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Abstract

Motivated by existing results about the Kronecker cluster algebra, this thesis
is concerned with two families of cluster algebras, which are two different ways
of generalizing the Kronecker case: rank-two cluster algebras, and cluster
algebras of type Ãn ,1. Regarding rank-two cluster algebras, our main result is
a conjectural bijection that would prove the equivalence of two combinatorial
formulas for cluster variables of rank-two skew-symmetric cluster algebras.
We identify a technical result that implies the bijection and make partial
progress towards its proof. We then shift gears to study certain power series
which arise as limits of ratios of F-polynomials in cluster algebras of type
Ãn ,1. With several different perspectives in mind, including that of continued
fractions, path-ordered products and the surface model, we state and prove
various equivalent formulas for these power series. In our study of these two
families, we make use of a product formula for F-polynomials, called Gupta’s
formula, which is applicable to all cluster algebras of geometric type. We
dedicate one of our chapters to an exposition of this formula. Though Gupta’s
formula has previously appeared in different notations, and in that sense is
not new, we believe that our statement and proof of the formula provides a
new approach to the formula which is elementary and combinatorial.
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Chapter 1

Introduction

Cluster algebras are certain commutative algebras with a rich combinatorial
structure, first introduced in Fomin and Zelevinsky (2002). Their inception
was motivated by the study of semicanonical bases of Lie algebras; but
since then, researchers have made deep connections between cluster algebras
and many other areas of math and physics, including discrete dynamical
systems, Poisson geometry, higher Teichmüller spaces, commutative and
non-commutative algebraic geometry, string theory, and quiver representation
theory; see Keller (2012) for specific references. The interdisciplinary nature
of the cluster algebras community and the interconnectedness of different
perspectives on cluster algebras is one of the reasons that research in this
area can feel incredibly exciting. A quick introduction to cluster algebras is
presented in Chapter 2.

The starting point of this thesis is the cluster algebra defined by the
Kronecker quiver (Figure 1.1). We will refer to this cluster algebra as the
Kronecker cluster algebra.

1 2

Figure 1.1 The Kronecker Quiver K2

The Kronecker cluster algebra is arguably the simplest cluster algebra of
infinite type (it has infinitely many distinguished generators, or in cluster-
algebra-speak, infinitely many cluster variables). Perhaps consequently, it is
very well-studied. To mention a few references, explicit formulas for a family
of associated Laurent polynomials, called the semicanonical bases, are given in
Caldero and Zelevinsky (2006). This in particular includes explicit formulas
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for the cluster variables, which can be translated to explicit formulas for
certain polynomials (called F-polynomials) associated to the cluster variables.
Musiker and Propp (2007) gives a combinatorial interpretation of the coeffi-
cients of the cluster variables in terms of enumeration of the perfect matchings
of certain graphs, which makes the positivity of coefficients apparent. As
an example of his combinatorial approach to scattering diagrams, Reading
(2020b) fully studies the scattering diagram for the Kronecker cluster algebra
and computes two distinguished infinite path-ordered products.

With the Kronecker quiver as the starting point, our thesis has gone in
two directions. One is the study of rank-two cluster algebras. These cluster
algebras are defined by two parameters b , c > 0, so we refer to the cluster
algebra defined by b and c as A(b , c). When b � c � r, they are equivalently
defined by r-Kronecker quiver Kr , pictured in Figure 1.2. In particular, the
Kronecker cluster algebra is A(2, 2), defined by the Kronecker quiver K2.

1 2...

Figure 1.2 The r-Kronecker Quiver Kr , which has r edges from 1 to 2

There is a large amount of literature on rank-two cluster algebras (see Lee
(2012), Lee and Schiffler (2013), Lee et al. (2014), Gupta (2018), and Cheung
et al. (2017)). Compared to the Kronecker case where cluster variables have
simple formulas, when bc > 4, we only have formulas for cluster variables in
terms of combinatorial objects which are themselves not fully understood.
Two natural questions that arise are:

1. Can we come up with simpler formulas for the cluster variables or,
equivalently, F-polynomials of A(b , c) when bc > 4?

2. How do existing formulas compare to each other?

Gupta’s formula, detailed in Chapter 3, provides a formula for the co-
efficients of F-polynomials as a sum over a (possibly infinite) set of tuples.
During the UMN REU in the summer of 2020, this seemed like a possible
point of entry to some progress on the first question. In my REU report,
I show the agreement between Gupta’s formula for F-polynomials of the
Kronecker cluster algebra and the well-known formula proven in Caldero and
Zelevinsky (2006), but it was difficult to generalize this to the r-Kronecker
case for r > 2.
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As we turned to Lee and Schiffler (2013) and Lee et al. (2014) for inspi-
ration, we made progress on Question 2 independently of Gupta’s formula.
Chapter 4 first gives an exposition on rank-two cluster algebras, specializing
the general definitions given in Chapter 2 to the rank-two case. We then
briefly introduce the results of Lee and Schiffler (2013) and Lee et al. (2014):
the main result of Lee and Schiffler (2013) is a combinatorial formula for
cluster variables in A(r, r), and Lee et al. (2014) gives a formula for certain
greedy elements in A(b , c), which include cluster variables. As an exercise
on the understanding of Lee and Schiffler (2013), we show that Lee and
Schiffler’s formula reduces to the simple formula of Caldero and Zelevinsky
(2006) in the Kronecker case. To reach their main result, Lee et al. (2014)
proves that a certain polygon contains the support of greedy elements (cluster
variables are in particular greedy elements). We check that when we special-
ize their proposition to cluster variables of the r-Kronecker, their support
polygon agrees with my conjecture presented in Lin, Feiyang (2020). Lastly,
assuming a conjectural identity related to maximal Dyck paths, we prove
a weight-preserving bijection between the combinatorial objects of Lee and
Schiffler (2013) and Lee et al. (2014).

In the other direction, we study a different generalization of the Kronecker
case, namely the cluster algebra Ãn ,1, which is defined by the following quiver.

1 2 · · · n + 1

Figure 1.3 TheQn ,1 Quiver

Notice that the Kronecker cluster algebra can be written as Ã1,1. The
cluster algebra Ãn ,1 is better-behaved than A(b , c) when bc > 4 because they
correspond to affine root systems rather than root systems of indefinite type
(we touch on this in Section 2.4 of Chapter 2). In this thesis, we focus on
certain power series that arise as limits of ratios of F-polynomials in Ãn ,1. The
same limit when n � 1 is studied in both Reading (2020b) and Canakci and
Schiffler (2017). In Chapter 5, we take a variety of approaches to study these
limits, such as via their coefficients, continued fraction expansions, generating
functions, and product forms given by Gupta’s formula. For cluster algebras
of infinite type, one is tempted to look for ways to capture the limit behavior
of the cluster algebra. The limit of ratios of F-polynomials is one way of doing
so. As such, we hope that our thorough study of the case of Ãn ,1 provides an
example for the research community beyond the Kronecker cluster algebra.
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Another contribution of this thesis is an exposition of Gupta’s formula for
F-polynomials in skew-symmetrizable cluster algebras, which first appeared
in Gupta (2018) in a different form. Her formula in the skew-symmetric case
was later rewritten into its current form and reproven by Gregg Musiker;
this work was presented at an AMS sectional meeting, but has not appeared
publicly in the literature. We generalize Musiker’s work slightly to the skew-
symmetrizable case and discuss the connections between Gupta’s formula and
previously existing work. We hope our account will make Gupta’s formula
more accessible to the cluster algebra community.



Chapter 2

Background on Cluster
Algebras

The first two sections of this chapter define cluster algebras and various
parameterizations of cluster variables. The next section introduces root
systems and some results relating root systems to cluster algebras, with more
attention to the finite and affine cases. We then define scattering diagrams
and path-ordered products, which is another piece of evidence that it is
fruitful to understand cluster algebras from a root-theoretic perspective.

2.1 What is a cluster algebra?

Algebraic structures that we are most familiar with, such as groups, ideals,
vector spaces, are most commonly defined by specifying a complete list of
generators and the relations among them. Cluster algebras are quite different
in this sense. Instead of specifying all the generators, one defines a cluster
algebra by starting with a set of generators x1 , . . . , xn and a rule for making
other generators from existing ones. A cluster algebra is then defined to be
the commutative subalgebra of the ring of rational functions in x1 , . . . , xn
generated by the generators. The generators of the cluster algebra thus
produced are called cluster variables and they are grouped into clusters. We
will elaborate on the precise definition in the remainder of this section.

There are a few levels of generality, but for this thesis we will restrict to
the case of cluster algebras of geometric type, which means that the iterative
procedure we use to produce cluster variables can be encoded by a matrix.
We also restrict to the case of principal coefficients, which is a canonical way
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of setting the initial conditions for this iterative procedure.
Let n be a positive integer. Let P � Trop(y1 , . . . , yn) be the semifield

whose multiplicative group is the free abelian group generated by y1 , . . . , yn ,
endowed with an auxillary addition ⊕ defined by∏

j

y
a j

j ⊕
∏

j

y
b j

j �

∏
j

y
min(a j ,b j)
j , for a j , b j ∈ Z.

Thus we may understand the multiplicative part of P as the group of Laurent
monomials in y1 , . . . , yn under multiplication.

For k a field, let k(x1 , . . . , xn) be the field of Laurent polynomials in the
variables x1 , . . . , xn. A cluster algebra (of geometric type, with principal
coefficients) is a subalgebra of an ambient field F � QP(x1 , . . . , xn) �
Q(x1 , . . . , xn , y1 , . . . , yn). To define its generators, we start with the data of
a skew-symmetrizable matrix Bo called the initial exchange matrix.

Let [n] � {1, 2, . . . , n}.
Definition 2.1.1 (Skew-symmetric/symmetrizable). An n-by-n matrix B �

(bi j) is skew-symmetric if BT � −B, or equivalently, bi j � −b ji for all i , j ∈ [n].
It is skew-symmetrizable if there exists a diagonal matrix D with positive
entries such that DB is skew-symmetric; equivalently, B is skew-symmetrizable
if there exists δi > 0 for i ∈ [n] such that δi bi j � −δ j b ji. If B is skew-
symmetric, letting D be the identity matrix establishes that B is skew-
symmetrizable.

Definition 2.1.2 (Cluster Seed). A cluster seed is a tuple Σt � (x, y, Bt),
where

• Bt � (bt
i j) is an n-by-n skew-symmetrizable matrix with integer entries;

• x � (x1;t , x2;t , . . . , xn;t) where each xk;t ∈ F is called a cluster variable;

• y � (y1;t , y2;t , . . . , yn;t) where each yk;t ∈ P is called a coefficient
variable.

Let Tn be the n-regular tree where at each vertex, the n edges emanating
from it are labeled by 1, . . . , n. For reasons that will become clear in a moment,
we parameterize cluster seeds by vertices t ∈ Tn . The initial exchange matrix
allows us to define an initial cluster seed Σto , on which we perform mutations
to get other cluster seeds. The initial cluster seed is Σto � (x, y, Bo), where
for 1 ≤ i ≤ n, xi;to � xi and yi;to � yi.

Denote by [a]+ � max(a , 0).
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Definition 2.1.3 (Seed mutation). Let t , t′ ∈ Tn be connected by an edge
labeled k. We may mutate a cluster seed Σt � (x, y, Bt) in direction k ∈ [n]
to obtain a different cluster seed Σt′ � (x′, y′, Bt′). Let Bt � (bi j). Then the
components of the new seed are defined as follows:

• Bt′ � (bt′
i j) � (b′i j), where

b′i j � −bi j if i � k or j � k,

b′i j � bi j + bik bk j if bik , bk j > 0,

b′i j � bi j − bik bk j if bik , bk j < 0, and

b′i j � bi j otherwise;

• x′ � (x1;t′ , x2;t′ , . . . , xn;t′) where xi;t′ � xi;t if i , k and

xk;t′ �
yk;t

∏
j x

[bt
jk]+

j;t +
∏

j x
[−bt

jk]+
j;t

(yk;t ⊕ 1)xk;t
;

• y′ � (y1;t′ , y2;t′ , . . . , yn;t′), where yk;t′ � y−1k;t , and if j , k,

y j;t′ � y j;t y
[bt

k j]+
k;t (yk;t ⊕ 1)−bt

k j .

We often denote mutation in direction k by µk , and write Σt′ � µkΣt . We
use the convention of applying mutations left to right. For example, µ1µ2Σ
means apply µ1 to Σ, and then apply µ2.

With some algebra, we can check that µ2k � 1 for any k ∈ [n]. We still
need to make sure that this association of a vertex t with a cluster seed
Σt is well-defined. Notice that each vertex of Tn is connected to to by a
unique simple path, which gives rise to a canonical sequence of mutations
that we can apply to the initial seed to obtain a seed for each t ∈ Tn. To
check that any other way of obtaining Σt agrees with the current labeling
of t, it suffices to check that seeds assigned to t and t′ are related by µk if
t and t′ are connected by an edge labeled by k. This follows from the fact
that the simple paths from to to t and t′ must differ by an edge labeled k.
Note that it is possible for two different vertices to be labeled with identical
seeds. In general, in addition to µ2i � 1, there are other relations between the
mutations.

We are now ready to define cluster algebras.
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Definition 2.1.4. Let Bo be a skew-symmetrizable matrix which is n-by-n.
Let Tn be the n-regular tree and associate seeds Σt to each vertex t ∈ Tn
according to the mutation rules described above, starting at the initial seed
defined by Bo. Then the cluster algebra with initial exchange matrix Bo is
the subalgebra of F � QP(x1 , . . . , xn) generated by the cluster variables:

A � Z[{xi;t , t ∈ Tn}],
where xi;t is the i-th cluster variable of the cluster Σt . We say that A has
rank n.

We now try our hands on some examples.

Example 2.1.5 (Cluster Algebra of Type A2). Consider the cluster algebra
A with initial exchange matrix

Bo �

[
0 1
−1 0

]
.

Figure 2.1 shows the cluster seeds along the mutation sequence µ1µ2µ1µ2µ1.
At each seed, we have x and then y below the exchange matrix.

[
0 1
−1 0

]

(x1 , x2)
(y1 , y2)

[
0 −1
1 0

]

( y1+x2
x1 , x2)

(y−11 , y1 y2)

[
0 1
−1 0

]

( y1+x2
x1 ,

y1 y2x1+y1+x2
x1x2 )

(y2 , y−11 y−12 )

[
0 −1
1 0

]

( 1+y2x1
x2 ,

y1 y2x1+y1+x2
x1x2 )

(y−12 , y−11 )

[
0 1
−1 0

]

( 1+y2x1
x2 , x1)

(y−12 , y1)

[
0 −1
1 0

]

(x2 , x1)
(y2 , y1)

µ1 µ2

µ1

µ2µ1

Figure 2.1 Cluster seeds along the mutation sequence µ1µ2µ1µ2µ1

Let Σt′ � µ1µ2µ1Σto and let Σt � µ1µ2Σto . Figure 2.1 says that x1;t′ �
1+y2x1

x2
and y2;t′ � y−11 , which we will calculate explicitly here by applying µ1

to Σt . Recall that

xk;t′ �
yk;t

∏
j x

[bt
jk]+

j;t +
∏

j x
[−bt

jk]+
j;t

(yk;t ⊕ 1)xk;t
.
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In this case, we have k � 1. Since the first column of the exchange matrix Bt
has no positive entries,

yk;t

∏
j

x
[bt

jk]+
j;t � y1;t � y2

and ∏
j

x
[−bt

jk]+
j;t � x2;t �

y1 y2x1+y1+x2
x1x2

.

Since y1;t � y2, we have yk;t ⊕ 1 � 1. Therefore the exchange relation says
that

x1;t x1;t′ � y2 +
y1 y2x1+y1+x2

x1x2
�

y2x1x2+y1 y2x1+y1+x2
x1x2

�
(1+y2x1)(y1+x2)

x1x2
.

Since x1;t �
y1+x2

x1
, indeed, we find that x1;t′ �

1+y2x1
x2

. Since k , 2, to
compute y2;t′, we apply the mutation rule

y j;t′ � y j;t y
[bt

k j]+
k;t′ (yk;t ⊕ 1)−bt

k j ,

which specializes to

y2;t′ � y2;t y
[bt

12]+
1;t (y1;t ⊕ 1)−bt

12 .

Since bt
12 � 1, y1;t � y2, and y2;t � y−11 y−12 , we have

y2;t′ � y−11 y−12 y2 � y−11 .

Notice that the cluster seed at the end of the mutation sequence pictured
in Figure 2.1 agrees with the initial cluster seed up to relabeling the cluster
and coefficient variables and permuting the exchange matrix accordingly. By
symmetry, applying µ2 to Σto produces the second cluster seed in the second
row up to permutation. Therefore, all the cluster variables of this cluster
algebra appear in Figure 2.1. The cluster algebra is the subalgebra of F
generated by the Laurent polynomials

x1 , x2 ,
y1+x2

x1
,

y1 y2x1+y1+x2
x1x2

,
1+y2x1

x2
.

It is not always the case that the number of cluster variables is finite.
The following is an example of a cluster algebra with countably many cluster
variables.
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Example 2.1.6 (The Kronecker cluster algebra). The Kronecker cluster
algebra is the cluster algebra defined by the initial exchange matrix

Bo �

[
0 2
−2 0

]
.

(In the next section, we will address how the Kronecker cluster algebra can
also be defined by the Kronecker quiver K2, as mentioned in the Introduction.)
Let µ+ denote the infinite mutation sequence µ1µ2µ1µ2 . . . , and let µ− be
µ2µ1µ2µ1 . . . . Let µ+(0) � µ−(0) be the identity, and for m > 0, let µ+(m)
and µ−(m) denote the sequences of the first m mutations in µ+ and µ−
respectively. Since µ21 � µ

2
2 � 1, every mutation sequence can be expressed as

µ+(m) or µ−(m) for some m ≥ 0.
Name the cluster variables as follows: for m > 0, let xm+2 be the last

cluster variable obtained by applying the first m mutations of the sequence
µ1µ2µ1µ2 . . . , and let x−m+1 be the last cluster variable obtained by applying
the first m mutations of the sequence µ2µ1µ2µ1 . . . . By Theorem 4.1 in
Caldero and Zelevinsky (2006), see also Theorem 2 in Musiker and Propp
(2006) for a combinatorial approach, for m > 0,

xm+2 � x−m
1 x−m+1

2

∑
0≤N≤M≤m

(
m − N
m −M

) (
M − 1

N

)
x2N
1 x2(m−M)

2 yM
1 yN

2 . (2.1)

x−m+1 � x−m+1
1 x−m

2

∑
0≤N≤M≤m

(
m −M
m − N

) (
M − 1

N

)
x2N
1 x2(m−M)

2 ym−1−N
1 ym−M

2 .

(2.2)
The reader might verify that Equation 2.1 indeed produces x3 and x4 as

given below:

x3 �
x2
2 + y1

x1
,

x4 �
x2
3 + y2

1 y2
x2

�
( x2

2+y1
x1

)2 + y2
1 y2

x2
�

x4
2 + 2x2

2y1 + y2
1 + x2

1y2
1 y2

x2
1x2

.

One may also verify using this explicit formula for the cluster variables
xn that xn is different for each n ∈ Z. Hence, the Kronecker cluster algebra
has countably many cluster variables (compare with Example 2.1.5).
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Since each coefficient variable yi;t ∈ P is a Laurent monomial, it can be
uniquely determined by its exponent vector. This leads to an alternative
way of encoding the coefficient dynamics in our cluster seeds independently
of the addition in coefficient semifield. We omit the tuple y of coefficient
variables and extend the exchange matrix so that it is 2n-by-n. The columns
of the bottom square matrix will correspond to the exponent vectors of the
coefficient variables: yi;t �

∏n
j�1 y

bn+ j,i

j .

Using this convention, a cluster seed is a tuple Σt � (x, B̃t) where B̃t is
a 2n-by-n matrix with integer entries such that the top n-by-n part of B̃t is
skew-symmetrizable.

Definition 2.1.7 (Seed Mutation; Tall Matrix Version). Mutating a cluster
seed Σt � (x, B̃t) gives a cluster seed Σt′ � (x′, B̃t′) defined as follows:

• B̃t′ � (b′i j), where the mutation rule for each entry is the same as in
Definition 2.1.3;

• x′ � (x1;t′ , x2;t′ , . . . , xn;t′) where xi;t′ � xi;t if i , k and

xk;t′ �

∏
j y

[bn+ j,k]+
j

∏
j x

[b jk]+
j;t +

∏
j y

[−bn+ j,k]+
j

∏
j x

[−b jk]+
j;t

xk;t
. (2.3)

The rules for mutating the top part of B̃ agree in the two definitions by
construction. For the bottom part, since yk;t′ � y−1k;t , indeed we must have

b′n+i ,k � −bn+i ,k . When j , k, the rule y j;t′ � y j;t y
[bk j]+
k;t (yk;t ⊕ 1)−bk j implies

that

b′n+i , j � bn+i , j + bn+i ,k[bk j]+ −min(bn+i ,k , 0)bk j

� bn+i , j + bn+i ,k[bk j]+ + [−bn+i ,k]+bk j

�




bn+i , j if bn+i ,k bk j ≤ 0,
bn+i , j + bn+i ,k bk j if bn+i ,k , bk j > 0,
bn+i , j − bn+i ,k bk j if bn+i ,k , bk j < 0,

which agrees with this definition.

Example 2.1.8. The extended extended matrices for the cluster seeds in
Figure 2.1 are as follows:
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0 1
−1 0
1 0
0 1





0 −1
1 0
−1 1
0 1





0 1
−1 0
0 −1
1 −1





0 −1
1 0
0 −1
−1 0





0 1
−1 0
0 1
−1 0





0 −1
1 0
0 1
1 0



µ1 µ2

µ1

µ2µ1

Figure 2.2 Mutations of extended exchange matrices for cluster seeds shown
in Figure 2.1

In many situations, we would like to identify cluster seeds that are the
same up to relabeling the columns and rows of its exchange matrices and
relabeling x and y accordingly. For example, as discussed in Example 2.1.5,
we might like to identify the first seeds on the two rows in the diagram of
Figure 2.1. We use the term unlabeled seed to refer to a cluster seed up to
such identification.

To better visualize the exchange relations of a cluster algebra, we often
consider the graph whose the vertices are distinct unlabeled cluster seeds of
a cluster algebra, where two vertices are connected by an edge labeled by
elements of [n] if and only if the corresponding seeds differ by a mutation
in that direction. This is called the exchange graph of the cluster algebra.
For example, the exchange graph for the cluster algebra of Example 2.1.5 is
a cycle with five vertices and the exchange graph for the Kronecker cluster
algebra is an infinite line with countably many vertices.

2.2 Skew-Symmetric Cluster Algebras

We say that the cluster algebra is skew-symmetric if its exchange matrices
are skew-symmetric. When an exchange matrix of a cluster algebra is skew-
symmetric, we may understand it as the signed incidence matrix of a quiver
Q with n vertices {1, . . . , n}. For i , j ∈ [n], if bi j > 0, we draw bi j edges
from vertex i to vertex j in the quiver. We may also understand the extended
exchange matrix as the signed incidence matrix of a quiver with 2n vertices
labeled {1, . . . , n , 1′, . . . , n′}. The process of adding the n primed vertices
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is sometimes called framing the original quiver and the framed quiver is
often written Q̃ if the original quiver is Q. In addition to the edges of Q, if
bn+i , j > 0, we draw bn+i , j edges from vertex i′ to vertex j, and −bn+i , j edges
from vertex j to vertex i′ otherwise. When the cluster algebra has principal
coefficients, the bottom half of the extended exchange matrix of the initial
cluster seed is the identity matrix. This means that framing the initial quiver
corresponds to adding n primed vertices and adding one edge from j′ to j for
all j ∈ [n].

Mutations can then be visualized as mutations of the corresponding
quiver.

Definition 2.2.1 (Mutation at vertex k). Given a seed Σt � (x, y, Bt) �

(x, B̃t) such that x � (x1;t , . . . xn;t), y � (y1;t , . . . yn;t), and B̃t defines a
framed quiver Q̃ with vertices {1, . . . , n , 1′, . . . , n′}, mutation at vertex k
consists of the following steps:

1. For every path i → k → j, draw an edge i → j;

2. Reverse the direction of all edges incident to k;

3. Delete all 2-cycles;

4. Update the cluster variable at vertex k to be

xk;t′ �

∏
j→k x j;t

∏
j′→k y j;t +

∏
k→ j x j;t

∏
k→ j′ y j;t

xk;t
.

Note that in step 4, the product notation means that if there are two
edges from j to k in Q̃, then x j;t is multiplied twice in the product. The
fact that this definition agrees with the mutation rule in Definition 2.1.3 has
the immediate corollary that if the exchange matrix of any cluster seed is
skew-symmetric, then exchange matrices at all seeds will be skew-symmetric.

Example 2.2.2. The two cluster algebras from Examples 2.1.5 and 2.1.6 are
both skew-symmetric. Their corresponding quiver belongs to the family of
r-Kronecker quivers, which are quivers with two vertices and r arrows from
vertex 1 to vertex 2. When r � 2, the quiver is also just called the Kronecker
quiver. When r � 1, this quiver is sometimes called the quiver of type A2
because its underlying graph is the Dynkin diagram of the root system of
type A2.
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1 2

1′ 2′

...

Figure 2.3 The framed r-Kronecker quiver

The following figure shows the mutation process for the 3-Kronecker
quiver under the mutation sequence µ1µ2µ1. We label an edge i → j with
the number of such edges if there are multiple edges from i to j.

1 2

1′ 2′

3 1 2

1′ 2′

3

3 1 2

1′ 2′

8
3

3

3 1 2

1′ 2′

8 8
21

3

3

µ1 µ2 µ1

Figure 2.4 3-Kronecker quiver under mutations µ1µ2µ1

2.3 Parameterizations of Cluster Variables

To a cluster variable, we can associate a d-vector, a c-vector, a g-vector, and
an F-polynomial. The d stands for denominator, c stands for coefficient,
and g stands for grading. The F in F-polynomials stands for Fibonacci, but
this is a slightly longer story. Fomin and Zelevinsky (2003b) studied certain
Fibonacci polynomials, which are named so because in the case of bipartite
type A cluster algebras, F-polynomials are a sum of a Fibonacci number
of monomials (see for example the remark on page 5 and the discussion in
Section 2.4 of Fomin and Zelevinsky (2003b)). But it was in Fomin and
Zelevinsky (2007) that F-polynomials were introduced and defined as they
are usually defined today.

These parameterizations are motivated by the fact that the recurrence of
cluster variables is hard to solve. As we will see in the next section, these
parameterizations motivate us to associate a cluster algebra with a root
system. When we introduce Gupta’s formula in the next section, we will also
see that there are explicit expressions for cluster variables using only c- and
g-vectors and the initial exchange matrix. The c-vectors and g-vectors are
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also deeply related to scattering diagrams, which will be introduced later,
and they have representation-theoretic significance.

Given a vector with integer entries c � (c1 , . . . , cn), we often use the
notation xc � xc1

1 xc2
2 · · · x

cn
n and yc � yc1

1 yc2
2 · · · y

cn
n .

Definition 2.3.1 (c-, d-vector). A cluster variable xi;t can be written
uniquely as xi;t � x−di;t p(x) so that p(x) is some polynomial in x1 , . . . , xn not
divisible by xi for any i. We call the vector di;t the d-vector of xi;t . The
coefficient variable yi;t can be written uniquely as yi;t � yci;t , and ci;t is the
c-vector of xi;t . In other words, ci;t is the i-th column of the bottom half of the
extended exchange matrix at the seed t. We write ci;t � (ci1(t), . . . , cin(t)).

Recall that if Σt′ is obtained by mutating Σt in direction k, we have
yk;t′ � y−1k;t , and y j;t′ � y j;t y

[bk j]+
k;t (yk;t ⊕ 1)−bk j for j , k. Given a vector c,

let [c]+ � ([c1]+ , . . . , [cn]+). Then in the language of c-vectors, we have the
following recurrence:

c j;t′ � c j;t + [bk j]+ck;t − bk j[−ck;t]+. (2.4)

The following seemingly elementary phenomenon of c-vectors was first
conjectured by Fomin and Zelevinsky (2007) and later proven in full generality
in Gross et al. (2018) using the machinery of scattering diagrams.

Theorem 2.3.2 (Sign-coherence of c-vectors, Gross et al. (2018)). The
entries of any c-vector have the same signs.

In other words, [ck;t]+ � 0 or [ck;t]+ � ck;t for any c-vector ck;t . We can
easily check this theorem if we have the extended exchange matrix by looking
at whether each column of the bottom square matrix contains entries with
the same sign; see for instance, Figure 2.2.

To introduce g-vectors, we first need to introduce a Zn-grading on
QP(x1 , . . . , xn). Given a cluster algebra with the initial exchange matrix Bo ,
we let deg(xi) � ei and deg(yi) � −bi;to , where ei is the standard basis vector
with a 1 at the i-th entry and 0’s at other entries.

Proposition 2.3.3 (Proposition 6.1, Fomin and Zelevinsky (2007)). Every
cluster variable is homogeneous with respect to this grading.

This proposition warrants the following definition.

Definition 2.3.4 (g-Vector). The g-vector associated with a cluster variable
xi;t is deg(xi;t).
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From Equation 2.3 and Proposition 2.3.3, we can derive the following
recurrence of g-vectors.

Proposition 2.3.5 (Proposition 6.6, Fomin and Zelevinsky (2007)). Let
t′, t ∈ Tn be connected by an edge labeled k. Then gi;t′ � gi;t if i , k and

gk;t′ � −gk;t −

n∑
j�1

[c jk(t)]+b j;to +
n∑

j�1

[b jk(t)]+g j;t (2.5)

� −gk;t −

n∑
j�1

[−c jk(t)]+b j;to +
n∑

j�1

[−b jk]+g j;t .

By sign-coherence, depending on whether ck is positive or negative, one
of

∑n
j�1[c jk(t)]+b j;to and

∑n
j�1[−c jk(t)]+b j;to in fact vanishes to simplify the

recurrence relation. Recurrences like this give us a way to understand
the mutations of parameterizations of cluster variables without actually
computing the cluster variables.

We will now compute some of the c- and g-vectors for the two cluster
algebras in Examples 2.1.5 and 2.1.6.

Example 2.3.6. Let t1 be the initial seed of the Kronecker cluster algebra,
and let

t1+n �




µ+(n)t1 if n ≥ 0
µ−(−n)t1 if n < 0

.

For n > 1, let in be such that µin tn−1 � tn; for n < 1, let in be such that
µin tn+1 � tn.

Then under the numbering of cluster variables in Example 2.1.6, we have
{xn , xn+1} as the two cluster variables in the cluster that corresponds to tn.

For n , 1, 2, let

cn �




cin−1;tn−1 if n > 2,
cin ;tn if n < 1,
cn;t1 if n � 1, 2.

Define gn , dn analogously.
Note that the vectors gn , dn can be equivalently defined as the g, d-vectors

of the cluster variable xn. Among all seeds tn, there are two adjacent seeds
whose clusters contain a certain xn, and so it is not well-defined to speak of
the c-vector that correspond to xn . Our definition above formalizes the idea
that cn should denote the c-vector of xn at the cluster which is closer to t1.



Parameterizations of Cluster Variables 17

i−1�1

{x0 , x1}
t0 i0 � 2

{x1 , x2}
t1 i2 � 1

{x2 , x3}
t2 i3 � 2

· · · · · ·

Figure 2.5 The exchange graph T2 of an infinite rank-two cluster algebra

Using Equation 2.1 and Equation 2.2, we see that for m ≥ 1,

dm+2 �

[
m

m − 1

]
, d−m+1 �

[
m − 1

m

]
.

For m ≥ 1, we can calculate gm+2 by considering the monomial that
corresponds to M � 0, N � 0, namely x−m

1 x−m+1
2 x2m

2 , which has degree

gm+2 �

[
−m

m + 1

]
. Similarly, we can calculate g−m+1 by considering the mono-

mial that corresponds to M � m, N � m−1, namely x−m+1
1 x−m

2 x2(m−1)
1 , which

has degree g−m+1 �

[
m − 1
−m

]
. Lastly, for m ≥ 1,

cm+2 �

[
−m
−m + 1

]
, c−m �

[
m − 2
m − 1

]
.

The c, g-vectors are related by what’s called tropical duality.

Theorem 2.3.7 (Theorem 1.2, Nakanishi and Zelevinsky (2012)). Let GB
t

and CB
t be the matrices whose i-th columns are gi;t and ci;t respectively in

the cluster algebra with initial exchange matrix B. Then

(GB
t )T � (C−BT

t )−1.
Equivalently, if we write c̃i;t for the i-th column of C−BT

t , then

gi;t · c̃ j;t � δi j .

We may understand a cluster variable xi;t ∈ QP(x1 , . . . , xn) as a rational
function in x1 , . . . , xn , y1 , . . . , yn. When we understand it as a function,
we write it as Xi;t(x1 , . . . , xn , y1 , . . . , yn). In the foundational paper Fomin
and Zelevinsky (2002) on cluster algebras, Fomin and Zelevinsky establish a
property of Xi;t(x1 , . . . , xn , y1 , . . . , yn) called the Laurent phenomenon, which
is sharpened in Fomin and Zelevinsky (2003a) for the principal coefficients
case.
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Theorem 2.3.8 (Proposition 11.2, Fomin and Zelevinsky (2003a), as cited in
Proposition 3.6 of Fomin and Zelevinsky (2007)). Let A be a cluster algebra
with principal coefficients at the initial seed. Then A ⊂ Z[x±1; y]. That is,
every element of A is a Laurent polynomial in x1 , . . . , xn whose coefficients
are integer polynomials in y1 , . . . , yn.

As a result, when we specialize to let xi � 1 for all i ∈ [n], we obtain a
polynomial.

Definition 2.3.9 (F-polynomials). Given a cluster variable xi;t , the associ-
ated F-polynomial is

Fi;t(y1 , . . . , yn) � Xi;t(1, 1, . . . , 1, y1 , . . . , yn).
Using Proposition 2.3.3, Fomin and Zelevinsky (2007) derives the following

corollary, which says that the g-vector and F-polynomial together determine
the cluster variable.

Corollary 2.3.10 (Corollary 6.3, Fomin and Zelevinsky (2007)). Let ŷi �

yixbi;to . Then

Xi;t(x1 , . . . , xn , y1 , . . . , yn) � xgi;t Fi;t( ŷ1 , . . . , ŷn).
Note how the monomials ŷi � yixb j;to have degree 0, which demonstrates

that Xi;t is homogeneous of degree gi;t .
We shall later need the following proposition about how the ŷ’s mutate.

Proposition 2.3.11 (Proposition 3.9, Fomin and Zelevinsky (2007)). Let t
and t′ be related by µk . Then

ŷ j;t′ �




ŷ−1k;t if j � k ,

ŷ j;t ŷ
[bt

k j]+
k;t ( ŷk;t + 1)−bt

k j otherwise.
(2.6)

2.4 A Root-Theoretic Perspective

Since root systems were discovered and used for the classification of semisimple
Lie algebras, its ubiquity has been demonstrated in many areas. Amazingly,
cluster algebras turn out to also be deeply related to root systems.

A rank-n (crystallographic) root system ∆ consists a set of integer-valued
nonzero vectors in Rn that we call roots. We will not define root systems
rigorously here, but we list some of its properties and associated definitions.
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One way to specify a root system is with a n-by-n matrix A � (ai j) such
that aii � 2 for all i ∈ [n], ai j ∈ Z≤0, and ai j � 0 implies a ji � 0. Such a
matrix is called a Cartan matrix. The Cartan matrix specifies the angles
that the roots need to be at with respect to each other. A Cartan matrix is
indecomposable if there is no way to relabel the rows and columns so that the
matrix is in block diagonal form with at least two blocks. Indecomposable
Cartan matrices can be completely classified into three types.

Theorem 2.4.1 (Theorem 4.3 and Corollary 4.3, Kac (1990)). Let A be an
indecomposable Cartan matrix. Then one and only one of the following three
possibilities holds for both A and AT :

• (finite type) detA , 0; there exists u > 0 such that Au > 0; Av > 0
implies v > 0 or v � 0;

• (affine type) corankA � 1; there exists u > 0 such that Au � 0; Av ≥ 0
implies Av � 0;

• (indefinite type) there exists u > 0 such that Au < 0; Av ≥ 0, v ≥ 0
imply v � 0.

So A is of finite (resp. affine or indefinite) type if and only if there exists
α > 0 such that Aα > 0 (resp. � 0 or < 0).

For the scope of this thesis, it is most useful for us to know more about
root systems of affine type. The following lemma is a useful fact.

Lemma 2.4.2 (Lemma 4.6, Kac (1990)). Let A � (ai j) be an indecomposable
Cartan matrix of finite or affine type. Then A is symmetrizable.

Since A is symmetrizable, there exists δi such that for i , j, δi bi j � δ j b ji .
Since all entries take integer value, we may take δi so that δ−1i ∈ Z for all
i ∈ [n] and gcd(δ−11 , . . . , δ−1n ) � 1.

There exists a set Π � {α1 , . . . , αn} of n simple roots such that every
root is a linear combination with all non-positive or all non-negative integer
coefficients. We write ∆+ and ∆− to denote the positive and negative roots,
which are non-negative and non-positive linear combinations of the simple
roots respectively. Then ∆ � ∆+ ∪ ∆−. Let α∨i � δ−1i αi and for α ∈ ∆, define
α∨ by extending this linearly. If α is a root, then α∨ is called a coroot. Let
Q � span(α1 , . . . , αn) be the root lattice and let Q∨ � span(α∨1 , . . . , α∨n ) be
the coroot lattice. Note that elements of the root lattice are not necessarily
roots.
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Let K(·, ·) : Q∨ ×Q → Z be the bilinear form defined by K(α∨i , α j) � ai j.
Then because of the axioms for root systems that we avoided talking about,
the reflection sα across the hyperplane normal to α corresponds to sα(β) �
β − K(α∨ , β)α. We write si � sαi for the simple reflection at the simple root
αi. A key property of the root system ∆ is that it is closed under reflection
across hyperplanes normal to any root. The group of reflections generated by
simple reflections W � 〈si : i ∈ [n]〉 is called the Coxeter group.

Roots are either real or imaginary. Let ∆re and ∆im be the set of real
and imaginary roots respectively, then ∆ � ∆re ∪ ∆im. The general definition
for real and imaginary roots does not concern us here, but the following
characterization are useful to have for the finite and affine cases.

Theorem 2.4.3 (Theorem 5.6, Kac (1990)). Let A be an indecomposable
generalized Cartan matrix.

1. If A is of finite type, then the set ∆im is empty.

2. If A is of affine type, then

∆im � {nδ : n ∈ Z},
where δ is such that Aδ � 0, δ > 0 and it is closest to 0 among all such
vectors.

Moreover, in the affine case, there exists aff ∈ [n] such that the Cartan
matrix restricted to rows and columns [n]\aff produces a root system ∆fin ⊂ ∆
of finite type with the property that ∆re � {α + nδ : α ∈ ∆fin , n ∈ Z}.

We are now ready to look at an example of the relationship between
cluster algebras and root systems.

Example 2.4.4 (The Kronecker cluster algebra and the root system A(1)
1 ).

Recall our calculations for the d-vectors dm of the Kronecker cluster algebra
in Example 2.3.6. The set of d-vectors is exactly{ [

1
0

]
+ n

[
1
1

]
: n ∈ Z≥0

} ⋃ { [
0
1

]
+ n

[
1
1

]
: n ∈ Z≥0

}
∪

{ [
0
−1

]
,

[
−1
0

]}
.

As m tends to ±∞, dm approaches but never reaches the direction
[
1
1

]
.

On the other hand, the affine root system ∆̃1 of type A(1)
1 has two simple

roots α1 and α2 and an imaginary root δ � α1 + α2. The set

{α1 + nδ : n ∈ Z≥0} ∪ {α2 + nδ : n ∈ Z≥0}
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is exactly the set of positive real roots in ∆̃1. So the set of d-vectors differs
from the set of positive real roots by the two negative simple roots.

Our calculation also shows that the set of cm ’s as well as their negations,
which together is the complete set of c-vectors of the Kronecker cluster
algebra, coincides with real roots of A(1)

1 . There is also a connection between
g-vectors of the Kronecker cluster algebra with the root system ∆̃1, which is
slightly harder to state.

There are some other clues that suggest we might look at the affine root
system of type A(1)

1 alongside the Kronecker cluster algebra. It turns out that
the underlying undirected graph of the Kronecker quiver is the same as the
Dynkin diagram of type A(1)

1 . In addition, the Cartan matrix of type A(1)
1 is

[
2 −2
−2 2

]
,

which can be obtained from the initial exchange matrix of the Kronecker
cluster algebra

Bo �

[
0 2
−2 0

]

by making all entries negative and letting the diagonal entries be 2.

This is an example of a general correspondence. One of the first major
achievements of the study of cluster algebras is the classification of cluster
algebras of finite type. A cluster algebra is of finite type if it has finitely
many clusters. Given an n × n exchange matrix B of a cluster algebra, we
can associate it with a weighted directed graph Γ(B) with n vertices, where
there is an edge from vertex i to vertex j if and only if bi j > 0, in which case
we give it a weight of |bi j b ji |.
Theorem 2.4.5 (Theorem 1.8, Fomin and Zelevinsky (2003a), as cited in
Theorem 2.34 of Williams (2014)). The cluster algebra A is of finite type if
and only if it has a seed (B, x, y) such that Γ(B) is an orientation of a finite
type Dynkin diagram.

This correspondence agrees with a different way of connecting cluster
algebras and root systems. Given an exchange matrix B, consider its Cartan
companian A(B) defined by letting all diagonal entries be 2 and modifying
its off-diagonal entries to be non-positive. Since B is skew-symmetrizable,
A(B) will be symmetrizable, which is what we expect based on Lemma 2.4.2.
Moreover, Fomin and Zelevinsky (2003a) showed that the correspondence
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between almost positive roots (the positive roots and −Π) and cluster variables
that we saw in Example 2.4.4 holds in general for finite-type cluster algebras.

Theorem 2.4.6 (Theorem 1.9, Fomin and Zelevinsky (2003a)). Let ∆ be the
root system that corresponds to the cluster algebra A. There is a bijection
between the almost positive roots in ∆ and the cluster variables in A by
sending an almost positive root α to the unique cluster variable whose d-vector
is α written in the basis of simple roots.

This so-called almost positive roots model for finite type is extended to a
uniform finite/affine model recently in Reading and Stella (2020). Prior to
their work, there was also successful representation-theoretic generalizations
of this classification to the affine and indefinite case.

2.5 Scattering Diagrams

Scattering diagrams come to the field of cluster algebras from algebraic
geometry and mirror symmetry. In Gross et al. (2018), they were used to
resolve numerous fundamental conjectures on cluster algebras, including the
sign-coherence conjecture (Theorem 2.3.2) and the positivity conjecture (for
the skew-symmetrizable case). They will also help motivate the limits that
we consider in Chapter 5. In our introduction of scattering diagrams below,
we will mostly be following the notation of Reading (2020b), which takes the
perspective of root combinatorics.

Given an n × n exchange matrix B � (bi j), let A(B) be its Cartan com-
panion. We will inherit all the notation related to the corresponding root
system from the previous section with A(B) as the defining data. Also let
〈·, ·〉 : Rn

× Rn
→ R denote the standard Euclidean inner product and let

w(·, ·) : Q∨ ×Q → Z be the bilinear form defined by w(α∨i , α j) � bi j.
A wall (d, fd) consists of a codimension-1 cone in Rn contained in β⊥ for

some β ∈ Q+ and a formal power series fd � fd( ŷβ) ∈ k[[ ŷβ]]. A scattering
diagram is a collection D of walls with a certain finiteness condition. More
precisely, let m be the maximal ideal of k[[̂y]] that consists of all formal
power series in ŷ1 , . . . , ŷn with a constant term of zero. For k ≥ 1, let Dk ⊆ D

denote the scattering diagram whose walls (d, fd) are such that fd . 1 modulo
mk+1. Then we require that there are only finitely many walls in Dk . This
implies that there are only countably many walls in any scattering diagram.

Given a scattering diagram, a path γ : [0, 1] → Rn is generic if it only
crosses walls transversally in their relative interiors and have endpoints outside
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walls. A wall (d, fd) of the scattering diagram and a generic path γ in Rn

together define a wall-crossing automorphism pγ,d : k[[x, ŷ]]→ k[[x, ŷ]] given
by

pγ,d(xλ) � xλ f 〈λ,±β
∨〉

d

pγ,d (̂yφ) � ŷφ f w(±β∨ ,φ)
d

where we choose + if γ crosses against β and − if γ crosses with β. Let
pγ,Dk denote the composition of pγ,d for all d ∈ Dk crossed by γ so that a
wall-crossing automorphism is applied first if the wall is crossed by γ first.
The path-ordered product pγ,D : k[[x, ŷ]] → k[[x, ŷ]] defined by a generic
path γ : [0, 1]→ Rn is then limk→∞ pγ,Dk . From the definition, we see that
the path-ordered product is only sensitive to what walls are crossed by the
path and the direction that the crossing happened in.

We say that a scattering diagram is consistent if the path-ordered product
depends on only the start and end points of the path. Given an initial
scattering diagram consisting of walls {(α⊥i , 1 + ŷi) : i ∈ [n]} and the
exchange matrix B, there exists a unique1 scattering diagram ScatT(B)2.

A lot is known about the geometric structure of the scattering diagram.
Let ScatFanT(B) be the fan in Rn whose codimension-1 skeleton is the
scattering diagram ScatT(B). Let the cone spanned by α⊥i for i ∈ [n] be the
dominant chamber and let ChamberFanT(B) be the subfan in ScatFanT(B)
of maximal cones that can reached from the dominant chamber by a finite
sequence of adjacent cones. Let gFan(B) be the set of all cones C that are
the nonnegative linear span of g-vectors that belong to the same cluster. We
cite Reading (2020b) for the following result, but it follows a combination of
results from previous research.

Theorem 2.5.1 (Corollary 2.6, Reading (2020b)). The set gFan(B) is a fan
and coincides with ChamberFanT(B).

While we don’t know everything about a scattering diagram, this theorem
grounds us with the intuition that maximal cones reachable from the dominant
chamber by a finite sequence are exactly the clusters of the cluster algebra, and
in terms of Euclidean coordinates, these cones are spanned by the g-vectors
of the cluster variables in the corresponding cluster, and two maximal cones

1Up to an equivalence made precise in Reading (2020b).
2The transpose superscript emphasizes a choice of convention explained in Reading

(2020b) which that does not concern us here.
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of ChamberFanT(B) are adjacent if and only if the corresponding clusters are
related by a mutation.

The following result of Bridgeland (as cited in Reading (2020b)) shows
us that root systems and scattering diagrams are very related.

Theorem 2.5.2 (Theorem 2.3, Reading (2020b)). If B is skew-symmetric
and the associated quiver admits a genteel potential (and in particular, if B
is acyclic), then every wall of ScatT(B) is normal to a positive root.

By the duality of c and g-vectors, since c-vectors are real roots, walls in
gFan(B) are normal to real roots. Thus, the following theorem tells us exactly
what the wall function is when the wall is normal to a real root.

Theorem 2.5.3 (Theorem 4.6, Gross et al. (2018) as cited in Theorem 2.8
of Reading (2020b)). Let D � ScatT(B) and let fp �

∏
d3p fd. If F and G are

adjacent maximal cones of gFan(B), then fp(D) � 1 + ŷβ for every general
point p in F ∩ G, where β is the primitive root normal to F ∩ G in Q+.

Theorem 2.5.4 (Theorem 5.6, Gross et al. (2018), as cited in Theorem 2.9
and Corollary 2.10 of Reading (2020b)). Let D � ScatT(B). If λ is contained
in a maximal cone C of gFan(B) and γ is a generic path such that γ(0) lies
in the interior of C and γ(1) lies in the interior of the dominant chamber,
then the cluster variable with g-vector λ is pγ,D(xλ) and the F-polynomial is
x−λpγ,D(xλ).

This theorem is actually stated for cluster monomials, which are mono-
mials in the cluster variables of some seed, but we don’t need that level of
generality here.

Example 2.5.5. Let’s try an example! Let D be the scattering diagram

defined by the initial exchange matrix B �

[
0 2
−2 0

]
. The path γ labeled in

Figure 2.6 crosses two walls. The first wall is normal to the positive root
2α1+ α2 and the second wall is normal to α1. So by Theorem 2.5.3, we know
that the wall functions are 1 + ŷ2

1 ŷ2 and 1 + ŷ1 respectively. At both walls,
γ crosses the wall with the positive root, so we take the negative sign in the
definition of the wall-crossing automorphism. Since the Kronecker quiver is
skew-symmetric, δ1 � δ2 � 1 and α∨ � α so we don’t have to worry about the
∨’s in the definition. By the definition of the bilinear form w(·, ·), explicitly,
we have

w
( [

a
b

]
,

[
c
d

])
� 2(ad − bc).
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By Theorem 2.5.4, we expect that if we apply pγ,D to x−21 x3
2, we will

obtain the cluster variable x4. Crossing the first wall, we have

x−21 x3
2 7→ x−21 x3

2(1 + ŷ2
1 ŷ2)〈

[
−2
3

]
,−

[
2
1

]
〉
� x−21 x3

2(1 + ŷ2
1 ŷ2).

For the second wall, we can compute the image of x−21 x3
2 and ŷ2

1 ŷ2 separately
first. We get that

x−21 x3
2 7→ x−21 x3

2(1 + ŷ1)〈
[
−2
3

]
,−

[
1
0

]
〉
� x−21 x3

2(1 + ŷ1)2

and
ŷ2
1 ŷ2 7→ ŷ2

1 ŷ2(1 + ŷ1)w(−
[
1
0

]
,

[
2
1

]
)
� ŷ2

1 ŷ2(1 + ŷ1)−2.
So

pγ,D(x−21 x3
2) � x−21 x3

2(1+ ŷ1)2(1+ ŷ2
1 ŷ2(1+ ŷ1)−2) � x−21 x3

2((1+ ŷ1)2 + ŷ2
1 ŷ2),

which is what we expect since

F4(y1 , y2) � (1 + y1)2 + y2
1 y2.

Figure 2.6 A path γ in the scattering diagram for the Kronecker quiver with
the exchange matrix, figure from Page 17 of Reading (2018), my annotation





Chapter 3

Gupta’s Formula

In Gupta (2018), Meghal Gupta introduces a formula for F-polynomials of all
skew-symmetrizable cluster algebras in terms of c- and g-vectors and proves
her formula using only elementary combinatorics. Due to Corollary 2.3.10,
her formula can also be used to compute cluster variables.

This is a remarkable result for its wide generality, easily computable
nature, and elementary method of proof. It should be mentioned that
Gupta’s formula is essentially not new, and can be obtained by specializing
results of Gross et al. (2018) and Nagao (2013), which were proven with
higher machinery, as we will discuss in Section 3.2. Yet the value of Gupta’s
perspective is that it provides a self-contained, completely combinatorial
approach to this formula.

In Gupta (2018), Gupta’s formula is not written directly in terms of c-
and g-vectors, but in terms of certain ai , j , bi , j’s that are closely related to
c- and g-vectors (see Definition 2.15 in Gupta (2018)). The slides Musiker
(2019) translate Gupta’s formula in the skew-symmetric case to its modern
form, which uses c- and g-vectors more transparently. The slides Musiker
(2019) also includes a mostly complete inductive proof for the skew-symmetric
case of Gupta’s formula, independently of Gupta (2018).

In Section 3.1, we document the work of Musiker (2019) in translating
Gupta’s work in full because to this day this work remain unpublished. We
also generalize the statements and the proof in Musiker (2019) to skew-
symmetrizable cluster algebras, which completes this work of translation
from Gupta (2018). After the statement and proof of Gupta’s formula, we
provide an example of applying it to a non-skew-symmetric cluster algebra.
In Section 3.2, we briefly discuss the connection between Gupta’s formula
and Nagao (2013). We also prove in detail how Gupta’s formula is related to
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the scattering diagrams and path-ordered products of Gross et al. (2018).

3.1 Statement and Proof of Gupta’s Formula

Theorem 3.1.1. Given a mutation sequence µi1µi2 . . . , let t j be the seed
obtained by applying the mutations µi1µi2 . . . µi j to the initial seed in the
cluster algebra defined by the exchange matrix Bo , and let t̃ j be the analogous
seed in the cluster algebra defined by the exchange matrix −BT

o . Let c j � ci j ;t j ,
g j � gi j ;t j , and c̃ j � ci j ;t̃ j

. Then the `-th F-polynomial along the mutation
sequence is

Fi` ;t` (y) �
∏̀
j�1

L
c̃ j ·g`
j

����zi�y|ci |
where L1 � 1 + z1 , Lk � 1 + zk

k−1∏
j�1

L
c̃ j ·Bo |ck |
j .

Proof. To simplify the notation, we will understand the zi ’s to be specialized
as zi � y|ci | for the rest of the proof.

We shall prove the following formula for each F-polynomial at the seed
t`, which specializes to the desired theorem when i � i`:

Fi;t` �
∏̀
j�1

L
c̃ j ·gi;t`
j where L1 � 1 + z1 , Lk � 1 + zk

k−1∏
j�1

L
c̃ j ·Bo |ck |
j .

We proceed by induction on `. The base case is ` � 0, where the formula
above reduces to the empty product, which we interpret to be 1 by convention.
Since we are at the initial seed, the F-polynomial for each cluster variable is
just 1. So the F-polynomials at to agree with the formula.

Now suppose that the formula is correct for some ` ≥ 0, and let k � i`+1,
t � t` and t′ � t`+1. By Theorem 2.3.7, c̃`+1 · gi;t′ � 0 if i , k. We know that
if i , k, the F-polynomial and the g-vector at i do not change as we mutate
from t to t′. Therefore, for i , k,

Fi;t′ � Fi;t �
∏̀
j�1

L
c̃ j ·gi;t

j �

`+1∏
j�1

L
c̃ j ·gi;t′

j .

Now consider the F-polynomial at k. By the recurrence of F-polynomials, we
know that

Fk;t′ �
y[ck;t ]+ ∏n

i�1 F[bik(t)]+
i;t + y[−ck;t ]+ ∏n

i�1 F[−bik(t)]+
i;t

Fk;t
.
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We can substitute Fi;t in the numerator and Fk;t in the denominator with
products of L j ’s using the inductive hypothesis. Notice that for each Fi;t , the
exponents on L j are always a dot product of c̃ j with some g-vector. After
consolidating the exponents and in particular factoring out c̃ j, we get that

Fk;t′ � y[ck;t ]+
∏̀
j�1

L
c̃ j ·(∑n

i�1[bik(t)]+gi;t−gk;t )
j + y[−ck;t ]+

∏̀
j�1

L
c̃ j ·(∑n

i�1[−bik(t)]+gi;t−gk;t )
j ,

where the −gk;t comes from Fk;t in the denominator.
By Proposition 2.3.5,

n∑
i�1

[bik(t)]+gi;t − gk;t � gk;t′ +
n∑

j�1

[c jk(t)]+b j;to � gk;t′ + Bo[ck;t]+

and
n∑

i�1

[−bik(t)]+gi;t − gk;t � gk;t′ +
n∑

j�1

[−c jk(t)]+b j;to � gk;t′ + Bo[−ck;t]+.

So

Fk;t′ � y[ck;t ]+
∏̀
j�1

L
c̃ j ·(gk;t′+Bo[ck;t ]+)
j + y[−ck;t ]+

∏̀
j�1

L
c̃ j ·(gk;t′+Bo[−ck;t ]+)
j .

By sign-coherence (Theorem 2.3.2), either c jk(t) ≥ 0 for all j � 1, . . . n, or
c jk(t) ≤ 0 for all j � 1, . . . n. In the first case,

Fk;t′ � yck;t
∏̀
j�1

L
c̃ j ·(gk;t′+Bock;t )
j +

∏̀
j�1

L
c̃ j ·gk;t′

j ;

in the second case,

Fk;t′ �
∏̀
j�1

L
c̃ j ·gk;t′

j + y−ck;t
∏̀
j�1

L
c̃ j ·(gk;t′+Bo(−ck;t ))
j .

We can combine these two cases as follows:

Fk;t′ �
∏̀
j�1

L
c̃ j ·gk;t′

j (1 + y|ck;t |
∏̀
j�1

L
c̃ j ·Bo |ck;t |
j ).
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Lastly, note that by definition, since t′ � µk t, c`+1 � ck;t′ � −ck;t , and so
|c`+1 | � |ck;t′ | � |ck;t |. Hence

Fk;t′ �
∏̀
j�1

L
c̃ j ·gk;t′

j
*.
,
1 + z`+1

∏̀
j�1

L
c̃ j ·Bo |c`+1 |
j

+/
-
�

*.
,

∏̀
j�1

L
c̃ j ·gk;t′

j
+/
-

L`+1.

By Theorem 2.3.7, we know that c′` · gk;t′ � 1, so we have

Fk;t′ �

`+1∏
j�1

L
c̃ j ·gk;t′

j

as desired. �

Remark 3.1.2. When the initial exchange matrix Bo is skew-symmetric,
c̃ j � c j, and the theorem reduces to its form in Musiker (2019).

Example 3.1.3. Let µ � µ1µ2µ1 and let

Bo �

[
0 1
−4 0

]
.

We will compute the F-polynomial F1,t3(y1 , y2). The c, g, c̃-vectors in-
volved are as follows, which we obtained using Sage:

c1 �
[
−1
0

]
, c2 �

[
−1
−1

]
, c3 �

[
−3
−4

]
,

c̃1 �
[
−1
0

]
, c̃2 �

[
−4
−1

]
, c̃3 �

[
−3
−1

]
,

g1 �
[
−1
4

]
, g2 �

[
−1
3

]
, g3 �

[
−3
8

]
.

The relevant dot products are

c̃1 · g3 � 3, c̃2 · g3 � 4, c̃3 · g3 � 1,
c̃1 · Bo |c2 | � −1, c̃1 · Bo |c3 | � −4, c̃2 · Bo |c3 | � −4.

Therefore,

L1 � 1 + z1 � 1 + y|c1 | � 1 + y1 ,

L2 � 1 + z2Lc̃1·Bo |c2 |
1 � 1 + y|c2 |(1 + y1)c̃1·Bo |c2 | � 1 + y1y2(1 + y1)−1 ,

L3 � 1 + z3Lc̃1·Bo |c3 |
1 Lc̃2·Bo |c3 |

2 � 1 + y3
1 y4

2(1 + y1)−4(1 + y1y2(1 + y1)−1)−4
� 1 + y3

1 y4
2(1 + y1 + y1y2)−4.
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Applying Gupta’s formula then gives us

F1,t3(y1 , y2) � Lc̃1·g3
1 Lc̃2·g3

2 Lc̃3·g3
3

� L3
1L4

2L3

� (1 + y1)3(1 + y1y2(1 + y1)−1)4(1 + y3
1 y4

2(1 + y1 + y1y2)−4)
�
(1 + y1 + y1y2)4 + y3

1 y4
2

1 + y1
� 1 + 3y1 + 3y2

1 + y3
1 + 4y1y2 + 8y2

1 y2 + 4y3
1 y2 + 6y2

1 y2
2 + 6y3

1 y2
2 + 4y3

1 y3
2 + y3

1 y4
2 .

3.2 Connections between Gupta’s Formula and Other
Work

After Gupta posted her work as a preprint on arXiv, several experts contacted
her and Professor Musiker to point out the equivalence of her formula above
to two other known formulas for F-polynomials.

One of these correspondences brought Theorem 6.4 of the survey Keller
(2012) to their attention, which was first proven in Nagao (2013). This theorem
is about quantum F-polynomials in quantum cluster algebras, which are a
non-commutative deformation of cluster algebras that recover a corresponding
commutative cluster algebra when specialized appropriately. When specialized
to the commutative setting, Nagao’s result is Gupta’s formula in disguise.
An alternative derivation of Gupta’s formula, in rather different presentation,
is also suggested by Nakanishi (2021).

We will provide the details of the other connection that Gupta and
Musiker were informed of, which is between Gupta’s formula and path-
ordered products. They are complete up to the proof of a root-theoretic
result, which we hope to include in a future version of tis thesis.

To briefly recall, to use wall-crossings to compute the F-polynomial of a
cluster variable with associated g-vector λ, we may consider any path γ in
the corresponding scattering diagram D such that γ starts from the interior
of a maximal cone that contains λ and ends in the interior of the dominant
chamber. Then the F-polynomial is equal to x−λpγ,D(xλ).

Let us retain the notation Fi` ,t` , g` , c` , c̃` from the statement of Theorem
3.1.1. We shall need a series of lemmas that identifies c, c̃-vectors with
quantities related to scattering diagrams. We thank Nathan Reading for
his correspondence with us, which was helpful for formulating parts of the
following lemma.
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Lemma 3.2.1. 1. For all k,

ck � (c̃k)∨.

2. Let (δk , fδk ) be the wall associated to the cluster variable xk . Then
fδk � 1 + ŷ |ck |.

3. Let tk ∈ [0,−∞) be such that γ(tk) is the unique point where γ crosses
δk . Let

εk �




1 if 〈γ′(t), |ck |〉 < 0
−1 if 〈γ′(t), |ck |〉 > 0

.

Then ck � εk |ck |.
4. w(v1 , v2) � v1 · Bo v2.

We believe these lemmas are true and we are still looking for the correct
reference for some of these facts. We will assume these lemmas in the
remainder of this section.

Recall that maximal cones of gFan(B) are in bijection with clusters of the
cluster algebra defined by B. By going backwards along µ, we may associate
µ with a path in D from the maximal cone that corresponds to the final seed
t` � µto to the dominant chamber which corresponds to the initial seed, such
that:

1. this path crosses ` walls in total;

2. if we let the k-th wall crossed by γ be (dk , fdk ), then fdk � 1+ y|c`+1−k | �
1 + z`+1−k in Gupta’s notation.

Given a path γ that crosses finitely many walls, let C` , C`−1 , . . . , C0
denote the sequence of maximal cones that γ passes through (so that C` is
the cone corresponding to the seed t` and C0 is the dominant chamber). For
0 ≤ k ≤ `, let γk denote a subpath of γ that starts from the interior of Ck
and traces the rest of γ identically.

Since γ0 crosses no walls, the automorphism pγ0 ,D is the identity. Note
also that γ` � γ. Therefore, we have

Fi` ,t` (y) �
pγ,D(xg` )

xg`
�

pγ` ,D(xg` )
pγ0 ,D(xg` ) �

∏̀
k�1

pγk ,D(xg` )
pγk−1 ,D(xg` ) . (3.1)
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Proposition 3.2.2. Following the notation above,

pγk ,D(xg` )
pγk−1 ,D(xg` ) � Lc̃k ·g`

k .

Proof. We first prove that for 0 ≤ m ≤ k − 1,

pγm ,D(y|ck |) � y|ck |
m∏

j�1

L
c̃ j ·Bo |ck |
j . (3.2)

When m � 0, pγm ,D is the identity and we interpret the empty product to
be 1, so the claim follows. Now suppose that the claim is true for some
0 ≤ m < k − 1. By definition of wall-crossing and using Lemma 3.2.1,

pγm+1 ,D(y|ck |) � pγm ,D

(
y|ck |(1 + zm+1)w(εm+1 |cm+1 |∨ ,|ck |)) � pγm ,D

(
y|ck |(1 + zm+1)c̃m+1·Bo |ck |) .

So

pγm+1 ,D( ŷ |ck |) � pγm ,D

(
y|ck |(1 + zm+1)c̃m+1·Bo |ck |)

� pγm ,D(y|ck |)(1 + pγm ,D(zm+1))c̃m+1·Bo |ck |

� y|ck |
m∏

j�1

L
c̃ j ·Bo |ck |
j ·

*.
,
1 + y|cm+1 |

m∏
j�1

L
c̃ j ·Bo |cm+1 |
j

+/
-

c̃m+1·Bo |ck |

� y|ck |
m+1∏
j�1

L
c̃ j ·Bo |ck |
j .

This concludes the proof of Equation 3.2. For each 1 ≤ k ≤ `, let φk denote
the subpath of γ that starts at γk(0) and ends at γk−1(0). Since φk is isotopic
to γ−1k−1 ◦ γk , we may reorganize the following ratio as follows:

pγk ,D(xg` )
pγk−1 ,D(xg` ) �

pγk−1 ,D(pγ−1k−1◦γk
(xg` ))

pγk−1 ,D(xg` ) �
pγk−1 ,D(pφk ,D(xg` ))

pγk−1 ,D(xg` ) � pγk−1 ,D

(
pφk ,D(xg` )

xg`

)
.

Notice that by the definition of wall-crossing automorphisms and using Lemma
3.2.1, since φk only crosses one wall whose decorating term is 1 + zk , the

argument
pφk ,D(xg` )

xg` can be rewritten as (1 + y|ck |)〈g` ,εk |ck |∨〉 � (1 + y|ck |)c̃k ·g` .
Now using Equation 3.2, we have that

pγk−1 ,D((1 + y|ck |)c̃k ·g` ) � *.
,
1 + y|ck |

k−1∏
j�1

L
c̃ j ·Bo |ck |
j

+/
-

c̃k ·g`

� Lc̃k ·g`
k .

�
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The equality of pγ,D(yg` ) and Fi` ,t` as given by Gupta’s formula then
follows from substituting into Equation 3.1 the identity given in Proposition
3.2.2.

Example 3.2.3. Let us again consider the example of the Kronecker quiver,
which is skew-symmetric. The F-polynomial F5, by Gupta’s formula, is equal
to

Lc3·g5
1 Lc4·g5

2 Lc5·g5
3 � L3

1L2
2L3 ,

where
L1 � 1 + y1 ,

L2 � 1 + y2
1 y2Lc3·B0 |c4 |

1 � 1 + y2
1 y2(1 + y1)−2 ,

L3 � 1 + y3
1 y2

2Lc3·B0 |c5 |
1 Lc4·B0 |c5 |

2 � 1 + y3
1 y2

2(1 + y1)−4(1 + y2
1 y2(1 + y1)−2)−2.

Compare this with the path-ordered product. As suggested in the proof
above, we compute

pγ3 ,D(x−31 x4
2)

x−31 x4
2

�

3∏
k�1

pγk ,D(x−31 x4
2)

pγk−1 ,D(x−31 x4
2)
.

Indeed,
pγ1 ,D(x−31 x4

2)
pγ0 ,D(x−31 x4

2)
� (1 + y1)g5·c3 � L3

1;

pγ2 ,D(x−31 x4
2)

pγ1 ,D(x−31 x4
2)

� pγ1 ,D((1 + y2
1 y2)2) � (1 + y2

1 y2(1 + y1)−2)2 � L2
2;

pγ3 ,D(x−31 x4
2)

pγ2 ,D(x−31 x4
2)

� pγ2 ,D(1 + y3
1 y2

2)

� pγ1 ,D(1 + y3
1 y2

2(1 + y2
1 y2)w(

[
3
2

]
,−

[
2
1

]
))

� pγ1 ,D(1 + y3
1 y2

2(1 + y2
1 y2)2)

� 1 + y3
1 y2

2(1 + y1)w(
[
3
2

]
,

[
−1
0

]
)(1 + y2

1 y2(1 + y1)−2)2
� L3.
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3.3 Alternative Form of Gupta’s Formula

One may wish to expand the product formula given in Theorem 3.1.1 into a
multivariable power series. To do so, we first prove a lemma.

Lemma 3.3.1 (Exercise 3.2, Musiker (2019)). Given integers h1 , . . . , h` and
the same setup as Theorem 3.1.1,

∏̀
j�1

L
h j

j

����zi�y|ci |
�

∑
(m1 ,...,m`)∈Z≥0

∏̀
j�1

(
h j + c̃ j ·

∑`
k� j+1 mkBo |ck |
m j

)
y
∑`

j�1 m j |c j | .

Proof. We prove the following claim by induction: for all 1 ≤ i ≤ `,

∏̀
j�i

L
h j

j

����zi�y|ci |
�

∑
(mi ,...,m`)∈Z≥0

i−1∏
j�1

L
c̃ j ·

∑`
k�i mk Bo |ck |

j

∏̀
j�i

(
h j + c̃ j ·

∑`
k� j+1 mkBo |ck |
m j

)
y
∑`

j�i m j |c j | .

When i � 1, this claim specializes to our theorem.
First note that by the General Binomial Theorem, for any h ∈ Z, we can

write

Lh
k

����zi�y|ci |
�

*.
,
1 + zk

k−1∏
j�1

L
c̃ j ·Bo |c j |
j

+/
-

h
����zi�y|ci |

�

∑
m∈Z≥0

(
h
m

)
zm

k

k−1∏
j�1

L
c̃ j ·mBo |c j |
j

����zi�y|ci |

�

∑
m∈Z≥0

k−1∏
j�1

L
c̃ j ·mBo |ck |
j

(
h
m

)
ym |ck | .

If we let k � ` and h � h`, the above is precisely the base case i � ` of our
claim.

Now suppose that our claim is true for i+1. Specializing our computation
above to k � i and h � hi + c̃i ·

∑`
k�i+1 mkBo |ck | gives us that

L
hi+c̃i ·

∑`
k�i+1 mk Bo |ck |

i �

∑
mi∈Z≥0

i−1∏
j�1

L
c̃ j ·mi Bo |ci |
j

(
hi + c̃i ·

∑`
k�i+1 mkBo |ck |
mi

)
ymi |ck | .
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Using this, we compute that

∏̀
j�i

L
h j

j

����zi�y|ci |

� Lhi
i

∏̀
j�i+1

L
h j

j

����zi�y|ci |

� Lhi
i

∑
(mi+1 ,...,m`)∈Z≥0

i∏
j�1

L
c̃ j ·

∑`
k�i+1 mk Bo |ck |

j

∏̀
j�i+1

(
h j + c̃ j ·

∑`
k� j+1 mk Bo |ck |
m j

)
y
∑`

j�i+1 m j |c j |

�

∑
(mi+1 ,...,m`)∈Z≥0

i−1∏
j�1

L
c̃ j ·

∑`
k�i+1 mk Bo |ck |

j L
hi+c̃i ·

∑`
k�i+1 mk Bo |ck |

i

∏̀
j�i+1

(
h j + c̃ j ·

∑`
k� j+1 mk Bo |ck |
m j

)
y
∑`

j�i+1 m j |c j |

�

∑
(mi ,...,m`)∈Z≥0

i−1∏
j�1

L
c̃ j ·

∑`
k�i mk Bo |ck |

j

∏̀
j�i

(
h j + c̃ j ·

∑`
k� j+1 mk Bo |ck |
m j

)
y
∑`

j�i m j |c j | .

This completes our proof for the inductive step. �

Lemma 3.3.1 and Theorem 3.1.1 together imply the following alternative
form of Gupta’s formula.

Theorem 3.3.2. Under the same conditions as Theorem 3.1.1,

Fi` ;t` (y) �
∑

(m1 ,...,m`)∈Z≥0

∏̀
j�1

(
c̃ j · (g` +∑`

k� j+1 mkBo |ck |)
m j

)
y
∑`

j�1 m j |c j | .

We refer the reader to Section 4.2 for examples of this theorem.



Chapter 4

Rank-Two Cluster Algebras

4.1 Rank-Two Basics

Rank-two is much simpler than the general case because there are only two
mutation directions at any cluster. We specialize the general definitions given
in Chapter 2 here to give a clearer picture of rank-two cluster algebras.

A 2-by-2 matrix B � (bi j) is skew-symmetrizable if there exist δ1 , δ2 > 0
such that δ1b12 � −δ2b21, δ1b11 � −δ1b11, and δ2b22 � −δ2b22. So a nonzero
skew-symmetrizable two-by-two matrix must be of the form

B �

[
0 b12

b21 0

]
, where b12b21 < 0.

Thus, up to relabeling, rank-two cluster algebras are defined by an initial
exchange matrix of the form

Bo �

[
0 b
−c 0

]
,

where b , c > 0. Given b , c > 0, the corresponding rank-two cluster algebra is
denoted by A(b , c). As mentioned in the introduction, in this notation, the
r-Kronecker cluster algebra is A(r, r), and the Kronecker cluster algebra is
A(2, 2).

By the classification of rank-two root systems, we know that a rank-
two cluster algebra is of finite type, affine type and indefinite type if and
only if bc ≤ 3, bc � 4, and bc > 4 respectively. When bc ≥ 4, let
µ+ , µ+(m), µ− , µ−(m) and the related numbering of cluster variables and
d, c, g-vectors be defined similarly as in Examples 2.1.6 and 2.3.6. Our defini-
tions in the Kronecker case apply verbatim here because when bc ≥ 4, µ+
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and µ− will produce distinct seeds at each step, and the exchange graph for
A(b , c) is exactly T2, the infinite line graph with countably many vertices,
just like the Kronecker exchange graph (Figure 2.5).

We will now summarize the mutation rule for the rank-two cluster variables
and provide formulas for their d, c, g-vectors. Note that our calculations
specialize to Example 2.1.5 when b � c � 1, and to Example 2.1.6 when
b � c � 2.

For m ∈ Z, let Cm ,b ,c be the sequence defined by C−1,b ,c � −1, C0,b ,c � 0,
and

Cm ,b ,c �



cCm−1,b ,c − Cm−2,b ,c , if m is even;
bCm−1,b ,c − Cm−2,b ,c , if m is odd.

Let Am � Cm ,b ,c and Bm � Cm ,c ,b . Note that by design, both Am and Bm are
positive for m ≥ 1.

We can calculate that

c−1 �
[
−1
0

]
, c0 �

[
0
−1

]
, c1 �

[
1
0

]
, c2 �

[
0
1

]
,

and for k ≥ 0,

ck+2 �

[
−Bk
−Ak−1

]
, c−k−1 �

[
Bk−1
Ak

]
.

Knowing the relevant c-vectors, we deduce that the cluster variables satisfy
the following explicit recurrence:

x0x2 � xb
1 + y2 ,

x−1x1 � xc
0y1 + 1,

and for k ≥ 0,

xk+3xk+1 �



xb
k+2 + yBk+1

1 yAk
2 if k is odd,

xc
k+2 + yBk+1

1 yAk
2 if k is even;

(4.1)

x−k−2x−k �




xb
−k−1 + yBk

1 yAk+1
2 if k is even,

xc
−k−1 + yBk

1 yAk+1
2 if k is odd.

Often, we specialize so that yi � 1. The cluster variables after the specializa-
tion satisfy a nicer recurrence: for all m ∈ Z,

xm+1xm−1 �



xb
m + 1 if m is odd,

xc
m + 1 if m is even.
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Using this recurrence, we have that

g−1 �
[
−1
0

]
, g0 �

[
0
−1

]
, g1 �

[
1
0

]
, g2 �

[
0
1

]
,

and for k ≥ 0 and k ≤ −2,

gk+2 �



bgk+1 − gk if k is even,
cgk+1 − gk if k is odd.

Hence, for k ≥ 0,

gk+1 �

[
−Bk−1

Ak

]
, g−k �

[
−Bk
Ak−1

]
.

Lastly, we consider d-vectors. Note that in general, for cluster algebra
with rank n, for 1 ≤ i ≤ n, we conventionally understand di � −ei. In the
rank-two case, we have that for k ≥ 0,

dk+2 �

[
Bk

Ak−1

]
, d−k+1 �

[
Bk−1
Ak

]
.

4.2 The r-Kronecker Cluster Algebra and Gupta’s
Formula

When b � c � r, let cm � Cm ,r,r . To recall, this is the sequence defined by
c−1 � −1, c0 � 0, and cm � rcm−1 − cm−2. Note that c1 � 1 for all r. We shall
need this sequence frequently for some of the combinatorial models that are
geared towards the skew-symmetric case. We prove some more properties of
this sequence in the Appendix (Section A).

For ` ∈ Z and M,N ≥ 0, let C(`,b ,c)
M,N denote the coefficient of yM

1 yN
2 in

the F-polynomial F`(y1 , y2) of A(b , c). In other words,

F`(y1 , y2) �
∑

M,N≥0

C(`,b ,c)
M,N yM

1 yN
2 .

When b � c � r, we follow the notation in our REU report and write
C(`,r)

M,N � C(`,b ,c)
M,N .

With the computation of c, g-vectors from Section 4.1, it is straight-
forward to apply Gupta’s formula to the r-Kronecker A(r, r). This was done
in Gupta (2018).
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Theorem 4.2.1 (Theorem 3.1, Gupta (2018)). For 1 ≤ k ≤ `, let Lk be
the rational function in y1 , y2 as defined in Theorem 3.1.1 for the mutation
sequence µ+(`). Then for ` > 0, the F-polynomial F`+2 has the following
formula:

F`+2(y1 , y2) � Lc`
1 Lc`−1

2 · · · L` (4.2)

�

∑
(m1 ,...,m`)∈Z`≥0

∏̀
i�1

(
c`−i+1 − r

∑`
j�i+1 c j−i m j

mi

)
yM
1 yN

2 (4.3)

where

M � c1m1 + c2m2 + · · · + c`m` ,

N � c1m2 + c2m3 + · · · + c`−1m` .

In other words,

C(`,r)
M,N :�

∑
(m1 ,...,m`)∈Z`≥0

c1m1+c2m2+···+c`m`�M
c1m2+c2m3+···+c`−1m`�N

∏̀
i�1

(
c`−i+1 − r

∑`
j�i+1 c j−i m j

mi

)
.

When r � 2, the sequence cn is particularly simple; in fact, cn � n. Thus,
(positively-indexed) F-polynomials of the Kronecker quiver have the following
formula:

F`+2(y1 , y2) � L`1L`−12 · · · L` (4.4)

�

∑
(m1 ,...,m`)∈Z`≥0

∏̀
i�1

(
` − i + 1 −

∑`
j�i+1 2( j − i)m j

mi

)
yM
1 yN

2 . (4.5)

Based on experimental data, we observed the following phenomenon
regarding C(`,r)

M,N . We were hopeful that the resolution of this conjecture might

bring new insight to whether a simple formula for the C(`,r)
M,N ’s is possible when

r > 2.

Conjecture 1. If c`+1 − rM < 0, then

∑
N

(−1)N C(`,r)
M,N �

⌊
M

c`−1
c`

⌋∑
N�0

(−1)N C(`,r)
M,N � 0.
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Example 4.2.2. If we substitute the binomial coefficient formula for C(`,2)
M,N ,

we can verify this conjecture for r � 2. Now consider the case where ` � 4,
r � 3. Then c`+1 � c5 � 54, and c`+1 − rM � 55 − 3M. So it suffices to have
M ≥ 19. Based on data, the only non-zero coefficients C(4,3)

M,N are as given in
Table 4.1. One may check that the alternating sum of each of these rows is
indeed zero.

M N 0 1 2 3 4 5 6 7 8
19 210 1224 2940 3732 2655 1020 177 6
20 21 144 420 675 645 366 114 15
21 1 8 28 56 70 56 28 8 1

Table 4.1 Data for C(4,3)
M,N when 55 − 3M < 0.

In addition to the alternating sum phenomenon, in our investigation of the
tuples that are summed over to calculate C(`,r)

M,N , there were some mysterious
groups of tuples whose total contribution were particularly nice.

Example 4.2.3. We record here all the examples that we observed. Let

c(m1 ,m2 ,m3 ,m4 ,m5) � �55−3(m2+3m3+8m4+21m5)
m1

��21−3(m3+3m4+8m5)
m2

��8−3(m4+3m5)
m3

��3−3m5
m4

�� 1
m5

�
.

Then

C(5,3)
M,N :�

∑
(m1 ,...,m5)∈Z5

≥0
m1+3m2+8m3+21m4+55m5�M

m2+3m3+8m4+21m5�N

c(m1 ,m2 ,m3 ,m4 ,m5).

Consider the following sets of tuples:

S1 � {(0, 20, 0, 0, 0), (1, 17, 1, 0, 0), (2, 14, 2, 0, 0), (3, 11, 3, 0, 0),
(4, 8, 4, 0, 0), (5, 5, 5, 0, 0), (6, 2, 6, 0, 0)};

S2 � {(3, 12, 0, 1, 0), (4, 9, 1, 1, 0), (5, 6, 2, 1, 0), (6, 3, 3, 1, 0), (7, 0, 4, 1, 0)};
S3 � {(0, 17, 1, 0, 0), (1, 14, 2, 0, 0), (2, 11, 3, 0, 0),

(3, 8, 4, 0, 0), (4, 5, 5, 0, 0), (5, 2, 6, 0, 0)}.

Both S1 and S2 consist of tuples that contribute to C(5,3)
60,20, and S3 consists
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of tuples that contribute to C(5,3)
59,20. Then curiously,∑

T∈S1

c(T) �
(�11

2

�

2

)
� 1485,

∑
T∈S2

c(T) � −
(�11

2

�

2

)
� −1485,

∑
T∈S3

c(T) �
(�10

2

�

2

)
� 990.

The reader might notice that we were investigating M,N’s for which C(`,r)
M,N �

0; indeed C(5,3)
60,20 � C(5,3)

59,20 � 0. This is motivated by the same line of inves-
tigation in Lin, Feiyang (2020), where we hope to explicitly demonstrate
that only finitely many C(`,r)

M,N ’s are nonzero for a fixed pair of ` and r, which
demonstrates that Gupta’s formula indeed produces polynomials. Observing
these examples, we tried to find a general pattern where the contribution of a
family of tuples would sum up to

�(m
2)
2

�
for some m, but failed. We also tried

to use hypergeometric series techniques to prove that these specific sums
evaluate in this manner, but were unable to evaluate the corresponding hy-
pergeometric series using general theorems.

Lastly, given the above calculation for A(r, r), in our future research,
we would also like to apply Gupta’s formula to the more general skew-
symmetrizable rank-two cases, i.e. to the cluster algebras denoted as A(b , c).
Question 4.2.4. How does Gupta’s formula specialize for F-polynomials of
A(b , c) where b , c? In particular, what is Gupta’s formula for A(1, 4)?
Are the numbers c̃k · g` and c̃k · B0 |c` | somehow similarly tame as in the
Kronecker case? What are the implications for Remark 5.3.1?

4.3 Support of F-Polynomials of A(r, r)
Given a polynomial

F(y1 , . . . , yn) �
∑

(e1 ,...,en)∈Z≥0
ce1 ,...,en ye1

1 · · · y
en
n ,

its support is the set {(e1 , . . . , en) ∈ Z≥0 : ce1 ,...,en , 0}. In Lin, Feiyang
(2020), we conjectured that the support of F-polynomials of the r-Kronecker
cluster algebra is exactly the integer points within a certain triangle.
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Conjecture 2 (Conjecture 1 and 2, Lin, Feiyang (2020)). C(`,r)
M,N > 0 if and

only if 0 ≤ M ≤ c` and 0 ≤ N ≤ c`−1
c`

M.

We may specialize the notation of Lee et al. (2014) for greedy elements
to cluster variables of A(r, r) as follows: for ` ≥ 1,

x[c` , c`−1] � x−c`
1 x−c`−1

2

∑
p ,q≥0

c(p , q)xrp
1 xrq

2 .

Since
F`(y1 , y2) �

∑
M,N≥0

C(`,r)
M,N yM

1 yN
2 ,

by the explicit formula for F-polynomial and cluster variable coefficients for
A(r, r) given in Lee and Schiffler (2013), we have

c(N, c` −M) � C(`,r)
M,N .

Therefore, Conjecture 2 says that the pointed support of x[c` , c`−1], namely
the set {(p , q) : c(p , q) , 0}, is the set of integer points within the triangular
region with vertices (0, 0), (0, c`), (c`−1 , 0).

On the other hand, applied to x[c` , c`−1], case (6) of Proposition 4.1 in
Lee et al. (2014) says that the pointed support of x[c` , c`−1] is contained in
the quadrilateral with vertices

(0, 0), (0, c`), ( c`
r
,

c`−1
r

), (c`−1 , 0).

As illustrated in the figure below, the quadrilateral region suggested by
Lee et al. (2014) is always slightly larger than the triangle given by our
conjecture, but they appear to include the same set of lattice points.



44 Rank-Two Cluster Algebras

( c`
r ,

c`−1
r )

(0, c`)

(c`−1 , 0)

q

p

Figure 4.1 Comparison of two di�erent regions that contain the support: the
triangle whose vertices are (0, 0), (0, 21), (8, 0) and the quadrilateral whose
vertices are (0, 0), (0, 21), ( 213 , 83 ), (8, 0), which almost cannot be distinguished
on this figure

The following theorem says that Proposition 4.1 of Lee et al. (2014) and
our inequalities delineate the same set of integral points.

Theorem 4.3.1. Let p , q ∈ Z≥0. Then when 0 ≤ p ≤ c`
r , we have

p ≤
c`−1
c`

(c` − q)⇔ (p , q) lies below the segment [(0, c`), (c`/r, c`−1/r)];
and when c`

r ≤ p ≤ c`−1,

p ≤
c`−1
c`

(c` − q)⇔ (p , q) lies below the segment [(c`/r, c`−1/r), (c`−1 , 0)].

Proof. We prove the first claim first. Let s �
p

c` c`−1
. First note that when

0 ≤ p ≤ c`
r , s �

p
c` c`−1

≤
1

rc`−1
< 1

c`
. We will use this fact later. For (p , q) to
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lie below the segment [(0, c`), (c`/r, c`−1/r)], we need

q − c`
p
≤

c`−1/r − c`
c`/r

,

or equivalently, c` − q ≥ p c`+1
c`

. Therefore, to show the first equivalence, it

suffices to show that when 0 ≤ p ≤ c`
r ,

⌈
p c`+1

c`

⌉
�

⌈
p c`

c`−1

⌉
. Using Proposition

A.0.3, we have

c`+1

c`
�

c`+1c`−1
c`c`−1

�
c2` − 1
c`c`−1

�
c`

c`−1
−

1
c`c`−1

,

therefore p c`
c`−1

� p c`+1
c`

+ s and it suffices to show that
⌈
p c`+1

c`
+ s

⌉
�

⌈
p c`+1

c`

⌉
.

But note that p c`+1
c`

cannot be an integer: by Proposition A.0.4, p c`+1
c`
∈

Z only if c` | p, but p ≤ c`/r. So
⌈
p c`+1

c`

⌉
− p c`+1

c`
≥ 1/c`. Since s < 1

c`
, we

have
⌈
p c`+1

c`
+ s

⌉
�

⌈
p c`+1

c`

⌉
as desired.

The proof of the second claim is similar. Let t �
c`−1−p

c`−1c`−2
. Note that

when c`
r ≤ p ≤ c`−1, c`−1 − p ≤ c`−1 −

c`
r �

c`−2
r , and so t �

c`−1−p
c`−1c`−2

≤

1
rc`−1

< 1
c`−1

. We will use this fact later. For (p , q) to lie below the segment
[(c`/r, c`−1/r), (c`−1 , 0)], we need

0 − q
c`−1 − p

≥
0 − c`−1

r

c`−1 −
c`
r
,

or equivalently, q ≤ (c`−1−p) c`−1
c`−2

. By inspecting the graph of p �
c`−1
c`

(c`−q),
we find that

p ≤
c`−1
c`

(c` − q)⇔ q ≤ (c`−1 − p) c`
c`−1

.

Therefore, to show the equivalence, it suffices to show that when c`
r ≤ p ≤

c`−1, ⌊
(c`−1 − p) c`−1

c`−2

⌋
�

⌊
(c`−1 − p) c`

c`−1

⌋
.

Recall that c`
c`−1

�
c`−1
c`−2
−

1
c`−1c`−2

. Therefore, (c`−1 − p) c`−1
c`−2

� (c`−1 − p) c`
c`−1

+ t

and it suffices to show that
⌊(c`−1 − p) c`

c`−1
+ t

⌋
�

⌊(c`−1 − p) c`
c`−1

⌋
. But by

Proposition A.0.4, since p > 0 in this case and so c`−1−p < c`−1, the quantity
(c`−1 − p)c`/c`−1 cannot be an integer. So we have

�(c`−1 − p)c`/c`−1
�
−

(c`−1 − p)c`/c`−1 ≥ 1/c`−1. Since t < 1
c`−1

, we have
⌊(c`−1 − p) c`

c`−1
+ t

⌋
�⌊(c`−1 − p) c`

c`−1

⌋
as desired. �
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4.4 Preliminaries: Maximal Dyck Paths and Christof-
fel Words

For the remainder of this chapter, we discuss two formulas for cluster variables
of A(r, r), due to Lee and Schiffler (2013) and Lee et al. (2014) respectively,
and then introduce a conjectural bijection between two families of combi-
natorial objects which are involved, which implies the equivalence the two
formulas. When speaking of the cluster variables xk ∈ A(b , c), we always
specialize to y1 � y2 � 1.

Both Lee and Schiffler (2013) and Lee et al. (2014) make use of the
maximal Dyck path. Denote by Rm×n the rectangle with vertices (0, 0), (m , 0),
(0, n) and (m , n). A Dyck path in Rm×n is a lattice path from (0, 0) to (m , n)
that only goes up and right and never goes above the diagonal line segment
from (0, 0) to (m , n). In other words, if (x , y) is a point in a Dyck path of
Rm×n, then

y
x ≤

n
m . Visually, a Dyck path is maximal if when viewed as

starting from (0, 0), the path goes up whenever it can. In other words, if y is
the largest vertical coordinate of points on Dm×n with horizontal coordinate
x, then y �

�
x n

m

�
. Denote by Dm×n the unique maximal Dyck path in Rm×n

and label its m + n edges in order as α1 , . . . , αm+n. For 1 ≤ j ≤ n, let
µ j denote the j-th vertical edge. For 1 ≤ k ≤ m, let ρk denote the k-th
horizontal edge. Let Um×n � {µ1 , . . . , µn} be the set of vertical edges and
let Rm×n � {ρ1 , . . . , ρm} be the set of horizontal edges. (The letters µ and
ρ stand for up and right.) Let Em×n �Um×n t Rm×n � {α1 , α2 , . . . , αm+n}.
For 0 ≤ i ≤ m + n, let ωi denote the i-th vertex in the maximal Dyck path,
so that ω0 � (0, 0), ωm+n � (m , n). Let v0 � (0, 0) and for 0 < j ≤ n, let v j
denote the upper endpoint of µ j.

The following notations follow that of Lee et al. (2014). Given two vertices
E, F on a lattice path D, let EF denote the subpath of D which begins with
E and ends with F. Let (EF)1, (EF)2 denote the sets of horizontal and vertical
edges in the subpath EF respectively. Let EF◦ denote the set of lattice points
that lie strictly between E and F on the subpath EF; in this context, we
identify ω0 and ωm+n to be the same vertex.
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v0

v1

v2

v3

α1 α2

α4 α5

α7

α3

α6

α8

ω0 ω1 ω2

ω3 ω4 ω5

ω6 ω7

ω8

ρ1 ρ2

ρ3 ρ4

ρ5

µ1

µ2

µ3

Figure 4.2 Illustration of our vertex and edge labeling conventions onD5×3.
For clarity, vertices are labeled orange. The relevant edge sets areU5×3 �

{µ1 , µ2 , µ3}, R5×3 � {ρ1 , ρ2 , . . . , ρ5}, and E5×3 � U5,3 t R5×3 �

{α1 , α2 , . . . , α8}. We can check that the largest y-coordinate of points with
x-coordinate 4 is

�
4 · 35

�
� 2. Alternatively, there are 2 vertical edges in

the first 6 steps because
⌊
6 · 3

3+5

⌋
� 2. If we let E � ω6, F � ω3, then

EF◦ � {ω7 , ω8 , ω1 , ω2}

We also need to borrow the language of Christoffel words.

Definition 4.4.1 (Christoffel Word). Given positive integers a and b, the
(lower) Christoffel word w(a , b) is the word in the alphabet {x , y} with a
x’s and b y’s, such that the number of y’s in the first k letters is equal to⌊

bk
a+b

⌋
.

The word w(a , b) compactly encodes Da×b: starting at the lower corner
of Ra×b, x’s correspond to rightward steps and y’s correspond to upward
steps.

Example 4.4.2. The path D5×3, which is pictured in Figure 4.2.
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Given two words α, β, we define αβ � α · β to be their concatenation.
Suppose a , b are coprime. Then by Lemma 1.3 of Berstel et al. (2008), there
is a unique point C � (i , j) on Da×b such that it attains the shortest vertical
distance to the diagonal connecting (0, 0) and (a , b), namely ib− ja

a �
1
a .

Definition 4.4.3. Let a , b be positive, coprime integers, and let C be the
unique point on Da×b vertically closest to the diagonal. The standard fac-
torization of a Christoffel word w(a , b) is w(a , b) � αβ, where α encodes the
portion of Da×b from (0, 0) to C, and β the portion from C to (a , b).
Theorem 4.4.4 (Proposition 3.2 and Theorem 3.3, Berstel et al. (2008)).
For a , b coprime, the standard factorization of the Christoffel word w(a , b)
is the unique factorization of w(a , b) into two Christoffel words.

Applying this theorem to Christoffel words of specific slopes, we obtain
the following result about the structure of some maximal Dyck paths that
we are interested in.

Lemma 4.4.5. For n ≥ 2,

w(cn+1 , cn) � w(cn , cn−1)r−1
· w(cn − cn−1 , cn−1 − cn−2)

w(cn+1 − cn , cn − cn−1) � w(cn , cn−1)r−2
· w(cn − cn−1 , cn−1 − cn−2)

Proof. We prove the following statement instead: for 0 ≤ k < r, let αk �

w(cn+1 − kcn , cn − kcn−1). Then
αk � w(cn , cn−1)r−k−1

· w(cn − cn−1 , cn−1 − cn−2).
This claim specializes to our lemma when k � 0 and k � 1.

We proceed by induction. When k � r − 1, since

cn+1 − (r − 1)cn � (rcn − cn−1) − (r − 1)cn � cn − cn−1

and r − k−1 � 0, the statement is trivially true. Suppose that the statement
is true for some 1 ≤ k < r. We claim that αk−1 � w(cn , cn−1) · αk . Let
C � (i , j) � (cn , cn−1) and let a � cn+1 − (k − 1)cn, b � cn − (k − 1)cn−1.
It suffices to check that C � (i , j) � (cn , cn−1) is the point that defines the
standard factorization of αk−1 � w(a , b). Indeed,

ib − ja � cn(cn − (k − 1)cn−1) − cn−1(cn+1 − (k − 1)cn)
� c2n − cn−1cn+1

� 1,
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where the last equality is due to Proposition A.0.3. Applying the inductive
hypothesis, we obtain that

αk−1 � w(cn , cn−1) · αk � w(cn , cn−1)r−k
· w(cn − cn−1 , cn−1 − cn−2)

as desired. �

We shall also need the following fact.

Proposition 4.4.6 (Proposition 4.2, Berstel et al. (2008)). Suppose a , b ∈ Z
are coprime. Then w(a , b) � xu y with u a palindrome.

Example 4.4.7. When r � 3, c0 , c1 , c2 , c3 � 0, 1, 3, 8. So when n � 2 and
r � 3, the first part of Lemma 4.4.5 specializes to the claim that w(8, 3) �
w(3, 1)2 · w(2, 1). Indeed, w(8, 3) � xxx yxxx yxx y � (xxx y)2(xx y) �

w(3, 1)2 ·w(2, 1). When we write w(8, 3) � xu y, we get that u � xx yxxx yxx,
which is indeed a palindrome, as predicted by Proposition 4.4.6.

4.5 Lee–Schiffler

Given n ≥ 4, let Dn � D(cn−2−cn−3)×cn−3 . Let si , j be the slope of the line
connecting vi and v j. Let s � s0,cn−3 .

Remark 4.5.1. The indexing of the sequence cm in Lee and Schiffler (2013)
is off by one compared to our sequence cm. For initial conditions, they have
c1 � 0, c2 � 1, whereas we have c0 � 0, c1 � 1. Accordingly, we shall modify
their statements to suit our indexing.

Definition 4.5.2 (Lee and Schiffler (2013) Definition 7). For any 0 ≤ i <
k ≤ cn−3, we define a colored subpath α(i , k) to be the subpath of Dn defined
as follows.

1. If si ,t ≤ s for all t such that i < t ≤ k, then let α(i , k) be the subpath
from vi to vk . Each of these subpaths will be called a blue subpath.

2. If si ,t > s for some i < t ≤ k, then

If the smallest such t is of the form i+cm−wcm−1 for some integers
3 ≤ m ≤ n − 2 and 1 ≤ w < r − 1, then let α(i , k) be the subpath from
vi to vk . Each of these subpaths will be called a green subpath. When
m and w are specified, it will be said to be (m , w)-green;

Otherwise, α(i , k) is the subpath from the vi to vk . Each of these
subpaths will be called a red subpath.
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Remark 4.5.3. Our definition of a red subpath is slightly different. When
α(i , k) is red, Lee and Schiffler (2015) includes the immediate predecessor
of vi as part of the subpath α(i , k), whereas we don’t view it as contained
in α(i , k), but force it to be included in the definition of F (Dn). This will
simplify our discussion in Section 4.7.

Let P(Dn) be the set of all colored subpaths and single edges:

P(Dn) � {α(i , k) | 1 ≤ i < k ≤ cn−3} ∪ {α1 , . . . , αcn−2}.
We sometimes call the single edges colorless subpaths. We are now ready to
introduce the generating set for Lee–Schiffler’s combinatorial formula.

Definition 4.5.4 (Definition 8, Lee and Schiffler (2013)).

F (Dn) �
{
{β1 , . . . , βt} | t ≥ 0, β j ∈ P(Dn) for all 1 ≤ j ≤ t ,

if j , j′ then β j and β j′ have no common edge;
if β j � α(i , k), β j′ � α(i′, k′), then i , k′ and i′ , k;
if β j is red, then the edge which immediately precedes vi is contained in some β′j;

and if β j is (m ,w)-green, then at least one of the (cm−1 − wcm−2)
preceding edges of vi is contained in some β j′

}
.

Given β ∈ F (Dn), let |β|1 �
∑
α(i ,k)∈β(k − i) and let |β|2 be the total

number of edges in subpaths of β.

Theorem 4.5.5 (Theorem 9, Lee and Schiffler (2013)). For n ≥ 4,

xn � x−cn−2
1 x−cn−3

2

∑
β∈F (Dn)

xr |β|1
1 xr(cn−2−|β|2)

2 .

and
x3−n � x−cn−2

2 x−cn−3
1

∑
β∈F (Dn)

xr |β|1
2 xr(cn−2−|β|2)

1 .

It follows that the F-polynomials have the following expansion formula.

Corollary 4.5.6 (Corollary 12, Lee and Schiffler (2013)). Let n ≥ 4. Then

Fn �

∑
β∈F (Dn)

y |β|2
1 y |β|1

2 , F3−n �

∑
β∈F (Dn)

ycn−3−|β|1
1 ycn−2−|β|1

2 .
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In Section 4.7, we shall also need the set F̃ (Dn), defined below.

Definition 4.5.7.

F̃ (Dn) �
{
{β1 , . . . , βt} | t ≥ 0, β j ∈ P(Dn) for all 1 ≤ j ≤ t ,

if j , j′ then β j and β j′ have no common edge,
if β j � α(i , k), β j′ � α(i′, k′), then i , k′ and i′ , k}.

Since the definition of F̃ (Dn) is obtained from that of F (Dn) by removing
conditions, F̃ (Dn) contains F (Dn).

4.5.1 The Lee–Schiffler Formula for the Kronecker quiver

In the case of the Kronecker cluster algebra, Equation 2.1 and Equation 2.2
for cluster variables imply the following formulas for the F-polynomial: for
` ≥ 1,

F`+2(y1 , y2) �
∑

M,N≥0

(
` − N
` −M

) (
M − 1

N

)
yM
1 yN

2 ,

and

F1−`(y1 , y2) �
∑

M,N≥0

(
` − N
` −M

) (
M − 1

N

)
y`−1−N
1 y`−M

2 .

As an exercise on Lee and Schiffler (2013), we shall show explicitly in this
section that when r � 2, their combinatorial formula specializes to the above.
Using the fact that c` � ` when r � 2, we specialize Corollary 4.5.6 to the
following: for ` ≥ 2,

F`+2(y1 , y2) �
∑

β∈F (D`+2)
y |β|2
1 y |β|1

2 ,

and for ` ≥ 1,

F1−`(y1 , y2) �
∑

β∈F (D`+2)
y`−1−|β|11 y`−|β|22 ,

where F (D`+2) is the collection of non-overlapping families of subpaths
from Definition 4.5.4. Note that the maximal Dyck path is simply D`+2 �

D(c`−c`−1)×c`−1 � D1×(`−1). The conditions for the color of α(i , k) also simplify
significantly. Since there is no integer w such that 1 ≤ w < r−1, by Definition
4.5.2, there can be no green subpaths of D`+2. Moreover, since vi � (1, i) for



52 Rank-Two Cluster Algebras

0 < i ≤ ` − 1, for 0 < i < k ≤ ` − 1, si ,k is just infinity, which is of course
greater than s � s0,`−1 � ` − 1. Therefore, the subpath α(i , k) is red if i , 0.
We also always have s0,k ≤ s0,`−1 � s, which implies that a colored subpath
α(0, k) is blue. In either case, α(i , k) consists of k − i + 1 edges.

Example 4.5.8. The following calculation illustrates how to apply the Lee–
Schiffler formula to obtain the F-polynomials F5(y1 , y2) and F6(y1 , y2) of the
Kronecker cluster algebra. Since we are working with positively indexed F-
polynomials, the contribution of an arbitrary β ∈ F (D`+2) is y |β|2

1 y |β|1
2 . In

order to enumerate all the subpath families of F (D`+2), it is often benefi-
cial to start by considering which colored subpaths can be chosen together.
The set of colored subpaths determines |β|1, and then one is free to include
or exclude each of the remaining colorless edges, which modifies the total
number of edges used in β, namely |β|2. For example, for all β ∈ F (D1,2)
such that α(0, 1) is its only colored subpath, |β|1 � 1, and |β|2 is 2 plus the
number of colorless edges in β. Since there is only one remaining colorless
edge, the total contribution of all such β ∈ F (D1×2) is y2

1 y2(1 + y1). In this
manner, we may speak of the contribution of some set of colored subpaths.

v0

v1

v2

α(0, 1)
v0

v1

v2

α(0, 1)

α3

Figure 4.3 Two path families in F (D1×2) whose only colored subpath is
α(0, 1), whose contributions are respectively y21 y2 (le�) and y31 y2 (right)

This is the approach we take to construct Tables 4.2 and 4.3. In each
row, we group those choices of colored subpaths that use the same number
of edges and have the same |β|1, which implies that they contribute in the
same way to the final F-polynomial. Indeed, we expect their contribution
to be of the form yA

1 yB
2 (1 + y1)`−A, where A is the number of edges in the

colored subpaths and B is |β|1. We use color to indicate whether a colored
subpath is blue or red.
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v0

v1

v2

Colored Subpaths in β |β|1 #Colorless Contribution
∅ 0 3 (1 + y1)3
{α(0, 1)}, {α(1, 2)} 1 1 2y2

1 y2(1 + y1)
{α(0, 2)} 2 0 y3

1 y2
2

Table 4.2 By the Lee–Schi�ler Formula, we use F (D5) � F (D1×2) to calcu-
late that F5(y1 , y2) � (1+ y1)3+2y21 y2(1+ y1)+ y31 y22 ; the column #Colorless
counts the number of remaining colorless edges inD5

v0

v1

v2

v3

Colored Subpaths in β |β|1 #Colorless Contribution
∅ 0 4 (1 + y1)4
{α(0, 1)}, {α(1, 2)}, {α(2, 3)} 1 2 3y2

1 y2(1 + y1)2
{α(0, 2)}, {α(1, 3)} 2 1 2y3

1 y2
2(1 + y1)

{α(0, 1), α(2, 3)} 2 0 y4
1 y2

2{α(0, 3)} 3 0 y4
1 y3

2

Table 4.3 By the Lee–Schi�ler Formula, we use F (D6) � F (D1×3) to calcu-
late thatF6(y1 , y2) � (1+y1)4+3y21 y2(1+y1)2+2y31 y22(1+y1)+y41 y22+y41 y32 ;
the column #Colorless counts the number of remaining colorless edges inD6

We check that the total number of monomials is 13 in F5 and 34 in F6,
which is as we expect, since F-polynomials of the Kronecker quiver specialize
to every other Fibonacci number.

Let

F`+2
M,N �

����β ∈ F (D`+2) : ��β��1 � N, ��β��2 � M
����,

C`+2
M,N � C(`+2,2)

M,N �

(
` −M
` − N

) (
M − 1

N

)
.

To reconcile these two formulas, it suffices to prove the following:

Theorem 4.5.9. For M,N ≥ 0 and ` ≥ 1, F`+2
M,N � C`+2

M,N .

When N < M ≤ ` is not satisfied, F`M,N � 0 because there are no such
β ∈ F (D`+2), and C`

M,N � 0. Therefore it suffices to focus on the cases where
0 ≤ N < M ≤ `.
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By thinking about whether the last vertical edge µ`−1 is used and the
color of the subpath that uses it, we can write down the following recurrence
of the F`M,N ’s:

F`+1
M,N � F`M,N +

∑̀
k�0

F`−k
M−k−1,N−k .

The term F`M,N counts the number of subpath families that don’t use the
last edge. The term F`M−1,N counts the number of those that includes the
last edge as a colorless subpath. For k > 0, the term F`−k

M−k−1,N−k counts the
number of subpath famimilies that uses the last edge in the colored subpath
α(` − k − 1, ` − 1). Knowing that the Lee–Schiffler formula is correct for small
`, it suffices to show that the C`

M,N ’s also satisfy the same recurrence relation.

Lemma 4.5.10. When N < M ≤ `,(
M − 1

N

)
�

N∑
k�0

(
M − k − 2

N − k

)
�

∑̀
k�0

(
M − k − 2

N − k

)
.

Proof. The second equality follows from the fact that
�N

s

�
� 0 if s < 0. We

prove the first equality by induction on N. This is true when N � 0 since
both sides are equal to 1. Suppose this is true for N − 1 and all M > N − 1.
Then

N∑
k�0

(
M − k − 2

N − k

)
�

(
M − 2

N

)
+

N∑
k�1

(
M − k − 2

N − k

)

�

(
M − 2

N

)
+

N−1∑
k�0

((M − 1) − k − 2
(N − 1) − k

)
�

(
M − 2

N

)
+

(
M − 2
N − 1

)
�

(
M − 1

N

)
as desired. �

By Lemma 4.5.10,(
` − N

` + 1 −M

) (
M − 1

N

)
�

∑̀
k�0

(
` − N

` + 1 −M

) (
M − k − 2

N − k

)
.
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Rewriting the left hand side as(
` − N

` + 1 −M

) (
M − 1

N

)
�

(
` + 1 − N
` + 1 −M

) (
M − 1

N

)
−

(
` − N
` −M

) (
M − 1

N

)
,

we have the identity(
` + 1 − N
` + 1 −M

) (
M − 1

N

)
�

(
` − N
` −M

) (
M − 1

N

)
+

∑̀
k�0

(
` − N

` + 1 −M

) (
M − k − 2

N − k

)
,

or equivalently,

C`+1
M,N � C`

M,N +
∑̀
k�0

C`−k
M−k−1,N−k ,

which is the desired recurrence.

4.6 Lee–Li–Zelevinsky: Greedy Elements

Motivated by the search for “natural” bases in cluster algebras, Lee et al.
(2014) studies a collection of greedy elements in A(b , c), which were first
introduced in an unpublished follow-up to Sherman and Zelevinsky (2004).
The greedy elements are parameterized by (a1 , a2) ∈ Z2, written as x[a1 , a2].
In Lee et al. (2014), the key ingredient for their study of greedy elements is a
combinatorial formula using a combinatorial object called compatible pairs.
This formula specializes to a formula for cluster variables of A(b , c) because
of the following fact.

Theorem 4.6.1 (Theorem 1.7(e), Remark 1.9, Lee et al. (2014)). Let (a1 , a2) ∈
Z2 be the d-vector of the cluster variable xm. Then xm � x[a1 , a2].

We now introduce compatible pairs, which will lead us to a combinatorial
formula for x[a1 , a2].
Definition 4.6.2 (Definition 1.10, Lee et al. (2014)). Let b , c be positive
integers. Let (a1 , a2) ∈ Z2

>0. Let Pairs(a1 , a2) � {(S1 , S2) : S1 ⊆ Ra1×a2 , S2 ⊆

Ua1×a2}. Let (S1 , S2) ∈ Pairs(a1 , a2). We say that the edges (ρ, µ), where
ρ ∈ S1, µ ∈ S2, are compatible if, denoting by E the left endpoint of ρ and
F the upper endpoint of µ, there exists a lattice point A ∈ EF◦ such that

|(AF)1 | � b |(AF)2 ∩ S2 | or |(EA)1 | � c |(EA)1 ∩ S1 |.
We say that (S1 , S2) is a compatible pair if for every ρ ∈ S1 and µ ∈ S2 are
compatible.
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Theorem 4.6.3 (Theorem 1.11, Lee et al. (2014)). For every (a1 , a2) ∈ Z2,
the greedy element x[a1 , a2] ∈ A(b , c) at (a1 , a2) is given by

x[a1 , a2] � x−a1
1 x−a2

2

∑
(S1 ,S2)

xb |S2 |
1 xc |S1 |

2 , (4.6)

where the sum is over all compatible pairs (S1 , S2) in D[a1]+×[a2]+ .

Recall from Section 4.1 that in the cluster algebra A(b , c), the d-vectors
of cluster variables are given by

dk+2 �

[
Bk

Ak−1

]
, d−k+1 �

[
Bk−1
Ak

]

for k ≥ 0, where Ak , Bk are integer sequences defined in Section 4.1. In
particular, when b � c � r, for k ≥ 0, we have that the d-vectors are

dk+2 �

[
ck

ck−1

]
, d−k+1 �

[
ck−1
ck

]
.

Corollary 4.6.4. For k ≥ 0, let Ck+2 denote the set of compatible pairs in
D[ck]+×[ck−1]+ , and let C−k+1 denote the set of compatible pairs inD[ck−1]+×[ck]+ .
Then xm ∈ A(r, r) is given by

xm � x−dm
∑

(S1 ,S2)∈Cm

xr |S2 |
1 xr |S1 |

2 .

Let us focus on the case where b � c � r, a1 � cn−2, a2 � cn−3 for some
n ≥ 4, which is the important case for the next section. Using shadows and
remote shadows, we can slightly simplify the check for whether (S1 , S2) ∈
Pairs(a1 , a2) is a compatible pair.

Definition 4.6.5 (Definition 3.6 and 3.7, Lee et al. (2014)). For every ver-
tical edge µ ∈ S2 with upper endpoint F, let the local shadow of S2 at
µ, denoted sh(µ; S2), be the set of horizontal edges (AF)1 in the shortest
subpath AF of Da1×a2 such that |(AF)1 | � r |(AF)2 ∩ S2 |. If there is no
such subpath AF, we define sh(µ; S2) as (FF)1 � Ra1×a2 . For S ⊆ S2, let
sh(S; S2) � ∪µ∈S sh(µ; S2), and write sh(S2) :� sh(S2; S2).

There are either r − 1 or r horizontal edges at any height in the maximal
Dyck path Da1×a2 , and so the local shadow sh(µ j; S2) always contains all
the horizontal edges in Da1×a2 of height j − 1. For all µ j ∈ S2, remove the
horizontal edges of height j−1 from sh(S; S2). The set of remaining horizontal
edges is the remote shadow of S with respect to S2, denoted rsh(S; S2). We
write rsh(S2) :� rsh(S2; S2).
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The following lemma then gives an equivalent condition for compatibility,
which we state in the generality of Pairs(cn−2 , cn−3).
Lemma 4.6.6 (Lemma 3.4, Lee et al. (2014)). Let n ≥ 4. Let (S1 , S2) ∈
Pairs(cn−2 , cn−3). Then (S1 , S2) is a compatible pair if and only if S1 ∩

(sh(S2) − rsh(S2)) � ∅ and (S1 ∩ rsh(S2), S2) is compatible.

This lemma suggests the following pseudo-compatibility condition.

Definition 4.6.7. Let (S1 , S2) ∈ Pairs(cn−2 , cn−3). Then (S1 , S2) is a pseudo-
compatible pair if S1 ∩ (sh(S2) \ rsh(S2)) � ∅. We denote the set of pseudo-
compatible pairs in Pairs(cn−2 , cn−3) by C̃n. Clearly, Cn ⊆ C̃n.

The following lemma allows us to speak of maximal remote shadows.

Lemma 4.6.8 (Lemma 3.10, Lee et al. (2014)). If µ and µ′ are distinct
vertical edges from S2, and both local shadows sh(µ; S2) and sh(µ′; S2) are
different from R, then either these local shadows are disjoint, or one of them
is a proper subset of another.

We include examples of remote shadows and illustrations of these lemmas
in Section 4.7.

4.7 Lee–Schiffler versus Lee–Li–Zelevinsky: State-
ment of Conjectural Bijection

In this section, towards reconciling the formulas of Lee–Schiffler and Lee–
Li–Zelevinsky for cluster variables in A(r, r), we introduce a conjectural
weight-preserving bijection between certain colored subpath families and
certain compatible pairs.

Remark 4.7.1. When stating the formula for xn, Lee and Schiffler (2013)
divides into two cases: n ≥ 4 and n ≤ −1, whereas Corollary 4.6.4 divides
into n ≥ 2 and n ≤ 1. One notices that Lee and Schiffler (2013) does not
cover the initial variables x1 , x2, nor the adjacent x3 and x0. This perhaps
comes from the inconvenience that these are exactly the four cluster variables
whose d-vectors involve 0, and as such, involve trivial maximal Dyck paths.
In what ensues, we shall attempt to reconcile the two formulas for xn where
n ≥ 4 or n ≤ −1.
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Let us now recall the formulas of Lee and Schiffler (2013) and Lee et al.
(2014) for cluster variables of A(r, r). We introduce the notion of weights to
simplify our notation. Instead of defining weights on the sets F (Dn) and Cn ,
we do so on the sets F̃ (Dn) and C̃n.

Definition 4.7.2. Let n ≥ 4 or n ≤ −1. For β ∈ F̃ (Dn), let

wtn(β) �



xr |β|1
1 xr(cn−2−|β|2)

2 n ≥ 4,

xr |β|1
2 xr(cn−2−|β|2)

1 n ≤ −1.

For (S1 , S2) ∈ C̃n, let wt(S1 , S2) � xr |S2 |
1 xr |S1 |

2 .

When n ≥ 4, rephrased in terms of weights, Lee and Schiffler (2013) says
that

xn � x−cn−2
1 x−cn−3

2

∑
β∈F (Dn)

wtn(β),

where F (Dn) is the set of families of colored subpaths of D(cn−2−cn−3)×cn−3 .
On the other hand, Lee et al. (2014) says that

xn � x−cn−2
1 x−cn−3

2

∑
(S1 ,S2)∈Cn

wt(S1 , S2),

where Cn is the set of compatible pairs in Dcn−2×cn−3 . (We may discard the
[·]+ from Corollary 4.6.4 because cn > 0 for n ≥ 1.)

Comparing Lee–Schiffler’s and Lee–Li–Zelevinsky’s formulas for n ≥ 4,
we see that to show that these formulas are equivalent, it suffices to find
a bijection Φ � (Φ1 ,Φ2) : F (Dn) → Cn, such that wt(Φ(β)) � wtn(β).
Comparing wt(Φ(β)) � xr |S2 |

1 xr |S1 |
2 and wtn(β) � xr |β|1

1 xr(cn−2−|β|2)
2 , we see that

the weight-preserving condition is equivalent to

|Φ1(β)| � cn−2 − |β|2 , |Φ2(β)| � |β|1.
We now describe a weight-preserving bijection Φ̃ : F̃ (Dn)→ C̃n, which

conjecturally restricts to a bijection between F (Dn) and Cn. Given β �

{β1 , . . . , βm} ∈ F̃n , let {α(i1 , k1), . . . , α(it , kt)} be the set of colors subpaths
in β, where 0 ≤ i1 < k1 < i2 < · · · < it < kt ≤ cn−3. Then let

Φ̃1(β) � {ρs : αs < βi for any 1 ≤ i ≤ m},
Φ̃2(β) � {µs : i j < s ≤ k j for some 1 ≤ j ≤ t},

and let Φ̃(β) � (Φ̃1(β), Φ̃2(β)).
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Proposition 4.7.3. Let n ≥ 4. The function Φ̃ described above is indeed a
weight-preserving bijection between F̃ (Dn) and C̃n.

Proof. As a function into Pairs(cn−2 , cn−3), Φ̃ is immediately weight-preserving
and injective.

Notice that m
n ≤

a
b if and only if m

m+n ≤
a

a+b . It follows that Dcn−2 ,cn−3

can be obtained from Dn � Dcn−2−cn−3 ,cn−2 by adding a horizontal edge before
every vertical edge. This gives rise to a natural bijection E(cn−2−cn−3)×cn−3 �
Rcn−2×cn−3 .

Now, if µ j ∈ Φ̃2(β) for some β ∈ F̃ (Dn), then as an edge of Dn, µ j is
contained in some colored α(is , ks) ∈ β. Under the above correspondence,
the horizontal edges of height j − 1 in Dcn−2 ,cn−3 correspond in Dn to the
horizontal edges of height j−1 plus the vertical edge µ j. Since all horizontal
edges of height j − 1 in Dn as well as µ j are used in α(is , ks), none of
the horizontal edges of height j − 1 in Dcn−2 ,cn−3 can be included in Φ̃1(β).
Therefore, Φ̃(β) ∈ C̃n for all β ∈ F̃ (Dn).

We now show surjectivity. Given a pair (S1 , S2) ∈ C̃n, a preimage in
F̃ (Dn) exists if and only if for every vertical edge µ j in S2, the set A � {αs :
ρs < S1} of edges in Dn contains µ j and all horizontal edges at height j − 1.
This follows from the fact that S1 does not contain any of the horizontal
edges of height j − 1. �

Conjecture 3. The map Φ̃ : F̃ (Dn) → C̃n restricts to a bijection Φ :
F (Dn)→ Cn.

Let us consider two examples of Φ̃ applied to β ∈ F (Dn).
Example 4.7.4. Let r � 3. We will be considering the bijection Φ :
F (D7) → C7. Recall that D7 � D34×21, and C7 consists of compatible
pairs in R55×21. Let β1 � {α(8, 21), α19}, pictured in Figure 4.4, and let β2 �
{α(3, 7), α(8, 21)}, which is pictured in Figure 4.6. Since α(8, 21) is green,
and since 21 − 8 � c4 − c3, by Definition 4.5.4, one of the c3 − c2 � 8 − 3 � 5
edges right before v8 must be used. In β1, the colorless edge α19 fulfills this
requirement, whereas in β2, the blue path α(3, 7) fulfills this requirement.

We check a few pairs of edges to convince ourselves that Φ(β1),Φ(β2))
are indeed both compatible pairs. Consider the pair (ρ17 , µ21) in Φ(β1),
labeled in Figure 4.5. Let E be the left endpoint of ρ17 and let F � v21. The
horizontal edge ρ17 is in rsh(S2) because |(EF)1 | � 39 � 3|(EF)2 ∩ Φ2(β1)|,
and E is such that EF is the shortest such subpath. Therefore, to show that
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Figure 4.4 β1 � {α19 , α(8, 21)} in R34×21; the paths used in β are bolded in
green

the edges ρ17 , µ21 are compatible, we can only try to find A ∈ (EF)◦ such
that

|(EA)2 | � 3|(EA)1 ∩Φ1(β1)|.
This is satisfied by A � v18.

Notice that if we include all of the five preceding horizontal edges of v8,
then choosing any A which comes after v8 would result in |(EA)1∩Φ1(β2)| �
5, which would require us to find A ∈ (EF)◦ such that |(EA)2 | � 15. However,
even if we chose A � v20, we can only get |(EA)2 | � 14. This demonstrates
the necessity of the conditions which distinguish F (Dn) from F̃ (Dn).

Let us now consider the compatibility of the edges ρ5 , µ21 in the second
example. Again let E be the left endpoint of ρ5 and let F � v21. We may
check again that ρ5 ∈ sh(µ21;Φ2(β2)). However, we can choose A � v19,
which gives us |(EA)2 | � 18 � 3|(EA)1 ∩Φ1(β2)|. Similar to before, if we had
included, say ρ19, then that would require us to find A ∈ (EF)◦ such that
|(EA)2 | � 21, which is impossible.

In the remainder of this section, we will discuss why Conjecture 3 also
suffices to prove that Lee–Schiffler’s and Lee–Li–Zelevinsky’s formulas for xn
are equivalent when n ≤ −1. Let us compare their formulas for the n ≤ −1
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ρ17

µ21

A

F

E

Figure 4.5 Φ(β1) in R55×21; the edges inΦ1(β1) are in purple and the edges
inΦ2(β1) are in green

Figure 4.6 β2 � {α(3, 7), α(8, 21)} in R34×21
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ρ5

E

F

µ21

A

Figure 4.7 Φ(β2) in R55×21; the edges inΦ1(β2) are in purple and the edges
inΦ2(β2) are in blue or green according to the color of the subpath ofD34×21
which contains them

case. Lee and Schiffler (2013) says that for n ≥ 4,

x3−n � x−cn−2
2 x−cn−3

1

∑
β∈F (Dn)

wt3−n(β),

where F (Dn) is the same set of families of colored subpaths ofD(cn−2−cn−3)×cn−3 .
Lee et al. (2014) says that

x3−n � x−cn−3
1 x−cn−2

2

∑
(S1 ,S2)∈C3−n

wt(S1 , S2),

where C3−n is the set of compatible pairs in Dcn−3×cn−2 . Comparing Lee–
Schiffler’s and Lee–Li–Zelevinsky’s formulas for n ≤ −1, we see that to show
that these formulas are equivalent, it suffices to find a bijection Φ̃ � (Φ̃1 , Φ̃2) :
F (Dn)→ C3−n such that wt3−n(β) � wt(Φ̃(β)); in other words, we need

|Φ̃1(β)| � |β|1 , |Φ̃2(β)| � cn−2 − |β|2.
Assuming Conjecture 3, it suffices to find a bijection γ � (γ1 , γ2) : Cn → C3−n
such that

|γ1(S1 , S2)| � |S2 |, |γ2(S1 , S2)| � |S1 |. (4.7)

To motivate our definition, let us consider the specific case when n � 5
and r � 3. Recall that C5 and C−2 are the sets of compatible pairs in
Dc3×c2 � D8×3 and Dc2×c3 � D3×8. From Figure 4.8, we notice that D3×8
can be obtained from D8×3 after a rotation and a reflection. This is captured
rigorously by the following lemma.
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w0 w1

w2 w3

w4 w5

w6

w0 w1

w2 w3

w4 w5

w6

Figure 4.8 D8×3 � xxx yxxx yxx y andD3×8 � x y yx y y yx y y y

Lemma 4.7.5. Let a , b be positive integers. Let a transposition be the
operation on {x , y}-words which replaces all x’s by y’s and all y’s by x’s.
Then the word w(b , a) can be obtained by transposing the reversal of w(a , b).
Proof. Recall from Definition 4.4.1 that the word w(a , b) can be defined by
the property that the number of y’s in the first k letters is equal to

⌊
bk

a+b

⌋
.

Let w̃ be the transpose of the reversal of w(a , b). The number of y’s
in the first k letters of w̃ is equal to a minus the number of x’s in the first
a + b − k letters of w, and the latter is equal to

a −
(
a + b − k −

⌊
b(a + b − k)

a + b

⌋)
�

⌊
ak

a + b

⌋
.

This shows that w̃ � w(b , a). �

This lemma provides natural bijections

Ra×b →Ub×a , Ua×b → Rb×a

defined by sending ρk to µa−k and µk to ρb−k . This bijection induces a map
between compatible pairs.

Lemma 4.7.6. Let n ≥ 4. Let

γ′ � (γ′1 , γ′2) : Pairs(cn−2 , cn−3)→ Pairs(cn−3 , cn−2)



64 Rank-Two Cluster Algebras

be the function induced by the bijections

Rcn−2×cn−3 →Ucn−3×cn−2 , Ucn−2×cn−3 → Rcn−3×cn−2

described above. Then γ′ restricts to a bijection γ : Cn → C3−n that satisfies
Equation 4.7.

Proof. By construction, the function γ′ is a bijection and satisfies Equa-
tion 4.7. It suffices to show that when (S1 , S2) is a compatible pair, γ′(S1 , S2)
is also a compatible pair. This follows from Lemma 4.7.5 and the symmetry
of Definition 4.6.2. �

4.8 Progress towards Conjecture 3

In this section, by default, we consider compatible pairs in Pairs(cn−2 , cn−3)
and use the shorthand notations U �Ucn−2×cn−3 , R � Rcn−2×cn−3 .

Lemma 4.6.8 motivates a reduction to irreducible vertical edge sets, defined
below.

Definition 4.8.1. Let A ⊆ S2 ⊆ U . If there exists µ ∈ S2 such that
sh(µ′; S2) ⊆ sh(µ; S2) for all µ′ ∈ A, and sh(µ′; S2) ∩ sh(µ; S2) � ∅ for all
µ′ ∈ S2 \ A, we say that A is irreducible with respect to S2. We say that S2
is irreducible if it is irreducible with respect to itself.

The following proposition allows us to use irreducibility and relative
irreducibility interchangeably in the context of decomposing some S2 into
irreducible subsets.

Proposition 4.8.2. Every S2 ⊆ U can be written uniquely as a union of
subsets which are irreducible with respect to it. If A ⊆ S2 is irreducible with
respect to S2, then sh(µ; S2) � sh(µ;A) for all µ ∈ A. In particular, A is
irreducible and sh(A; S2) � sh(A).
Proof. By Lemma 4.6.8, for any S2 ⊆ U , there exists µ1 , . . . , µk such that
the local shadows sh(µ j; S2) are disjoint and sh(S2) � ⋃k

j�1 sh(µ j; S2). This
gives a natural partition of S2 into A1 , . . . ,Ak such that µ j is the top edge
of A j.

It remains to prove that if µ ∈ A j, then sh(µ;A j) � sh(µ; S2), which
implies that sh(A j) � sh(A j; S2). Since A j ⊆ S2, we must have sh(µ;A j) ⊆
sh(µ; S2). Now suppose that the top endpoint of µ is F, and AF is the shortest
subpath such that |(AF)1 | � r |(AF)2∩S2 |. We claim that (AF)2∩S2 � (AF)2∩
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A j. Otherwise, there exists µ′ ∈ A j′ , A j such that µ′ ∈ (AF)2. But that
means sh(µ′; S2)∩ sh(µ; S2) , ∅, which implies that sh(A j′; S2)∩ sh(A j; S2) ,
∅, which is a contradiction. Therefore, AF is also the shortest subpath such
that |(AF)1 | � r |(AF)2 ∩ A j |. �

Example 4.8.3. Both Φ2(β1) and Φ2(β2)), pictured in Figures 4.5 and 4.7,
are irreducible. Indeed, sh(Φ2(βi)) � sh(v21;Φ2(βi)) for i � 1, 2.

Using these ideas, we reduce Conjecture 3 to the following.

Conjecture 4. Let (S1 , S2) ∈ C̃n such that S2 , ∅ is irreducible and S1 ⊆

rsh(S2). Then (S1 , S2) ∈ Cn if and only if Φ̃−1(S1 , S2) ∈ F (Dn).
Proposition 4.8.4. Conjecture 4 implies Conjecture 3.

Proof. When S2 � ∅, we always have (S1 , ∅) ∈ Cn. Notice also that Φ̃−1(S1 , ∅) �
{αs : ρs < S1}, which is just a set of colorless edges, and so is also always
in F (Dn). So in this case, trivially, we have that (S1 , ∅) ∈ Cn if and only if
Φ̃−1(S1 , ∅) ∈ F (Dn).

Now suppose that (S1 , S2) ∈ C̃n is such that S2 , ∅ and S2 � A t B
where A and B are nonempty, irreducible and sh(A) ∩ sh(B) � ∅. Let S1,A �

S1 ∩ rsh(A), S1,B � S1 ∩ rsh(B). Assuming that

Φ̃−1(S1,A ,A) ∈ F (Dn)⇔ (S1,A ,A) ∈ Cn

and
Φ̃−1(S1,B , B) ∈ F (Dn)⇔ (S1,B , B) ∈ Cn ,

we would like to show that Φ̃−1(S1 , S2) ∈ F (Dn) ⇔ (S1 , S2) ∈ Cn. So we
need to show the following:

• Φ̃−1(S1 , S2) ∈ F (Dn) if and only if Φ̃−1(S1,A ,A) ∈ F (Dn) and Φ̃−1(S1,B , B) ∈
F (Dn);

• (S1 , S2) ∈ Cn if and only if (S1,A ,A) ∈ Cn and (S1,B , B) ∈ Cn.

The key fact that we need to rely on is that if α j ∈ Φ̃
−1(S1 , S2) is one of

the immediately preceding cm−1−wcm−2 edges of some (m , w)-green α(i , t) ∈
Φ̃−1(S1 , S2), or if it is the immediately preceding edge of some red α(i , t) ∈
Φ̃−1(S1 , S2), then ρ j ∈ rsh(S2). Recall the definition of jo from Lemma
4.8.12. It is clear that ρ j ∈ sh(µ jo ; S2) ⊆ sh(S2). Since α j is a colorless edge
of Φ̃−1(S1 , S2), it is disjoint from any colored paths. Therefore, ρ j ∈ rsh(S2).
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Now let us prove the first item. Suppose that Φ̃−1(S1 , S2) ∈ F (Dn). For
any α(i , t) ∈ Φ̃−1(S1,A ,A) which is green or red, we want to show that one
of the preceding edges, as required by the definition of F (Dn), has been
included. We know that there exists some α j ∈ Φ̃

−1(S1 , S2) or α(i′, t′) ∈
Φ̃−1(S1 , S2) which satisfies this requirement. If it was some colorless edge
α j ∈ Φ̃

−1(S1 , S2) which satisfied this requirement, we have ρ j < S1, which
implies that ρ j < S1 ∩ rsh(A) � S1,A, and so α j is used in Φ̃−1(S1,A ,A). If it
was a colored subpath α(i′, t′) ∈ Φ̃−1(S1 , S2) which satisfies this requirement,
then we know that ρ j lies in the intersection of the shadows of the vertical
edges in α(i , t) and the vertical edges in α(i′, t′). Since A is irreducible, it
must be the case that α(i′, t′) ∈ Φ̃−1(S1,A ,A). Therefore, Φ̃−1(S1,A ,A) ∈
F (Dn). The proof that Φ̃−1(S1,B , B) ∈ F (Dn) is analogous. This shows the
“only if” direction of the first claim.

Now suppose that Φ̃−1(S1,A ,A) ∈ F (Dn) and Φ̃−1(S1,B , B) ∈ F (Dn). For
any α(i , t) ∈ Φ̃−1(S1 , S2) which is green or red, we want to show that one
of the preceding edges, as required by the definition of F (Dn), has been in-
cluded. By definition of irreducibility, the vertical edges of α(i , t) must all be
contained in either A or B. Without loss of generality, suppose that the ver-
tical edges of α(i , t) are contained in A. Then since Φ̃−1(S1,A ,A) ∈ F (Dn),
there exists α j ∈ Φ̃

−1(S1,A ,A) or α(i′, t′) ∈ Φ̃−1(S1,A ,A) which satisfies this
requirement. If the requirement is satisfied by α j ∈ Φ̃

−1(S1,A ,A), then we
have ρ j < S1,A � S1 ∩ rsh(S2). But by the key fact, ρ j ∈ rsh(A) ⊆ rsh(S2).
So we must have ρ j < S1, which implies that α j ∈ Φ̃

−1(S1 , S2). On the other
hand, if the requirement is satisfied by α(i′, t′) ∈ Φ̃−1(S1,A ,A), for an arbi-
trary edge α j in α(i , t), we have that ρ j ∈ sh(A) \ rsh(A), which implies that
ρ ∈ sh(S2) \ rsh(S2). Since (S1 , S2) ∈ C̃n, we can conclude that ρ j < S1. In
particular, ρ j < rsh(S2). Since this is true for all α j ∈ α(i′, t′), we have that
α(i′, t′) ∈ Φ̃−1(S1 , S2). Therefore, Φ̃−1(S1 , S2) ∈ F (Dn). This shows the “if”
direction, which concludes the proof of the first claim.

Now let us proceed to the second claim. Consider a pair (ρ, µ), where,
without loss of generality, µ ∈ S2 is a vertical edge in A, ρ ∈ S1 is a hor-
izontal edge in sh(µ; S2) � sh(µ;A) (the equality follows from Proposition
4.8.2). Since (S1 , S2) ∈ C̃n, Let E be the left endpoint of ρ and let G be
the upper endpoint of µ. We wish to show that there exists F ∈ (EG)◦
which demonstrates the compatibility of (ρ, µ) with respect to (S1 , S2) if
and only if there exists F ∈ (EG)◦ which demonstrates the compatibility of
(ρ, µ) with respect to (S1,A ,A). It suffices to show that for any F ∈ (EG)◦,
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(EF)1 ∩ S1 � (EF)1 ∩ S1,A. Since S1,A � S1 ∩ rsh(A), it suffices to show that
(EF)1 ∩ S1 ⊆ rsh(A). By definition of local shadows, the local shadow of
any vertical edge consists consecutive horizontal edges, which implies that
(EF)1 ⊆ sh(µ; S2) ⊆ sh(A; S2) � sh(A), where the last equality follows from
Proposition 4.8.2. Since S1 ∩ (sh(A) \ rsh(A)) � ∅, (EF)1 ∩ S1 ⊆ rsh(A), as
desired.

The general case where S2 is a disjoint union of more than two irreducible
parts is then covered by induction.

We may also easily reduce to the case where S1 ⊆ rsh(S2) using Lemma
4.6.6. �

Given a pair (S1 , S2) ∈ Pairs(cn−2 , cn−3) where S2 is irreducible, we would
like to speak of the top edge in S2 and the leftmost edge of S1. Because
of the cyclic nature of these ideas, we need to take a bit more care in our
definitions.

Definition 4.8.5. Let S2 ⊆ U be irreducible. Then there exists µ ∈ S2
such that sh(µ; S2) contains sh(µ′; S2) for all µ′ ∈ S2, which is either unique
or not unique. If µ is unique, then we call it the top edge of S2. If µ is not
unique, it follows from the definition of local shadows that sh(µ; S2) � R for
all such µ’s. Let µio be the unique edge such that sh(µio ; S2) � R, but the
local shadow of the vertical edge in S2 immediately below it is not R. Define
the following order on vertical edges in U : µio < µio+1 < · · · < µio+cn−3−1.
We say that the top edge of S2 is the largest µ under this ordering such that
sh(µ; S2) � R.
Definition 4.8.6. Let (S1 , S2) ∈ Pairs(cn−2 , cn−3). Let S2 be irreducible and
let ρio be the horizontal edge which is immediately before the top edge of
S2. This edge defines the following order on horizontal edges in R: µio+1 <
µio+2 < · · · < µio+cn−2 � µio . Let the leftmost edge of S1 be the smallest edge
in S2 under this ordering.

With these concepts, we can now state a technical lemma, which is key
in proving that certain edges are compatible.

Lemma 4.8.7. Let (S1 , S2) ∈ C̃n where S2 is irreducible. Let (ρ, µ) be such
that µ ∈ S2 is the top edge of S2 and ρ ∈ sh(µ; S2). Let E � (x1 , y1) be the left
endpoint of ρ, (x2 , y2) be the lower endpoint of µ, G be the upper endpoint
of µ. Let h � y2 − y1, understood modulo cn−3 as a positive integer. Then if
h ≥ r |(EG)1 ∩ S1 |, there exists F ∈ (EG)◦ such that r |(EF)1 ∩ S1 | � |(EF)2 |.
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Proof. Consider the function f : (EG)◦ → Z defined by f (F) � |(EF)2 | −
r |(EF)1 ∩ S1 |. Notice that as we traverse the segment EG from E to G,
whenever f increases, it increases by 1. Evaluating f at the right endpoint
of ρ yields a negative value, and the condition of the problem implies that
f (x2 , y2) ≥ 0. Therefore, there exists F ∈ (EG)◦ such that f (F) � 0, as
desired. �

Remark 4.8.8. We expect this lemma to be an if-and-only-if statement.

For the remainder of this section, we will work to understand how colors
of paths relate to the corresponding compatibility conditions, and then prove
two special cases of Conjecture 4.

Definition 4.8.9. Let r ≥ 2. Given a positive integer n, its r-greedy decom-
position n �

∑
m≥1 am cm, or simply greedy decomposition, is defined recur-

sively as follows: there exists a largest m such that for some 1 ≤ am ≤ r − 1
and am cm ≤ n < min((am +1)cm , cm+1); then the greedy decomposition of n
is am cm plus the greedy decomposition of n − am cm.

In other words, to greedily decompose n, we simply use as many of the
largest cm’s as possible. In light of Lemma 4.4.5, the greedy decomposition
can be applied to either coordinate of a vertex to quickly locate it on the
maximal Dyck path Dcm+1×cm .

Example 4.8.10. The 3-greedy decomposition of n � 14 is 8 + 2 · 3. Since
w(55, 21) � w(21, 8)2w(13, 5) � w(21, 8)w(8, 3)2w(5, 2)w(13, 5), the position
of v14 in the maximal Dyck path D55×21 is within the second appearance of
w(21, 8), and more precisely right after the two blocks of w(8, 3). See Figure
4.9.

The maximal Dyck path interpretation of the greedy decomposition and
Lemma 4.4.5 together imply the following property of greedy decompositions.

Lemma 4.8.11. Let n > 0 and let its greedy decomposition be n �
∑

m am cm.
If ak+1 � r − 1, then ak < r − 1.

When i � 0, s0, j ≤ s for all j, which implies that α(0, j) is always blue.
In the following theorem, we consider the remaining cases.

Lemma 4.8.12. Let r ≥ 2, i > 0 and let i �
∑

m≥1 am cm be the r-greedy
decompositon of i. If mo is the smallest integer m ≥ 1 such that am , 0, let
C � cmo+1 if 0 ≤ amo+1 < r − 1 and let C � cmo+1 − cmo if amo+1 � r − 1.
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Figure 4.9 Illustration ofD55,21 and the position of the vertex v14

Then jo � i + C − amo cmo is the smallest integer t > i such that si ,t > s, so
that α(i , j) ∈ F (Dn) is a blue path if and only if j < jo. If j ≥ jo, α(i , j) is
red if jo − i � 1. Otherwise, α(i , j) is (mo + 1, amo )-green if C � cmo+1, and
(mo + 1, amo + 1)-green if C � cmo+1 − cmo .

Proof. First we will show that whenever t < jo, si ,t < s. Since the sequence
cm

cm+1
is increasing (see Proposition A.0.5), it suffices to show that si ,t ≤

cmo
cmo+1

.

We may write t − i �
∑k
α�1 amα cmα such that 1 ≤ amα ≤ r − 1, mk < mk−1 <

· · · < m1 ≤ mo. By Lemma 4.4.5,

w̄(i , t) � w(cm1 , cm1+1)am1 · · ·w(cmk , cmk+1)amk .

Since mk < mk−1 < · · · < m1 ≤ mo, indeed

si , j ≤
cm1

cm1+1
≤

cmo

cmo+1

as desired.
Now suppose that j ≥ jo. If amo+1 < r−1, then by Lemma 4.4.5, we may

view α(i , jo) as a tail of the maximal Dyck path in Rcwo+2×cwo+1 , so that the
slope si , jo may be computed as follows:

si , jo �
cmo+1 − amo cmo

cmo+2 − amo cmo+1
.

If amo+1 � r − 1, then we may view α(i , jo) as a tail of the maximal Dyck
path in R(cmo+2−cmo+1)×(cmo+1−cmo ), and

si , jo �
cmo+1 − cmo − amo cmo

cmo+2 − cmo+1 − amo cmo+1
.
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Note that by Lemma 4.8.11, in this case, 1+ amo ≤ r − 1. Therefore, in both
cases, we may apply Proposition A.0.6 to get that si , jo > s. This shows the
first part of the theorem.

The first part of the theorem shows that for j ≥ jo, α(i , j) and α(i , jo)
have the same color. So to finish the proof, it suffices show that α(i , jo) is
red if and only if jo − i � 1. Recall that α(i , jo) is green if we can write

jo − i � cm − wcm−1

where 3 ≤ m ≤ n − 2 and 1 ≤ w < r − 1. But

cm − wcm−1 ≥ cm − (r − 2)cm−1 � cm−1 + (cm−1 − cm−2) > 1.

Conversely, suppose that jo − i , 1. We can always write

jo − i � cmo+1 − wcmo (4.8)

where 1 ≤ w ≤ r − 1 and mo ≥ 2. If w < r − 1, then Equation 4.8 shows that
α(i , jo) is green. If w � r − 1, it follows from Equation 4.8 that

jo − i � cmo+1 − (r − 1)cmo � cmo − cmo−1.

Since jo − i , 1, we must have mo , 2. So mo ≥ 3 and α(i , jo) is green. �

We also need a quick lemma which tells us about quantities related to
traversing the maximal Dyck path backwards, as remote shadows do.

Lemma 4.8.13. Let (a , b) � (cn+1 , cn) or (cn+1 − cn , cn − cn−1). For 0 ≤
i < a, let the highest point on the maximal Dyck path Da×b with horizontal
coordinate a − i be (a − i , b − j). Let the greedy decomposition of i be∑

m≥1 am cm. Then j �
∑

m≥1 am cm−1 + 1.

Proof. By Lemma 4.4.5, if (i , j) is the highest point on the maximal Dyck
path Da×b with horizontal coordinate i, and i �

∑
m≥1 am cm, then j �∑

m≥1 am cm−1.
The lemma then follows from the above observation and Proposition

4.4.6. �

Theorem 4.8.14. Given i, let jo be as defined in Lemma 4.8.12. Conjecture
4 is true if S2 � {µi , . . . , µt}, where t ≤ jo.
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Proof. Let us first consider the case where α(i , t) is blue, i.e. when t < jo.
Since F (Dn) places no restrictions on the inclusion of additional edges, we
have that Φ̃−1(S1 , S2) ∈ F (Dn) for any choice of S1 ⊆ rsh(S2), so it suffices to
show that when S2 � {µi , . . . , µt} where t < jo, and when S1 ⊆ rsh(S2), the
pair (S1 , S2) is always compatible. We proceed by strong induction. In the
base case where t � i +1, since rsh(S2) � ∅, the claim is trivially true. Next,
consider a generic α(i , t) where t < jo. Since α(i , k) is blue for all i < k ≤ t,
it suffices to consider the compatibility of pairs (ρ, µt), where ρ ∈ S1. Let ρ
be the leftmost edge of rsh(µt ; S2) � rsh(S2). For every ρ′ ∈ S1, there exists
some smallest i < k ≤ t such that ρ′ ∈ rsh(µk ; S2). By induction, we know
that ρ and µt are compatible, and the choice of a point which demonstrates
their compatibility will also demonstrate the compatibility of ρ′ and µt .
Therefore, it suffices to show that the edges (ρ, µt) are compatible.

Let E � (x1 , y1) be the left endpoint of ρ, F � vi, and G � (x2 , y2+1) � vt .
Let h1 ≡cn−3 y2 − i, h2 ≡cn−3 i − y1.

If |(FG)1 | � ∑
m≥1 am cm,

h1 + 1 � |(FG)2 | �
∑
m≥1

am cm−1;

| rsh(S2)| � r |(FG)2 | − |(FG)1 | �
∑
m≥1

am cm−2;

h2 �
∑
m≥1

am cm−3 + 1,

where the first two equations are due to Lemma 4.4.5, and the last is due to
Lemma 4.8.13.

Recall that cm−3 + cm−1 � rcm−2. By Lemma 4.8.7, since h1 + h2 �

r | rsh(S2)| ≥ r |S1 |, we conclude that (ρ, µt) are compatible.
Now consider the case where t � jo, in which case α(i , t) is red or green.

Since t � jo is the first k > i such that α(i , k) is not blue, we know that (ρ, µk)
is compatible for all i ≤ k < t and ρ ∈ S1. Therefore, for the same reason
as before, it suffices to show that the edges (ρ, µt) are compatible, where
ρ is the leftmost edge of rsh(µt ; S2) � rsh(S2). Define E, F,G, y1 , y2 , h1 , h2
in the same manner as in the previous case. Since t � jo, we may write
h1+1 � t− i � cm −wcm−1 where 1 ≤ w ≤ r−1 and m > 1. Then by Lemma
4.4.5, we have the following,

| rsh(S2)| � r |(FG)2 | − |(FG)1 | � cm−1 − wcm−2;
h2 � cm−2 − wcm−3.
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Therefore, h1 + h2 � cm − wcm−1 + cm−2 − wcm−3 − 1 � r | rsh(S2)| − 1.
Since rsh(S2) in this case clearly consists of consecutive horizontal edges,
the converse of Lemma 4.8.7 is also true. Therefore, the edges (ρ, µt) are
compatible if and only if h1 + h2 ≥ r |S1 |, which occurs if and only if |S1 | <
| rsh(S2)|. This corresponds exactly to the requirement that for β ∈ F (Dn), if
α(i , j) ∈ β is red, the immediately preceding edge of α(i , j) must be included
in β, and if α(i , j) ∈ β is (m ,w)-green, then one of the previous cm−1−wcm−2
edges must be included in β.

�



Chapter 5

F-Polynomial Limits in Ãn ,1

In this chapter, we discuss limits of certain ratios of F-polynomials in the
cluster algebra Ãn ,1. In Section 5.1, we will introduce Ãn ,1, establish some
useful notations and discuss the connections between Ãn ,1 and triangulations
of a certain surface. In Section 5.2, we introduce (generalized) continued frac-
tions, which turn out to be a surprisingly suitable approach for understanding
the limits that we are concerned with. In Section 5.3, we will provide an
exposition of a variety of approaches to a particular F-polynomial limit in the
Kronecker case, which acts as the starting point for our work. In Section 5.4,
we will state and prove our results about analogous limits of F-polynomials
in the Ãn ,1 cluster algebra.

5.1 The Cluster Algebra Ãn ,1

Recall from Chapter 1 that the cluster algebra Ãn ,1 is the skew-symmetric
cluster algebra defined by the quiver Qn ,1.

1 2 · · · n + 1

Figure 5.1 The quiverQn ,1

One may check that the Cartan companion (see Section 2.4) of the
adjacency matrix of Qn ,1 has corank equal to 1, which shows that Ãn ,1 is an
affine cluster algebra. Compared to the r-Kronecker, which is of indefinite
type when r ≥ 3, the cluster algebra Ãn ,1 is an affine generalization of the
Kronecker cluster algebra. See also Remark 5.3.1 for an explanation of why
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we do not expect our specific line of investigation to work out with the
r-Kronecker.

The cluster algebra Ãn ,1 is of surface type. For a rigorous and general
introduction to cluster algebras of surface type, we point the reader to Section
2 of Fomin et al. (2008). We will proceed to introduce what being of surface
type means for Ãn ,1 in a more hands-on manner. Let Tn ,1 be the annulus
with two boundary components, n marked points on the outer boundary, and
1 marked point on the inner boundary.

Figure 5.2 The annulus T4,1

Then cluster variables of Ãn ,1 are in bijection with (isotopy classes1 of)
arcs that connect two marked points on Tn ,1, and clusters of Ãn ,1 are in
bijection with (ideal) triangulations2 of Tn ,1. In the case of Tn ,1, by convention,
the triangulation given in Figure 5.3 is taken to be the initial triangulation,
namely, the triangulation that corresponds to the initial seed.

Given a triangulation, there is a procedure for obtaining a quiver, whose
adjacency matrix is the exchange matrix of the corresponding cluster. We
consider every marked point, which is the endpoint of some possibly empty
collection of arcs. For each such marked point, we draw counterclockwise
edges between adjacent arcs. This creates a quiver whose vertices are the
arcs of the triangulation and whose edges are determined by the arrows we
have drawn. Figure 5.4 shows how we obtain the quiver Q3,1 from the initial
triangulation of T3,1. The labeling of an edge denotes the initial cluster

1Two arcs are in the same isotopy class if we can deform one into the other without
touching the annulus.

2Intuitively, one could understand ideal triangulations as triangulations where we replace
straight edges with arcs. Just like how triangulations of a polygon consist of maximal
non-crossing collections of diagonals, ideal triangulations consist of maximal non-crossing
collections of these arcs, where we say two arcs don’t cross if there are representatives of
their isotopy classes which don’t cross.
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. . .

n + 1

n
n − 1

2

1

Figure 5.3 The initial triangulation of Tn ,1

variable to which the edge corresponds. Mutations can also be understood
from the perspective of arcs and triangulations: every arc borders two ideal
triangles in a triangulation, which together forms a quadrilateral in which the
arc is a diagonal; a mutation at a cluster variable corresponds to replacing
the corresponding arc by the other diagonal of the quadrilateral.

4

3 2

1

1 2 3 4

Figure 5.4 Obtaining the initial quiver Q3,1 from the initial triangulation of
T3,1
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4

3 2

1 4

3

2

1

µ3

Figure 5.5 Mutation at an arc

Let µ+ be the infinite sequence of mutations given by repeated applications
of µ1µ2 · · · µn+1, and let µ− be the infinite sequence of mutations given by
repeated applications of µn+1µn · · · µ1. For m ≥ 1, let µ+(m) and µ−(m)
denote the sequence of the first m mutations of µ+ and µ−. Let xn+m denote
the new cluster variable from applying the last mutation in the sequence
µ+(m) and let x1−m denote the new cluster variable from applying the last
mutation in the sequence µ−(m). We will use gm , Fm to denote the g-vectors
and F-polynomials associated to the cluster variable xm. Similar to the
rank-two case, any xm appears in n + 1 different clusters along the µ+ and
µ− sequence, and has a c-vector associated to it at each of these clusters. We
let cm denote the c-vector of xm at the cluster along the µ+ or µ− sequences
which is closest to the initial cluster.

The mutation sequences µ+ and µ− have the properties of being a source
mutation sequence and a sink mutation sequence respectively. A source (resp.
sink) mutation sequence is a sequence of mutations which at each step, is at
a source (resp. sink) of the underlying acyclic quiver. One may check that
µ+ and µ− are the unique source and sink sequences that start at the initial
seed. For instance, the vertex 1 is the unique source of the quiver Qn ,1, and
the vertex n + 1 is the unique sink of the quiver Qn ,1. Mutations along the
source and sink sequences are always exchanging a bridging arc by another
bridging arc. Using the surface interpretation, one easily checks that every
cluster variable that corresponds to a bridging arc appears as xm for some
nonzero m ∈ Z.

5.2 Some Background on Continued Fractions

Traditionally, continued fractions provide a correspondence between R≥1 and
positive integer sequences. Given a possibly infinite sequence of positive
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integers a0 , a1 , a2 , . . . , the continued fraction [a0; a1 , a2 , . . . ] is a real number
defined by

[a0; a1 , a2 , . . . ] � a0 +
1

a1 +
1

a2 +
1

a3 + . . .

.

Conventionally, we write a semicolon after a0 to distinguish it form the
rest of the ai’s because it is the integer part of the real number defined by
this continued fraction. Conversely, given a real number r, a recursive process
allows us to express it in the form [a0; a1 , a2 , . . . ]. One starts with r0 � r,
and let a0 � br0c, which leaves us with r1 � 1

r0−a0
. At each stage, ak � brkc,

and rk+1 �
1

rk−ak
. Visually, we have that for each k ≥ 0,

r � a0 +
1

· · · +
. . .

ak +
1
rk

.

Under this correspondence, rational numbers correspond to finite continued
fractions and irrational numbers correspond to infinite continued fractions.

Example 5.2.1. A continued fraction evaluates to a quadratic irrational
if and only if it is periodic3. As an example, we evaluate two continued
fractions related to our work. We claim that for n ≥ 1 and 1 < k ≤ n,

[2; n , 1] � 3n +
√

n2 + 4n
2n

, (5.1)

[1; k − 1, 1, n] � 2k(n − k + 1)+ n +
√

n2 + 4n
2kn − 2(k − 1)2 . (5.2)

Let z � [n; 1, n]. Then by the periodicity of this continued fraction,

z � n +
1

1 +
1
z

.

Solving for z, we obtain

z �
n ±
√

n2 + 4n
2

.

3See Theorem 176 and 177 of Hardy and Wright (2008).
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Since z is evidently positive and n −
√

n2 + 4n < 0, we must have

z �
n +
√

n2 + 4n
2

.

It follows that

[2; n , 1] � 2 +
1
z
�
3n +

√
n2 + 4n
2n

.

To evaluate the left-hand side of Equation 5.2, let y � [1; n , 1]. Then

y � 1 +
1
z
�

n +
√

n2 + 4n
2n

.

Now

[1; k − 1, 1, n] � 1 +
1

k − 1 +
1
y

,

which, after some algebra, simplifies to the right-hand side of Equation 5.2.

Given an infinite continued fraction [a0; a1 , a2 , . . . ], the rational number
cn � [a0; a1 , . . . , an] is called a continuant. The sequence {cn}n∈Z of continu-
ants is a sequence of rational numbers that approaches the exact continued
fraction. It is well-known classically that if we let cn �

hn
kn
, that hn and kn

can be found recursively:

h−2 � 0, h−1 � 1, hn � an hn−1 + hn−2; (5.3)
k−2 � 1, k−1 � 0, kn � an kn−1 + kn−2. (5.4)

Moreover, hn kn−1 − hn−1kn � (−1)n+1, which implies that

cn − cn−1 �
hn

kn
−

hn−1

kn−1
�
(−1)n+1

kn kn−1
.

Example 5.2.2. Consider the real number 3+
√
5

2 � [2; 1], which is the
Golden ratio plus one. It is well-known that the golden ratio is approxi-
mated by ratios of adjacent Fibonacci numbers. We calculate that

h0 � 2; h1 � 3, h2 � 5, . . .

k0 � 1; k1 � 1, k2 � 2, . . .
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which one might notice are the Fibonacci numbers. This suggests that the
sequence of continuants of 3+

√
5

2 is

2
1
,
3
1
,
5
2
,
8
3
,
13
5
, . . .

the ratio of every other Fibonacci, which agrees with our understanding of
the golden ratio.

In our application, we will need to slightly generalize the classical contin-
ued fraction. Let R be Z[y1 , . . . , yn]. A generalized continued fraction over
R, notated [[a0 , a1 , a2 , . . . ], [b1 , b2 , . . . ]], where ai , bi ∈ R, is notated as

a0 +
b1

a1 +
b2

a2 + · · ·

,

which is an element of Q[[y1 , . . . , yn]]. We understand b0 to be 1. For n ≥ 0,
we similarly define continuants to be

cn � [[a0; a1 , . . . , an], [b1 , . . . , bn]],
which are rational functions in y1 , . . . , yn but could be understood as power
series as well by Taylor-expanding the denominator at the origin.

We shall prove a result about these continuants analogous to the classical
scenario.

Theorem 5.2.3. Let cn be the n-th continuant of a generalized infinite
continued fraction [[a0 , a1 , a2 , . . . ], [b1 , b2 , . . . ]]. Then cn �

hn
kn
, where

h−2 � 0, h−1 � 1, hn � an hn−1 + bn hn−2; (5.5)
k−2 � 1, k−1 � 0, kn � an kn−1 + bn kn−2. (5.6)

Moreover, hn kn−1 − hn−1kn � (−1)n+1b1b2 · · · bn, which implies that

cn − cn−1 �
hn

kn
−

hn−1

kn−1
�
(−1)n+1b1b2 · · · bn

kn kn−1
.

Proof. We prove that cn �
hn
kn

by induction on n. When n � 0,

h0 � a0h−1 + b0h−2 � a0 , k0 � a0k−1 + b0k−2 � 1,
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which gives us h0
k0

� a0 � [[a0], []] � c0, as expected. When n � 1,

h1 � a1h0 + b1h−2 � a1a0 + b1 , k1 � a1k−1 + b1k−2 � a1 ,

so indeed h1
k1

�
a1a0+b1

a1
� [[a0; a1], [b1]] � c1. Now suppose that the claim is

true for n � m − 2,m − 1. Then

cm � [[a0; a1 , . . . , am−2 , am−1 +
bm

am
], [b1 , . . . , bm−1]]

�
(am−1 + bm

am
)hm−2 + bm−1hm−3

(am−1 + bm
am
)km−2 + bm−1km−3

�
hm−1 + bm

am
hm−2

km−1 + bm
am

km−2

�
am hm−1 + bm hm−2

am km−1 + bm km−2

�
hm

km
.

We will now show the claim that hn kn−1 − hn−1kn � (−1)n+1b1b2 · · · bn. We
may verify this for n � 0:

h0k−1 − h−1k0 � a0 · 0 − 1 · 1 � −1.

Now suppose that the claim is true for n � m − 1. Then

hm km−1 − hm−1km � (am hm−1 + bm hm−2)km−1 − hm−1(am km−1 + bm km−2)
� bm hm−2km−1 − bm km−2hm−1

� −bm(−1)m b1b2 · · · bm−1

� (−1)m+1b1b2 · · · bm

as desired. �

Corollary 5.2.4. Given the same setup as Theorem 5.2.3, for n ≥ 0,

c2n+2 − c2n �
a2n+2b1b2 · · · b2n+1

k2n+2k2n
.
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Proof.

c2n+2 − c2n � (c2n+2 − c2n+1)+ (c2n+1 − c2n)
� (−1)2n+2+1 b1b2 · · · b2n+2

k2n+2k2n+1
+ (−1)2n+2 b1b2 · · · b2n+1

k2n+1k2n

�
−b2n+2k2n + k2n+2

k2n+2k2n+1k2n
b1b2 · · · b2n+1

�
a2n+2b1b2 · · · b2n+1

k2n+2k2n
,

where the last equality is due to k2n+2 � a2n+2k2n+1 + b2n+2k2n. �

5.3 An F-Polynomial Limit in the Kronecker Quiver

The starting point for this work is a result due to Canakci and Schiffler (2017)
about the limit of ratios of certain cluster variables in the cluster algebra of the
once-punctured torus, which specializes to the Kronecker quiver Ã1,1. This
result is later rediscovered in Reading (2020b) in the form of F-polynomials.

Specifically, they considered the power series

N( ŷ1 , ŷ2) :� lim
i→∞

Fi+1( ŷ1 , ŷ2)
Fi( ŷ1 , ŷ2) � lim

i→−∞

Fi−1( ŷ1 , ŷ2)
Fi( ŷ1 , ŷ2) .

Since all F-polynomials have a constant term 1, both of the ratios Fi+1( ŷ1 , ŷ2)
Fi( ŷ1 , ŷ2)

and Fi−1( ŷ1 , ŷ2)
Fi( ŷ1 , ŷ2) can be understood as a power series by Taylor-expanding the

denominator at ŷ1 � ŷ2 � 0. It is a not-so-obvious fact that the coefficients
of these power series stabilize as we take i → ∞ or i → −∞, so that we
can say that a limit power series N exists. There are several perspectives
we can take to try to understand this power series. We may describe the
coefficients explicitly, which are parameterized by the possible exponents
on ŷ1 , ŷ2. We may also try to write this power series in a compacter form.
This is analogous to how there is a generating function for the Narayana
numbers which involves a square root. Reading (2020b) provides both of
these perspectives on N as he proves that

N( ŷ1 , ŷ2) � 1 + ŷ1
∑
i , j≥0

(−1)i+ j Nar(i , j) ŷ i
1 ŷ j

2 (5.7)

�
1
2

(
1 + ŷ1 + ŷ1 ŷ2 +

√
1 + 2 ŷ1(1 − ŷ2)+ ŷ2

1(1 + ŷ2)2
)
, (5.8)
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where for i , j ≥ 0, Nar(i , j) denotes the Narayana number

Nar(i , j) �



1 if i � j � 0,
0 if i j � 0,
1
i

�i
j

�� i
j−1

�
if i ≥ 1 and j ≥ 1.

In Canakci and Schiffler (2017), they understood this power series as an
infinite (generalized) continued fraction that involves only Laurent monomials
in ŷ1 and ŷ2. The way that they determine the specific Laurent polynomials is
related to the so-called snake graph associated to a cluster variable of surface
type. Canakci and Schiffler (2017) states their result for cluster variables.
The analogous result for F-polynomials would be the following:

N( ŷ1 , ŷ2) � [[1 + ŷ1 , 1, ŷ1], [ ŷ1 ŷ2 , 1]].
Lastly, observe that the difference between the g-vectors associated to Fi+1
and Fi is constant:

gi+1 − gi �

[
−1
1

]
.

Let γ∞ and γ−∞ be the paths labeled in Figure 5.6. Nathan Reading ob-
serves that the limit limi→∞

Fi+1( ŷ1 , ŷ2)
Fi( ŷ1 , ŷ2) can be understood as the path-ordered

product of xgi+1−gi � x−11 x2 under the path γ∞, and a similar statement

holds for limi→−∞
Fi−1( ŷ1 , ŷ2)
Fi( ŷ1 , ŷ2) and γ−∞. See Reading (2020b) for a more precise

statement and explanation. This perspective provides a visual intuition for
why the limits in the positive and negative directions are equal: the limits of
the two path-ordered products emanate from the same limiting wall in the
scattering diagram, and crossing the limiting wall acts trivially on x−11 x2.

In Chapter 3, we showed the equivalence of path-ordered products with
Gupta’s formula. However, Gupta’s formula provides yet another perspective.
This computation was first done by Gregg Musiker, who noticed that since

F`+2( ŷ1 , ŷ2) � L`1L`−12 · · · L` ,

we have
F`+3( ŷ1 , ŷ2)
F`+2( ŷ1 , ŷ2) � L1L2 · · · L`+1 ,

and so

N( ŷ1 , ŷ2) �
∞∏

i�1

Li .
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Figure 5.6 The path-ordered products pγ∞(x−11 x2) and pγ−∞(x−11 x2) are re-
spectively the limits in the positive and negative directions in Equation 5.8;
Figure 3 of Reading (2020b)

By Lemma 3.3.1,

L1L2 · · · L` �
∑

(m1 ,...,m`)∈Z`≥0

∏̀
j�1

(
1 +

∑`
k� j+1 2( j − k)mk

m j

)
y
∑`

i�1 imi
1 y

∑`
i�1(i−1)mi

2 ,

(5.9)
which implies that

N( ŷ1 , ŷ2) �
∑

(m1 ,m2 ,... )∈Z∞≥0

∞∏
j�1

(
1 +

∑
∞

k� j+1 2( j − k)mk

m j

)
y
∑
∞

i�1 imi
1 y

∑
∞

i�1(i−1)mi
2 ,

where the sum is over all nonnegative integer sequences that are only non-zero
at finitely many indices. Because a sequence is only non-zero at finitely many
indices, the infinite product

∏
∞

j�1
�1+∑

∞

k� j+1 2( j−k)mk
m j

�
is necessarily finite, and

the sums
∑
∞

i�1 imi and
∑
∞

i�1(i − 1)mi are also finite.

Remark 5.3.1. Before we move into the next section and start discussing
our results for Ãn ,1, let us remark on why we did not look into limits of
ratios of F-polynomials for rank-two cluster algebras. In this section, we saw
that this question has a nice answer for the Kronecker quiver. To illustrate
why there is not a similar answer for A(b , c) where bc > 4, let us consider
the case of A(3, 3). If the ratio of F-polynomials tends to a certain limit,
we expect that the specializations of these ratios under y1 � y2 � 1, which
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would give a sequence of rational numbers, also converge. However, in the
case of A(3, 3), the first few F`(1, 1) are

1, 1, 2, 9, 365, 5403014, 432130991537958813,
14935169284101525874491673463268414536523593057 . . .

The ratios of adjacent terms in this sequence clearly diverges.
However, there was actually no reason not to look into the analogous

limit for A(1, 4). This is a direction for future research, and we record some
of our preliminary findings here.

Looking at the g-vectors of cluster variables in A(1, 4), we find that they

converge to the vector
[
−1
2

]
, which corresponds to the slope of the limit ray

in the scattering diagram for A(1, 4). One can show that

2g2m − g2m−1 � g2m+1 − 2g2m �

[
−1
2

]
,

which suggests that the limit of the following sequence is the correct analogue
of N :

F2
4

F3
,

F5

F2
4
,

F2
6

F5
,

F7

F2
6
, . . .

Based on data, we found that as power series, this sequence appears to tend
to a limit. Expressing each term of this sequence as a generalized continued
fraction also suggested a pattern.

Let 4̃ � 1 + y1 + 2y1y2, 3̃ � 1 + 2y2.

n Numerically [a0 , a1 , . . . ] [b1 , b2 , . . . ]
F2
4/F3 [4; 1, 1] [4̃, 1, y1] [y1 y2

2 , 1]
F5/F2

4 [4; 1, 1, 3, 1] [4̃, y1 , 1, 3̃, y1] [y2
1 y2

2 , 1, y2
2 , 1]

F2
6/F5 [4; 1, 3, 1, 1, 3, 1] [4̃, y1 , 3̃, y1 , 1, 3̃, y1] [y2

1 y2
2 , 1, y1 y2

2 ,1, y2
2 , 1]

F7/F2
6 [4; 1, 3, 1, 1, 3, 1, 3, 1] [4̃, y1 , 3̃, y1 , 1, 3̃, y1 , 3̃, y1] [y2

1 y2
2 , 1, y1 y2

2 ,1, y2
2 , 1, y1 y2

2 , 1]
F2
8/F7 [4; 1, 3, 1, 3, 1, 1, 3, 1, 3, 1] [4̃, y1 , 3̃, y1 , 3̃, y1 , 1, 3̃, y1 , 3̃, y1] [y2

1 y2
2 , 1, y1 y2

2 , 1, y1 y2
2 ,1, y2

2 , 1, y1 y2
2 , 1]

F9/F2
8 [4; 1, 3, 1, 3, 1, [4̃, y1 , 3̃, y1 , 3̃, y1 , [y2

1 y2
2 , 1, y1 y2

2 , 1, y1 y2
2 ,

1, 3, 1, 3, 1, 3, 1] 1, 3̃, y1 , 3̃, y1 , 3̃, y1] 1, y2
2 , 1, y1 y2

2 , 1, y1 y2
2 , 1]

F2
10/F9 [4; 1, 3, 1, 3, 1, 3, 1, [4̃, y1 , 3̃, y1 , 3̃, y1 , 3̃, y1 , [y2

1 y2
2 , 1, y1 y2

2 , 1, y1 y2
2 , 1, y1 y2

2 ,
1, 3, 1, 3, 1, 3, 1] 1, 3̃, y1 , 3̃, y1 , 3̃, y1] 1, y2

2 , 1, y1 y2
2 , 1, y1 y2

2 , 1]

Table 5.1 Continued Fraction Expansions of Ratios inA(1, 4)

We expect that in the limit, the red part takes over: the numerical limit
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should be [4; 1, 3] � 1
2 (5 +

√
21), and the power series should tend to

[[4̃, y1 , 3̃], [y2
1 y2

2 , 1, y1y2
2]]

�
1
2

(
1 + y1 + 2y1y2 + y1y2

2 +
√
(1 + y1 + 2y1y2 − y1y2

2)2 + 4y2
1 y2

2(1 + 2y2)
)
.

We checked using Sage that this square root expression correctly predicts
the coefficients of those y i

1y j
2 in F17

F2
16

with i + j < 20.

5.4 F-Polynomial Limits in Ãn ,1

5.4.1 The Nk ,n Series and Continued Fractions

For n ≥ 1 and 1 ≤ k ≤ n, let

Nk ,n(y1 , . . . , yn+1) � lim
m→∞

Fmn+k+1(y1 , . . . , yn+1)
Fmn+k(y1 , . . . , yn+1) .

When k � n � 1, this specializes to the power series N discussed in
Section 5.3. Since the following limits agree:

lim
m→∞

Fmn+k+1(y1 , . . . , yn+1)
Fmn+k(y1 , . . . , yn+1) � lim

m→−∞

Fmn+k+1(y1 , . . . , yn+1)
Fmn+k(y1 , . . . , yn+1) ,

which can be shown by writing these limits as path-ordered products and using
the consistency of the scattering diagram for An ,1 (see Reading (2020b)), we
restrict our attention to the positive direction of this limit in the following
discussion.

Similarly to how we studied N in Section 5.3, we take several different
perspectives to characterize Nk ,n. In this section, we state how Nk ,n can be
expressed in a closed form and as two different continued fractions. We will
prove the equivalence of the closed form and the continued fraction expansions,
and relay the proof of the theorems themselves to the next section. We shall
need the following shorthand for polynomials that show up frequently in our
expressions.

Definition 5.4.1. Let

P+(y1 , . . . , yn) � 1 + y1 + · · · + y1y2 · · · yn−1 + y1y2 · · · yn ,

P−(y1 , . . . , yn) � 1 + y1 + · · · + y1y2 · · · yn−1 − y1y2 · · · yn .

We fix the convention that P±(yp , . . . , yq) � 1 if p � q+1 and P±(yp , . . . , yq) �
0 if p � q + 2.
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Theorem 5.4.2. Let

Bk ,n � yk+1(P+(yk+2 , . . . , yn)+ y1P+(y2 , . . . , yk−1)P+(yk+1 , . . . , yn+1)),
Ak ,n � Bk ,n + P+(y1 , . . . , yk−1),
∆n � P−(y1 , . . . , yn+1)2 + 4y2

1 y2 · · · yn+1P+(y2 , · · · , yn).
Then for 1 ≤ k ≤ n,

Nk ,n(y1 , . . . , yn+1) � P+(y1 , . . . , yn+1)+ 2Bk ,n +
√
∆n

2Ak ,n
. (5.10)

Remark 5.4.3. The terms Ak and Bk are equivalently

Ak ,n � P+(y1 , . . . , yk−1)P+(yk+1 , . . . , yn+1) − yk+1yk+2 . . . yn+1 ,

Bk ,n � Ak ,n − P+(y1 , . . . , yk−1).
This gives a simpler way of computing Bk ,n, but we chose to present Theorem
5.4.2 this way because it makes the coefficients of terms in Bk ,n evidently
positive.

Example 5.4.4. If we let k � n � 1, then

A1,1 � 1, B1,1 � 0,∆1 � P−(y1 , y2)2 + 4y2
1 y2 ,

so Theorem 5.4.2 says that

N � N1,1 �
1
2

(
1 + y1 + y1y2 +

√
(1 + y1 − y1y2)2 + 4y2

1 y2
)
,

which agrees with Equation 5.8. Beyond the n � 1 case, we provide the
following table to give some intuition for the terms in Equation 5.10.

n k Ak ,n Bk ,n

2 1 1 + y2 y2
2 2 1 + y1 + y1y3 y1y3
3 1 1 + y2(1 + y3) y2(1 + y3)
3 2 1 + y1 + y3(1 + y1 + y1y4) y3(1 + y1 + y1y4)
3 3 1 + y1 + y1y2 + y1y4(1 + y2) y1y4(1 + y2)
n 1 1 + y2P+(y3 , . . . , yn) y2P+(y3 , . . . , yn)
n n P+(y1 , . . . , yn−1)+ y1yn+1P+(y2 , . . . , yn−1) y1yn+1P+(y2 , . . . , yn−1)

Table 5.2 Some Examples ofAk ,n and Bk ,n
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We are inspired by the Kronecker case to write the power series Nk ,n as
generalized infinite continued fractions. Under the specialization yi 7→ 1,

Ak ,n 7→ k(n + 2 − k) − 1, Bk ,n 7→ k(n + 1 − k) − 1, ∆n 7→ n2 + 4n ,

so by Theorem 5.4.2,

Nk ,n
����yi�1

�
2kn − 2k2 + 2k + n +

√
n2 + 4n

2kn − 2k2 + 4k − 2
�
2k(n − k + 1)+ n +

√
n2 + 4n

2kn − 2(k − 1)2 .

Therefore by Equation 5.1 and Equation 5.1, we expect a continued fraction
formula for Nk ,n to specialize as follows:

Nk ,n
����yi�1

�




[2; n , 1], if k � 1,
[1; k − 1, 1, n], if 1 < k ≤ n.

We provide two such continued fraction expansions.

Theorem 5.4.5. For 1 ≤ k ≤ n, let

αk ,n �




P−(y1 ,...,yn+1)
y2
1 y2 ...yn+1

, if k � 1,
P+(y1 ,...,yn+1)−2

y1 y2 ...yk
, if 1 < k ≤ n ,

βk ,n �




P−(y1 ,...,yn+1)
P+(y2 ,...,yn) , if k � 1,

y2y3 · · · yk
P+(y1 ,...,yn+1)−2

P+(y2 ,...,yn) , if 1 < k ≤ n.

For 1 < k ≤ n, let

γk ,n �
P+(y2 , . . . , yk−1)

y2 . . . yk
.

Then

Nk ,n �




[1 + y1; α1,n , β1,n], if k � 1,
[1; γk ,n , βk ,n , αk ,n], if 1 < k ≤ n.

(5.11)

One may check that as we expect, under the specialization yi 7→ 1, we
have that for 1 ≤ k ≤ n,

αk ,n 7→ n , βk ,n 7→ 1,

and for 1 < k ≤ n,
γk ,n 7→ k − 1.
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Example 5.4.6. Applying Theorem 5.4.5 to the cases where n � 2 and
k � 1, 2, we obtain

N1,2 �


1 + y1;

1 + y1 + y1y2 − y1y2y3
y2
1 y2y3

,
1 + y1 + y1y2 − y1y2y3

1 + y2


,

N2,2 �


1;

1
y2
,

y2
1 + y2

(−1 + y1 + y1y2 + y1y2y3), −1 + y1 + y1y2 + y1y2y3
y1y2


.

In the spirit of the Laurent phenomenon, we might allow generalized
continued fractions to obtain expansions that involve only (Laurent) polyno-
mials.

Theorem 5.4.7.

Nk ,n �




[[1 + y1 , P+(y2 , . . . , yn), y1], [y1y2 · · · yn+1 , 1]] if k � 1
[[1;P+(y2 , . . . , yk−1), y1 , P+(y2 , . . . , yn)], [y2 · · · yk , 1, y1y2 · · · yn+1]] if 1 < k ≤ n

In Appendix B, we show that the (generalized) infinite continued fraction
expansions of Nk ,n in Theorems 5.4.5 and 5.4.7 both evaluate to the square
root expression of Theorem 5.4.2. As such, Theorems 5.4.2, 5.4.5 and 5.4.7
are equivalent.

Example 5.4.8. We provide in Table 5.3 some of the first few examples of
Theorem 5.4.7.

n k [a0 , a1 , . . . ] [b1 , b2 , . . . ]
1 1 [1 + y1; 1, y1] [y1y2 , 1]
2 1 [1 + y1; 1 + y2 , y1] [y1y2y3 , 1]
2 2 [1; 1, y1 , 1 + y2] [y2 , 1, y1y2y3]
3 1 [1 + y1; 1 + y2 + y2y3 , y1] [y1y2y3y4 , 1]
3 2 [1; 1, y1 , 1 + y2 + y2y3] [y2 , 1, y1y2y3y4]
3 3 [1; 1 + y2 , y1 , 1 + y2 + y2y3] [y2y3 , 1, y1y2y3y4]

Table 5.3 Some examples of continued fraction expansions that involve poly-
nomials only

Remark 5.4.9. When the second way of writing Nk ,n as continued frac-
tions was introduced, we wrote that the entries are (Laurent) polynomials
rather than polynomials, despite how we never use negative exponents in the
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statement of Theorem 5.4.7. This is because one could scale all entries in
the continued fraction expansions of Theorem 5.4.7 by a certain monomial
and obtain essentially equivalent continued fractions which involve Laurent
polynomials. For example, compare Table 5.3 with Table 5.4.

n k [a0 , a1 , . . . ] [b1 , b2 , . . . ]
1 1 [1 + y1 , 1] [y1y2 , y−11 , y2]
2 1 [1 + y1; 1 + y−12 , 1] [y1y3 , y−11 y−12 , y3]
2 2 [1; 1, 1, 1 + y−12 ] [y2 , y−11 , y3 , y−11 y−12 ]

Table 5.4 Some examples of continued fraction expansions that involve Lau-
rent polynomials

Rewriting the expressions from Theorem 5.4.7 in the manner of Table
5.4 is motivated the q-continued fractions of Morier-Genoud and Ovsienko
(2020), which are q-analogues of classical continued fractions. For example,
if we specialize y1 � y2 � q in N1,1, we obtain the q-continued fraction

[
3 +
√
5

2

]

q
� [[1 + q , 1], [q2 , q−1 , q]].

This connection is detailed in Appendix B.2 of Morier-Genoud and Ovsienko
(2020).

5.4.2 First Proof of Theorems 5.4.2, 5.4.5, 5.4.7

In this subsection, we prove the theorem in the form of Theorem 5.4.7. The
two key lemmas are Lemma 5.4.11 and Lemma 5.4.14. The proof of Lemma
5.4.11 requires an explicit formula for the c, g-vectors, which we prove in
Proposition 5.4.10. The proof of Lemma 5.4.14 makes use of what are called
skein relations, which we briefly introduce. Using these two lemmas, we
show that the ratios of F-polynomials satisfy the recurrence of the proposed
generalized continued fractions given in Theorem 5.2.3.

We begin by proving the following explicit formulas for the positively-
indexed c, g-vectors.
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Proposition 5.4.10. For k ≥ 1,

ck+n+1 �



−

⌊
k+n−1

n

⌋

−

⌊
k+n−2

n

⌋

...
−

� k−1
n

�



, gk+n+1 �



−

⌊
k+n−1

n

⌋

ε1,k
ε2,k
...

εn−1,k� k
n

�
+ 1



, (5.12)

where

εi ,k �




1 if k ≡n i ,
0 otherwise.

Proof. After verifying that the formulas above are correct for 1 ≤ k ≤ n, we
proceed by induction relying on Equation 2.4 and Equation 2.5. Inspecting
the quivers, we find that it suffices to verify that for all k > n + 1, the
following identities are true for the proposed formulas of c, g-vectors:

ck+n+1 + ck � ck+1 + ck+n ,

gk+n+1 + gk � gk+1 + gk+n ,

which follows from a direct calculation. �

Lemma 5.4.11. For 1 ≤ k ≤ n and m ≥ 1,

Fmn+k+1F(m−1)n+k − Fmn+kF(m−1)n+k+1 � (y1y2 · · · yk)(y1y2 · · · yn+1)m−1.

Proof. Let t be the seed that corresponds to the cluster

(xmn+1 , . . . , xmn+k , x(m−1)n+k , x(m−1)n+k+1 , . . . , xmn),
and let t′ be the seed that corresponds to the cluster

(xmn+1 , . . . , xmn+k , xmn+k+1 , x(m−1)n+k+1 , . . . , xmn).
Note that t and t′ are both clusters along the source sequence µ+, and t′ is
one more mutation away from the initial seed. Now consider the mutation
t
µk+1
−−−→ t′. For 1 ≤ j ≤ 2(n + 1), let bt

j,k+1 denote the ( j, k + 1)-th B-matrix
entry at the seed t. By drawing the quiver corresponding to t, we see that
there are exactly two outgoing edges from k + 1 to k and k + 2 respectively,
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where the cluster variables are xmn+k and x(m−1)n+k+1. In other words, for
1 ≤ j ≤ n + 1, bt

j,k+1 � −1 if j � k , k + 2, and bt
j,k+1 � 0 otherwise.

By Proposition 5.4.10, for 1 ≤ j ≤ n + 1, we have

bt
n+1+ j,k+1 �

⌊
mn + k − j

n

⌋
�




m if 1 ≤ j ≤ k ,
m − 1 if k < j ≤ n + 1;

there is no negative sign because we have not mutated at k + 1 yet.
Thus, the exchange rule says that

Fmn+k+1 �
Fmn+kF(m−1)n+k+1 + (y1y2 · · · yk)(y1y2 · · · yn+1)m−1

F(m−1)n+k
,

which rearranges into the desired identity. �

We provide a simple example to illustrate the lemma.

Example 5.4.12. We always have Fn+2 � 1+y1 and F j � 1 for 1 ≤ j ≤ n+1.
Let k � 1 and m � 1. Then the theorem says that Fn+2F1 − Fn+1F2 � y1,
which is indeed true.

The proofs of the following two lemmas require some background on skein
relations, or generalized Ptolemy relations, which are identities which hold for
all cluster algebras of surface type. Given two crossing arcs, there are two
resolutions of the crossing into two non-crossing arcs. Skein relations are a
general identity that involve the cluster variables associated to the crossing
arcs and the resolutions. In the setting of principal coefficients, i.e. yi � 1 for
all 1 ≤ i ≤ n +1, the skein relation is exactly Figure 5.7, where the picture of
two curves represents the product of the cluster variables which correspond
to these two curves.

� +

Figure 5.7 Skein relations without coe�icients

The skein relations with coefficients can be obtained by adding to one
of the two terms in Figure 5.7 an appropriate monomial in the yi’s, which
is determined using certain laminations. There is a standard collection of
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laminations of Tn ,1 that we use. When n � 3, this is the collection of the
gray curves in Figure 5.8. These laminations are constructed from the initial
triangulation of Tn ,1 as follows: We perturb the arc that corresponds to xk
in the initial triangulation, so that in the universal cover, the resulting curve
crosses the outer (top) boundary slightly to the right of the original crossing,
and crosses the inner (bottom) boundary slightly to the left of the original
crossing. We do so while making sure that there are no crossings among the
resulting laminations. Label by Lk the lamination which comes from the
perturbation of xk . Given a crossing, the two arcs involved together cross some
multiset of laminations. One can show that one of the two resolutions crosses
the same multiset of laminations, while the other resolution crosses some
submultiset of laminations. Moreover, one can show that if the lamination
Lk is crossed nk times by the two crossing arcs, and is crossed mk times
by a resolution of the crossing, then nk − mk is even. Let εk �

nk−mk
2 . The

monomial we add in front of the resolution that crosses fewer laminations is
then

∏n+1
k�1 yεk

k .
For a more rigorous and general introduction to skein relations with

coefficients, we refer the readers to Musiker and Williams (2013) and Fomin
and Thurston (2018).

We name some of the arcs that we need to make use of in the surface
Tn ,1. Given the universal cover of Tn ,1 (see Figure 5.8 for the case where
n � 3), let the peripheral arc from the marked point labeled i to the marked
point labeled j be αi , j, and let β j be the bridging arc associated to the
F-polynomial F j. Note that we identify curves on the universal cover which
are the same when drawn on Tn ,1. For example, we say that α4,7 � α1,4.
Under this equivalence, one representative of β j is the bridging arc whose
endpoint on the inner boundary is labeled 1′, and whose endpoint on the
outer boundary is labeled j.
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L1 L4 L3 L2 L1 L4 L3 L2 L1

7 6 5 4 3 2 1

1′

α1,6
β3

Figure 5.8 The universal cover of T3,1, laminations, and examples of αi , j and
β j

Lemma 5.4.13. For 1 < s ≤ n + 1, the F-polynomial associated to α1,s is
P+(y2 , . . . , ys−1).
Proof. Let us abuse notation and denote the F-polynomial associated to
an arc by the name of the arc. We proceed by induction. When s � 2,
α1,2 � 1, which is indeed P+(y2 , . . . , y1). Suppose the claim is true for some
1 < s < n + 1. By applying skein relations to the crossing between α1,s and
βs−1, we find that

βs−1α1,s � βsα1,s−1 + y2y3 · · · ys−1β1αs−1,s .

See Figure 5.9 for an example. Since βs−1 � β1 � αs−1,s � 1, we have

α1,s � α1,s−1 + y2y3 · · · ys−1

� P+(y2 , . . . , ys−2)+ y2y3 · · · ys−1

� P+(y2 , . . . , ys−1).
�
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L4 L3 L2 L1

4 3 2 1

1′

Figure 5.9 When n � 3, s � 4, the skein relation associated to the crossing of
α1,4 and β3 yields α1,4β3 � β4α1,3 + y2y3β1α3,4

Lemma 5.4.14. Let 1 < s ≤ n + 1. Let k0 � 1, k1 � P+(y2 , . . . , ys−1),

km �




P+(y2 , . . . , yn)km−1 + y1y2 · · · yn+1km−2 m is odd,
y1km−1 + km−2 m is even.

Then k2m � Fmn+s(y1 , . . . , yn+1).
Proof. As before, let us abuse notation and denote the F-polynomial associ-
ated to an arc by the name of the arc. It suffices to show that k2m � βmn+s ,
and k2m+1 � α1,mn+s . We prove this by induction.

For our base case, since Fs � 1, indeed the F-polynomial associated to
the bridging arc βs is k0 � 1. By Lemma 5.4.13, the F-polynomial associated
to the peripheral arc α1,s is indeed k1 � P+(y2 , . . . , ys−1).

For the inductive step, it suffices to prove two claims: first, for m > 0, if
k2m � βmn+s , and k2m−1 � α1,(m−1)n+s , then k2m+1 � α1,mn+s ; secondly, for
m > 0, if k2m+1 � α1,mn+s , k2m � βmn+s , then k2m+2 � β(m+1)n+s .

To prove the first claim, we consider the crossing of α1,mn+s with βn+1.
Some examples are shown in Figure 5.10. The crossing gives rise to the
following skein relation:

α1,mn+sβn+1 � α1,n+1βmn+s + y1y2 · · · yn+1α1,(m−1)n+sβ1.
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L1 L4 L3 L2 L1 L4 L3 L2 L1 L4 L3 L2 L1

12345678910

1′

k1

k3k5

β4

Figure 5.10 When n � 3, s � 3, the figure shows the arcs associated to
k1 , k3 , k5, as well as the crossings of k3 and k5 with β4, which yields the
skein relation that defines them inductively; for instance, α1,6β4 � α1,4β6 +
y1y2y3y4α1,3β1

Since k2m−1 � α1,(m−1)n+s , β1 � βn+1 � 1, βmn+s � k2m, and α1,n+1 �

P+(y2 , . . . , yn) by Lemma 5.4.13, the above relation simplifies to:

α1,mn+s � P+(y2 , . . . , yn)k2m + y1y2 · · · yn+1k2m−1 � k2m+1.

Let us now prove the second claim, for which we consider the crossing
of β(m+1)n+s with β1. Some examples are shown in Figure 5.11. Let the
boundary arc which winds around the inner boundary once be denoted ω;
this is the green segment in Figure 5.11. The crossing gives rise to the
following skein relation:

β(m+1)n+sβ1 � y1α1,mn+sω + βmn+sβn+1 ,

which simplifies to

β(m+1)n+s � y1k2m+1 + k2m � k2m+2.
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L1 L4 L3 L2 L1 L4 L3 L2 L1 L4 L3 L2 L1

12345678910

1′

k0k2
k4 β1

ω

Figure 5.11 When n � 3, s � 3, the figure shows the arcs associated to
k0 , k2 , k4, as well as the crossings of k2 and k4 with β1, which yields the skein
relation that defines them inductively; for instance, α1,6β4 � α1,4β6 + α1,2β1

�

We are now ready to prove Theorem 5.4.7.

First Proof. Fix n ≥ 1 and 1 ≤ k ≤ n, and write the continued fraction
expansion of Nk ,n given by Theorem 5.4.7 as [[a0 , a1 , a2 , . . . ], [b1 , b2 , . . . ]].
Then to prove Theorem 5.4.7, it suffices to show that for 1 < k ≤ n + 1,

Fmn+k+1

Fmn+k
� [[a0 , a1 , . . . , a2m], [b1 , . . . , b2m]]. (5.13)

Corollary 5.2.4 allows us to proceed by induction. It suffices to show that

1. for 1 < k ≤ n + 1, Fk+1
Fk

� a0. Indeed, Fn+2
Fn+1

� 1 + y1 and Fk+1
Fk

� 1 for
1 < k ≤ n, which is equal to the a0 in each case;

2. for m > 1,

Fmn+k+1

Fmn+k
−

F(m−1)n+k+1

F(m−1)n+k
�

a2m b1b2 · · · b2m−1

k2m k2m−2
,

where km is as given by Theorem 5.2.3.

When m > 1, a2m b1b2 · · · b2m−1 � (y1y2 · · · yk)(y1y2 · · · yn+1)m−1, which, by
Lemma 5.4.11, is equal to Fmn+k+1F(m−1)n+k −Fmn+kF(m−1)n+k+1; by Lemma
5.4.14, the denominator can be rewritten as Fmn+kF(m−1)n+k . This proves
the second item, and concludes this proof. �
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5.4.3 Second Proof of Theorems 5.4.2, 5.4.5, 5.4.7

In our second proof, we will mostly be working with Theorem 5.4.2, and our
strategy is to relate Nk ,n for large n to the cases where n � 1, 2, 3. We first
prove some general results about how F-polynomials and their ratios change
as we make a change of initial seed.

Lemma 5.4.15. Let µ � µnµn−1 · · · µk1+1µ2µ3 · · · µk2 , where 1 ≤ k1 ≤ k2 ≤
n. The sequence µ mutates up to n−1 bridging arcs into peripheral arcs, and
leaves us bridging arcs labeled by i1 < i2 < · · · < im+1 for some 1 ≤ m < n.
By construction, i1 � 1, im+1 � n+1, and the subquiver at i1 , . . . , im+1 of the
quiver at the seed µ(t) is exactly Qm ,1. There is a unique mutation sequence
ν+ which is a source sequence for the subquiver formed by the bridging arcs.
Let F`( ŷ1 , . . . , ŷn+1) denote the `-th F-polynomial as we apply ν+ to µ(to).
Let F′`( ŷ1 , . . . , ŷn+1) denote the `-th F-polynomial along ν+ but written in
terms of µ(to) as the initial seed. Let F′′` ( ŷ1 , . . . , ŷm+1) denote the `-th F-
polynomial of Am ,1 along the usual source sequence, starting at the usual
initial seed. Let ŷ′ � µ ŷ.

Then F′`( ŷ′1 , . . . , ŷ′n+1) � F′′` ( ŷ′i1 , . . . , ŷ′im+1
), and

F`+1( ŷ1 , . . . , ŷn+1)
F`( ŷ1 , . . . , ŷn+1) �

F′`+1( ŷ′1 , . . . , ŷ′n+1)
F′`( ŷ′1 , . . . , ŷ′n+1)

�

F′′`+1( ŷ′i1 , . . . , ŷ′im+1
)

F′′` ( ŷ′i1 , . . . , ŷ′im+1
) .

Proof. First observe from the surface model interpretation that along the
sequence ν+, right before we mutate at k, if b jk , 0 for some j that corre-
sponds to a peripheral arc, we must have b jk > 0, whereas k is a source in
the subquiver of bridging arcs.

Let g` , c` , g′` , c
′

` denote the `-th g, c-vector along ν+, written in terms of
the initial seeds to and µ(to) respectively. Due to the observation above, one
can show using Equation 2.4 that c′` is only nonzero at entries ik and that
the sequence c′` is negative. The fact that c′` is only nonzero at entries ik
implies that F′ and F′′ satisfy the same recurrences, and so F′`( ŷ′1 , . . . , ŷ′n+1) �
F′′` ( ŷ′i1 , . . . , ŷ′im+1

). One can also show, using Equation 2.4, that the c`’s are
negative.

Since the c`’s are negative, and also using the first observation, the second
recurrence of g-vectors in Equation 2.5 never involves g j where j , ik . This
implies that g` � g′` for all ` > 0. Since gik � eik , we have that the g` vectors
are only nonzero at entries ik , where 1 ≤ k ≤ m + 1.

In general, for a cluster variable xα with g-vector gα and F-polynomial
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Fα, we have
xα � xgαFα( ŷ).

It follows that
F`( ŷ)
F′`( ŷ′)

�
x′g

′

`

xg`
.

But our previous discussion implies that the right hand side is 1. Therefore,

F`+1( ŷ1 , . . . , ŷn+1)
F`( ŷ1 , . . . , ŷn+1) �

F′`+1( ŷ′1 , . . . , ŷ′n+1)
F′`( ŷ′1 , . . . , ŷ′n+1)

.

�

The following lemma tells us what ŷ′ is.

Lemma 5.4.16. Let ( ŷ1 , . . . , ŷn+1) � ( ŷ1;to , . . . , ŷn+1;to ), where to is the
customary initial seed of Ãn ,1. For 1 ≤ k ≤ n − 1, let µ � µnµn−1 · · · µk+1.
Then

µ( ŷ j) � ŷ j for j < k ,
µ( ŷk) � ŷkP+( ŷk+1 , . . . , ŷn),

µ( ŷn+1) � ŷk+1 ŷk+2 · · · ŷn+1

P+( ŷk+1 , . . . , ŷn) .

Similarly, for 2 ≤ k ≤ n, let ν � µ2µ3 · · · µk . Then

ν( ŷ1) � ŷ1P+( ŷ2 , . . . , ŷk),
ν( ŷk+1) � ŷ2 ŷ3 · · · ŷk+1

P+( ŷ2 , . . . , ŷk) .
ν( ŷ j) � ŷ j for j > k + 1.

Proof. We prove the first part of the lemma since the second part is anal-
ogous. We proceed by induction. Let µ(n − k) � µnµn−1 · · · µk+1, and let
tn−k � µ(n− k)to. When k � n−1, since bto

n ,n+1 � 1, bto
n ,n−1 � −1, and bto

n , j � 0
for other 1 ≤ j ≤ n + 1, indeed Equation 2.6 suggests that ŷ j;t1 � ŷ j;to for
j < k, and

ŷn−1;t1 � ŷn−1;to (1 + ŷn;to ) � ŷn−1(1 + ŷn),
ŷn+1;t1 � ŷn+1;to ŷn;to (1 + ŷn;to )−1 �

ŷn ŷn+1

P+( ŷn) ,
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as the lemma suggests.
Assuming the lemma is true for some 1 < k ≤ n − 1, we want to show

that it is also true for k − 1. Consider the mutation µk from tn−k to tn−k+1.
We observe that btn−k

k ,n+1 � 1, btn−k
k ,k−1 � −1, and btn−k

k , j � 0 for other 1 ≤ j ≤ n+1.
So by Equation 2.6,

ŷk−1;tn−k+1 � ŷk−1;tn−k (1 + ŷk;tn−k )
� ŷk−1(1 + ŷkP+( ŷk+1 , . . . , ŷn))
� ŷk−1P+( ŷk , . . . , ŷn),

ŷn+1;tn−k+1 � ŷn+1;tn−k ŷk;tn−k (1 + ŷk;tn−k )−1

�
ŷk+1 · · · ŷn+1

P+( ŷk+1 , . . . , ŷn)
ŷkP+( ŷk+1 , . . . , ŷn)

1 + ŷkP+( ŷk+1 , . . . , ŷn)
�

ŷk · · · ŷn+1

P+( ŷk , . . . , ŷn) .

By our induction hypothesis, µ(n − k)( ŷ j) � ŷ j for j < k. Thus, for 1 ≤ j <
k − 1, since btn−k

k , j � 0, indeed we have

µ(n − k + 1)( ŷ j) � µk(µ(n − k)( ŷ j)) � µk( ŷ j) � ŷ j .

�

This concludes our discussion about changes of initial seeds in An ,1. Now
we are ready to use some of these results towards proving Theorem 5.4.2.
As we saw in Section 5.3, Theorem 5.4.2 is already proven for N1,1. An
appropriate change of seed helps us obtain the following theorem from the
formula for N1,1.

Theorem 5.4.17. Let

Tn( ŷ) �
n∏

k�1

Nk ,n( ŷ) � lim
m→∞

Fm+n( ŷ1 , . . . , ŷn+1)
Fm( ŷ1 , . . . , ŷn+1) .

Then
Tn �

1
2

(
P+( ŷ1 , . . . , ŷn+1)+

√
∆n

)
,

where ∆n � P−( ŷ1 , . . . , ŷn+1)2 + 4 ŷ2
1 ŷ2 · · · ŷn+1P+( ŷ2 , · · · , ŷn).
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Proof. We first point out a subtlety in our definition of Tn. Because

Tn �

n∏
i�1

Ni ,n ,

by rearranging the order of this product, we can show that

Tn( ŷ) � lim
m→∞

F(k+1)n+i( ŷ1 , . . . , ŷn+1)
Fkn+i( ŷ1 , . . . , ŷn+1)

for all 0 ≤ i < n.
Thus, it suffices to consider the limit

lim
m→∞

F(k+1)n+1( ŷ1 , . . . , ŷn+1)
F(k+1)n( ŷ1 , . . . , ŷn+1) .

Let µ � µnµn−1 . . . µ2. By Lemma 5.4.16, we know that

ŷ′1 � µ( ŷ1) � ŷ1P+( ŷ2 , . . . , ŷn), ŷ′n+1 � µ( ŷn+1) � ŷ2 ŷ3 · · · ŷn+1

P+( ŷ2 , . . . , ŷn) .

Taking the limit of the identity in Lemma 5.4.15, we get that

Tn � lim
m→∞

Fm+n(y1 , . . . , yn+1)
Fm(y1 , . . . , yn+1)

� N( ŷ′1 , ŷ′n+1)
�
1
2

(
1 + ŷ′1 + ŷ′1 ŷ′n+1 +

√
(1 + ŷ′1 − ŷ′1 ŷ′n+1)2 + 4 ŷ′21 ŷ′n+1

)
.

which simplifies to the desired expression for Tn. �

Knowing T2, we are ready to prove Theorem 5.4.2 for N1,2.

Lemma 5.4.18.

N1,2 �
1 + y1 + y1y2 + y1y2y3 + 2y2 +

√
∆2

2(1 + y2)
Proof. Let w � y2 + 1 be the F-polynomial of the cluster variable obtained
by mutating at x2k in the cluster {x2k−1 , x2k , x2k+1}. In the surface T2,1,
w corresponds to the peripheral arc whose endpoints are both the bottom
marked point on the outer boundary. Then the exchange relation tells us
that

w �
F2k+1 + y2F2k−1

F2k
,
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which reorganizes into

F2k+1 − F2k � y2(F2k − F2k−1).
Equivalently, we have

F2k+1

F2k
− 1 � y2(1 − F2k+1

F2k
/

F2k+1

F2k−1
).

If we take k →∞, we obtain

N2,2 − 1 � y2

(
1 −
N2,2

T2

)
.

By Theorem 5.4.17,

T2 �
1
2

(
P+(y1 , y2 , y3)+

√
∆2

)
.

It follows that

N2,2 �
1 + y2

1 + y2/T2
�
(1 + y2)(P+(y1 , y2 , y3)+ √∆2)

P+(y1 , y2 , y3)+ 2y2 +
√
∆2

.

If we simplify this expression by multiplying both the denominator and nu-
merator by P+(y1 , y2 , y3) + 2y2 −

√
∆2, we obtain the desired formula for

N2,2. �

Knowing N1,2 allows us to verify Theorem 5.4.2 for the cases where
k � 1, n + 1.

Lemma 5.4.19. Theorem 5.4.2 holds when k � 1, n + 1.

Proof. We prove the case where k � 1. The case where k � n+1 is analogous.
Let µ � µnµn−1 · · · µ3 and let ŷ′ � µ( ŷ). By Lemma 5.4.16,

ŷ′1 � ŷ1 , ŷ′2 � ŷ2P+( ŷ3 , . . . , ŷn), ŷ′n+1 �
ŷ3 · · · ŷn+1

P+( ŷ2 , . . . , ŷn) .

Taking the limit of the identity in Lemma 5.4.15, we obtain

N1,n � N1,2( ŷ′1 , ŷ′2 , ŷ′n+1),
which simplifies to the desired formula for N1,n. �
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We are now ready to show that Theorem 5.4.2 holds for k � 2 and n � 3.

Lemma 5.4.20.

N2,3(y1 , y2 , y3 , y4) � P+(y1 , . . . , y4)+ 2y3(1 + y1 + y1y4)+ √∆3
2(1 + y1 + y3 + y1y3 + y1y3y4) ,

where ∆3 � P−(y1 , . . . , y4)2 + 4y2
1 y2y3y4(1 + y2 + y2y3).

Proof. Theorem 5.4.17 gives us a formula for T3 � N1,3N2,3N3,3. Lemma
5.4.19 gives us a formula for N1,3 and N3,3. After some algebra, one verifies
that N2,3 �

T3
N1,3N3,3

is given by the formula above. �

We are now ready to prove Theorem 5.4.2 for general n ≥ 1 and 1 ≤ k ≤ n.

Second Proof of Theorem 5.4.2. In light of Lemma 5.4.19, it remains to prove
Theorem 5.4.2 when 1 < k < n. To compute Nk ,n, we apply Lemma 5.4.16
and 5.4.15 to the sequence µnµn−1 · · · µk+2µ2µ3 · · · µk−1 to obtain

Nk ,n � N2,3( ŷ′1 , ŷ′k , ŷ′k+1 , ŷ′n+1),
which one may verify indeed simplifies to the formula given in Theorem
5.4.2. �

5.4.4 Gupta’s Formula and Continued Fractions

Yet another way to understand the power series Nk ,n is to use Gupta’s
formula to write it as an infinite product of rational functions in ŷ, or as
a sum over infinite integer sequences of monomials. To do so, we will first
compute the F-polynomials of Ãn ,1 along µ+. We acknowledge that a lot of
the calculations below were done implicitly in Gupta (2018). To match with
the convention of Gupta’s formula, for k ≥ 1, Throughout this subsection, we
work with the mutation sequence µ+, and define gk , ck in the same manner
as Theorem 3.1.1. This shifts the indexing introduced in Section 5.1 by n +1.
The following proposition restates Proposition 5.4.10 in this new indexing
scheme.
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Proposition 5.4.21. Recall that gk , ck denote the g-vector and c-vector of
xk . Then for k ≥ 1,

ck �



−

⌊
k+n−1

n

⌋

−

⌊
k+n−2

n

⌋

...
−

� k−1
n

�



, gk �



−

⌊
k+n−1

n

⌋

ε1,k
ε2,k
...

εn−1,k� k
n

�
+ 1



, (5.14)

where

εi ,k �




1 if k ≡n i ,
0 otherwise.

�

Recall that BQ denotes the initial (square) exchange matrix of the cluster
algebra defined by the quiver Q, which equals the signed adjacency matrix
of Q. With Proposition 5.4.21, we can calculate c j · BQn ,1 |ck |, which is used
in Gupta’s formula.

Proposition 5.4.22. For j, k ≥ 1,

c j · BQn ,1 |ck | �

⌊
j + n − 1 − k

n

⌋
+

⌊
j − k

n

⌋
.

Proof. Write Si , j for the (n+1)-by-(n+1) matrix whose only nonzero entries
are the (i , j)-th entry, where it is equal to 1, and the ( j, i)-th entry, where it
is equal to −1. Then by the definitions of Qn ,1,

BQn ,1 � S1,n+1 + S1,2 + S2,3 + · · · + Sn ,n+1.

Also let κ, ν be the unique integers such that k � κn + ν and 0 < ν ≤ n.
Notice that κ �

� k−1
n

�
. Using Proposition 5.4.10, we calculate that

c j · S1,n+1 |ck | � −

⌊
j + n − 1

n

⌋ ⌊
k − 1

n

⌋
+

⌊
j − 1

n

⌋ ⌊
k + n − 1

n

⌋

�

⌊
j − 1

n

⌋
− κ.

Also, for 0 ≤ m < n,

c j · Sn−m ,n−m+1 |ck | � −

⌊
j + m

n

⌋ ⌊
k + m − 1

n

⌋
+

⌊
j + m − 1

n

⌋ ⌊
k + m

n

⌋
.
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We now compute the sum
∑n−1

m�0 c j ·Sn−m ,n−m+1 |ck |. Notice that for 0 ≤ m <
n, ⌊

k + m
n

⌋
�




κ + 1 if m ≥ n − ν,
κ if m < n − ν.

So depending on m, each c j · Sn−m ,n−m+1 |ck | is of one of the following forms:

−

⌊
j + m

n

⌋
(κ + 1)+

⌊
j + m − 1

n

⌋
(κ + 1),

−

⌊
j + m

n

⌋
κ +

⌊
j + m − 1

n

⌋
(κ + 1),

and

−

⌊
j + m

n

⌋
κ +

⌊
j + m − 1

n

⌋
κ.

We now divide into two cases. In the first case, ν , 1. Then

n−1∑
m�0

c j · Sn−m ,n−m+1 |ck |

� κ

(
−

⌊
j + n − 1

n

⌋
+

⌊
j + n − 2

n

⌋
−

⌊
j + n − 2

n

⌋
+

⌊
j + n − 3

n

⌋
− · · · −

⌊
j
n

⌋
+

⌊
j − 1

n

⌋)
+

(
−

⌊
j + n − 1

n

⌋
+

⌊
j + n − 2

n

⌋
− · · · −

⌊
j + n − ν + 1

n

⌋
+

⌊
j + n − ν

n

⌋
+

⌊
j + n − ν − 1

n

⌋)
� κ

(
−

⌊
j + n − 1

n

⌋
+

⌊
j − 1

n

⌋)
+

(
−

⌊
j + n − 1

n

⌋
+

⌊
j + n − ν

n

⌋
+

⌊
j + n − ν − 1

n

⌋)
� − κ −

⌊
j + n − 1

n

⌋
+

⌊
j + n − ν

n

⌋
+

⌊
j + n − ν − 1

n

⌋
.

In the second case, ν � 1. In this case, the sum
∑n−1

m�0 c j · Sn−m ,n−m+1 |ck | is
slightly different because

⌊
k+m

n

⌋
� κ + 1 only when m � n − 1. By a similar

method, we get that

n−1∑
m�0

c j · Sn−m ,n−m+1 |ck | � −κ +
⌊

j + n − 2
n

⌋
.
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But this turns out to agree with our calculation in the first case if we sub-
stitute ν � 1. So in both cases,

c j · BQn ,1 |ck | � c j · S1,n+1 |ck | +
n−1∑
m�0

c j · Sn−m ,n−m+1 |ck |

�

⌊
j − 1

n

⌋
− κ − κ −

⌊
j + n − 1

n

⌋
+

⌊
j + n − ν

n

⌋
+

⌊
j + n − ν − 1

n

⌋

�

⌊
j + n − ν − 1

n

⌋
+

⌊
j − ν

n

⌋
− 2κ.

Substituting k � κn + ν, we may verify the following identity,
⌊

j + n − 1 − ν
n

⌋
+

⌊
j − ν

n

⌋
− 2κ �

⌊
j + n − 1 − k

n

⌋
+

⌊
j − k

n

⌋
.

This concludes the proof. �

Example 5.4.23 (Kronecker). When n � 1,

c j · BQn ,1 |ck | � j − k + j − k � 2( j − k).
Example 5.4.24 (Ã2,1). When n � 2,

c j · BQn ,1 |ck | �

⌊
j + 1 − k

2

⌋
+

⌊
j − k
2

⌋
.

When k � j, this evaluates to 0. Inspecting the sum also suggests that
c j · BQn ,1 |ck | − c j · BQn ,1

��ck+1�� � 1. Therefore, by induction,
⌊

j + 1 − k
2

⌋
+

⌊
j − k
2

⌋
� j − k.

Proposition 5.4.25. Let j, ` ≥ 1. Then

c j · g` �
⌊
` − 1

n

⌋
−

n∑
i�1

εi ,`

⌊
j − 1 − i

n

⌋
� −

⌊
j − ` − 1

n

⌋
�

⌈
` + 1 − j

n

⌉
.
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Proof. By Proposition 5.4.10, for j, ` ≥ 1,

c j · g` �



−

⌊ j+n−1
n

⌋

−

⌊ j+n−2
n

⌋

−

⌊ j+n−3
n

⌋

...

−

⌊ j
n

⌋

−

⌊ j−1
n

⌋



·



−

⌊
`+n−1

n

⌋

ε1,`
ε2,`
...

εn−1,`�
`
n

�
+ 1



�

⌊
j + n − 1

n

⌋ ⌊
` + n − 1

n

⌋
−

⌊
j − 1

n

⌋ ⌊
`
n

⌋
−

⌊
j − 1

n

⌋
−

n−1∑
i�1

εi ,`

⌊
j − 1 − i

n

⌋

�

⌊
` − 1

n

⌋
−

⌊
j − 1

n

⌋ (⌊
`
n

⌋
−

⌊
` − 1

n

⌋)
−

n−1∑
i�1

εi ,`

⌊
j − 1 − i

n

⌋

But notice that εn ,` �
�
`
n

�
−

�
`−1

n

�
, so

c j · g` �
⌊
` − 1

n

⌋
−

n∑
i�1

εi ,`

⌊
j − 1 − i

n

⌋

� −

⌊
j − ` − 1

n

⌋

�

⌈
` + 1 − j

n

⌉
.

As in the proof of Proposition 5.4.22, the second equality above can be
verified by a straightforward substitution where we let ` � κn + ν, where
0 < ν ≤ n. �

We can now apply Gupta’s formula (Theorem 3.1.1 and Lemma 3.3.1) to
obtain formulas of F-polynomials and ratios of F-polynomials in Ãn ,1.

Theorem 5.4.26. Let µ � µ+(`) and let L j be defined as in Theorem 3.1.1.
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Then in Ãn ,1, for ` ≥ 1,

F`(y1 , . . . , yn+1) �
∏̀
j�1

L
⌈ `+1− j

n

⌉

j

�

∑
(m1 ,...,m`)∈Z`≥0

∏̀
j�1

(⌈
`+1− j

n

⌉
+

∑`
k� j+1

(⌊ j+n−1−k
n

⌋
+

⌊ j−k
n

⌋ )
mk

m j

)

y
∑`

k�1

⌊
k+n−1

n

⌋
mk

1 y
∑`

k�1

⌊
k+n−2

n

⌋
mk

2 · · · y
∑`

k�1b k−1
n cmk

n+1 .

This implies that

F`+1(y1 , . . . , yn+1)
F`(y1 , . . . , yn+1) �

∏
1≤ j≤`+1
j≡n`+1

L j

�

`+1∏
j�1

L
ε j,`+1

j

�

∑
(m1 ,...,m`+1)∈Z`+1

≥0

`+1∏
j�1

(
ε j,`+1 +

∑`+1
k� j+1

(⌊ j+n−1−k
n

⌋
+

⌊ j−k
n

⌋ )
mk

m j

)

y
∑`+1

k�1

⌊
k+n−1

n

⌋
mk

1 y
∑`+1

k�1

⌊
k+n−2

n

⌋
mk

2 · · · y
∑`+1

k�1 b k−1
n cmk

n+1

Example 5.4.27. When n � 1, the above calculation specializes to

F`+1(y1 , . . . , yn+1)
F`(y1 , . . . , yn+1) �

`+1∏
j�1

L j

�

∑
(m1 ,...,m`+1)∈Z`+1

≥0

`+1∏
j�1

(
1 +

∑`+1
k� j+1 2( j − k)mk

m j

)
y
∑`+1

k�1 kmk

1 y
∑`+1

k�1 (k−1)mk

2

which is Equation 5.9 from Section 5.3.
Let us also consider Ã2,1. By the calculation in Example 5.4.24 and
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Theorem 5.4.26, we have that for ` ≥ 1,

F2`+1

F2`
� L1L3 . . . L2`+1

�

∑
(m1 ,m2 ,...,m2`+1)∈Z2`+1

≥0

2`+1∏
j�1

(
ε j,1 +

∑2`+1
k� j+1( j − k)mk

m j

)

y
∑2`+1

k�1

⌊
k+1
2

⌋
mk

1 y
∑2`+1

k�1 b k
2cmk

2 y
∑2`+1

k�1 b k−1
2 cmk

3 .

For instance,

F5

F4
� L1L3L5

�
∑

(m1 ,m2 ,...,m5)∈Z5
≥0

�1−m2−2m3−3m4−4m5
m1

��
−m3−2m4−3m5

m2

��1−m4−2m5
m3

��
−m5
m4

�� 1
m5

�
yM
1 yN

2

where

M � m1 + m2 + 2m3 + 2m4 + 3m5 , N � m2 + m3 + 2m4 + 2m5.

The combination of Theorem 5.4.7 and Gupta’s formula brings an in-
teresting interpretation of the Li’s in Gupta’s formula to the table, namely
that they are ratios of every other continuant of the appropriate generalized
infinite continued fraction. We illustrate this with the simplest example, N1,1.
Let Li be the factors from Theorem 3.1.1, where µ � µ+ � µ1µ2µ1µ2 · · · . As
demonstrated in the first proof of Theorem 5.4.7, the sequence of ratios F`+1

F`
can be written as a sequence of continuants, of which the following are the
first few terms:

F3

F2
� [[1 + y1], []],

F4

F3
� [[1 + y1 , 1, y1], [y1y2 , 1, y1y2 , 1]],

F5

F4
� [[1 + y1 , 1, y1 , 1, y1], [y1y2 , 1, y1y2 , 1, y1y2 , 1]].

But we also know that

F`+1

F`
� L1L2 · · · L`+1.



The Coefficients Perspective 109

Therefore,

L1 �
F3/F2

F2/F1
� [[1 + y1], []],

L2 �
F4/F3

F3/F2
�
[[1 + y1 , 1, y1], [y1y2 , 1, y1y2 , 1]]

[[1 + y1], []] ,

L3 �
F5/F4

F4/F3
�
[[1 + y1 , 1, y1 , 1, y1], [y1y2 , 1, y1y2 , 1, y1y2 , 1]]

[[1 + y1 , 1, y1], [y1y2 , 1, y1y2 , 1]] ,

and so on. Rephrased in terms of wall-crossing, this observation implies
that the effect of crossing one more wall is just increasing the length of the
appropriate continued fraction by two terms. Our preliminary calculation
suggests that it is nontrivial to show directly that the ratios of these continued
fractions are indeed the Li’s from Gupta’s formula.

5.5 The Coefficients Perspective

We started our investigation of Nk ,n in a very hands-on manner: by using
Sage to expand Fmn+k+1

Fmn+k
as a multivariate power series, observing that they

tend to a limit as m → ∞, and finding formulas for the coefficients of the
conjectural limit. While one can easily obtain these coefficients by expanding
Theorem 5.4.2 using the generalized binomial theorem, we record our result
for N1,2 and N2,2 to give an idea of what these coefficients will look like.

Example 5.5.1. Let c(n ,m , `), d(n ,m , `), e(n ,m , `) be the coefficients of
ŷn
1 ŷm

2 ŷ`3 in N2,2, N1,2 and T2 respectively. Then for n ≥ m > ` ≥ 0,

c(n ,m , `) � (−1)n+`+1 n
m(m − 1)

(
n − 1
`

) (
n − 1
` − 1

) (
n − ` − 1

n − m

)
.

Otherwise, c(n ,m , `) � 0. For n > m ≥ ` ≥ 0,

d(n ,m , `) � (−1)n+`+1 1
n − 1

(
n − 1
`

) (
n − 1
` − 1

) (
n − ` − 1
n − m − 1

)
,

and d(n ,m , `) � 0 otherwise. Lastly, for n ≥ m ≥ ` ≥ 1 such that n ≥ `+1,

e(n ,m , `) � 1
n − 1

(
n − 1
`

) (
n − 1
` − 1

) (
n − `
m − `

)
.

Notice that
c(n ,m , `)

d(n ,m − 1, `) �
n(n − 1)
m(m − 1) .
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An explicit understanding of these coefficients leads naturally to identities
where on the left hand side, we have a sum in Gupta’s formula style over some
subset of Z∞

≥0, and on the right hand side, a nice closed form expression, such
as the Narayana numbers in the Kronecker case, or slight modifications of the
Narayana numbers when n > 1. These identities can be viewed independently
of the cluster algebra interpretation, and it would be interesting to gain more
insight to these identities. For example, in the Kronecker case, we have the
following identity by matching coefficients.

Proposition 5.5.2. Let

M(m1 ,m2 , . . . ) �
∞∑
j�1

jm j , N(m1 ,m2 , . . . ) �
∞∑
j�1

( j − 1)m j .

Then ∑
(m1 ,m2 ,... )∈Z∞≥0
M(m1 ,m2 ,... )�i
N(m1 ,m2 ,... )� j

∞∏
j�1

(
1 −

∑
∞

k� j+1 2mk(k − j)
m j

)
� (−1)i+ j Nar(i − 1, j)?

Example 5.5.3. For instance, there are two sequences with M � 6,N � 4,
which contribute to −Nar(5, 4) � −1

5

�5
4

��5
3

�
� −10. They are (0, 1, 0, 1, 0, 0, . . . )

and (1, 0, 0, 0, 1, 0, . . . ), and their contributions are −3 and −7 respectively.

5.6 Other Questions

Recall from Theorem 2.5.2 that walls of the scattering diagram for acyclic
quivers are normal to a root, which warrants the following definition for affine
acyclic quivers. Given the scattering diagram associated to an acyclic quiver,
we say that a wall is real if it is normal to a real root, and imaginary if it is
normal to an imaginary root. Note that there is only one primitive imaginary
root in affine root systems. Theorem 2.5.3 tells us the decorating term on
real walls, which leaves open fd for the imaginary wall d.

Question 5.6.1. Let d be an imaginary wall in the scattering diagram of
the cluster algebra Ãn ,1. What is fd, the function attached to the wall d?

In Reading (2020b), Nathan Reading computed the wall function for the
unique wall with slope −1 in the scattering diagram for the Kronecker quiver,
which is normal to the primitive imaginary root δ � (1, 1). He also computed
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Figure 5.12 Stereographic projection of the scattering diagram of Ã2,1, figure
on page 12 of Reading (2020a)

the function on the imaginary wall of slope −2 in the scattering diagram
of A(1, 4), the other affine rank-two cluster algebra. This turned out to
be a nontrivial calculation that relies on an understanding of the limit of
certain ratios of F-polynomials, which is similar in flavor to our investigation
of Nk ,n. For example, in the Kronecker case, it was enough to understand√
limi→−∞ F2i+3

i F−2i−1
i+1 . Since Gupta’s formula has a product form, it should

be good at dealing with ratios of F-polynomials, which lends the possibility
that Gupta’s formula might be adept for streamlining this calculation.

In the following example, we calculate the wall function on the wall whose

bounding rays are gw and the ray R≥0



−1
0
1


, i.e. the top red wall in Figure 5.13

Our calculation relies on the following visualization of the scattering diagram
for Ã2,1 made by Nathan Reading, which is a stereographic projection. In
this figure, rays correspond to intersections of walls, which we label with the
corresponding cluster variable whose g-vector is the direction of the ray.

Example 5.6.2. We start by noting that

fd( ŷ1 ŷ2 ŷ3)−2 � p∞(x1x3 fd( ŷ1 ŷ2 ŷ3)−2)
x1x3

����diag
�

p−∞(x1x3)
x1x3

����diag
,
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Figure 5.13 Figure 5.12 annotated with the cluster variables whose g-vectors
correspond to the rays. On the four yellow highlights emanating from the red
dot lie the cluster variables xm wherem is negative odd, negative even, positive
odd and nonnegative even
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where by diagonal terms we mean monomials ŷ iδ � ŷ i
1 ŷ i

2 ŷ i
3.

The second equality follows from consistency. Since wall-crossing au-
tomorphisms replace monomials by monomials times a power of the wall
function and since all walls crossed by γ∞ and γ−∞ are normal to real roots,
restricting to diagonal terms and dividing by x1x3 recovers fd( ŷ1 ŷ2 ŷ3)−2
exactly.

We now proceed to compute p−∞(x1x3)
x1x3

����diag
. Computation shows that for

m ≥ 0,

gw �



0
−1
1


, g−2m−1 �



−m
−1
m


.

So for m ≥ 1,

g−2m−1 �



−m
0

m − 1


+ gw .

If we let Qm � 2m − 1, then

g−2m−1Qm−1 − g−2m+1Qm �



1
0
1


− 2gw .

(Label γi on the figure.) By Theorem 2.5.4, for i ≥ 0,

pγ−i (xgw ) � xgw Fw (̂y) � xgw (1 + ŷ2),
and

pγ−i (xg−2i−1) � xg−2i−1F−2i−1(̂y).
So

pγ−i (x1x3) � pγ−i (xg−2i−1Qi−1−g−2i+1Qi+2gw ) � x1x3Fw (̂y)2 F−2i−1(̂y)Qi−1

F−2i+1(̂y)Qi
� x1x3(1+ ŷ2)2 F−2i−1(̂y)2i−3

F−2i+1(̂y)2i−1 .

Therefore,
p−∞(x1x3)

x1x3
� (1 + ŷ2)2 lim

i→∞

F−2i−1(̂y)2i−3

F−2i+1(̂y)2i−1 .

To find a formula for F−2i−1, consider the change of initial seed from {x1 , x2 , x3}
to {x1 , w , x3}. The key observation is that if we require that w always stays
in the cluster, then the dynamics of the other two cluster variables is ex-
actly that of the Kronecker quiver. Write ŷ′1 , ŷ′2 , ŷ′3 for the hatted y’s at this
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cluster seed and write g̃−m and F̃−m for the g-vector and F-polynomial of
(−m+1)-th cluster variable as we apply the mutation sequence µ3µ1µ3µ1 . . .
to the cluster {x1 , w , x3}. Then

g̃−m �



−m
1

m − 1


, F̃1−m( ŷ′1 , ŷ′2 , ŷ′3) �

∑
0≤N≤M≤`

(
` − N
` −M

) (
M − 1

N

)
ŷ′`−1−N
1 ŷ′`−M

3 .

Some algebra tells us that

ŷ′1 � ŷ1 ŷ3 + ŷ1 , ŷ′3 �
ŷ2 ŷ3
1 + ŷ3

,

from which we can derive

F−2m−1( ŷ1 , ŷ2 , ŷ3) �
∑

0≤N≤M≤`

(
` − N
` −M

) (
M − 1

N

)
ŷ`−N
1 ( ŷ2 ŷ3)`+1−M(1+ ŷ2)M−N .

As a result,

(1 + ŷ2)2 lim
i→∞

F−2i−1(̂y)2i−3

F−2i+1(̂y)2i−1

�����diag

� lim
i→∞

[∑
0≤N≤M≤i+1

� i−N
`−M

��M−1
N

�
ŷ i−N
1 ( ŷ2 ŷ3)i+1−M

]2i−3

[∑
0≤N≤M≤i

� i−N
`−M

��M−1
N

�
ŷ i−1−N
1 ( ŷ2 ŷ3)i−M

]2i−1

�����diag

� lim
i→∞

F̃−i( ŷ1 , ŷ2 ŷ3)2i−3

F̃−i+1( ŷ1 , ŷ2 ŷ3)2i−1

�����diag
� (1 − ŷ1 ŷ2 ŷ3)4 ,

where the final equality is due to Theorem 3.4 and Proposition 3.5 of Reading
(2020b). This shows that the wall function is fd � (1 − ŷ1 ŷ2 ŷ3)−2.



Appendix A

The Sequence cm

We have noted previously that for r ≥ 2, the sequence of c-vector entries of
A(r, r) is given by the recurrence relation c1 � 0, c2 � 1, cn+2 � rcn+1 − cn.
This is also the Lucas sequence Un(r, 1). In this appendix, we develop some
properties of this sequence which we used without proof in the previous
sections.

By solving this recurrence relation, we find that

cm �
1

√

r2 − 4

�
rm−1
1 + rm−1

2
�
, (A.1)

where

r1 �
r +
√

r2 − 4
2

, r2 �
r −
√

r2 − 4
2

.

Notice that r1r2 � 1.

Proposition A.0.3. For m ≥ 2,

c2m � cm−1cm+1 + 1.

Proof. This is true for m � 2 because c1 � 0, c2 � 1, c3 � r. Suppose true for
m − 1. Then

cm−1cm+1 + 1 � cm−1(rcm − cm−1)+ 1
� rcm cm−1 − (c2m−1 − 1)
� rcm cm−1 − cm cm−2

� cm(rcm−1 − cm−2)
� c2m .

�
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Proposition A.0.4. For m ≥ 2,

gcd(cm , cm+1) � 1.

Proof. We proceed by induction. This is true for m � 2 since c2 � 1 and c3 �
r. Now suppose it is true for m − 1. Then for x , 1, x | cm would imply that
x - cm−1, which means that x cannot be a factor of cm+1 � rcm − cm−1. �

Proposition A.0.5. The sequence cm
cm+1

is increasing, and

lim
m→∞

cm

cm+1
� r2 �

r −
√

r2 − 4
2

.

Proof. By Proposition A.0.3,

cm

cm+1
−

cm−1

cm
�

c2m − cm+1cm−1

cm cm+1
�

1
cm cm+1

> 0,

which shows that the sequence cm
cm+1

is increasing. We can compute the limit
using the closed form expression Equation A.1:

lim
m→∞

cm

cm+1
� lim

m→∞

rm−1
1 + rm−1

2

rm
1 + rm

2
� lim

m→∞

rm−1
1

rm
1

�
1
r1

� r2.

Terms of the form rm
2 vanish in the limit because 0 < r2 < 1. �

Proposition A.0.6. Let 3 ≤ m ≤ n − 2 and 1 ≤ w ≤ r − 1. Then for any
n ≥ 1,

cm − wcm−1

cm+1 − wcm
>

cn

cn+1
.

Proof. By Proposition A.0.5, it suffices to show that

cm − wcm−1

cm+1 − wcm
> r2 ,

or r2(cm+1 −wcm) < cm −wcm−1. We obtain this inequality using the closed
form expression Equation A.1:

r2(cm+1−wcm) � r2(rm
1 − rm

2 −w(rm−1
1 − rm−1

2 )) � rm−1
1 −wrm−2

1 +wrm
2 − rm+1

2 ,

but wrm
2 − rm+1

2 � r2(wrm−1
2 − rm

2 ) < wrm−1
2 − rm

2 , so

r2(cm+1 − wcm) < rm−1
1 − wrm−2

1 + wrm−1
2 − rm

2 � cm − wcm−1

as desired. �
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Proposition A.0.7.
−c j ck−1 + c j−1ck � ck− j .

Proof. We proceed by induction on k − j with k fixed. This is true when
k− j � 0. By Proposition A.0.3, this is true when k− j � 1. By the induction
hypothesis, −c j+2ck−1+ c j+1ck � ck− j−2 and −c j+1ck−1+ c j ck � ck− j−1. Thus,
since c j � rc j+1 − c j+2 � rc j−1 − c j−2, we have −c j ck−1 + c j−1ck � ck− j . �





Appendix B

Proof that Theorems 5.4.2,
5.4.5 and 5.4.7 are Equivalent

Proof of Theorem 5.4.2 ⇔ Theorem 5.4.5. Throughout this proof, for con-
venience, we will use Nk ,n to denote the right hand side of Equation 5.10,
rather than the F-polynomial limits.

Let

Lk ,n �




1
N1,n−(1+y1) if k � 1,

1
1

Nk ,n−1
−γk ,n

if 1 < k ≤ n.

It suffices to show that Equation 5.10 is equivalent to

Lk ,n �




[α1,n , β1,n] if k � 1,
[βk ,n , αk ,n] if 1 < k ≤ n.

Let us first consider L1,n. Recall that

A1,n � P+(y2 , y3 , . . . , yn), B1,n � y2P+(y3 , . . . , yn).
Therefore,

1
L1,n

� N1,n − (1 + y1)

�
P+(y1 , . . . , yn+1)+ 2y2P+(y3 , . . . , yn)+ √∆n − 2(1 + y1)P+(y2 , y3 , . . . , yn)

2P+(y2 , y3 , . . . , yn)
�
−P−(y1 , . . . , yn+1)+ √∆n

2P+(y2 , y3 , . . . , yn) , (B.1)
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so

L1,n �
2P+(y2 , y3 , . . . , yn)(√∆n + P−(y1 , . . . , yn+1))

∆n − P−(y1 , . . . , yn+1)2

�
2P+(y2 , y3 , . . . , yn)(√∆n + P−(y1 , . . . , yn+1))

4y2
1 y2 · · · yn+1P+(y2 , y3 , . . . , yn)

� α1,n +
√
∆n − P−(y1 , . . . , yn+1)

2y2
1 y2 · · · yn+1

.

Continuing, we compute that

2y2
1 y2 · · · yn+1

√
∆n − P−(y1 , . . . , yn+1)

�
2y2

1 y2 · · · yn+1(√∆n + P−(y1 , . . . , yn+1)
4y2

1 y2 · · · yn+1P+(y2 , y3 , . . . , yn)
�

√
∆n + P−(y1 , . . . , yn+1)
2P+(y2 , y3 , . . . , yn)

� β1,n +
1
L1,n

Combining our computation above, we get

L1,n � α1,n +
1

β1,n +
1
L1,n

,

which proves that
L1,n � [α1,n , β1,n].

We now move on to perform a similar computation for Lk ,n. Observe
that

Nk ,n − 1 �
P+(y1 , . . . , yn+1)+ 2(Bk ,n − Ak ,n)+ √∆n

2Ak ,n

�
P+(y1 , . . . , yn+1) − 2P+(y1 , . . . , yk−1)+ √∆n

2Ak ,n
.

So

1
Nk ,n − 1

�
2Ak ,n

P+(y1 , . . . , yn+1) − 2P+(y1 , . . . , yk−1)+ √∆n

�
2Ak ,n(−P+(y1 , . . . , yn+1)+ 2P+(y1 , . . . , yk−1)+ √∆n)
∆n − (P+(y1 , . . . , yn+1) − 2P+(y1 , . . . , yk−1))2 . (B.2)
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We may calculate that

∆n − (P+(y1 , . . . , yn+1) − 2P+(y1 , . . . , yk−1))2
� (P+(y1 , . . . , yk−1)+ y1y2 · · · ykP−(yk+1 , . . . , yn+1))2 + 4y2

1 y2 · · · yn+1P+(y2 , . . . , yn)
− (−P+(y1 , . . . , yk−1)+ y1y2 · · · ykP+(yk+1 , . . . , yn+1))2

�
�
y1y2 · · · yk · 2P+(yk+1 , . . . , yn)� �

2P+(y1 , . . . , yk−1) − 2y1y2 · · · yn+1
�

+ 4y2
1 y2 · · · yn+1P+(y2 , . . . , yn)

� 4y1y2 · · · yk
�
P−(y1 , . . . , yk−1)P+(yk+1 , . . . , yn+1) − yk+1yk+2 · · · yn+1)�

� 4y1y2 · · · ykAk ,n . (B.3)

In particular, when specializing to k � 1, this calculation suggests

∆n − (P+(y1 , . . . , yn+1) − 2)2 � 4y1P+(y2 , . . . , yn). (B.4)

The identity B.3 allows us to simplify the denominator of Equation B.2 get

1
Nk ,n − 1

�
−P+(y1 , . . . , yn+1)+ 2P+(y1 , . . . , yk−1)+ √∆n

2y1y2 · · · yk
(B.5)

� γk ,n +
−P+(y1 , . . . , yn+1)+ 2 +

√
∆n

2y1y2 · · · yk
,

and so

Lk ,n �
1

1
Nk ,n−1

− γk ,n

�
2y1y2 · · · yk

−P+(y1 , . . . , yn+1)+ 2 +
√
∆n

�
2y1y2 · · · yk(P+(y1 , . . . , yn+1) − 2 +

√
∆n)

∆n − (P+(y1 , . . . , yn+1) − 2)2

�
2y1y2 · · · yk(P+(y1 , . . . , yn+1) − 2 +

√
∆n)

4y1P+(y2 , . . . , yn) by Equation B.4

� βk ,n +
y2 · · · yk(−P+(y1 , . . . , yn+1)+ 2 +

√
∆n)

2P+(y2 , . . . , yn) .
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Continuing, we compute that

2P+(y2 , . . . , yn)
y2 · · · yk(−P+(y1 , . . . , yn+1)+ 2 +

√
∆n)

�
2P+(y2 , . . . , yn)(√∆n + P+(y1 , . . . , yn+1) − 2)

y2 · · · yk(∆n − (P+(y1 , . . . , yn+1) − 2)2)
�

2P+(y2 , . . . , yn)(√∆n + P+(y1 , . . . , yn+1) − 2)
4y1y2 · · · ykP+(y2 , . . . , yn) by Equation B.4

�

√
∆n + P+(y1 , . . . , yn+1) − 2

2y1y2 · · · yk

� αk ,n +
√
∆n − P+(y1 , . . . , yn+1)+ 2

2y1y2 · · · yk

� αk ,n +
1
Lk ,n

.

Combining the previous calculations, we have shown that for 1 < k ≤ n,

Lk ,n � βk ,n +
1

αk ,n + 1
Lk ,n

,

which affirms our claim that

Lk ,n � [βk ,n , αk ,n].
This concludes our proof of the equivalence between Theorem 5.4.2 and
Theorem 5.4.5. �

Proof of Theorem 5.4.2 ⇔ Theorem 5.4.7. Again we will use Nk ,n to denote
the right hand side of Equation 5.10, rather than the F-polynomial limits. We
shall also reuse the notation Lk ,n from the previous proof to mean morally
similar, but slightly different things.

Let

Lk ,n �




N1,n − (1 + y1) if k � 1,
y2 y3···yk
Nk ,n−1

− P+(y2 , . . . , yk−1) if 1 < k ≤ n.

In order to show that Nk ,n can be expressed in terms of the continued frac-
tions of Theorem 5.4.7, it suffices to show that

L1,n �
y1y2 · · · yn+1

P+(y2 , . . . , yn)+
1

y1 + L1,n

, (B.6)
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and

Lk ,n �
1

y1 +
y1y2 · · · yn+1

P+(y2 , . . . , yn)+ Lk ,n

. (B.7)

We first prove Equation B.6. Equation B.1 from the previous proof says
that

L1,n �
−P−(y1 , . . . , yn+1)+ √∆n

2P+(y2 , y3 , . . . , yn) ,

So

y1y2 · · · yn+1

L1,n
�
2y1y2 · · · yn+1P+(y2 , y3 , . . . , yn)
−P−(y1 , . . . , yn+1)+ √∆n

�
2y1y2 · · · yn+1P+(y2 , y3 , . . . , yn)(√∆n + P−(y1 , . . . , yn+1))

∆n − P−(y1 , . . . , yn+1)2

�

√
∆n + P−(y1 , . . . , yn+1)

2y1

� P+(y2 , . . . , yn)+
√
∆n + P−(y1 , . . . , yn+1) − 2y1P+(y2 , . . . , yn)

2y1

� P+(y2 , . . . , yn)+
√
∆n + 2 − P+(y1 , . . . , yn+1)

2y1
,

where the third equality uses the definition that ∆n � P−(y1 , . . . , yn+1)2 +
4y2

1 y2 · · · yn+1P+(y2 , . . . , yn). Using Equation B.4,

1
y1 y2···yn+1
L1,n

− P+(y2 , . . . , yn)
�

2y1
√
∆n + P−(y1 , . . . , yn+1) − 2y1P+(y2 , . . . , yn)

�
2y1(√∆n − P−(y1 , . . . , yn+1)+ 2y1P+(y2 , . . . , yn))
∆n − (P−(y1 , . . . , yn+1) − 2y1P+(y2 , . . . , yn))2

�

√
∆n − P−(y1 , . . . , yn+1)+ 2y1P+(y2 , . . . , yn)

2P+(y2 , . . . , yn)
� y1 + L1,n ,

as desired.
We now move on to Lk ,n where 1 < k ≤ n. Continuing the calculation
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of Equation B.5, we get that

Lk ,n �
−P+(y1 , . . . , yn+1)+ 2P+(y1 , . . . , yk−1)+ √∆n

2y1
− P+(y2 , . . . , yk−1)

�
2 − P+(y1 , . . . , yn+1)+ √∆n

2y1
.

So by Equation B.4,

1
Lk ,n

�
2y1

2 − P+(y1 , . . . , yn+1)+ √∆n

�
2y1(√∆n − 2 + P+(y1 , . . . , yn+1))
∆n − (P+(y1 , . . . , yn+1) − 2)2

�

√
∆n − 2 + P+(y1 , . . . , yn+1)

2P+(y2 , . . . , yn)
� y1 +

√
∆n − P−(y1 , . . . , yn+1)
2P+(y2 , . . . , yn) .

We can calculate that

2y1y2 · · · yn+1P+(y2 , . . . , yn)
√
∆n − P−(y1 , . . . , yn+1)

�
2y1y2 · · · yn+1P+(y2 , . . . , yn)(√∆n + P−(y1 , . . . , yn+1))

∆n − P−(y1 , . . . , yn+1)2

�
2y1y2 · · · yn+1P+(y2 , . . . , yn)(√∆n + P−(y1 , . . . , yn+1))

4y2
1 y2 · · · yn+1P+(y2 , . . . , yn)

�

√
∆n + P−(y1 , . . . , yn+1)

2y1

� P+(y2 , . . . , yn)+
√
∆n + P−(y1 , . . . , yn+1) − 2y1P+(y2 , . . . , yn)

2y1
� P+(y2 , . . . , yn)+ Lk ,n ,

where the second equality again simply uses the definition of ∆n. This allows
us to conclude that for 1 < k ≤ n,

1
Lk ,n

� y1 +
y1y2 · · · yn+1

P+(y2 , . . . , yn)+ Lk ,n
,

as desired. �
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