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Abstract

To help the interested reader get their initial bearings, I present a survey of
prerequisite topics for understanding the budding field of tropical Gromov-
Witten theory. These include the language and methods of enumerative
geometry, an introduction to tropical geometry and its relation to classical
geometry, an exposition of toric varieties and their correspondence to
polyhedral fans, an intuitive picture of bundles and Euler classes, and finally
an introduction to the moduli spaces of =-pointed stable rational curves and
their tropical counterparts.
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Chapter 1

Enumerative Geometry

The material in this chapter is largely my retelling of the first two chapters
of Enumerative Geometry and String Theory by Sheldon Katz, which I’d like to
acknowledge as an excellent introduction to the topic and source of examples.

1.1 What is enumerative geometry?

In short, enumerative geometry asks the question “how many geometric
structures of a given type satisfy a given collection of geometric conditions?"
For example, we could ask “How many points in the plane lie on each of
two given lines?" (which we know to be 1) or “How many twisted cubics
are contained in a general 3-dimensional degree-5 (quintic) hypersurface?"
(the answer turns out to be 317,206,375). And of course there are some more
down-to-earth (but far from easily proven!) results, such as the identification
of precisely 27 straight lines on a 2-dimensional cubic hypersurface, as shown
in figure 1.1.

However, care must be taken that the questions we ask are well-posed:
they should have well-defined answers, and ideally meaningful ones. Specif-
ically, we would like our answers to be finite numbers that are fully deter-
mined by the constraints we impose. This means paying close attention
to dimensionality: questions such as “How many times do two degree-:
hypersurfaces in ℝ= intersect?" only have finite answers when when the
dimension of the intersection is 0 (a collection of points); this means the codi-
mensions of the intersecting objects must add to =. In the aforementioned
case, the objects are two hypersurfaces (codimension 1), so the question is
only well-posed if = = 2. But there is more subtlety to well-posedness.
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Figure 1.1 The 27 straight lines on a smooth cubic surface (from
madore.org/~david)

Consider the question “Given two lines in ℝ2 , how many points lie on
both of them?" This amounts to counting the solutions to the system{

00 + 01G1 + 02G2 = 0
10 + 11G1 + 12G2 = 0

where the 08 and 18 are real-number constants defining our lines and G1 , G2
are coordinates on ℝ. But as we know, the answer depends! While the
number of solutions is ‘usually’ 1, if the lines are parallel, it is 0, and if the
lines are the same, it is∞. To an enumerative geometer, this signifies that
we should try to improve the question. First, we can simply require that
the lines are distinct. The answer is then 0 or 1. We could require that the
lines are not parallel, but this is a more stringent condition than not being
coincident, and there is a more elegant solution: we can work in projective
space.

Definition 1.1.1 (Real projective plane). The real projective plane, ℝℙ2 , is
the set of nonzero 3-tuples of real numbers ℝ3 − {0} modulo the scaling
relation (G0 : G1 : G2) ∼ (�G0 : �G1 : �G2) for � ∈ ℝ.
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To intuitively understand this construction, we can draw a correspon-
dence between (G0 : G1 : G2) ∈ ℝℙ2 and ( G1

G0
, G2
G0
) ∈ ℝ2 , though this correspon-

dence is neither unique nor defined everywhere. It is surjective, however,
suggesting that ℝℙ2 looks like ℝ2 with ‘extra stuff.’ This ‘extra stuff’ is the
subset of the projective plane where G0 = 0, and intuitively corresponds to
‘points at infinity’: {(0 : 1 : 0) ∈ ℝℙ2 | 0 ∈ ℝ} ∪ (0 : 0 : 1) ∈ ℝℙ2. As G2

G1
is the

‘ratio between the H and G values’ in our map to ℝ2 , each of these points at
infinity corresponds to a different ‘direction’ of infinity. The topology of
ℝℙ2 is visualized in Figure 1.2, where the arrows with corresponding labels
are identified. As we can see, ℝℙ2 is a closed shape (albeit not one we can

Figure 1.2 Topology of the real projective plane

physically realize in 3 dimensions). This is because it is a compactification of
the plane, a way to prevent the points we care about (such as the intersection
of two lines) from ‘running off’ to infinity (as it does when the lines are
parallel). But back to our pair of lines. Going forward, we will refer to
non-projective space as affine space.

To work with algebraic curves in projective space, we must homogenize
their defining polynomials. If a degree 3 polynomial ?(G, H) in affine space
is to be written in projective coordinates G0 , G1 , G2 , it must be done in such a
way that (G0 : G1 : G2) ∈ /(?) implies (�G0 : �G1 : �G2) ∈ /(?) for all �. This
means each constituent monomial must be of the same degree; the only way
to do this consistent with our projective-affine correspondence is with the
mapping

?(G, H) ↦→ G30?

(
G1
G0
,
G2
G0

)
.

Finally, we return to our earlier problem, which in projective space is that of
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counting the solutions to{
00G0 + 01G1 + 02G2 = 0
10G0 + 11G1 + 12G2 = 0

,

where (00 , 01 , 02) ≠ (�10 ,�11 ,�12) ∈ ℝ3 for any � ∈ ℝ. Parallel lines are
those that have 02

01
=

12
11
, allowing us to cancel the latter two terms on the LHS

of the equations. Whereas before, this would leave us with 00 − 01
11
10 = 0,

no solutions, we now have (00 − 01
11
10)G0 = 0 =⇒ G0 = 0, that is, the lines

simply intersect once at infinity. So the answer to our question is now an
unequivocal “1"!

We now pick up the pace and start generalizing these methods, construc-
tions, and results. For our next question: how many times does a given
degree-2 curve intersect a given line inℝℙ2? Again, we count solutions, this
time for a more complicated system; for convenience, we choose a simple
equation for the line, as the isotropy of ℝℙ2 ensures there is no loss of
generality:{

G2 = 0
10G

2
0 + 11G0G1 + 12G0G2 + 13G

2
1 + 14G1G2 + 15G

2
2 = 0

=⇒ 10G
2
0 + 11G0G1 + 13G

2
1 = 0

Where we have substituted the first equation into the second. To count the
number of solutions to this equation, we first assume that G0 ≠ 0. Then we
can define G ≡ G1

G0
and de-homogenize the equation to obtain

10 + 11G + 13G
2 = 0,

and from the quadratic formula we have our answer:
0 Δ < 0
2 Δ > 0
1 Δ = 0

, Δ = 12
1 − 41013

this time, the answer is ill-defined due to the varying number of roots of a
quadratic. But we know exactly how to fix that: complexification! At this
point it stands to introduce themost common general setting for enumerative
geometry: complex projective space, which is what people usually mean
when they say projective space, and is exactly what it sounds like.
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Definition 1.1.2 (Projective space). Projective space, ℙ= (sometimes ℂℙ=), is
the set of nonzero (= + 1)-tuples of complex numbers ℂ=+1 − {0} modulo
scaling, that is, (G0 : G1 : · · · : G=) ∼ (�G0 : �G1 : · · · : �G=) for � ∈ ℂ.

Like real projective space, complex projective space is compact, but it
carries the major additional benefit of being algebraically closed. Despite
the 2= real dimensions, geometers refer to ℙ2 as a plane, 2-real-dimensional
hypersurfaces within it as embeddings of the “complex line," and so on.

With this technology, we find that a degree-2 curve intersects a line
precisely twice–with one caveat. The caveat is that even over the complex
numbers, a quadratic may have only a single root, if that root has multiplicity
2. So we must count intersections “with multiplicity."

We are finally equipped to understand a foundational result in enumer-
ative geometry–perhaps the main reason we work in projective space at
all:

Theorem (Bézout’s theorem). Let � ⊂ ℙ2 be a plane curve of degree 2, and
� ⊂ ℙ2 be a plane curve of degree 3. If | � ∩ � | is finite, then∑

?∈�∩�
<?(� · �) = 23.

where <? denotes the multiplicity of the intersection at ?. To demystify
this, first note that the number of intersection points | � ∩� | is finite if and
only if � and � have no shared factors; this is analogous to our requirement
of distinct lines (this non-coincidence condition is often referred to as the
curves being in general position). In lieu of proving the theorem, here is
a brief sketch: in projective space, we can smoothly vary the coefficients
of the polynomials defining our curves without changing the number of
intersections; this is because we have both algebraic closure (ensuring that
the equations we obtain in solving for intersections will not be ‘missing’
any roots) and analytic compactness (solutions cannot ‘escape to infinity’ as
they do in the case of parallel lines in affine space). Given this fact, we can
smoothly vary the coefficients of the polynomial defining � until it factors
into 2 linear factors, that is, until � consists of 2 distinct lines; similarly, we
can vary � until it consists of 3 lines, distinct from each other and from
those comprising �. Since every line in � intersects precisely once, with
multiplicity 1 with each line of �, the number of intersections is 23, and
must have been 23 before we deformed the curves as well.

In fact, Bézout’s theorem generalizes: if -1 , -2 , . . . , -= are = hypersur-
faces inℙ= of degrees 31 , 32 , . . . , 3= (note the number of surfaces must match
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the dimension of projective space), then if there is no factor shared by all of
them (so they have finite intersection), we have∑

?∈-1∩···∩-=
<?(-1 · -2 · · ·-=) = 31 · 32 · · · 3= .

1.2 Moduli spaces

Bézout’s theorem is neat, but its utility may seem limited; all it seems to do is
count points. However, this is where the methods of enumerative geometry
really start to shine: no matter what we are trying to count, the objects in
question will be points at the intersection of various constraint surfaces in
an appropriatemoduli space of all such objects.

Starting with an easy example, suppose we want to determine howmany
lines in the plane ℙ2 contain both of two given points: % = (?0 : ?1 : ?2)
and & = (@0 : @1 : @2). The enumerative method is to consider the space
of all lines, and impose our constraints geometrically on that space. A
line is defined by the equation 00G0 + 01G1 + 02G2 = 0, for some nonzero
(00 , 01 , 02) ∈ ℂ3; moreover, the tuple (�00 ,�01 ,�02) for any � ∈ ℂ defines
the same line. But this is precisely the definition of ℙ2; that is, the moduli
space of lines is isomorphic to the projective plane. In fact, it is often called
the dual plane, (ℙ2)∗.We now impose constraints. Lines passing through %
satisfy 00?0 + 01?1 + 02?2 = 0; this defines a line !% in (ℙ2)∗! A line passes
through % and & if and only if its tuple of coefficients lies on both !% and !&
in (ℙ2)∗. So by Bézout’s theorem, we know there is precisely one such line!

Similarly, a degree 3 plane curve is defined by a nonzero tuple of
coefficients modulo scaling. The number of coefficients is equal to the
number of monomial terms, which is equal to the number of partitions of 3
into three ‘buckets.’ The ‘stars and bars’ method tells us that this is equal to(
3+2

2
)
=
(3+2)(3+1)

2 , so the moduli space of degree 3 plane curves is isomorphic
to ℙ

(3+2)(3+1)
2 −1 = ℙ

3(3+3)
2 . Since polynomials are linear in their coefficients, the

requirement that a degree 3 curve passes through a given point % ∈ ℙ2 is a
linear constraint on the aforementioned moduli space; that is, it defines a
hyperplane in ℙ

3(3+3)
2 . By Bézout’s theorem, 3(3+3)

2 hyperplanes in this space
will intersect in precisely 1 · 1 · · · 1 = 1 point, so we can declare that there is
precisely 1 degree 3 plane curve through a given set of 3(3+3)

2 points.
Bézout’s theorem is extra useful when we have nonlinear constraints.

Recall that a conic (degree 2 curve), given by (10 : 11 : 12 : 13 : 14 : 15) ∈ ℙ5 ,
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intersects the line G2 = 0 twice, except if 12
1 − 41013 = 0, in which case it

intersects once with multiplicity 2. It seems that tangency–the case when
there is a multiplicity 2 intersection–imposes a constraint quadratic in the
coefficients of the conic. And indeed, the set of conics tangent to a given
line form a degree-2 hypersurface (that is, a conic) in ℙ5. Applying Bézout,
we may conclude that there are 2= · 15−= conics tangent to = given lines and
passing through 5 − = given points. However, this is not quite true.

The reason is that we fail to filter out ‘degenerate’ conics: our moduli
space includes reducible conics, which factor into pairs of lines. If those
lines coincide, such a conic is a double line, and intersects any other line
with multiplicity 2. So we have an issue: our moduli space includes objects
exhibiting forms of ‘tangency’ we may not be interested in. In this case, since
every double line is ‘tangent’ to every other line, the entire space of double
lines is contained within all of our tangency-constraint conic hypersurfaces.
Problems like these certainly givemathematicians a headache, but there exist
various tools to overcome them; in this case, we can use excess intersection
theory: we identify the moduli space of double lines (isomorphic to the
moduli space of lines) and count the appropriate constraint intersections to
determine how many ‘extra’ solutions we originally had.

While excess intersection theory works in a pinch, a more sophisticated
approach is often to work with moduli spaces more finely tailored to the
problem. The primary downside to this is that our standard machinery, such
as Bézout’s theorem, may not function in these spaces.

1.3 Rational curves and Gromov-Witten theory

While algebraic and enumerative geometry concern themselves with alge-
braic curves in general, Gromov-Witten theory focuses on a particular family:
rational curves.

Definition 1.3.1 (Rational curve). A rational curve is an algebraic curve that
can be parameterized by ℙ1. That is, � ∈ ℙ= is rational if

� = {(60(G0 : G1), 61(G0 : G1), . . . , 6=(G0 : G1)) | (G0 : G1) ∈ ℙ1}

for some polynomials 60 , . . . , 6= .

As it turns out, all lines are rational, as well as general conics. However,
degree 3 > 2 curves are rational only in special cases. In fact, it turns out �
is rational if and only if � has genus zero.
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3 33 − 1 #3

1 2 1
2 5 1
3 8 12
4 11 620 19th century (Zeuthen)
5 14 87304 early 1990s (Ran & Vainsencher)
6 17 26312976 1994 (Kontsevich)
7 20 14616808192 1994 (Kontsevich)

Table 1.1 Number of rational curves passing through 33 − 1 points

To work with rational curves, geometers set up some heavy-duty moduli
spaces (the simplest of which I explain later in this paper). The space of
degree 3 rational curves inℙ= is denoted"(ℙ= , 3), and is 33−1 dimensional.
Howmany degree 3 rational curves pass through 33−1 points? The question
may seem to lend itself to a simple Bézout’s theorem style argument–intersect
33 − 1 hypersurfaces, multiply their degrees, or something–but Bézout’s
theorem does not hold in"(ℙ= , 3), and as 3 increases, the question becomes
incredibly difficult, stumping mathematicians for hundreds of years at each
increment. However, we now have the answer for all values of 3 (Table 1.1)
thanks to the work of Kontsevich, who discovered the following recursive
formula:

#3 =

∑
3�+3�=3

#3�#3�3
2
�3�

(
3�

(
33 − 4

33� − 2

)
− 3�

(
33 − 4

33� − 1

))
I’m not going to attempt to explain here how the formulawas derived, but

rather present it as an example of the extraordinary success ofGromov-Witten
theory.

But what is Gromov-Witten theory? In short, it is a framework for
computing enumerative quantities of interest in the form of topological
invariants. The framework is as follows. We compactify the space "(-, �)
of rational curves of class � in - to form the moduli space of stable maps of
genus 6 and = marked points " 6,=(-, �). Using mappings from " 6,=(-, �)
to - or other moduli spaces, we can pass (with pullbacks and pushforwards)
algebraic-topological structures (homology and cohomology classes) from
one moduli space to another. The topological invariants of interest are then
encoded in these classes (for example, as the winding number of a certain
homology class around a hole in some manifold). And just like that, we
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obtain some of the most historically sought-after enumerative results, which
even have applications to string theory.

An exciting recent development in Gromov-Witten theory is the trans-
position of many constructions and results from the classical context into
tropical geometry, such as by Cavlieri, Gross, and Markwig in their upcom-
ing paper "Tropical # Classes." Setting up the background material for this
subfield is the goal of this thesis; we must next get acquainted with tropical
geometry.





Chapter 2

Tropical Geometry

This chapter closely follows the article “Tropical Mathematics" by Speyer
and Sturmfels, a wonderfully concise first foray into the subject.

2.1 Into the (semi)ring

In recent years, the tropical approach to algebraic geometry has matured
from a novel subject of curiosity into an active and productive field. Trop-
ical geometry studies the tropical semiring, which has a few isomorphic
definitions–we will use the “min-plus" convention, which defines the semir-
ing as follows:

Definition 2.1.1 (Tropical semiring). The tropical semiring (ℝ ∪ {∞}, ⊕, �)
is the set of real numbers along with ‘positive infinity,’ with addition defined
as G ⊕ H ≡ min(G, H) and multiplication defined as G � H ≡ G + H.

For example, 3 ⊕ 5 = 3, while 3 � 5 = 8. As we can see, tropical
addition and tropical multiplication are commutative, and the distributive
law continues to hold:

G � (H ⊕ I) = G +min(H, I) = min(G + H, G + I) = G � H ⊕ G � I

where in the last step we assume the conventional multiplication-then-
addition order of operations.

There are some features of the tropical semiring worth noting at the
outset: in this semiring, 0 and 1 are not the additive and multiplicative
identities; rather, ∞ is the additive identity (min(G,∞) = G for all G) and
0 is the multiplicative identity (since tropical multiplication is classical



12 Tropical Geometry

addition). Note also that while elements have multiplicative inverses (their
negations) they do not have additive inverses (we would need∞ = G ⊕ −G =
min(G,−G) ≤ G < ∞). This is why the tropical semiring fails to be a ring.

Let us now do some algebra over this semiring. We quickly encounter
some big deviations from classical results. For example, in the tropical
setting,

(G ⊕ H)= ≡ �=
:=1(G ⊕ H)

= ⊕=
:=0 ⊕

(=:)
ℓ=1 G

:H=−:

= ⊕=
:=0 min(G:H=−: , G:H=−: , . . . , G:H=−:)

= ⊕=
:=0G

:H=−:

= min(H= , GH=−1 , . . . , G=)
= min(G= , H=)
= G= ⊕ H=

So the “freshman’s dream" is unequivocally true in tropical arithmetic. Note
that we are careful not to denote repeated addition as multiplication, since
in the tropical context it is not.

We next look at tropical polynomials, since (as in classical algebraic
geometry) they are the objects we are most interested in.

2.2 Tropical polynomials

Let G1. . . . , G= be variables representing elements in the tropical semiring.
A tropical monomial is a product of these variables, G 811 G

82
2 · · · G

8=
= , where

81 , . . . , 8= ∈ ℤ (negative powers allowed since tropical elements have multi-
plicative inverses). Written in terms of classical operations, this is

81G1 + 82G2 + · · · + 8=G= ,

a linear function with integer coefficients. Different tropical monomials
encode different linear combinations of variables, and any integer-coefficient
linear combination corresponds to the tropical monomial with appropriate
powers of each variable. So there is a one-to-one correspondence between
tropical monomials and integer-coefficient linear functions. We are now
equipped to understand tropical polynomials.
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Definition 2.2.1 (Tropical polynomial). A tropical polynomial ? is a finite
linear combination of tropical monomials:

?(G1 , . . . , G=) = 0 � G 811 · · · G
8=
= ⊕ 1 � G

91
1 · · · G

9=
= ⊕ · · ·

= min(0 + 81G1 + · · · + 8=G= , 1 + 91G1 + · · · + 9=G= , . . . ).

So tropical polynomials are functions returning the minimum of a certain
collection of linear functions. Some thought leads us to observe that these
polynomials are continuous and piecewise-linear, as well as themore esoteric
property that they are concave-down; that is,

?
(x + y

2

)
≥ 1

2 (?(x) + ?(y))

for all x, y ∈ ℝ= . Essentially, this says is that if we draw a line between two
points (x, ?(x) and (y, ?(y), on a graph of ?, points on the graph in between
cannot be below the line. All this is easier to see with a visual example:

Figure 2.1 The graph of a cubic polynomial, with roots labeled (from “Tropi-
cal Mathematics")

Figure 2.1 is the graph of a cubic polynomial in one variable, ?(G) =
0G3 ⊕ 1G2 ⊕ 2G ⊕ 3. As we can see, it is the lower envelope of the four linear
functions 3, 2 + G, 1 + 2G, and 0 + 3G. All four lines contribute to this lower
envelope if and only if the values at which these lines intersect with the
next-steepest one occur in the right order: 1 − 0 ≤ 2 − 1 ≤ 3− 2. These points
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are very important: in fact, if the aforementioned inequalities hold, the cubic
can be factored into

?(G) = 0 � (G ⊕ (1 − 0)) � (G ⊕ (2 − 1)) � (G ⊕ (3 − 2)).

To see this, consider each region separately: when G < 1 − 0, all the tropical
sums evaluate to G andwe recover the cubic term, which is the linear function
matching ? in this interval. When 1 − 0 < G < 2 − 1, the first sum evaluates
to 1 − 0, producing a coefficient of 1 and the quadratic term that contributes
to the envelope in this interval. And so on. It may seem that we can read
this factorization directly off the graph, and this is true: every tropical
polynomial function can be written uniquely as such a tropical product
of tropical linear functions. This is akin to the Fundamental Theorem of
Algebra, and suggests that we consider the constants in these linear factors
to be the roots of the tropical polynomial. In other words,

Definition 2.2.2 (Root of a tropical polynomial). x ∈ ℝ= is the root of an
=-variable tropical polynomial ? if and only if ? fails to be linear at x.

These ‘corner’ points of a tropical graph may seem wildly different from
the classical understanding of roots as zeroes, but wewill see that they satisfy
many classical properties. Before we move on, we must make the important
note that these factorizations are based on the actual function encoded by a
tropical polynomial, not the tropical polynomial itself. The distinction lies
in the fact that if we add to a polynomial a monomial that is nowhere the
minimum monomial, it does not contribute to the lower envelope, does not
affect the roots, and therefore cannot affect the factorization of the tropical
function. So these factorizations do not allow recovery of the original
polynomials, only the functions they represent.

2.3 Tropical curves

Wenow arrive at the subject of tropical curves; that is, curves in the algebraic
geometry sense, defined as the set of roots of a polynomial. As we will see,
there is nothing much curvy about them.

Definition 2.3.1 (Tropical hypersurface). Given a tropical polynomial ? :
ℝ= → ℝ, its hypersurfaceℋ(?) is the set of points x ∈ ℝ= such that x is a
root of ?.
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This is analogous to the classical concept of the hypersurface in ℝ=

defined by the zero locus of a function of = variables. What do these tropical
hypersurfaces look like? In short, they look like lattices of polyhedra; the
roots of a tropical polynomial are precisely the boundaries of the polyhedral
domain regions where each of the constituent monomials is the minimum
one.

To understand the geometry of these objects, the best starting point is to
look at the two-dimensional case, where our polynomial is a function of two
variables. If the polynomial is linear, that is, ?(G, H) = 0 � G ⊕ 1 � H ⊕ 2, we
have the tropical line (degree 1 hypersurface)ℋ(?) = {(G, H) ∈ ℝ2 | min(0 +
G, 1 + H, 2) is not linear} = {(G, H) ∈ ℝ2 | 0 + G = 1 + H < 2, 0 + G = 2 <
1 + H, or 1 + H = 2 < 0 + G}, which is a set of three half-rays: H = G + 0 − 1
extending in the (−1,−1) direction, H = 2 − 1 in the (1, 0) direction, and
G = 2 − 0 in the (0, 1) direction. The rays meet at the point (2 − 0, 2 − 1). This
three-ray shape does not look like our intuitive notion of a line, but it has
linear properties nonetheless: for example, since all tropical lines are just
translations of this one, we can convince ourselves that two tropical lines
intersect in precisely one point.

Next, consider a general tropical quadratic:

?(G, H) = 0 � G2 ⊕ 1 � GH ⊕ 2 � H2 ⊕ 3 � H ⊕ 4 ⊕ 5 � G
where 0, . . . , 5 are constant coefficients. What does its hypersurface (a
‘tropical conic’) look like? Again, it depends on the roots being ‘in the right
order,’ but projecting the lower envelope of ? onto the plane gives us a lattice
of polyhedra (Figure 2.2), with a region for each monomial; the divisions
between them have slopes (0,∞ or 1) corresponding to the ratio of H and G
coefficients in the differences of the monomials. Moreover, slicing this curve
along the G or H directions (fixing the value of G or H) produces a tropical
quadratic surface in one variable, that is, a set of two points.

Again, despite the curve looking somewhat alien, it retains classical
properties of conic sections. Specifically, a tropical line will intersect it
precisely twice, and another tropical conic will intersect it four times (Figure
2.3). This brings us to a key fact: tropical hypersurfaces satisfy Bézout’s
theorem!

2.4 Tropicalizing classical objects

In the last section, we saw that the enumerative geometry of tropical
varieties matches that of classical varieties, at least in some key ways. This
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Figure 2.2 The graph and curve defined by a tropical quadratic (from Macla-
gan and Sturmfels’ Introduction to Tropical Geometry)

means we can meaningfully ‘tropicalize’ classical enumerative problems,
attacking them using skeletonized, combinatorial structures rather than the
complexities of classical geometry.

Tropicalizing classical objects is a surprisingly confusing process: be-
cause not all classical structure can be imported to the tropical context,
tropicalization is less a matter of using a one-size-fits-all method, and more
of a matter of understanding a classical object deeply enough to determine
the most natural way to skeletonize it. Even the concrete, general proce-
dures that exist are presented very differently from different perspectives.
Nevertheless, it is worth understanding what general ideas we can.

Let us first consider polynomials. Tropicalizing a polynomial is almost
as simple as replacing the classical operations in its definition with tropical
operations. We must also replace the constants with their counterparts
in the tropical semiring, which are called valuations of those constants.
Valuations are the images of ring elements under homomorphisms that
satisfy certain properties; for our purposes we will only worry about the
“log-limit" valuation E : ℂ→ ℝ = limC→0 EC : ℂ→ ℝ where EC(I) = logC |I |.
While it seems like this sends everything to 0, observe that this is only the
case for C = 0; as C approaches 0 the map is still injective. This construction
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Figure 2.3 A fun illustration of Bézout’s theorem for tropical conics (from the
cover of Mathematics Magazine, June 2009)

maps the classical operations to tropical ones: the logarithms give us the
property

EC(I1I2) = logC |I1I2 | = logC |I1 | |I2 | = logC |I1 | + logC |I2 | = EC(I1) + EC(I2)

and taking the limit gives us the property E(I1 + I2) = min(E(I1), E(I2)). To
see the latter, take F1 , F2 ∈ ℝ with F1 ≤ F2. Then for any I1 , I2 ∈ ℂ with
E(I1) = F1 , E(I2) = F2 , there are �1 , �2 ∈ [0, 2�) such that I1 = C

F1 4 8�1 , I2 =

CF2 4 8�2 .We then have

E(I1 + I2) = lim
C→0

(
logC |CF1 4 8�1 + CF2 4 8�2 |

)
= lim
C→0

(
logC |CF1 4 8�1 | + logC |1 + CF2−F1 4 8(�2−�1) |

)
= lim
C→0

(
F1 +

ln |1 + CF2−F1 4 8(�2−�1) |
ln C

)
= F1

= min(F1 , F2) = min(E(I1), E(I2))



18 Tropical Geometry

where the second term disappears because lim CF2−F1 = 0, or 1 if F2 = F1 ,

so the numerator is zero or order 1, while the denominator goes to −∞. Note
that while this process seems to produce infinitesimally small constants, the
idea is to make sure the ratios between different constants and interactions
between constants in a polynomial are properly ported to the tropical setting;
we can always rescale the polynomial as a whole without changing its
associated curve. We can now tropicalize polynomials!

Of course, in algebraic geometry, the form of tropicalization of most
interest to us is the tropicalization of varieties (the curves defined by poly-
nomials): given a classical variety defined by some polynomial, we can
transform it to the tropical variety defined by the tropicalization of the same
polynomial.

For example, the tropical quadratic 2 � G � H ⊕ G ⊕ H ⊕ 1 = min(2 + G +
H, G, H, 1), defining the tropical variety shown in Figure 2.4, is the result
of tropicalizing the conic section (in this case a hyperbola over the reals)
defined by the classical polynomial C2GH + G + H − C. Here C is the base of
the valuation map–which we are supposedly taking to 0. What’s going
on? The fact is that there is some sleight of hand scaling done in making
this correspondence–the limit will shrink a tropical variety to a fan around
the origin for a given classical variety, and a tropical variety with finite
nonzero constants will correspond to a degenerate limit of the associated
classical variety. For this and other reasons, a more modern approach to
tropicalization uses what are called Puiseux series, but the intuition for it is
somewhat more involved.

Figure 2.4 A tropical variety and its classical counterpart (over the reals)



Chapter 3

Toric Varieties

3.1 Introduction

The goal of this project is to set up tropical Gromov-Witten theory; specifically
on toric varieties, so it is worth understanding what they are.

Definition 3.1.1 (Toric variety). A toric variety - is a complex algebraic
variety containing the algebraic torus) = (ℂ∗)A as a dense open set, equipped
with an action of) on-whose restriction to) ⊂ - is the usualmultiplication
on ).

By ‘the usual multiplication on )’ we mean the group product on (ℂ∗)A ,
coordinate-wise multiplication.

For example, ℙ2 is a toric variety. To see this, note first that the subset
{(G0 , G1 , G2) ∈ ℙ2 | G0 ≠ 0, G1 ≠ 0, G2 ≠ 0} is isomorphic to (ℂ∗)2 under the
mapping (G0 , G1 , G2) ↦→ ( G1

G0
, G2
G0
). There is an action of )2 = (ℂ∗)2 on ℙ2 given

by (C1 , C2) · (G0 , G1 , G2) = (G0 , C1G1 , C2G2), and one can check that this action
restricts to the usual algebraic torus product on )2 ⊂ ℙ2.

Importantly, this action is transitive on )2 ⊂ ℙ2 , but not on ℙ2 as a whole.
Instead, there are various invariant subsets of ℙ2 on which the action is tran-
sitive: specifically, the subsets {(G0 , G1 , 0) | G0 , G1 ∈ ℂ∗}, {(G0 , 0, G2) | G0 , G2 ∈
ℂ∗}, and {(0, G1 , G2) | G1 , G2 ∈ ℂ∗} along with the points (1, 0, 0), (0, 1, 0), and
(0, 0, 1). To see this, note that the torus action lets us scale the ratios between
our homogenous coordinates at will, but we cannot make them zero or∞.
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3.2 Polyhedral fans

This section follows Chapter 7 ofMirror Symmetry, which is a pretty imposing
book; I’ve done my best to translate it into words I find intuitive.

Polyhedral fans are a powerful tool for constructing and encoding toric
varieties. We will define them in a moment, but first need the notion of a
rational polyhedral cone:

Definition 3.2.1 (Strongly convex rational polyhedral cone). Let # be a
lattice of rank A, and let #ℝ = # ⊗ ℝ (ℝ-linear combinations of points of # ,
which just gives us the vector space spanned by elements of #). A strongly
convex rational polyhedral cone � ⊂ #ℝ is a set

� = {01E1 + 02E2 + · · · + 0:E: | 08 ≥ 0}

generated by a finite set of vectors E1 , . . . , E: in # such that � ∪ (−�) = {0}.

Intuitively, we are considering the cone of all positive linear combina-
tions of a certain collection of lattice vectors such that said cone does not
nontrivially intersect with the cone in the opposite direction (all negative
linear combinations of the same vectors). We will refer to these objects as
simply ‘cones.’ We then have the following definition:

Definition 3.2.2 (Polyhedral fan). A polyhedral fan is a collection Σ of cones
in#ℝ such that each face of a cone inΣ is also a cone inΣ, and the intersection
of two cones in Σ is a face of each.

Intuitively, this means that the cones ofΣ do not ’overlap,’ and their faces,
and faces’ faces, and so on, are also cones in Σ.We now describe how fans
encode toric varieties.

To construct the toric variety -Σ associated to a fan Σ, we will construct
a subspace /(Σ) ∈ 1�= and a group � from Σ; we will then have -Σ =
(ℂ= − /(Σ))/�.

First, /(Σ). For a fan Σ in #ℝ let Σ(1) be the set of one-dimensional cones
of Σ. For each � ∈ Σ(1), there is a certain E� ∈ #ℝ which generates � ∩ #
(intuitively, the shortest lattice vector in �). Let = = |Σ(1) | . Now, associate a
coordinate G� to each 1-cone �. If ( is a subset of Σ(1) that does not span
a cone of Σ, let +(() ⊂ ℂ= be the subspace of ℂ= defined by G� = 0 for all
� ∈ (. /(Σ) is then the union of +(() for all (.

Next, we construct �. This takes several steps.
First, let" be the dual lattice of #, that is, the subset of linear functionals

on the vector space #ℝ that take integer values on all elements of #. Note
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that "ℝ = (#ℝ)∗. Next, consider Hom(",ℂ∗). A map in this space can be
identified with a point of (ℂ∗)A , since " is a rank-A lattice. We also need
Hom(Σ(1),ℂ∗), which we can identify with (ℂ∗)= , as we are treating Σ(1)
as just a set, so a map in this space simply specifies the image of each of
the = 1-cones. We now define the map ) : Hom(Σ(1),ℂ∗) → Hom(",ℂ∗),
which given 5 ∈ Hom(Σ(1),ℂ∗) produces 6 ∈ Hom(",ℂ∗) defined by
6(<) = ∏

�∈Σ(1) 5 (�)<(E�). In coordinates, we have 5 = (C1 , . . . , C=) ∈ (ℂ∗)=
(where C8 = 5 (�8)), and

)( 5 ) = )(C1 , . . . , C=) =
(
=∏
8=1

C
E1
�8
8
, . . . ,

=∏
8=1

C
EA�8
8

)
where E 9�8 is the 9

th component of E�8 .
There is a lot to unpack here. ) essentially takes a given weighting of

the 1-cones and assigns values to the elements of < based on this weighting.
The key insight is that " is an additive lattice, while ℂ∗ is a multiplicative
group, so we need )( 5 )(< + ℓ ) = )( 5 )(<))( 5 )(ℓ ). The components of <
and ℓ , that is, <(E�1), <(E�2), . . . , <(E�= ) and likewise for ℓ must therefore
be exponentiated in the formulas for )( 5 )(<) and )( 5 )(ℓ ) so that they add
together in the product of said expressions. We could exponentiate all the
components together, with the same base, as in 4

∑=
8=1 <(E�8 ) , but this destroys

our ability to distinguish different elements of " which have the same sum
of their components. Instead, we pick a set of = different bases, one for each
component, which are the C8 . Picking a set of C8 is equivalent to picking an
5 ∈ Hom(Σ(1),ℂ∗), which leads us to create ).

Finally, we can define � = Ker()). � is the set of weightings {C8} of

the {�8} that satisfy
∏=

8=1 C
E
9
�8
8
= 1 for all 9 , equipped with the operation of

pointwise multiplication. To see that this forms a group, note that the choice
C8 = 1 for all 8 has this property, for any set {C8} with this property { 1

C8
} also

has the property (all the factors in the product are simply inverted), and for
{C8}, {B8} with this property, {C8B8} works too, because

=∏
8=1
(C8B8)E

9
�8 =

=∏
8=1

C
E
9
�8
8
B
E
9
�8
8
=

(
=∏
8=1

C
E
9
�8
8

) (
=∏
8=1

B
E
9
�8
8

)
= 1 · 1 = 1.

At this point it is convenient to identify Hom(Σ(1),ℂ∗) with (ℂ∗)= , so
that we can view � as a subgroup of (ℂ∗)= .We now recall ℂ= − /(Σ), which
in intuitive language is ℂ= under the condition that coordinates can only
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be simultaneously zero if their corresponding E�8 span a cone of Σ. Finally,
we quotient this space by � to obtain -Σ = (ℂ= − /(Σ))/�. Note that this
works because the action of an element of � on ℂ= (the natural extension of
its action on (ℂ∗)=) cannot set a nonzero coordinate of any point to zero and
thus cannot map a point in ℂ= − /(Σ) into /(Σ).

There are a number of interesting facts about -Σ I’m still trying to
wrap my mind around. The first thing to note is that (ℂ∗)=/� ⊂ -Σ is an
algebraic torus dense in -Σ and able to act on it by the usual coordinatewise
multiplication, confirming that -Σ is a toric variety. Second, it turns out that
-Σ has the same rank as #. Third, -Σ is compact if and only if the union of
the cones of Σ equals the whole of #ℝ . This has to do with the fact that each
‘missing piece’ contributes a closed set to /(Σ)which is then excised from
ℂ= , which introduces ‘additional openness’ in ways that break compactness
even after quotienting by �.

We now come to a neat fact about -Σ. All of its torus-action-invariant
subvarieties are of the form {G ∈ -Σ | G81 = G82 = · · · = G8: = 0} for some
81 , . . . , 8: (recall the invariant subsets of ℙ2 at the start of the chapter, which
took the same form). For any given 81 , . . . , 8: ,wehave the 1-cones �81 , . . . , �8: .
It turns out that any such invariant subvariety will correspond to a set of
1-cones that form a valid convex cone, and since we have preemptively
removed from -Σ such subvarieties where the cone is not included in Σ, we
have a clean order-reversing correspondence between the cones of Σ and
the torus-invariant subvarieties of -Σ.Moreover, we can construct fans for
each of these invariant subvarieties, which are themselves toric varieties:
simply quotient # by the sublattice � ∩ # (to ‘forget about’ the coordinates
which are fixed at zero), and our new fan is the projection of Σ onto this
quotient lattice.

Figure 3.1 The fan for ℙ2
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We conclude the chapter with an example: we will construct ℙ2 from
a fan. The fan in question, shown in Figure 3.1, sits in a two-dimensional
lattice, so will produce a two-dimensional variety. The set of cones, not
explicitly listed in the diagram, are {0}, the three 1-cones spanned by each
of the edges, and the three 2-cones spanned by pairs of adjacent 1-cones.
This means the only set of 1-cones not spanning a cone is the set of all three,
which in turn means /(Σ) = {(0, 0, 0)} ⊂ ℂ3.We next identify �. Ordering
the edges (−1,−1), (1, 0), (0, 1) gives us the components to explicitly write
down )( 5 ) for 5 ∈ Hom(Σ(1),ℂ∗).We then have

� = { 5 ∈ Hom(Σ(1),ℂ∗) | )( 5 ) = 1 ∈ Hom(",ℂ∗)}
= {(C1 , C2 , C3) ∈ (ℂ∗)3 | )(C1 , C2 , C3) = (1, 1) ∈ (ℂ∗)2}
= {(C1 , C2 , C3) ∈ (ℂ∗)3 | (C−1

1 C2C
0
3 , C
−1
1 C02C3) = (1, 1)}

= {(C1 , C2 , C3) ∈ (ℂ∗)3 | C1 = C2 = C3}
= {(C , C , C) ∈ (ℂ∗)3}

which means

-Σ = (ℂ3 − /(Σ))/� = (ℂ3 − {(0, 0, 0)})/((G0 , G1 , G2) ∼ (CG0 , CG1 , CG2)) � ℙ2

as promised.





Chapter 4

Bundles and the Euler class

4.1 Introduction to Bundles

A great many geometric objects of interest in algebraic geometry can be
understood as fiber bundles, topological spaces that are “locally a Cartesian
product." More precisely,

Definition 4.1.1 (Fiber bundle). A fiber bundle (�, �,�, �), often written
synecdochically as simply � : � → �, or even just � → �, is a structure
comprising topological spaces � and � and a continuous, surjective mapping
� : � → � such that for every 1 ∈ �, there is a neighborhood * of 1 and
homeomorphism ! : �−1(*) → * × � such that the projection map from
!(�−1(*)) to* agrees with the projection map � : �−1(*) → *.

Intuitively, we have a space with all the local properties of the Cartesian
product � × � (its dimension is the sum of the base space and fiber space
dimensions, it contains copies of the base space and the fiber space, etc.) but
its global topology can differ from that of the product space. Every space is
trivially a bundle with itself as the base space and a one-point space as the
fiber (or vice versa), and in fact any way of expressing a space as a product
trivially expresses it as a bundle.

However, the need for bundles becomes apparent when we recognize
that the direct product is only one way to combine two spaces: (1 × [−1, 1]
is a cylinder, so what is a Möbius strip? The answer is a nontrivial bundle
with base space (1 and fiber space [−1, 1]. The topological nontriviality
of bundles such as the Möbius strip crucially depends on the topological
nontriviality of the base space–nontrivial bundles occur when we “attach
the fibers nontrivially" around an (=-dimensional) “hole" in the base space.
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We often use this to learn about a space by investigating certain bundles over
it.

Note that like any topological space, the topology of a bundle does not
depend on its embedding, and in fact the embedding can be misleading–for
example, a [−1, 1]-bundle over (1 that has two twists is actually homeomor-
phic to the trivial bundle (cylinder), which is apparent if we draw its gluing
diagram. Conversely, the Möbius strip is not nontrivial simply because it
cannot be deformed to a cylinder in 3D; it possesses fundamentally different
topology, such as having only one edge. Since we won’t be able to directly
visualize higher-dimensional bundles anyway, we clearly need more formal
ways of differentiating and classifying them–the topic of the next section.

4.2 The Euler class

A key algebraic tool for classifying bundles, though not all-powerful, is the
machinery of characteristic classes. These are algebro-topological objects,
consisting of certain equivalence classes of curves in the base space of the
bundle, determined by the bundle’s topology.

Before we can understand what this means, we need to have a language
in which to talk about curves in the base space; as always in algebraic
geometry, curves will be defined by the loci of points that solve certain
(usually polynomial) equations. But as usual, these solution loci can also be
thought of as the zero sets of (usually polynomial) functions on the space.
What will be the codomain of these functions? Since our goal is to study
curves in the base space of bundles, we set the codomain to the bundle itself,
in a way that respects its structure.

Definition 4.2.1 (Section of a fiber bundle). A section � of a fiber bundle
� : � → � is a continuous, injective function � : � → � such that for all
1 ∈ �, �(�(1)) = 1.

In other words, a section is a “graph" over the base space, with the
fiber space as the “vertical axis." It turns out that many types of functions
on a space can be understood as sections of a relevant bundle, but for
now, the important thing to focus on is the “zero loci" of these sections
(understood as graphs) or equivalently the fixed points {1 ∈ �|�(1) = 1} of
the sections (understood as mappings) or equivalently the intersections of
the zero section � (’original copy of the base space � to which we attached
the origins of the fibers, understood as a curve in �’) with the curve �(�).
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Again, these vanishing loci, denoted /(�), are curves in the base space. The
key insight we are concerned with is that the topology of a bundle determines
the topology of the vanishing loci of sections.

For example, consider an infinite cylinder, understood as an ℝ-bundle
over (1. Then a section is just some loop around the cylinder, which (as
we can translate it arbitrarily far up or down) can be made not to intersect
the zero section at all. On the other hand, a section on the infinitely wide
Möbius strip, another ℝ-bundle over (1 , must cross through the base space
at least once to come back to itself as we loop around the strip (try it on the
gluing diagram!). This hints that we have an invariant which distinguishes
these bundles, but we need to make it more precise–sections on the infinite
cylinder can have any even number of zeros, or an odd number if some are
tangencies to rather than transverse crossings of the base space. On the
Möbius strip, they have an odd number if the crossings are transverse, but
again the numbermay be even if higher-order zeros are involved. We account
for this variability by requiring that the sections intersect (1 transversely,
and counting points with orientation. With only transverse intersections, we
know there will be an even number for the cylinder and an odd number of
the Möbius strip, and incorporating orientation, defined as the “direction of
the crossing," means the number of points is invariant under deformations
of the section through (1. Finally we have a consistent answer of [0 points]
for the cylinder and [1 point] for the Möbius strip. These are called the
Euler classes of these bundles, and the construction generalizes to higher
dimensions.

Definition 4.2.2 (Euler class). Let � : �→ � be a fiber bundle. Let � : �→ �

be a generic section that transversely intersects with �. The Euler class 4(�)
of � is the Poincaré dual of the homology class [/(�)]. For any topological
space �, 4(�) is defined as the Euler class of the tangent bundle of �.

Note that 4(-)means different things depending onwhether - is viewed
as a bundle or just any old space (in which case we take the Euler class of
the bundle over that space which most naturally captures its structure, the
tangent bundle). The notion of ‘homology class’ just refers to the equivalence
class of the curve up to deformations and cancellations of components
with opposite orientations, and taking the Poincaré dual is essentially just
a formality that means we turn equivalence classes of curves into ring
elements that can be “added" (union) and “multiplied" (intersection), which
is generally the most productive setting in which to do algebro-topological
computations. In short, just think about the Euler class as a curve in the base
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space.
Thismachinery can be used to prove various topological results involving

bundles. For example, the hairy ball theorem, which states that the number
of zeros (withmultiplicity and orientation) of any vector field on the 2-sphere
is 2, is simply the statement that the Euler class 4((2) of the bundle )(2 is
2·[a point].

A particularly useful way of thinking about the Euler class is as the The
# classes that feature in the recent developments in tropical Gromov-Witten
theory are a special case of Euler classes.



Chapter 5

Moduli spaces of =-pointed
curves

This and the next section closely follow parts of Renzo Cavalieri’s very
accessible “Curve counting" lecture notes, which develop the theory further
and connect it to the interesting topic of Hurwitz theory.

5.1 The moduli space of = distinct points

Before we can understand the interesting spaces of =-pointed curves at the
heart of this subject, we have to understand the simpler spaces by which
they are inspired:

Definition 5.1.1 (Moduli space of isomorphism classes of = distinct ordered
points on ℙ1). The moduli space"0,= is the space {(?1 , . . . , ?=)|?8 ∈ ℙ1 , ?8 ≠

? 9for8 ≠ 9}/∼ where the equivalence relation is (?1 , . . . , ?=) ∼ (@1 , . . . @=) if
there is some ! ∈ Aut(ℙ1) such that !(?8) = @8 for all 8.

The unquotiented space, of tuples of distinct points is the easy part
to understand: it’s ℙ1 × ℙ1 × · · ·ℙ1 but with all the diagonals removed.
However, note that (ℙ1)= ; ℙ= : for some intuition about this, remember that
ℙ= is an =-sphere with antipodal points identified; the situation is analogous
to comparing the =-sphere to the torus ((1)= .

We now come to the equivalence relation. As ℙ= is obtained by taking
ℂ=+1 , dropping 0 andmodding out scalarmultiplication,Aut(ℙ=) ' %�!(=+
1,ℂ), the projective linear group, is obtained by taking Aut(ℂ=+1) ' �!(= +
1,ℂ and modding by scalar multiplication. This means that if we represent
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ℙ= with our usual homogeneous coordinates, which are inherited from the
unquotientedvector space, %�!(=+1,ℂ) just acts bymatrixmultiplication. In
our case, we have Aut(ℙ1) ' %�!(2,ℂ, equivalence classes of 2x2 invertible
matrices with respect to scalar multiplication.

If we consider the points {(G0 : G1) ∈ ℙ1 |G1 ≠ 0} ' {(I : 1) ∈ ℙ1}, an
element of the projective linear group acts like(

0 1

2 3

) (
I

1

)
=

(
0I + 1
2I + 3

)
,

so we can also understand the automorphisms of ℙ1 as the group of Möbius
transformations,

Aut(ℙ1) =
{
! : ℙ1 → ℙ1 ��)(I : 1) =

(
0I+1
2I+3 : 1

)
, 03 − 12 ≠ 0

}
,

where we understand that (∞ : 1) = (1 : 0).
What do we get when we take the diagonal-free =-fold product of ℙ1

and quotient by Mobius transformations? Let’s start from = = 1 and work
our way up.

The elements of "0,1 are the equivalence classes of points of ℙ1. But for
any point (I : 1) ∈ ℙ1 , the Mobius transformation with 0 = 1, 1 = −I, 2 =
0, 3 = 1 maps it to

( 1I−I
0I+1 : 1

)
= (0 : 1) (for (1 : 0), we set 0 = 0, 1 = 1, 2 =

1, 3 = 0)). So we see that every point is isomorphic to (0 : 1), and "0,1 is a
single point.

In fact, for any 3 distinct points (I1 : 1), (I2 : 1), (I3 : 1), we can solve the
linear equations 

I10 + 1 = 0
I20 + 1 − I22 − 3 = 0
I32 + 3 = 0

to obtain the class of projective transformations(
I2 − I3 −I1(I2 − I3)
I2 − I1 −I3(I2 − I1)

)
which simultaneously send (I1 : 1) ↦→ (0 : 1), (I2 : 1) ↦→ (1 : 1), (I3 : 1) ↦→
(1 : 0). As before, the procedure will still work for tuples involving the
point (1 : 0): it is no worse behaved than any other point, just inconvenient
for our algebra. So we see that any element of "0,3 is isomorphic to
((0 : 1), (1 : 1), (1 : 0)), and thus "0,3 and "0,2 are also single-point spaces.
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Beyond = = 3 we have some actual substance: due to scalar invariance,
%�!(2,ℂ) is a 3, not 4 dimensional group, which means that we cannot
demand more simultaneous constraints; we don’t have the freedom to
send 4 points to any 4 specific spots simultaneously. If we plug a fourth
point (I4 : 1) into the automorphism we just found, we obtain the point
((I2 − I3)(I4 − I1) : (I2 − I1)(I4 − I3)) =

(
(I2−I3)(I4−I1)
(I2−I1)(I4−I3) : 1

)
≡ (� : 1). � is called

the cross-ratio; it can be thought of as “where the 4th point is when the first
3 are put in standard position" and the possible values of � parametrize
"0,4 , demonstrating that "0,4 ' ℙ1\{(0 : 1), (1 : 1), (1 : 0)}.

For an =-tuple (?1 , . . . , ?=), we have = − 3 cross-ratios telling us where
all the remaining points go when we fix the first 3. These can be anything
except our 3 standard points or each other, so we end up with

"0,= '
(
{(0 : 1)} × {(1 : 1)} × {(1 : 0)} × ℙ=−3) \diagonals ' ("0,4)=−3 \diagonals.

5.2 Moduli spaces of stable =-pointed curves

At this point, we finally have the machinery to construct and understand the
(classical versions of the) central objects of our focus, moduli spaces of stable
curves. The motivation to construct something new and confusing from
the "0,=s, and expect something interesting to come of it, is that "0,= badly
behaved for intersecting things on (and thereby for enumerative geometry),
and we would like to fix it. "0,= is badly behaved because it is not compact:
closed subsets have been removed from it (the diagonals) leaving an open
set. Can we compactify it by stitching up its open ends? The obvious guess
is that we would be forced to include =-tuples with coinciding points, giving
us "0,= ' ℙ=−3 , and erasing any interesting structure that may have been
present. Is there really a way to have a compact space that captures the
notion of distinct points, through some aspect of its geometry rather than just
cutting out degenerate loci where points coincide? Surprisingly, the answer
is yes: we construct the space "0,= of stable rational =-pointed curves.

Definition 5.2.1 (stable rational =-pointed curve). Astable rational =-pointed
curve is a genus 0 connected algebraic curve � (possibly with singularities)
with = ordered, distinct points (not coinciding with the singularities) such
that there are no nontrivial automorphisms of � that preserve the marked
and singular points.

When unpacking this definition, the trick is to understand ℙ1 as both
the Riemann sphere and as a compactified, complex line. As any real, open
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curve (the zero locus of a polynomial in the plane) is the image of ℝ under
some polynomial mapping, a “genus 0 connected algebraic curve" without
singularities (the zero locus of a rational function in ℙ2) is the image of
ℙ1 under some rational mapping (rational functions are the equivalent of
polynomials when the codomain is assumed to be compact/containing
∞). The automorphisms of such curves should commute with the rational
maps we consider natural in this setting, so they’re just the images of the
same projective linear transformations. The mental image for a non-singular
genus 0 curve is therefore just ℙ1 , warped by its embedding in ℙ2. For our
purposes, nothing interesting will be going on in ℙ2 , so we don’t actually
need to think about the embedding.

So for non-singular �, the =-pointed curves just correspond to the points
of"0,= .We brought in the language of curves so that we could include some
singular ones: since the genus is still 0, these will just look like Riemann
spheres/projective lines that are ‘pinched’ in some places, henceforth called
the ‘nodes.’ This pinching is highly significant: the automorphisms of such
curves are no longer as simple as those of ℙ1. Instead, an automorphism is
an independent projective linear transformation on each ℙ1-like component
of the curve, with consistency on the nodes.

Just as we need 3 points on ℙ1 to ‘keep it stable’ (have no nontrivial
point-fixing automorphisms), we need 3 points (including nodes) on each
component of a general genus 0 curve to satisfy this property. If a component
has at least 4 such points, we can smoothly vary the curve into one with an
additional component, by bringing two of the marked points together and
sprouting off a new stable component for them when they coincide. This is
the essence of the compactification: where "0,= holds the geometry fixed
and has holes where points coincide, "0,= lets both points and geometry
vary, so that the geometry has precisely enough freedom to accommodate
those coincidences by transforming in a nontrivial way, filling the holes in
"0,= without washing out the structure.

We can simply represent the different types of elements of "0,= with
marked trees of lines: each line represents a component, with its marked
points placed on it (order doesn’t matter); there can be no closed polygons or
lines with fewer than 3 (points + crossings). The =-marked trees with more
than one line represent the classes of stable curves in the boundaries of"0,= :
the stuff we tacked on to "0,= . Each possible tree represents a certain locus
of boundary points; the number of crossings in such a tree is the ‘number of
coincidences’ that must occur to arrive at the corresponding curves, so is
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Figure 5.1 ‘Sprouting o� a new stable component’ when marked points co-
incide

equal to the (complex) codimension of the locus of boundary points. When a
tree can be formed by ‘sprouting a component’ from multiple different trees
of one less component, it represents, in the moduli space, the intersection of
the (closures of) the moduli space boundaries represented by its possible
parent trees. We therefore have a ‘stratification’ of the boundary of "0,= : at
codimension 1, the different boundaries correspond to 2-component trees
with different partitions of the = marked points between those components,
so we have one for each stable partition [=] = � ∪ �2 . The closure of such
a boundary is called the boundary divisor �(�). The boundary divisors
intersect in a number of codimension 2 curves, which themselves intersect
in codimension 3 curves, and so on until we run out of dimensions and
don’t have any ‘spare marked points’ to use for stably sprouting off new
components. Enumerating the intersections of these boundary curves
is nontrivial, since it involves the combinatorics of partitions, but yields
intricate results.

5.3 # classes

Can we use the algebro-topological machinery of cohomology classes, and
specifically Euler classes of bundles, on these moduli spaces to study rational
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stable curves? The answer is yes, and leads us to the Euler classes of a
particular collection of bundles over "0,= called # classes.

Definition 5.3.1 (# class). LetL8 → "0,= be a line bundlewhere thefiber over
each point (�, ?1 , . . . , ?=) is canonically identifiedwith)∗?8 (�). L8 is called the
8th cotangent line bundle, andwedefine the# classes#8 , . . . ,#= ∈ �1("0,=)
as

#8 ≡ 4(L8).

There’s some new notation here, but it’s mostly concepts already intro-
duced. �1("0,=) is the abelian group of codimension-1 cohomology classes
in "0,=–recall that equivalence classes of curves form a ring under union
and intersection; thinking in terms of representatives of these classes, the #
classes are each particular codimension-1 curves in "0,= . Specifically, they
are the zero loci of generic sections of the L8 bundles, measuring how twisted
they are. But what are the L8? Essentially, L8 tracks the point ?8 across the
moduli space of stable =-marked curves; at each point in the moduli space, it
encodes the position of ?8 on the curve associated to that point, by attaching
the tangent to � at ?8 to that point, as a fiber. It seems sort of simultaneously
tautological and the most complicated thing that could have been invented,
but it makes sense that having phrased questions about automorphism-free
projective curves in terms of arrangements/movements of points on those
curves, we would like to get back to the machinery of geometry, by encoding
the arrangements/movements of points on those curves as the twisting of
a geometric object (L8). Note that the L8 are thus canonically isomorphic
via relabeling the points; they all ‘look the same,’ but there is still intricate
structure in the ways their Euler classes intersect with different combinations
of copies of themselves and copies of the classes of the other cotangent line
bundles.

There is really a lot of structure here but meaningfully getting into it
would require substantial discussion of pullbacks, pushforwards, normal
bundles, self-intersection, and so on. Suffice to say the aforementioned
interesting intersection theory of boundary divisors, which is really the
interesting structure in the "0,= , can be computed with # classes.
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Tropical "0,=

How might one tropicalize the structures introduced in the last chapter,
such as the spaces "0,= that we are primarily interested in? In short, we
tropicalize the objects parameterized by the moduli space, construct the
moduli space of tropical objects, and then try to draw connections between
the classical and tropical moduli spaces. This process does not always ‘work,’
in that the moduli space of the tropicalized classical objects is not always the
tropicalization of the classical moduli space, but in this case it does.

6.1 Tropical stable =-pointed curves

How to tropicalize a stable =-pointed curve? We already have combinatorial
representations of such curves, the stable =-pointed trees. It turns out that
these are almost already the tropicalizations of stable =-pointed curves;
however, they require some modification: each tree represents a range of
possible curves, and the dimension of that range of curves depends on the
geometry of the tree. Specifically, we must distinguish the combinatorial
representations of stable =-pointed curves with the same ‘topology’ but
different ‘values’ for the positions of the singular points. As tropicalization
takes complex dimensions to real dimensions (and associated complex num-
bers to positive real numbers), the complex-valued positions of the points in
question will translate to positive real numbers describing the tropicalized
structure. Since there is one of these values for each intersection between
components, we can assign a positive real number to each intersection
between components of a stable tree. To make things more intuitive, we go
ahead and work with the dual graph of the stable tree, where components of
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the tree become points, their intersections become edges, and we represent
the marked points as leaves connected to their associated component-vertex.
The positive real numbers we have assigned to the component-intersections
now have the natural interpretation as the lengths of the dual graph.

Definition 6.1.1 (Tropical rational =-pointed curve). A tropical rational =-
pointed curve is a tree with = labeled leaves, and a function from the set of
non-leaf edges 3 : �→ ℝ>0. The curve is stable if each vertex has degree at
least 3.

With this definition, we can represent curves where components are
combined by allowing the length of their intersection-edge to go to 0.

Figure 6.1 A tropical stable curve and its classical partner

Returning to our original goal, we would like to construct the moduli
space of these tropical curves. For a given tree topology, each possible curve
is given by a different choice of edge lengths, so the curves of a given tree
topology are parameterized by

(
ℝ≥0)= , where = is the number of edges, as

shown in Figure 6.2.
Of course, we want the moduli space for all =-pointed tropical curves,

meaning all tree topologies with = leaves. The intuition here is that the
different topologies each have cones

(
ℝ≥0)= for moduli spaces, which will

‘fit together’ into a cone complex, with the cones coinciding on faces where
some edge lengths go to zero, resulting in the same topology. Of course,
the cone complex quickly becomes unwieldy to visualize–the complex for
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Figure 6.2 The conical moduli space for one topology of 5-pointed tropical
stable curves

5 marked points, shown in Figure 6.3, demonstrates the sort of intricate
incidence patterns that arise.

Figure 6.3 The cone complex "
trop
0,5 (from “Curve Counting")

Here the 10 vertices of the graph represent 10 rays diverging from the
point representing the 1-component curve. The colored lines between rays
represent 15 2D cones, including the one from before, which together form
the full moduli space "

trop
0,5 . Notice that the top-dimensional components of

the cone complex correspond to the curves with the most components (since
the number of degrees of freedom/edge lengths for a given topology is the
number of connections between components), and the lower-dimensional
faces and rays correspond to curves with fewer and fewer components. This
is the opposite of the classical case, where generic points in the moduli space
correspond to curves with a single component, and the lower-dimensional
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boundaries and their intersections correspond to curves with additional,
branched-off components. This is the same inclusion-reversion we observed
when looking at toric varieties and their associated fans!



Chapter 7

Conclusion

Though I wasn’t able to reach a point of being able to properly bring
everything together, from what I understand, the brief picture is this. The
moduli space of tropical stable curves is the polyhedral fan of the toric
variety that is the moduli space of classical stable curves, proving that
it is the tropicalization of said moduli space. With the help of tropical
intersection theory (which uses much of the same language as enumerative
geometry and classical algebro-geometrical cohomology computations, but
is nevertheless the biggest gap in my understanding/presentation of these
topics), we are inspired to port our enumerative work on "0,= to its newly
constructed tropical counterpart; thismakes heavy use of the aforementioned
cohomology computations via tropical versions of the# classesmentioned in
the previous section. At the forefront of current research, these constructions
are being extended to the more complicated case of moduli spaces of
curves of nonzero genus, opening up vast new possibilities for the future of
Gromov-Witten computations.
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