approach
shows that E * P/poly by, when given an input G, using the reduction on a
“no” SAT instance to generate a truth table of a hard function on |G | variables
and then outputting 0 or 1 based on the entry corresponding to G in the
truth table. If the reduction involves randomness on such instances, it will
have a high probability of outputting a “no” instance, but it may output
entirely different “no” instances along each path. Thus if we output 0 or 1
based on the generated truth table, we have no guarantee that there will be
a significant majority of 0 or 1 being output because even though there is a
significant majority of hard truth tables all being generated, they may all
be different hard truth tables. Ultimately, there is just no coherent singular
hard function being followed amongst the majority of paths.

However, this suggests another kind of restricted reduction that may
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work. What if we allow randomness but require that at least 3/4 of the
paths output the same “yes” or “no” instance respectively? Indeed, this is
exactly what is required by Bellagio, or pseudo-deterministic, algorithms for
search problems (here we’re either “searching” for a ‘yes” or “no” instance of
MCSP depending on whether the input was a “yes” or “no” instance). This
kind of algorithm was first introduced by Gat and Goldwasser (2011), and a
recent paper that surveys the resulting line of work on pseudo-deterministic
algorithms and uses a definition more in line with the one we will use is
Goldwasser et al. (2020). Namely, an algorithm with access to randomness
is pseudo-deterministic if for each input G, there is a unique output >(G)which
when the algorithm is run on G will be output with probability ≥ 3/4. We
will use the term pseudo-deterministic BPP many-one reduction to describe a
BPP many-one reduction which on a given input produces a unique output
with probability ≥ 3/4 (thus if the input is a “yes” instance, the unique
output must be a “yes” instance, and likewise for “no” instances). Thus we
can also get the following corollary, with Bounded-Error Probabilistic E, or
BPE, being the linear exponential-time analogy of BPP.

Corollary 4.2. If there is a natural pseudo-deterministic BPP many-one reduction
from SAT to MCSP, then BPE * P/poly.

Proof. To adapt the first case of the previous proof, let BPQP stand for
Bounded-Error Probabilistic Quasi-Polynomial time in analogy to BPP. No-
tice that if NP ⊆ BPQP, then so is PH because BPQPBPQP ⊆ BPQP using
probability amplification. This implies that QPΣ:P ⊆ BPQP. Thus since for
some : ∈ ℕ, QPΣ:P * P/poly, BPQP * P/poly, so certainly BPE * P/poly in
this case.

If NP * BPQP, for all 2 B= > (log(=))2 for infinitely many = because
otherwise the natural BPP many-one reduction would get us an BPQP-
algorithm for any problem in NP using the same approach as in the original
proof. Again, consider an easily-constructible trivial family of unsatisfiable
formulas. On an input of length :, we will construct one of these formulas
of size = = 2Θ(:), and then run the reduction ' on it to get a unique MCSP
instance with probability ≥ 3/4. Recall that the Boolean functions output by
the reduction are on Θ(log(=)) = Θ(:) variables. Thus since the answer to
all such MCSP instances is no, so the unique instance is a “no” instance, and
for all 2, B= > (log(=))2 = Θ(:2) for infinitely many =, the language defined
by this series of unique Boolean functions must not have polynomial-size
circuits. Notice that if we output the appropriate entry of the generated
truth table, with probability ≥ 3/4 we are outputting the appropriate entry
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of the unique function’s truth table, so the procedure laid out does indeed
compute the language defined by this series of unique Boolean functions in
the BP sense. Since we were able to BP-compute this language in 2$(:) time,
BPE * P/poly.

Therefore in either case we get BPE * P/poly, as desired. �

Note that we could generalize this a little and allow the reduction to not
respect the pseudo-deterministic restriction for “yes” instances, as the proof
only utilizes this property for “no” instances.

4.1.2 Murray and Williams (2017)

This paper shows that MCSP is unconditionally not NP-hard under “local,”
sufficiently efficient polynomial-time many-one reductions where sublinear
time is spent to compute a single output bit on its own, or even randomized
versions of these reductions. Further, even PARITY cannot be so reduced to
MCSP. This may be surprising because most known NP-complete problems
can be shown to be NP-hard under these kinds of local reductions, and
indeed even more restricted ones where only poly-logarithmic time is spent
to compute a single output bit. These kinds of reductions can be described as
using local structure to make “gadgets," so this shows that sort of approach
will not work for MCSP.

It is especially interesting that this extends to randomized reductions
because these generally seem to be the most promising avenue to showing
that MCSP is NP-complete. Intuitively speaking, this is because using
randomness we can produce functions with high circuit complexity, while
we don’t have many circuit lower bounds for explicit functions we could
deterministically produce. Indeed, the unconditional barrier against local
reductions is proven using circuit lower bounds against PARITY, so paired
with the circuit lower bounds which result from MCSP being NP-complete
under certain reductions, our inability to determine the NP-hardness of
MCSP under stronger kinds of reductions seems to be tied up in our lack of
understanding of circuit lower bounds.

Murray and Williams also prove that if MCSP was shown to be NP-hard
under only slightly more powerful reductions (namely logtime-uniform AC0

many-one reductions, where AC0 is a relatively weak circuit class that does
not contain PARITY), then we would prove NP * P/poly (and thus P ≠ NP)
as well as strong circuit size lower bounds against E that would imply P =
BPP, thereby derandomizing BPP. While these results are believed to be true,
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they seem to be dramatically beyond current techniques.
One approachused for several of these results is “naturalizing” reductions

from PARITY by strategically padding the input instance with zeros so that
all the bits examined to determine the size parameter will be zero, while
the parity of the instance remains the same. This naturalized reduction
allows the authors to bound the size parameter of the output MCSP instance
because in order to address no-instances, it must be small enough for Boolean
functions without circuits that large to exist. This is then used to construct
circuits for PARITY which contradict known lower bounds.

Additionally, they show that if MCSP is NP-complete under logarithmic-
space many-one reductions, then PSPACE ≠ ZPP (PSPACE consists of the
languages which can be computed in polynomial space on a deterministic
Turing machine). Further, if MCSP is NP-complete under generalmany-one
polynomial-time reductions, then EXP * NP ∩ P/poly (EXP consists of the
languages which can be computed in exponential time 2=$(1) on a determin-
istic Turing machine) which implies EXP ≠ ZPP, another result that seems
far beyond our reach. These results are proven relatively straightforwardly
by leveraging the reductions to get a complexity class equivalence that
contradicts what’s called the nondeterministic time hierarchy.

With this last result, we seem to have run out of possibilities for deter-
ministic many-one reductions, since we need them to be polynomial-time at
the very least. Perhaps Turing reductions could get around some of these
inconvenient implications?

4.1.3 Hitchcock and Pavan (2015)

This paper shows two main results. First, it proves that if MCSP was shown
to be NP-hard via general polynomial-time many-one reductions, then a
strong circuit lower bound amplification result will hold (i.e., minor lower
bounds will immediately imply much stronger ones). Indeed, both MCSP
being in P or being NP-hard implies this kind of result. It is interesting to
note that circuit lower bounds result both from MCSP being in P or it being
NP-hard, so perhaps they could be shown to be true without resolving the
complexity of MCSP if we could show they are implied by MCSP being
NP-intermediate as well, though this seems more difficult to leverage.

Second, if MCSP is shown to be NP-hard via poly-logarthmic-space
Turing reductions or truth-table reductions, then EXP ≠ NP ∩ SIZE

(
2n& )

for some & > 0 (where SIZE
(
2n& ) denotes exponential-sized circuits for

a specific exponent =&) and thus EXP ≠ ZPP. Truth table reductions are
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also known as nonadaptive reductions, and are polynomial-time Turing
reductions which must decide what queries to make to the oracle with
only access to the input, before learning the answer given to any previous
query. It’s been shown that a hypothesized NP-intermediate problem, Graph
Isomorphism, reduces to MCSP under randomized adaptive reductions, so
either of those characteristics (or both) could be the key for showing that
MCSP is NP-complete.

Their overall approach is to show that under certain assumptions, if
MCSP is NP-complete then it’s complete under a certain kind of “parametric
honest” reduction. Parametric honest reductions are thosewhere on an input
of length =, the numerical parameter of the output is bounded below by =2
for some 2 > 0. Similarly to earlier papers, once the size parameter of the
MCSP instance output is bounded, that can be leveraged to get interesting
results.

4.1.4 Hirahara and Watanabe (2016)

This paper proves results in two main directions. First, it defines “oracle
independent” reductions and shows several results related to using these
to show that MCSP is NP-complete. Second, it generalizes some previous
results. Like Hitchcock and Pavan (2015), they extend the EXP ≠ ZPP
implication of Murray and Williams (2017) from polynomial-time many-one
reductions to the more general truth-table or nonadaptive polynomial-time
Turing reductions.

Returning to the first point, oracle independent reductions to MCSP
are those that apply equally well to MCSP� for any oracle �. This version
of MCSP asks whether there is circuit of a certain size which computes a
particular function when that circuit has access oracle gates which compute
� for it in one query. This characterization encompassed all reductions to
MCSP known by the authors at the time, as these usually rely on relativizing
properties ofMCSP.Namely, most use that the circuit complexity of a random
Boolean function is large with high probability. Then since minimum circuit
size only decreases when given access to an oracle but the oracle circuit
complexity of a random Boolean function still remains large with high
probability, the reduction works just as well for MCSP�.

However, this paper shows unconditionally that no language outside
of P reduces to MCSP under oracle independent polynomial-time Turing
reductions. The big idea of the proof is that for each such polynomial-time
reduction ', we can adversarially choose an oracle �' such that ' never
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queries truth tables with high circuit complexity (so querying the oracle
doesn’t help us learn anything we couldn’t have figured out on our own in
P). Thus, if P ≠ NP, we cannot use oracle independent reductions to show
that MCSP is NP-hard. Interestingly, as randomized reductions remain a
potentially accessible avenue to showing that MCSP is NP-complete, this
result also extends to show randomized oracle independent polynomial-time
reductions which make only at most one oracle call are not sufficient to show
that MCSP is NP-complete unless the polynomial hierarchy collapses (i.e.,
PH = Σ:P for some : ∈ ℕ).

4.1.5 Allender et al. (2017)

This paper shows a variety of results having to do with MCSP� for various
oracles �. Generally, the results in this paper are of the following form: if
MCSP� for a certain oracle � is hard for a certain complexity class, then
some complexity class separation or equivalence follows. (Similar results
also hold for time-bounded Kolmogorov complexity, since it has a close
relationship with circuit complexity.) Something interesting to note is that
the relationship between MCSP� and MCSP� for oracles � ≠ � is generally
unknown and may not follow intuitively from the complexity of languages
� versus �. Indeed, this paper was able to show certain results under
assumptions having to do with one oracle that they weren’t able to show
using another stronger oracle, which one might intuitively think would be a
stronger assumption. Also, they note that for C ⊇ PSPACE, generally MCSPC

is complete for C/poly under P/poly reductions (though it is rarely known to
be for uniform versions of such reductions).

One highlighted result shows thatwhileMCSPQBF is complete for PSPACE
under ZPP-Turing reductions (QBF is a PSPACE-complete language), it not
so complete under logarithmic-space reductions, and it is not hard for the
circuit complexity class TC0 under uniform AC0 reductions. They also show
that if MCSP is hard for P under AC0 reductions, then P ≠ NP as we expect,
while if MCSPQBF is hard for P under much more general logarithmic-space
reductions, then EXP = PSPACE, which is not generally believed to be true.
They conjecture that a similar result to the latter may be possible for MCSP
itself, but this gap can’t be easily bridged because there is not known to be
an efficient reduction from MCSP to MCSPQBF.

The general technique they use to prove these results is first assuming the
opposing statement for contradiction, showing that under that assumption
the reduction can be adapted to succinct versions of the input problem
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and MCSP�, that the existence of the reduction itself implies that small
circuits exist for the Boolean function output by the reduction, that this
in turn implies that these instances are easy to solve, contradicting that
succinct versions of problems are generally “exponentially" harder than the
original versions. This basically leverages that MCSP itself does not become
exponentially harder when made succinct.

4.1.6 Saks and Santhanam (2020)

This paper defines “natural" and “parametric honest" Turing reductions, and
establishes that if MCSP was shown to be NP-hard under either of these
types of reductions, then this would prove the seemingly-out-of-reach result
E * P/poly.
Definition 4.2. Parametric honest Turing reductions to MCSP are those where
each query to the MCSP oracle has a size parameter of value at least =2 for some
constant 2 > 0 .

This is analogous to the definition for many-one reductions from Hitchcock
and Pavan (2015).
Definition 4.3. Natural Turing reductions to MCSP are defined as those where
each query to the MCSP oracle has a size parameter whose value depends only on
the size of the input.

This is likewise analogous to the definition in Kabanets and Cai (2000),
though it is a somewhat weaker requirement when applied to many-one
reductions since there are no restrictions of the length of the query overall,
just the value of the size parameter.

The main strategy used to prove these results is simulating the oracle
Turing machine for SAT by either simply saying yes to every query or brute-
forcing small enough queries. If the simulation is correct, then we get a
circuit lower bounds from NP being easy. If the simulation is incorrect, we
can use the result of another paper to produce input instances of SAT that it
fails on, whichmust have queries that should have been said no to. Using the
aforementioned restricted versions of polynomial-time Turing reductions,
we canmake sure these “no”-queries have sufficiently high circuit complexity
to get our circuit lower bound again. This is very simple for parametric
honest Turing reductions, and involves some more complicated finagling
with natural Turing reductions.

As a new result presented at the end of this chapter builds on the
method of this paper, we will present the proof for parametric honest Turing
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reductions to make this more concrete. First, we rely on Lemma 3.1 from
Gutfreund et al. (2007) (which, as noted in Remark 3.6, holds whether or not
P = NP).

Lemma 4.1. Let �(�) be an algorithm that fails to solve SAT and runs in time
=0 for a constant 0. Then there is a deterministic algorithm ' such that on input
(=, 0, 〈�(�)〉) for = ∈ ℕ, ' takes polynomial time to output at most three formulas
of length either = or a fixed polynomial in =0 . For infinitely many =, at least one of
these output formulas is an instance �(�) fails to solve SAT on.

This allows us to actually efficiently find instances that a purported
polynomial-time algorithm for SAT fails on. Now we can straightforwardly
prove our desired result.

Theorem4.2. IfMCSP is complete forNP under parametric honest polynomial-time
Turing reductions, then E * P/poly.

Proof. Letℳ be the oracle Turing machine reducing SAT to MCSP. Consider
the following simple simulation " of this machine: wheneverℳ would
have queried the oracle, simply assume the answer to the query is “yes.”

There are two possibilities. Either " simulatesℳ correctly on all but
finitely many inputs, in which case P = NP and this implies E * P/poly,2 or
" simulatesℳ incorrectly on infinitely many inputs.

If " simulatesℳ incorrectly on infinitely many inputs, then on each
such inputℳ must query the oracle with ( 5 , B) such that the answer to this
query is “no.” Since the reduction is parametric honest, B ≥ =2 . Notice
that asℳ runs in polynomial time, | 5 | ∈ $(=2′) for some constant 2′, and
thus 5 is on : = $(log(=)) variables. Therefore 5 requires superpolynomial
circuits.

Now we use the lemma from Gutfreund et al. (2007) to actually find
these instances. Utilizing ' from this lemma, for infinitely many =, if we run

2Assume for contradiction that P = NP and E ⊆ P/poly. Now consider an algorithm A
which takes as input the description of a Turing machine 〈"〉 and input G and simulates "
on input G for 2= of its own steps. If at that point " hasn’t halted,A rejects. If it has halted,
A answers the same way as ". The language A decides is thus clearly in E ⊆ P/poly, so
it can be decided by circuits of size bounded by =: some fixed : ∈ ℕ. Notice that A can
simulate any language in P for all large enough =, which implies P can be decided by circuits
of size =: too. However, for any fixed :, Σ4P contains a language which requires circuits of
size greater than =:—this follows a very similar argument as the previous footnote, where
now we can guess a circuit of larger yet still polynomial size, such as size =3: , and check
there is no circuit of size =: which computes the same function. Kannan (1982) gives this
argument. But if P = NP, Σ4P = P, so we get a contradiction. Therefore P = NP implies
E * P/poly.
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' on (=, 0, 〈"〉), then in polynomial time we will get at most three formulas
of length polynomial in = such that " fails on at least one. Then we can
run " on each of these formulas, keeping track of all of the queries made.
Finally, concatenating these queries (at least one of which we know to have
a true answer of “no"), we have found a truth table of size poly(=), and
thus on $(log(=)) variables, which requires superpolynomial-size circuits.
Therefore since this process took time polynomial in =, and thus linear
exponential time in $(log(=)), E * P/poly in this case as well. �

4.2 Previous Results for Gap-MCSP

The previous chapter additionally showed us that the question of whether
approximation versions of MCSP are NP-complete is relevant for eliminating
Heuristica. There are a couple results showing obstacles in this direction as
well.

4.2.1 Hirahara and Watanabe (2016)

We have already seen some results from this paper, but it also shows that
if an approximation version of MCSP was proven to be NP-complete under
simply polynomial-time Turing reductions, then we also get EXP ≠ ZPP.
Roughly speaking, this version of MCSP, called Gap:MCSP, is a promise
problem asking for an approximation of the logarithm of circuit complexity
within a factor of :.

Definition 4.4. Let 5 be a Boolean function on = variables represented as a truth
table and B ∈ ℕ. Then for : ∈ ℕ, we define the YES andNO instances of Gap:MCSP
as follows:

YES: ( 5 , B) such that 5 can be computed by a circuit of size B 5 such that
log2(B 5 ) ≤ B

NO: ( 5 , B) such that 5 requires circuits of size B 5 such that log2(B 5 ) > :B.

Notice that this is equivalent to having “yes” instances where B 5 ≤ B′ and
“no” instances where B 5 > B′: (if we ask using parameter B′ = 2B).

Their proofs are based on close connections between circuit complexity
and time-boundedKolmogorov complexity. These approximationversions of
MCSP are known to be hard for Statistical Zero Knowledge (SZK) under BPP-
Turing reductions, which suggests that perhaps these kinds of randomized
reductions are more feasible.
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4.2.2 Allender and Hirahara (2019)

This paper shows that if auxiliary-input one-way functions (which areweaker
than normal one-way functions) exist, then approximating MCSP (or MKTP)
within a factor of 2(1−>(1))= is NP-intermediate under P/poly Turing reductions,
in the sense that in this case this problem is provably not in P/poly and is
also not NP-hard under P/poly Turing reductions. These appear to be the
first natural NP-intermediate problems under the assumption that one-way
functions exist. Also note that if SZK * P/poly, then auxiliary-input one-way
functions exist, further supporting that they likely do. To show this result,
the authors utilize that MCSP would be “strongly downward self-reducible"
if these kinds of reductions existed. This method can also be applied to show
that if NP * P/poly, approximating largest-clique within the same factor is
NP-intermediate. This paper thus provides some caution against assuming
that MCSP will be NP-hard to approximate within larger approximation
factors, though this is close to the loosest approximation factor you could
have without the problem being trivial.

They also have some hardness results for a time-bounded-Kolmogorov-
complexity variant of MCSP, MKTP, that are “local"—a surprise—by leverag-
ing non-uniformity. Additionally, they present a reduction that gets around
oracle independence under a plausible assumption. Finally, they show that
to reduce Gap-MSCP problems (where the gap here is for a fixed constant &
instead of >(1)) amongst each other, there must be large stretch, or mapping
of short inputs to long ones.

4.3 NewResults forGap-MCSP,Σ:-MCSP,&Q-MCSP

4.3.1 Gap-MCSP

Following the definition by Hirahara (2018) of an approximation version of
MINKT, we will define an approximation version of MCSP by the following
promise problem:

Definition 4.5. Let � : ℕ × ℕ → ℕ be a function such that for all #, B ∈ ℕ,
�(#, B) ≥ B. Let 5 be a Boolean function on = variables represented as a truth table
and B ∈ ℕ. Then we define the YES and NO instances of Gap�MCSP as follows:

YES: ( 5 , B) such that 5 can be computed by a circuit of size ≤ B
NO: ( 5 , B) such that 5 requires circuits of size > �(| 5 |, B).

Notice that if �(#, B) = B, this is simply MCSP.
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Nowwe seek to use the approach of Saks and Santhanam (2020) to prove
the following.

Theorem 4.3. Let � : ℕ × ℕ → ℕ be a function such that � is superpolynomial
in B, or �(#, B) ∈ $(B:) for all : ∈ ℕ. If Gap�MCSP is complete for NP under
polynomial-time Turing reductions, then E * P/poly.

Proof. Letℳ be the oracle machine reducing SAT to Gap�MCSP. Consider
the following simulation " of this machine on an input G with = = |G |.
Wheneverℳ would have queried the oracle with ( 5 , B), if B ≤ log(=)1/2,
" uses brute-force search to determine the correct answer to this query in
time poly(=)2$(B log(B)) = poly(=)=$(1), or polynomial time overall. (Notice if
there are at most B gates, encoding which kind of gate each is and which
previous gates provide each input takes at most $(log(B)) bits, and we can
easily verify whether each string encodes a valid circuit. Then we just have
to use CIRCUIT EVALUATION to check each possible input against what is
output by the circuit we’re trying in poly(=) time.) Else if B > log(=)1/2, "
assumes the answer to the query is “yes.”

Now we have two possibilities. Either " simulatesℳ correctly on all
but finitely many inputs, in which case P = NP and this implies E * P/poly,
or " simulatesℳ incorrectly on infinitely many inputs. If " simulates
ℳ incorrectly on infinitely many inputs, then on each such inputℳ must
query the oracle with ( 5 , B) such that B > log(=)1/2 and the answer to this
query cannot be “yes.” Since our oracle is the promise problem Gap�MCSP,
it is bound to answer “no” only if 5 requires circuits of size > �(| 5 |, B). Since
� is superpolynomial in B, 5 thus must require circuits superpolynomial in
log(=)1/2, or simply superpolynomial in log(=). Sinceℳ runs in polynomial
time, | 5 | ∈ $(=2) for some constant 2, and is thus on : = $(log(=)) variables.
Therefore 5 requires superpolynomial circuits. Notice this means that if we
concatenate all of the queriesℳ makes to the oracle on this input to create a
truth table of size polynomial in = (maybe padded with some 0’s at the end
to that its length will be a power of 2), this will represent a function that also
requires superpolynomial circuits.

Now we use the lemma from Gutfreund et al. (2007) to actually find
these instances. Utilizing ' from this lemma, for infinitely many =, if we run
' on (=, 0, 〈"〉), then in polynomial time we will get at most three formulas
of length polynomial in = such that " fails on at least one. Then we can
run " on each of these formulas, keeping track of all of the queries made.
Finally, concatenating these queries (at least one of which we know to have
a true answer of “no"), we have found a truth table of size poly(=), and
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thus on $(log(=)) variables, which requires superpolynomial-size circuits.
Therefore since this process took time polynomial in =, and thus linear
exponential time in $(log(=)), E * P/poly in this case as well. �

Corollary 4.3. This implication clearly also holds for any �(#, B) that is super-
polynomial in log(=) when B > log(=)1/2 and # = poly(=). Specifically, it holds
for �(#, B) = �(#) · B such that � is superpolynomial in log(#).
Therefore if, when given a truth table of size 2= , approximating MCSP
within a factor superpolynomial in log(2=) = = is shown to be NP-hard via
polynomial-time Turing reductions, E * P/poly. This provides an obstacle
to Hirahara (2018)’s program for eliminating Heuristica by showing that
approximating MCSP within a factor of 2(1−&)= is NP-hard for some constant
& > 0. However, this may still be possible to do without proving circuit lower
bounds that seem well beyond current techniques if BPP-Turing reductions
are used.

4.3.2 Σ:-MCSP and Q-MCSP

As in Murray and Williams (2017), we define nondeterministic circuits as
follows. A nondeterminisitic circuit � of size B is a normal circuit of size B
with its input split into two parts, a primary input G which has length =,
and an auxiliary input H which has length ≤ B (notice that this is as many
auxiliary bits as we could potentially take into account with B gates given
a dependence on at least one bit of G). Then � is considered to output
1 on input G if there exists a H such that �[G, H] = 1. Then like Murray
and Williams (2017) we can define NMCSP similarly to MCSP but with
nondeterministic circuits instead of regular ones. They prove the result that
if NMCSP is MA-hard (MA is a randomized complexity class contained in
Σ2P) for polynomial-time many-one reductions, then EXP * P/poly. It is not
too difficult to see that this extends to polynomial-time Turing reductions,
not just many-one reductions. One can even straightforwardly use their
technique to show that if NMCSP is MA-hard for BPP Turing reductions, then
BPEXP * P/poly (where BPEXP is Bounded-Error EXP).

We can extend this notion to consider Σ:-circuits of size B, which have a
primary input G of length = and auxiliary inputs H1 , H2 , . . . , H: such that the
H8 have length ≤ B when concatenated altogether. A Σ:P circuit � outputs 1
on input G if there exists a H1 such that for all H2 there exists a H3 etc. . . . such
that �[G, H1 , H2 , . . . , H:] = 1. Then we can extend the definition of P/poly to
these new kinds of circuits.
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Definition 4.6. The complexity class

Σ:P/poly = {ℒ ⊆ {0, 1}∗ | ∃2 ∈ ℕ such that for all = ∈ ℕ, ℒ= is decided by
a Σ:-circuit �= of size $(=2)}.

Note that again this definition is equivalent to adding polynomial-length
advice to Σ:P. This can be seen in a similar way as for P/poly using the fact
that QSAT: (or more precisely the circuit satisfiability version) is complete
for Σ:P.3

We likewise consider Σ:-MCSP defined in the obvious way with regards
to Σ:-circuits.

Definition 4.7.

Σ:-MCSP = {( 5 , B) ∈ {0, 1}∗ | 5 is an =-ary Boolean function represented
by its truth table, B is an integer, and there
exists a Σ:-circuit � which computes 5 of
size ≤ B}.

Notice that Σ0-MCSP is the same as MCSP and Σ1-MCSP is NMCSP.
Further, notice that Σ:-MCSP can easily be solved in Σ:+1P = NPΣ:P by
guessing a circuit and then using Σ:-CSAT for the Σ:P oracle in order to
check whether the circuit computes the desired function on each input.

We can also provide evidence against Σ:-MCSP being solvable in any
ΣℓP for ℓ ≤ : by using the natural proofs framework of Razborov and Rudich
(1997). First note that

Lemma 4.2. If Σ:-MCSP ∈ ΣℓP/poly, then there is a ΣℓP/poly natural property
against Σ:P/poly.

Proof. Notice that in this case the set of Boolean functions that require
Σ:-circuits of size $(2=/=) is ΣℓP/poly natural against Σ:P/poly. This set
is constructive since we can use MCSP ∈ ΣℓP/poly with B = $(2=/=) to
determine membership, it is large since most Boolean functions still require
large Σ:-circuits, and it is useful since clearly no function in this set has
polynomial-size Σ:-circuits. �

3See Balcázar et al. (1987) for an argument that the set of languages decided by polynomial-
size families of quantified circuits is equivalent PSPACE/poly, which can be slightly modified
to show this.
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In order to leverage the existence of this property, we need a definition
of a pseudorandom function generator and its hardness, and additionally a
generalization of this to pseudorandom function generators secure against
Σℓ -circuits. Inspired by Razborov and Rudich (1997), we use

Definition 4.8. Apseudorandom function generator (PRFG) is a family of functions
58 ,& : {0, 1}8 → �= associated with each integer 8 and & ∈ {1/2< : < ∈ ℤ} (or any
other set of positive integers that gets arbitrarily close to 0), where = = d8&e and
�= is the set of all =-ary Boolean functions, so that for G ∈ {0, 1}8 and H ∈ {0, 1}= ,
58 ,&(G)(H) is the output of the Boolean function 58 ,&(G) on input H. The PRFG 58 ,&
is considered to be within a complexity class C if the family of Boolean functions
58 ,&(G) for each 8 can be computed within C. The hardness of the PRFG when using
randomness length 8, �( 58), is the minimum B for which there exists a circuit � of
size ≤ B such that for some &��%(�(fn) = 1) − %(�( 58 ,&(x)))

�� ≥ 1
B

where fn is drawn uniformly at random from �= and x is drawn uniformly at random
from {0, 1}8 . The PRFG is considered strong if �( 58) ≥ 28Ω(1) .

More generally, the Σℓ -hardness of the PRFG when using randomness length 8,
�ℓ ( 58), is the minimum B for which there exists a Σℓ -circuit � of size ≤ B such that
for some & ��%(�(fn) = 1) − %(�( 58 ,&(x)))

�� ≥ 1
B

where fn is drawn uniformly at random from �= and x is drawn uniformly at random
from {0, 1}8 . The PRFG is considered Σℓ -strong if �ℓ ( 58) ≥ 28Ω(1) .

While this definitionmight seem somewhat arbitrary at first glance, Razborov
and Rudich (1997) show how such a PRFG can be built from a pseudorandom
generator (PRG) which instead of producing pseudorandom functions in
various numbers of variables, simply generates pseudorandom strings which
are twice as long as the random input string. When the original PRG is
in P/poly, the PRFG will be as well, while if it’s originally higher up the
polynomial hierarchy, the PRFG may end up in PSPACE/poly as the original
PRG is applied = times (if it was only applied a constant number of times it
would remain in PH/poly). There are strong candidates for strong PRGs in
P/poly, and as discussed in the last chapter their existence is equivalent to
the existence of one-way functions.

Theorem 4.4. Let ℓ be an integer no larger than :. If Σ:-MCSP ∈ ΣℓP/poly, then
there are no Σℓ -strong PRFGs in Σ:P/poly.
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Proof. Let { 58 ,&} be a PRFG in Σ:P/poly. By Lemma 4.2, since Σ:-MCSP
∈ ΣℓP/poly, there is a ΣℓP/poly natural property against Σ:P/poly decided
by some family of circuits {�=} in ΣℓP/poly. Now, notice that since { 58 ,&} is
in Σ:P/poly, by the usefulness of the natural property against Σ:P/poly, for
large enough 8, �=( 58 ,&(G)) = 0 for any fixed G ∈ {0, 1}. Further, by largeness,
the number of Boolean functions 5= ∈ �= such that �=( 5=) = 1 is at least
2−$(=) · |�= |. Therefore for large enough 8��%(�=(fn) = 1) − %(�=( 58 ,&(x)))

�� ≥ 2−$(=) − 0 = 2−$(=).

Finally, since by constructivity {�=} is inΣℓP/poly, this test is computable
by Σℓ -circuits of size polynomial in the size of the relevant truth tables, or
Σℓ -circuits of size 2$(=). Thus

�ℓ ( 58) ≤ 2$(=) ≤ 2$(8&) ,

so since this holds for any arbitrary & > 0, we must have �ℓ ( 58) ≤ 28>(1) .
Therefore the PRFG 5 is not Σℓ -strong. �

Corollary 4.4. IfΣ:-MCSP ∈ P/poly, then there are no strong PRFGs inΣ:P/poly,
so there are certainly no strong PRFGs in P/poly, so there are also no strong PRGs,
one-way functions, or private-key cryptography.

We can also define what I’ll call Q-MCSP (for Quantified MCSP) as a
natural extension of the Σ:-MCSP idea where we ask if there are small-
enough Σ:-circuits for the function for any :, i.e. are there small-enough
quantified circuits with any number of alternations.

Definition 4.9.

Q-MCSP = {( 5 , B) ∈ {0, 1}∗ | 5 is an =-ary Boolean function represented
by its truth table, B is an integer, and there
exists an integer : so that there is a Σ:-circuit �
which computes 5 of size ≤ B}.

Q-MCSP can be easily solved in PSPACE (where we can do an arbitrary
number of alternations that can depend on the input length, instead of being
restricted to a constant number). We can then use similar arguments to show
the following.

Theorem 4.5. For any complexity class C, if Q-MCSP ∈ C, then there are no
C-strong PRFGs in PSPACE.
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Corollary 4.5. If Q-MCSP ∈ P/poly, then there are no strong PRFGs in PSPACE,
so there are certainly no strong PRFGs in P/poly, so there are also no strong PRGs,
one-way functions, or private-key cryptography.

Thus there is strong evidence that Σ:-MCSP and Q-MCSP are at least
not in P/poly, and probably live higher up in the Polynomial Hierarchy or
in PSPACE respectively. Like with regular MCSP, these results also hold
for approximation versions of these problems with gap �(=) such that
2=/(�(=) · =) is still superpolynomial in =, so these approximation versions
are also likely hard.

4.3.3 Gap-Σ:-MCSP and Gap-Q-MCSP

By considering the approximation version of minimization for these more
powerful kinds of circuits and applying the approach of Saks and Santhanam
(2020) again,we canget stronger circuit lower bounds from theNP-hardness of
Gap-Σ:-MCSP and Gap-Q-MCSP under polynomial-time Turing reductions.
This is particularly interesting since it seems like it would potentially be
easier to show the NP-hardness of these problems since they appear even
harder thanMCSP (as they naturally live higher in the polynomial hierarchy),
and yet we get a stronger result. We define Gap-Σ:-MCSP analogously to
Gap-MCSP and proceed with a very similar proof.

Theorem 4.6. Let � : ℕ × ℕ → ℕ be a function such that � is superpolynomial
in B, or �(#, B) ∈ $(B:) for all : ∈ ℕ. If Gap�Σ:-MCSP is hard for NP under
polynomial-time Turing reductions, then E * Σ:P/poly.

Proof. Letℳ be the oraclemachine reducing SAT toGap�Σ:-MCSP. Consider
the following simulation " of this machine on an input G with = = |G |.
Wheneverℳ would have queried the oracle with ( 5 , B), if B ≤ log(=)1/2, "
uses brute-force search to determine the correct answer to this query. First,
similarly to before, we use time poly(=)2$(B log(B)) = poly(=)=$(1) to guess
all possible Σ:P-circuits (notice that there are at most about (: − 1) log(B)
extra bits, which tell us how to partition the B auxiliary bits into the : H8 ’s, to
guess compared to before). Then for each circuit �, to check if it computes 5
correctly, for each input G′ to 5 we must consider all 2log(B) = =1/2 possible
values for the H8 and for each of them run CIRCUIT EVALUATION in
polynomial time to determine �(G′, H1 , H2 , . . . H:), maintaining a polynomial
runtime overall. Else if B > log(=)1/2, " assumes the answer to the query is
“yes.”
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Nowwe have two possibilities. Either" simulatesℳ correctly on all but
finitely many inputs, in which case P = NP and this implies E * Σ:P/poly,4
or " simulatesℳ incorrectly on infinitely many inputs. If " simulates
ℳ incorrectly on infinitely many inputs, then on each such inputℳ must
query the oracle with ( 5 , B) such that B > log(=)1/2 and the answer to this
query cannot be “yes.” Since our oracle is the promise problem Gap�Σ:-
MCSP, it is bound to answer “no” only if 5 requires Σ:P-circuits of size
> �(| 5 |, B). Since � is superpolynomial in B, 5 thus must require Σ:-circuits
superpolynomial in log(=)1/2, or simply superpolynomial in log(=). Since
ℳ runs in polynomial time, | 5 | ∈ $(=2) for some constant 2, and is thus on
: = $(log(=)) variables. Therefore 5 requires superpolynomial Σ:-circuits.
Notice this means that if we concatenate all of the queriesℳ makes to the
oracle on this input to create a truth table of size polynomial in = (maybe
padded with some 0’s at the end to that its length will be a power of 2), this
will represent a function that also requires superpolynomial Σ:-circuits.

Now we use the lemma from Gutfreund et al. (2007) to actually find
these instances. Utilizing ' from this lemma, for infinitely many =, if we run
' on (=, 0, 〈"〉), then in polynomial time we will get at most three formulas
of length polynomial in = such that " fails on at least one. Then we can
run " on each of these formulas, keeping track of all of the queries made.
Finally, concatenating these queries (at least one of which we know to have a
true answer of “no"), we have found a truth table of size poly(=), and thus
on $(log(=)) variables, which requires superpolynomial-size Σ:-circuits.
Therefore since this process took time polynomial in =, and thus linear
exponential time in $(log(=)), E * Σ:P/poly in this case as well. �

Corollary 4.6. This implication clearly also holds for any �(#, B) that is super-

4To show this, we follow a similar argument as for P = NP ⇒ E * P/poly. Assume for
contradiction that P = NP and E ⊆ Σ:P/poly. Now consider an algorithmA which takes as
input the description of a Turing machine 〈"〉 and input G and simulates " on input G for
2= of its own steps. If at that point" hasn’t halted,A rejects. If it has halted,A answers the
same way as". The languageA decides is thus clearly in E ⊆ Σ:P/poly, so it can be decided
by a Σ:P-circuit of size bounded by =2 some fixed 2 ∈ ℕ. Notice that A can simulate any
language in P for all large enough =, which implies P can be decided by Σ:-circuits of size
=2 too. However, for any fixed 2, there exists a :′ such that Σ:′P contains a language which
requires circuits of size greater than =2 . We again follow the approach of Kannan (1982)
to show this, the only difference being that whenever we need to check what the circuit
evaluates to on a given input, we use : extra levels to compute Σ:-CSAT with that input
plugged into the circuit, so that :′ = 3: + 4 will suffice. But if P = NP, Σ:′P = P, so we get a
contradiction. Therefore P = NP implies E * Σ:P/poly. Alternatively, just note that if P = NP,
then since Σ:P = P, E * P/poly = Σ:P/poly.
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polynomial in log(=) when B > log(=)1/2 and # = poly(=). Specifically, it holds
for �(#, B) = �(#) · B such that � is superpolynomial in log(#).
Thus if, when given a truth table of size 2= , approximatingΣ:-MCSPwithin a
factor superpolynomial in log(2=) = = is shown to be NP-hard via polynomial-
time Turing reductions, E * Σ:P/poly, while for regular MCSP we only get
the implication that E * P/poly.

Using nearly identical arguments to above, one can show a similar result
for Q-MCSP.

Theorem 4.7. Let � : ℕ × ℕ → ℕ be a function such that �(#, B) is super-
polynomial in log(=) when B > log(=)1/2 and # = poly(=). (Specifically, this
holds for �(#, B) which are superpolynomial in B or �(#, B) = �(#) · B such
that � is superpolynomial in log(#).) If Gap�Q-MCSP is hard for NP under
polynomial-time Turing reductions, then E * PH/poly.

Proof. We only need to patch up this proof in two places. First, note that we
can still use brute-force search to determine the correct answer to Gap�Q-
MCSP queries with B(=) ≤ log(=)1/2 in polynomial time. Recall that in
order for a Q-circuits to have size no more than B(=), the length of the
concatenated auxiliary inputs must also be bounded by B(=), allowing
at most B(=) alternations (if each H8 is only one bit). Thus brute-forcing a
Gap�Q-MCSP instance is like doing so for a Gap�Σ:-MCSP butwith : = B(=),
which adds B log(B) extra bits to guess and thus still leads to running time
poly(=)2$(B log(B)) = poly(=)=$(1) to guess all possible Q-circuits. Therefore
this process still takes polynomial time overall. Second, P = NP implies
E * PH/poly.5 With these two points noted, the rest of the proof goes through
to establish the desired result. �

Indeed, we could get the stronger implication that E * PSPACE/poly (since
PSPACE/poly can be defined as the set of languages with polynomial-size
quantified circuits where the number of alternations can vary with = 6) except
that it is not clear how to show that P = NP⇒ E * PSPACE/poly for the first
case.

5This is due to essentially the same argument as the previous footnote since now A is
in E ⊆ PH/poly, so A must specifically be in some Σ:P/poly and the rest of the argument
follows. Alternatively, just note that if P = NP, then since PH = P, E * P/poly = PH/poly.

6See Balcázar et al. (1987).
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4.3.4 Parametric Honest, Natural, and Many-One Reductions for
Σ:-MCSP and Q-MCSP

The result of Saks and Santhanam (2020) for parametric honest Turing
reductions goes through pretty straightforwardly for Σ:-MCSP.

Theorem 4.8. If Σ:-MCSP is NP-hard under parametric honest Turing reductions,
then E * Σ:P/poly.

Proof. Letℳ be the oracle machine reducing SAT to Σ:-MCSP with para-
metric honest constant & > 0. Consider the following simulation " of this
machine on an input G with = = |G |. Wheneverℳ would have queried the
oracle with ( 5 , B), " assumes the answer to the query is “yes.”

Now we have two possibilities. Either " simulatesℳ correctly on all
but finitely many inputs, in which case P = NP and this implies E * Σ:P/poly,
or " simulatesℳ incorrectly on infinitely many inputs. If " simulates
ℳ incorrectly on infinitely many inputs, then on each such inputℳ must
query the oracle with ( 5 , B) such that B ≥ =& and the answer to this query
is “no.” Sinceℳ runs in polynomial time, | 5 | ∈ $(=2) for some constant 2,
and is thus on : = $(log(=)) variables. Therefore 5 requires exponential
Σ:-circuits. Notice this means that if we concatenate all of the queriesℳ
makes to the oracle on this input to create a truth table of size polynomial in
= (maybe padded with some 0’s at the end to that its length will be a power
of 2), this will represent a function that also requires exponential and thus
superpolynomial Σ:-circuits.

Nowwe use the lemma fromGutfreund et al. (2007) to actually find these
instances. Utilizing ' from this lemma, for infinitely many =, if we run ' on
(=, 0, 〈"〉), then in polynomial time we will get at most three formulas of
length polynomial in = such that" fails on at least one. Then we can run"
on each of these formulas, keeping track of all of the queries made. Finally,
concatenating these queries (at least one of which we know to have a true
answer of “no"), we have found a truth table of size poly(=), and thus on
$(log(=)) variables, which requires exponential-size Σ:-circuits. Therefore
since this process took time polynomial in =, and thus linear exponential
time in $(log(=)), E * Σ:P/poly in this case as well. �

Likewise, using essentially the same arguments we can show

Theorem 4.9. If Q-MCSP is NP-hard under parametric honest Turing reductions,
then E * PH/poly.
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Saks and Santhanam (2020)’s argument for natural Turing reductions is
ultimately along these same lines but has some additional complications.
By fixing up a few lemmas for the Σ:-MCSP variant, we can get this result to
go through as well. First note that

Definition 4.10. A time-constructible function ) : ℕ → ℕ is one for which a
function Turing machine can compute )(=) on input 0= in $()(=)) time.

Definition 4.11. For 6 : ℕ → ℕ, a language ℒ is g(n)-robustly often in a
complexity class C if there is a language ℒ′ ∈ C where for any constant :, there
is an integer < for which ℒ and ℒ′ agree on each input G such that = = |G |
satisfies < ≤ = ≤ 6(<): (i.e. ℒ and ℒ′ agree with each other on every input for
increasingly long stretches). When 6(=) = =, we will say ℒ is just robustly often
in a complexity class C.
We need the following five lemmas to prove our desired result.

Lemma 4.3. Let ) : ℕ→ ℕ be a time-constructible function such that )(=) ≥ =
for all =. If SAT is )(?>;H(=))-robustly often in DTIME()), then for a given :, Σ:P
is robustly often in DTIME()(poly(· · ·)(poly(=)) · · · ))) where )(poly(=)) has been
applied : times.

Proof. Like Proposition 3 in Saks and Santhanam (2020), this is a parameter-
ized version of Theorem 12 in Fortnow and Santhanam (2017), now for an
arbitrary : instead of 2 specifically. �

Lemma 4.4. If E ⊆ Σ:P/poly, then E = Σ:+2P.

Proof. This follows essentially the same proof as Theorem 6.6 in Karp and
Lipton (1980), which they credit to Meyer (while it is stated for EXPTIME, in
this case EXPTIME = E). They present the special case where : = 0, but this is
easily extended. In short, in order to eliminate the advice, two additional
layers of alternation are added. �

Lemma 4.5. Let ) : ℕ→ ℕ be a time-constructible function such that )(=) ≥ =
and when )(poly(=)) is applied : + 2 times, the result is in >(2=). If SAT is
)(?>;H(=))-robustly often in time )(=), then E * Σ:P/poly.

Proof. This proof proceeds similarly to that of Lemma 9 in Saks and
Santhanam (2020). Suppose that SAT is )(?>;H(=))-robustly often in
DTIME()). Using Lemma 4.3, this implies that Σ:+2% is robustly often in
DTIME()(poly(· · ·)(poly(=)) · · · )))where )(poly(=)) has been applied : + 2
times. Thus Σ:+2% is robustly often in DTIME()′) for a time-constructible
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function )′ in >(2=). Now, assume for contradiction that E ⊆ Σ:P/poly. Then
by Lemma 4.4, this implies � = Σ:+2%. Putting these two pieces together, we
have that � is robustly often in DTIME(T′) for a time-constructible function )′
in >(2=). But this directly contradicts Proposition 4 from Saks and Santhanam
(2020). �

Lemma 4.6. If the size parameter of a Σ:-MCSP instance is bounded above by
B(=), then Σ:-MCSP can be solved in time poly(=)2$(B(=)2).

Proof. We can simply use brute-force search to determine the correct answer.
First, we use time poly(=)2$(B log(B)) to guess all possible Σ:P-circuits (notice
that there are at most about (: − 1) log(B) extra bits, which tell us how to
partition the B auxiliary bits into the : H8’s, to guess compared to before).
Then for each circuit�, to check if it computes 5 correctly, for each input G to 5
wemust consider all 2log(B) possible values for the H8 and for each of them run
CIRCUIT EVALUATION in polynomial time to determine �(G′, H1 , H2 , . . . H:).
Notice this takes time poly(=)2$(B log(B)) · poly(=)2log(B) = poly(=)2$(B log(B)),
which is better than we need for the lemma. �

Lemma 4.7. Let A(=) = =log(=), B1(=) = log(=)log log = , and )(=) =
poly(A(=))2$(B1(A(=))2). Then for all :, )(poly(=)) applied to itself : times is in
>(2=).

Proof. Let ' be the set of functions bounded by a function of the form
5 (=) = 2log(=)$(log log(=)) . Notice that all functions in ' are in 2>(=) and thus
certainly in >(2=). It can be shown that ' is closed under products and
composition, so in order to obtain the desired result it suffices to show that
)(poly(=)) is in '. Indeed, since poly(=) ∈ ' we just need to show that
)(=) ∈ '. Since poly(A(=)) = poly(=log(=)) = poly(2log(=)2) ∈ ', all that is
left to show is that B1(A(=)))2 = log(=)$(log log(=)). This is easy to see since
A(=) = 2log(=)2 ⇒ log(A(=)) = log(=)2 and B1(=) = log(=)log log = . �

Plugging these lemmas into Saks and Santhanam (2020)’s proof, we
establish the following:

Theorem 4.10. If Σ:-MCSP is NP-hard under natural Turing reductions, then
E * Σ:P/poly.

Proof. We will give the outline of this proof and how the above lemmas fit
into it. See Saks and Santhanam (2020) for the full details.
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Letℳ be the oracle machine naturally reducing SAT to Σ:-MCSP with
B : ℕ → ℕ being the function such that all inputs of length = only use
queries with size parameter B(=). Let A(=) = =log(=), B1(=) = log(=)log log = ,
and B2(=) = log(=)log log log = . To deal with this more complicated situation,
we will consider two simulations ofℳ, "1 and "2.

On an input formula G with = = |G |, "1 proceeds as follows. First,
it computes padded versions of G such that G8 is an equivalent formula to
G of length 8 for = ≤ 8 ≤ A(=) (one can choose an encoding of Boolean
formulas for which this is easily doable). Then "1 tries runningℳ on each
G8 , checking if the size parameter of the first query is bounded above by B1(8).
If so, it brute-force solves this and all future Σ:-MCSP queries each in time
poly(8)2$(B1(8)2) by following Lemma 4.6, thereby correctly deciding G in time
poly(A(=))2$(B1(A(=))2) overall. Else if the size parameter is too big, "1 tries
the next G8 . If none of the G8 work, "1 gives up and just simulatesℳ on G
using brute-force search on each query regardless of the size parameter.

Based on this, it can be shown that either SAT can be decided in time
poly(A(=))2$(B1(A(=))2), or there is an infinite sequence of disjoint intervals � 9 =
[= 9 , A(= 9)) of input lengths with large associated size parameters, specifically
such that B(=) > B1(=) for = ∈ � 9 . Now, assume that the first case holds. Note
that )(=) = poly(A(=))2$(B1(A(=))2) is a time-constructible function such that
)(=) ≥ = and, by Lemma 4.7,)(poly(=)) applied to itself :+2 times is in >(2=).
Further, since in this case SAT is in time )(=), it is also in )(poly(=))-robustly
often in )(=), so by Lemma 4.5, E * Σ:P/poly.

Therefore going forward we will assume the second case holds. Now we
will define the second simulation, "2. On an input formula G with = = |G |,
"2 follows the standard search-to-decision reduction for SAT to try to find a
satisfying assignment for G. This reduction proceeds as follows. If G ∉ SAT
we immediately reject, else while G has unset variables, we set one of them,
G8 , to 0 and determine if the resulting formula is satisfiable or not. If so, we
add G8 = 0 to our satisfying assignment, else we add G8 = 1 to our satisfying
assignment, and either way we recurse on G with G8 set appropriately. As
long as we correctly determined whether each formula was satisfiable along
the way, by the end we will have a satisfying assignment for G (if such exists).
We thus check whether we ended up with a satisfying assignment, accept
if so, and reject if not. We will slightly modify this procedure for "2 by
padding each formula we seek to determine is in SAT or not so that they are
all of length |G | and not any shorter. Then whenever we have such a formula,
to determine whether it is in SAT we simulate runningℳ on it. When a
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Σ:-MCSP query is encountered, if its size parameter is at most B2(=) then"2
uses Lemma 4.6 to brute-force the answer in time poly(=)2$(B2(=)2), and else
it assumes the answer is “yes.” This completes the characterization of "2.

Now, notice that "2 always halts within time poly(=)2$(B2(=)2). However,
unlike "1, it may be incorrect on some inputs if it encounters a query with
size parameter B(=) > B2(=) for which the answer should have been “no.”
Since the search-to-decision reduction ensures that whenever "2 accepts it
must be correct, this must involve inputs it rejects but should have accepted.

Instead of considering whether or not "2 solves SAT correctly, we
consider whether or not there is a set ( ⊆ ℕ such that for any constant :,
there is an integer < for which "2 solves SAT correctly on each input G
such that = = |G | satisfies < ≤ = ≤ 2:B2(<)3 . If so, then SAT is 2B2(=)3-robustly
often in time poly(=)2$(B2(=)2), or time 2B2(=)3 to be generous. Note that
)(=) = 2B2(=)3 is a time-constructible function such that )(=) ≥ = and that
by the reasoning of Lemma 4.7, )(poly(=)) applied to itself : + 2 times is in
>(2=). Thus, since in this case SAT is )(poly(=))-robustly often in )(=), by
Lemma 4.5, E * Σ:P/poly.

So, now we assume that there is no such set (. Then by combining this
with the existence of the � 9 , it can be shown that there is an infinite sequence
of input lengths <8 such that (1) "2 is incorrect on some input G of length
<8 such that on input G " makes a query with size parameter at least B1(<8)
and (2) for all input lengths < such that <8 ≤ < ≤ 2B2(<8)3 , B(<) ≥ B1(<). We
can then use this to modify the argument of the lemma from Gutfreund et al.
(2007) to determine an algorithm that for each 8 outputs a truth table 58 in time
poly(| 58 |)2$(B2(| 58 |)

3) which is not computed by Σ:-circuits of size B1(| 58 |). This
truth table is naturally on log(| 58 |) variables, but since B2(| 58 |)3 ≥ log(| 58 |), we
can consider it a truth table on B2(| 58 |)3 variables where the inputs after the
first log(| 58 |) are ignored in determining the output. Then we have computed
58 in linear exponential time in the number of input variables. Since 58
requires Σ:-circuits of size B1(| 58 |), which is superpolynomial in B2(| 58 |)3, in
this case we have also shown that E * Σ:P/poly.

�

We can also adapt the lemmas used to establish this result to show

Theorem 4.11. If Q-MCSP is NP-hard under natural Turing reductions, then
E * PH/poly.

In particular, all we need are versions of Lemmas 4.4, 4.5, and 4.6.
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Lemma 4.8. If E ⊆ PH/poly, then E = Σ:′P for some :′.

Proof. In this case the E-complete language used inMeyer’s proof of Theorem
6.6 in Karp and Lipton (1980) is in PH/poly, so it must specifically be in Σ:P
for some : and thus actually E ⊆ Σ:P. Now by applying Lemma 4.4, we get
the desired result. �

Lemma 4.9. Let ) : ℕ→ ℕ be a time-constructible function such that )(=) ≥ =
and when )(poly(=)) is applied a constant number of times, the result is in >(2=).
If SAT is )(?>;H(=))-robustly often in time )(=), then E * PH/poly.

Proof. Assume for contradiction that E ⊆ PH/poly. Then by Lemma 4.8, this
implies � = Σ:′% for some constant :′.

Now, since we’re assuming that SAT is )(?>;H(=))-robustly often in
DTIME()), by Lemma 4.3, this implies that Σ:′% is robustly often in
DTIME()(poly(· · ·)(poly(=)) · · · ))) where )(poly(=)) has been applied :′

times. Thus Σ:′% is robustly often in DTIME()′) for a time-constructible
function )′ in >(2=).

Putting these two pieces together, we have that � is robustly often in
DTIME(T′) for a time-constructible function )′ in >(2=). But this directly
contradicts Proposition 4 from Saks and Santhanam (2020). �

Lemma 4.10. If the size parameter of a Q-MCSP instance is bounded above by
B(=), then Q-MCSP can be solved in time poly(=)2$(B(=)2).

Proof. As noted when discussing the gap variant, we only need to guess at
most about (B − 1) log(B) extra bits, keeping us within poly(=)2$(B log(B)) time
like before. �

With these three lemmas, the same arguments go through to establish the
theorem.

We can also give a result for just general polynomial time many-one
reductions by extending Theorem 1.6 of Murray and Williams (2017), which
as discussed earlier shows that if MCSP is NP-hard under polynomial-time
many-one reductions then EXP * NP ∩ P/poly (which implies EXP ≠ ZPP), to
Σ:-MCSP. We show

Theorem 4.12. If Σ:-MCSP is NP-hard under polynomial-time many-one reduc-
tions (or is even only hard for the sparse languages inNP), then EXP ≠ NP∩Σ:P/poly.
(Note that even EXP ≠ NP ∩ P/poly implies that EXP ≠ ZPP.)
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Proof. Suppose for contradiction that EXP = NP ∩ Σ:P/poly. Then EXP ⊆
Σ:P/poly, so with the hardness assumption, by Lemma 4.11 to follow, NEXP =
EXP. Thus NEXP = EXP = NP ∩ Σ:P/poly ⊆ NP so NP = NEXP, contradicting
the nondeterminitic time hierarchy. Therefore EXP ≠ NP ∩ Σ:P/poly. �

Now, this essential lemma is

Lemma 4.11. If every sparse language in NP has a polynomial-time many-one
reduction to Σ:-MCSP, then EXP ⊆ Σ:P/poly implies EXP = NEXP.

Proof. This follows the exact same proof as the one given in Murray and
Williams (2017) for Theorem 4.1 with each reference to P/poly replaced
with Σ:P/poly and the use of Lemma 4.6 in place of traditional circuit
brute-forcing. �

We can also similarly show this lemma for Q-MCSP, but this time don’t run
into a barrier with getting a full E * PSPACE/poly result (because we don’t
need to use an implication like P = NP⇒ E * PSPACE/poly), establishing

Theorem4.13. IfQ-MCSP isNP-hard under polynomial-timemany-one reductions
(or is even only hard for the sparse languages in NP), then EXP ≠ NP∩PSPACE/poly.

Therefore we observe the general pattern that even though Σ:-MCSP
and Q-MCSP intuitively appear to be clearly harder than MCSP, if they
were shown to be NP-hard under many kinds of reductions with barriers for
MCSP we would get even stronger, more out-of-reach results. This happens
in particular with implications that involve circuit classes, again reinforcing
the intuition that our inability to understand the hardness of MCSP and its
variants is due to our lack of understanding of lower bounds for circuits of
the appropriate type. Thus since we understand Σ:- and Q-circuits even less
than regular ones, we can make sense of why there are even more barriers to
showing the hardness of the Σ:-MCSP and Q-MCSP variants compared to
regular MCSP.





Chapter 5

Conclusion

5.1 Takeaways So Far

The study of the complexity of MCSP is a study of the meta-mathematics
of complexity, while complexity theory is already a meta project. Thus,
studying MCSP can be seen as a next step on the path that took us from
trying to fulfill Hilbert’s program, to computability, and then to complexity
theory. Establishing the implications of MCSP being shown to NP-complete
under different kinds of reductions confronts the fundamental question:
what mathematical barriers are there to using mathematics to understand
how hard it is for computation to determine how hard it is to compute
functions?

Not only is this kind of question philosophically interesting in its own
right, but it also underpins the implications MCSP has for Impagliazzo’s five
worlds, which are of great practical importance. On the one hand, if we were
in Heuristica, this would have significant positive implications because of
howmany useful problems are in NP which we would like to be able to solve
on average. Unfortunately, this would also imply that secure cryptography
doesn’t exist, undermining private open-channel communication. We would
especially like to rule out (more variants of) Pessiland, where we lose
out on both good things. Understanding the hardness of MCSP is thus
crucial as it shows promise in ruling out both of these possibilities from
Impagliazzo’s five worlds, so that either P = NP or we have some form of
secure cryptography.

Despite the great interest in resolving these questions, unfortunately
there is a long line of work which shows that it is hard to show the hardness
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If . . . is NP-complete under . . . then . . .

MCSP natural RP many-one reductions RET * P/poly

MCSP natural pseudo-deterministic
BPP many-one reductions BPE * P/poly

Σ:-MCSP poly-time many-one reductions EXP ≠
NP ∩ Σ:P/poly

Σ:-MCSP natural or parametric-honest
poly-time Turing reductions E * Σ:P/poly

Q-MCSP poly-time many-one reductions EXP ≠
NP ∩ PSPACE/poly

Q-MCSP natural or parametric-honest
poly-time Turing reductions E * PH/poly

Gap�MCSP* poly-time Turing reductions E * P/poly

Gap�Σ:-MCSP* poly-time Turing reductions E * Σ:P/poly

Gap�Q-MCSP* poly-time Turing reductions E * PH/poly

Table 5.1 A summary of the additions of this thesis to the line of work show-
ing that is it hard to show the hardness of MCSP and various variants on the
problem. *For certain functions �.

of MCSP and related problems, which we have added to in this thesis. See
Table 5.1 for a summary of these additions.

Some open directions which remain include investigating Σ:-MCSP and
Q-MCSP further and exploring results for pseudo-deterministic and fully
randomized reductions.
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5.2 Future Work

5.2.1 Further Exploring Σ:-MCSP and Q-MCSP

From the results I have presented, it is natural to ask whether all of the
theorems involving Q-MCSP can be extended to imply E * PSPACE/poly as
one would naturally expect instead of just E * PH/poly. Additionally, it
would be interesting to further explore the Σ:-MCSP and Q-MCSP variants
and see if, like MCSP, they can be connected to a variety of interesting areas
in complexity and theoretical computer science generally.

5.2.2 Randomized Reductions

It is interesting to note that there is a version of the lemma of Gutfreund et al.
(2007) for BPP algorithms, prompting the question of whether the results
of Saks and Santhanam (2020) and the extensions of their technique I have
presented in this thesis could be further extended to BPP Turing reductions.
However, we run into the same issue as we did when trying to extend
the result of Kabanets and Cai (2000) to natural BPP many-one reductions.
Namely, we end up finding many different hard truth tables when using
different random strings so that we are not able to compute a unique hard
function.

Could restricting to some kind of pseudo-deterministic reduction save
us again? First we have to extend our definition of what this means to
Turing reductions instead of just many-one. A natural extension that is
useful for our context is that a pseudo-deterministic BPP Turing reduction is a
BPP Turing reduction which on a given input uses the same set of canonical
queries to produce the correct answer with probability ≥ 3/4. With this
new kind of reduction, the array of Saks and Santhanam (2020) results
almost goes through easily (with the modification that the implication is
now BPE * P/poly, BPE * Σ:P/poly, or BPE * PH/poly instead of E * P/poly,
E * Σ:P/poly, or E * PH/poly respectively).

The holdup is that the search algorithm ' in the randomized ver-
sion of the lemma of Gutfreund et al. (2007) is not (at least not obvi-
ously) pseudo-deterministic—it is not guaranteed to produce the same
set of instances the purported SAT algorithm fails on with high proba-
bility. If this was shown to be the case, perhaps only for some natural
kind of purported SAT algorithm which is produced by our simulation of
the reduction at hand, then the results would go through. Indeed, con-
sider if we have a purported BPP algorithm for SAT called BSAT so that



72 Conclusion

BSAT(G, D) indicates the output of BSAT on input forumula G(E1 , E2 , . . . , E=)
with randomness D. Then by examining the approach of Gutfreund
et al. (2007) it is not difficult to see that if for any partial assignment

8 ∈ {0, 1}, BSAT(G(E1 , E2 , . . . , E=), D) = BSAT(G(E1 , E2 , . . . , E=), D′) implies
BSAT(G(
1 , 
2 , . . . , 
8 , E8+1 , E8+2 , . . . , E=), D) =
BSAT(G(
1 , 
2 , . . . , 
8 , E8+1 , E8+2 , . . . , E=), D′) (i.e. the output of BSAT being
the same under two different randomness strings is preserved under partial
assignment), then their ' will behave pseudo-deterministically. However,
this does not seem like a natural property for BSAT to possess and it is not
clear how a certain special kind of reduction would lead the simulation we
make based off of it to have this property.

Thus we are left with the interesting further question to explore: can
' in the randomized version of the lemma of Gutfreund et al. (2007) be
made pseudo-deterministic? Can we come up with some other strategy to
pseudo-deterministically find the instances an incorrect algorithm for SAT
fails on? If we could answer these questions in the affirmative, we would
find even more barriers towards proving the NP-hardness of MCSP and
the variants on it that we have discussed. Of particular interest, we would
be able to show that not even general pseudo-deterministic BPP Turing
reductions can be used to show the hardness of Gap-MCSP (for sufficient
gap) without proving BPE * P/poly, providing a further roadblock for using
this approach to eliminate Heuristica. On the other hand, is there reason
to believe that no such pseudo-deterministic version of ' should exist? Or,
working the other side of the problem, might there be some way to show
MCSP is NP-hard using pseudo-deterministic BPP Turing reductions? Can
the NP-hardness results for certain variants of MCSP which were mentioned
at the beginning of Chapter 4 be accomplished with pseudo-deterministic
BPP Turing reductions instead of fully randomized ones (when such were
needed)? (Those which use randomized reductions include Ilango (2019),
Ilango et al. (2020), and Ilango (2020).)

Exploring these questions would help further elucidate what kinds
of randomized reductions would be necessary to show the NP-hardness
of MCSP without also getting clearly out-of-reach results, furthering our
understanding of MCSP and the many connections it has to diverse areas of
theoretical computer science.
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