
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

8-1-1986

Distributed Recovery in Applicative Systems
Frank C. H. Lin

Robert M. Keller
Harvey Mudd College

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more
information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Lin, Frank C.H., and Robert M. Keller. "Distributed Recovery in Applicative Systems." Proceedings of the International Conference on
Parallel Processing (August 1986): 405-412.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Distributed Recovery In Applicatlve Systems

Frank C.H. Lin *
ESL, Inc.

Sunnyvale, California 95051

Robert M. Keller*
Quintus Computer Systems, Inc.
Mountain View, California 94041

Abstract: Applicative systems are promising candidates for
achieving high performance computing through aggregation of
processors. This paper studies the fault recovery problems in
a class of applicative systems. The concept of functional
checkpointing is proposed as the nucleus of a distributed
recovery mechanism. This entails incrementally building a
resilient structure as the evaluation of an applicative program
proceeds. A simple rollback algorithm is suggested to
regenerate the corrupted structure by redoing the most effective
functional checkpoints. Another algorithm, which attempts to
recover intermediate results, is also presented. The parent of a
faulty task reproduces a functional twin of the failed task. The
regen~rated task inherits all offspring of the faulty task so that
partial results can be salvaged.

Keywords: fault tolerance, error recovery, distributed
systems, applicative systems, data flow architecture,
functional language.

1. IntrOduction

An important feature of a multiprocessor system, including
applicative multiprocessing systems, is the ability to sustain
partial system failures. By anapplicative system in this paper,
we mean a partitioned-memory system such as Rediflow [8,9,
18] which coherently executes applicative, or functional,
programs.

The evaluation of an applicative program generates an implicit
call tree. The result of the root task is the answer of the
program. Every task in the call tree represents a partial result
which is used by its parent task to compute other partial
results. Because the semantics of applicative of languages has
no notion of destructive modification, a parent task is capable
of regenerating all of its child tasks based upon the argument
and function information.

Many fault-tolerance techniques for general multiprocessor
systems have been proposed [1]. Some of these schemes can
be adapted to applicative systems. However, applicative
systems possess some interesting characteristics, e.g.,
determinacy, that merit distinct fault recovery considerations
[6,7, 14].

In this paper, fault tolerance issues in a class of applicative
systems are studied. We assume that any task can be
executed by any processor and that tasks are dynamically

* Work reported herein was supported by a grant from the IBM

Corporation, while both authors were at the University of Utah.

0190-3918/86/0000/0405 $01.00 © 1986 IEEE 405

assigned to execution processors at run time. A single
processor failure is also assumed. A processor is assumed to
be either faulty or fault-free. A faulty processor must
voluntarily declare itself faulty, or otherwise be identified as
faulty by other processors.

It is further assumed that if a processor fails, it will no longer
transmit any valid messages. This assumption can be enforced
by commanding a faulty node to keep silent and not to respond
to any inquiry. Alternatively, a faulty node may answer an
inquiry with an invalid message. Several techniques are
available for a processor to determine node malfunctioning.
Parity checking on the system bus or resident memory, illegal
instruction trap, protection violation, or a subsystem
breakdown may trigger the CPU reporting a processor failure.
Duplication of processors within a node, called "passive node
diagnosis" [12], is also a common technique for building self­
checking nodes.

It is assumed that a processor makes its best effort to
communicate with a destination node. If the destination cannot
be reached due to a network problem, the unreachable node is
considered faulty. Problems with the interconnection network
may be detected via coding or timeout mechanisms.

Our approach exploits the determinacy property of applicative
programs. A distributed checkpointing scheme, functional
checkpointing, is proposed in the next section. As the
evaluation of an applicative program proceeds, a distributed
resilient evaluation structure is incrementally established across
the network of processors. Any single processor breakdown
is salvaged by the implicit redundant path of the robust
structure. A simple rollback recovery algorithm, which
basically discards all partial results, is discussed in section 3.
In section 4, another recovery algorithm, splice recovery, is
proposed to salvage as many intermediate results as possible.
Tasks which are equivalent to those trapped inside the faulty
processor are generated to replace the failed tasks. Partial
results produced by the failed tasks are inherited by the
recovery tasks.

2. Functional Checkpoints

Checkpointing is familiar in the fault-tolerant computing
literature [1]. In a uniprocessor system, checkpointing is
normally performed by storing machine state on nonvolatile
devices periodically. Such a periodical checkpointing
technique has been extended to multiprocessor systems [3, 5,
7, 15]. The basic idea is to virtually stop all computational
operations while periodic global checkpointing takes place.

3. Rollback Recovery

Figure 1: A call tree mapped onto processors A,B,C, and D,
and corresponding distribution of checkpoints

D

AS

1m!
C4

c

D2,D3

A2

B

D4D1

A

UfilJ
C1

Using functional checkpointing as a framework, a simple
rollback recovery mechanism can be devised. An applicative
call tree is mapped onto a set of processors. Each processor
may have an arbitrary number of task's. When a processor
fails, the call tree may be broken into pieces. However, the
piece that contains the root task is always capable of
regenerating all severed pieces.

Suppose that an applicative program has been spawned into
the call tree as shown in Figure 1. For ease of discussion,
tasks Ai (i =1, 2) are mapped onto processor A, tasks Bi are
executed in processor B, etc. Suppose that processor B fails.
Then tasks Bi are destroyed. The call tree is thus fragmented
into three pieces: {AI,CI,C2,C3,D3}, (A2,Dl,D2,C4), and
{D4,D5,A5}.

Determinacy suggests that an appropriate time for a functional
checkpoint is when a parent task spawns a child function. A
task packet is formed for the new function and then waits for
execution. The packet contains all necessary information,
either directly or indirectly accessible, to activate the child task.
Furthermore, determinacy insures that different activations of
the same task packet will always yield the same result. Thus,
even if a task is aborted during computation, a new invocation
will not be contaminated by its predecessors.

2.2 Checkpoint Properties

Periodic checkpointing is a synchronous operation whereas
functional checkpointing is asynchronous. Each processor
holds the privilege and responsibility of checkpointing its
offspring tasks. A processor may opt to arrange the
checkpoints in a partial order such that more efficient recovery
can be implemented (section 3). Checkpoint coordination
between processors is not necessary.

Determinacy, or referential transparency, is the characteristic
of applicative programs which makes them attractive for
distributed execution. A program is called determinate if an
identical answer always results from any function invocation
for given arguments. In other words, a functional program is
free from side effects. .

2.1 Determinacy

Periodic global checkpointing may not serve the best interests
of fault tolerant applicative systems. For example, nonvolatile
storage for storing system states may not be necessary, if
recovery of a faulty processor is accomplished outside the
node. Checkpoint information may be stored on one or more
peer processors. Furthermore, periodic global
synchronization among a large number of processors is
potentially inefficient [2].

We propose a distributed checkpointing strategy for applicative
systems. The approach attempts to exploit the determinacy
property of applicative programs.

By afunctional checkpoint, we mean a recovery point for a
function application in an applicative system. A partial state of
the system is stored so that recovery of the function is
possible. The partial system state used in a functional
checkpoint is related to a single function only. Normally, a
functional checkpoint does not have enough information to
recover an entire node, not to mention recovering a system.
The sole purpose of the partial state is just to back up a
function application.

The idea of functional checkpointing is to disseminate the
responsibilities of recovering a faulty node to processors
which have immediate relationship with the faulty node.
Complete recovery is done by collective efforts from various
associated processors to retrieve the corrupted tasks.

Functional checkpointing can be implemented implicitly. As
a child task is spawned to a new node, the parent task may
retain a copy of the task packet This retained copy is all that
the parent needs to regenerate the child task, should the node
evaluating the child task fail. Therefore, functional
checkpointing can be fully embedded in the evaluation
process.

Assuming the check point of an application is kept on the
processor of its parent Processor A contains the functional
checkpoint for B 1, processor C contains checkpoints for B2,
B3 and B5, and processor D contains checkpoints for B7. To
recover from the failure of B, the system needs to command
processor A to respawn B 1, and command processor C to
regenerate B2 and B3. Task B2 will in turn generate new
tasks which are equivalent to D4 and A2. Since an applicative
program has no side effects, it does not require any undo
operation, and hence there is no domino effect [13].

406

.
i

I

f
l.

Note that task C4 holds the checkpointing data for B5.
Processor C may regenerate B5 when B fails. However, the
recovery of B5 is not fruitful because antecedent task A2
~annot report its result to B2. Reactivation of B5 only
mcreases the system overhead. Therefore, an efficient way to
salvage a group of genealogical dependents is to redo only the
most ancient ancestor and ignore the rest

3.1 Level Stamps

Genealogical dependencies among tasks can be monitored by a
simple level numbering scheme. Assume that the root task
carries a null level number, a task at level one will bear a
unique one digit identification. Tasks in subsequent levels are
stamped by appending one more digit to the number of their
parents. The term "digit" is used here generically and is not
limited to a specific radix representation.

Since each task is associated with a unique level stamp, it is
obvious that ancestor-descendant relationships can be
observed by comparing stamps. Note that a level stamp is not
a time stamp. Its uniqueness is guaranteed by the program
structure. Stamping of tasks can be fully asynchronous.

3.2 Recovery Scheme

Each processor maintains a table of linked lists. The Nth entry
of the table contains all topmost checkpoints from the host
processor to processor N. Referring to FIgure 1, for example,
when processor C spawns task B2 to processor B, C
compares the level stamp of B2 with all checkpoints in entry
B. If B2 is a descendant of an existing functional checkpoint,
C does nothing. Otherwise, processor C makes a checkpoint
for B2 in entry B.

When processor C identifies the failure of processor B, C
simply reissues all the checkpointed tasks found in entry B of
the table. By doing so, processor C fulfills its responsibility
of recovering B. Other processors take similar actions to
recover their descendant tasks being trapped in B. The
complete recovery of a faulty processor is a collective effort
from processors which have checkpointed applications on the
failed processor.

During task evaluations, a processor is required to abort a task
if new arguments of the task cannot be obtained due to failures
of other processors. A task is also aborted if the result of the
task cannot be forwarded to the parent task. The aborted tasks
and their descendants may be recollected during garbage
collection operations.

3.3 Dynamic Allocation and Recovery

The possibility of discarding intermediate results without
extensive undo operations is a property of applicative
programs. However, the ability to recover by simply
reissuing checkpointed tasks depends on the availability of a
dynamic allocation strategy, such as the gradient model
approach [10].

Recovering tasks in a static allocation environment requires
manipulations of some linkage information. For example,
tasks being allocated to a failed processor have to be
reassigned to other processors. Descendants of the reassigned
task have to modify their return addresses accordingly.
Furthermore, the balanced state derived from the static
allocation method may not be maintained easily after a
processor fails.

407

Dynamic allocation does not distinguish between tasks
generated for recovery and original tasks. All tasks are treated
equally during load-balancing activities. The parent-child
linking information is dynamically produced. Hence, there is
no need to update these linkages when the task is reassigned.

3.4 Orphan Tasks

Rollback recovery inevitably leaves a few orphan tasks after
some recovery has taken place, e.g., task D4 in Figure 1
becomes an orphan when processor B fails. The problem is
that a task might not know whether it is an orphan without
expenditure of a considerable amount of system resources.

Returns from orphan tasks are theoretically harmless since
they are forwarded to a faulty processor and no side-effect can
be induced. However, the partial results produced by orphan
tasks are in fact correct answers of their associated functions.
Failure of a node does not contaminate these incomplete
answers; it just breaks the linkage among them. These partial
results are usable if the regenerated parent task knows where
to retrieve them, or if the orphan tasks know the new address
to which to forward their answers. The desire to salvage
partial results motivates the design of the following recovery
scheme.

4. Splice Recovery

Applicative systems facilitate evaluation of a functional
program by dynamically unfolding the underlying structure of
the algorithm and disseminating parallel tasks to many
processing nodes. At any instant, task distribution in a system
represents a snapshot of the program structure. Generation of
a task creates a new substructure and establishes a linkage
between the parent and children. Return packets from a child
task normally eliminate the children that are no longer needed.

The simple rollback scheme cuts off the branch or branches
originating from a faulty node and regrows new branches.
The method basically abandons all intermediate results
computed by the orphan tasks. This section suggests a
different approach, splice recovery, which attempts to retrieve
all possible intermediate results.

4.1 Resilient Evaluation Structure

The splice approach is to continuously establish a resilient
evaluation structure during program computations. A resilient
structure is one containing redundant information which
allows a system to rebuild the original structure after a failure
has been identified. By rebuilding the structure, the system
may salvage many partial results.

We have seen that when a processor fails, an applicative call
tree may break into several pieces. The idea of splice recovery
is to provide necessary bridging information such that broken
pieces can be put together again. When a parent discovers the
failure of a child task, the parent task generates a twin task of
the faulty child. This twin task inherits all offspring of the
faulty task with the help of the grandparent pointer.

A grandparent pointer of a task is a pointer from the task to its
ancestor in the grandparent processor. For example, the
grandparent pointer of task B3 in Figure 1 points to task AI,
and task D4 has a grandparent pointer to Cl (Figure 2).

Figure 2: Grandparent pointers

Assuming as before that processor B fails, processor C may
start recouping the loss of B2 as soon as C realizes that node B
is dead. A twin task of B2, say B2', is created by the parent
Cl to inherit tasks D4 and A2 (Figure 3). A full emulation of
task B2 would require task B2' to possess physical binding
information between B2 and D4, and between B2 and A2.
Unfortunately, this information must be embedded not only
inside the faulty node, but also within every descendant
processor. Changing the return addresses of every descendant
task at various sites could be very tedious.

If processor C has already reproduced B2' when the return
from D4 arrives, task A simply forwards what it has received
to step-child B2'. The role of a grandparent node in this
recovery scheme is two-fold: it reproduces the dead task and it
transports the orphan results to their step-parent when these
returns become available. Having the grandparent relay partial
results eliminates the problem of updating return addresses in
every orphan task.

A recovered task, like any other, starts executing its function
code as soon as it is committed to a physical processor. When
it encounters a function call, it forms a task packet and spawns
the child. However, offspring of a recovered task mayor may
not have been demanded by the preceding faulty task. Let P
represent a faulty task, and C a child task of P. Let P' be the
recovery task for P. C' is generated by P' and is the
equivalent of C, as suggested in Figure 4.

o
/"o 0

c6
Figure 4: Tasks in splice recovery model

The relationship between child task C and its clone C' has the
following possibilities: (Figure 5)

(1) C has never been invoked;
(2) C will never complete;
(3) C completes before P dies;
(4) C completes after P dies, but before P' is invoked;
(5) C completes after P' is invoked, but before C' is invoked;
(6) C completes after C' is invoked;
(7) C completes after C' has completed;
(8) C completes after P' has completed.

C' completed

I
P' completed

...87654
....

Figure 3: Task B2 is inherited by task B2' C'invoked

Instead of fully emulating a faulty task, we opt to make B2'
inherit descendant tasks of B2. Suppose that when D4 tries to
return the evaluated answer to parent B2, it detects that node B
is dead. The algorithm commands D4 to forward the result to
grandparent Cl. Processor C receives these unexpected partial
answers from grandchildren and asserts that the parent of these
grandchildren is faulty. Then, processor C forms the recovery
task B2' by duplicating the task packet of B2.

P' invoked

P fails

Figure 5: All possible orderings with respect to completion ofC

408

Case 1 or 2: C has never been invoked or C will never
complete. In either case, no result of C is produced. Task C
is practically nonexistent and will be garbage collected. Only
C' may produce an answer.

Case 3: C completes before P dies. Task C may have already
finished the computation and returned the answer back to
parent P before P breaks down.. The result of task C is sto~
inside the parent P. When P fails, the system loses all parual
results which have been saved in P. The recovery task P'
must recalculate C by activating task C'.

Case 4 and 5: an old result comes before the new
invocation. Task C finishes computation after the parent P
dies. C sends its result to the grandparent task which transfers
the result to the step-parent P'.

The difference between cases 4 and 5 is that in case 4, the
grandparent has to reproduce P' first. When child task C' is
executed by task p', P' will not spawn C' because the answer
is already there. There is still only one result C' in the system.

Case 6: C completes after C' is invoked. Suppose that P'
has already spawned C' when the result from C arrives at P'.
Theoretically, the result from C and the would-be answer from
C' are identical. Therefore, parent P' takes the answer from C
and proceeds with the execution.. The additi0!1 of.C' may
produce a duplicate answer to P'. Smce they are IdentIcal, the
second copy is simply ignored.

Case 7: C completes after C' has completed. This is the
reciprocal situation of case 6. Note that due to the asynchrony
nature of task evaluations, late invocation of an identical task
may yield a result faster than the earlier invocation. .

Case 8: old result arrives after everything is completed. The
processor which contained P' may no longer recognize the
arrived answer. The result is discarded.

4.2 Protocol for Splice Recovery The main idea of the
splice recovery method is to build a resilient structure along
with a program evaluation. The r~u~d~tinforma~onm.ust
be in place long before a recovery IS mlOated. ThIS section
describes the usage of these redundancies from the view of a
single processor.

LOOP
CASE received packet OF
forward result:

Interpret the level stamp.
CASE level stamp OF

child: Place data at the location indicated by the
level stamp. If a task can be continued,
resume the task.

grandchild: Create a step-parent for the grandchild
if there isn't one already.
Transfer the result to its step-parent

others: Ignore the packet
ENDCASE

fetch data: If the location has been evaluated, forward the
data. Otherwise, DEMANDJr.

409

task packet: Execute the task. DO each instruction
If an unevaluated function encountered,

DEMAND IT.
If cannot proceed, suspend the task.
UNTIL completion. Send the result to the parent
If the parent is dead,

notify the grandparent and
send the result to the grandparent

error-detection: Find the topmOst offspring of all
branches, respawn all of these apply tasks.
Establish transport mechanism for relaying
partial results.

ENDCASE
ENDLooP.

The routine DEMAND IT is the fundamental evaluating
process of an applicative Program. We elaborate the algorithm
in the following form.

DEMAND IT:
Create a task packet
Level-stamp the task packet
Attach parent and grandparent identifications

to the task.
Queue the task packet to load balancing manager.
Functional checkpoint the packet

End DEMAND_IT.

As a rule of thumb, if a processor receives a packet and cannot
find a proper rule to handle it, the processor simply ignores the
received message. Note that the overhead of splice recovery
protocol is small. By using the level stamps as tags for a
program structure, the apparent overhead for establishing a
resilient structure is a physical identification of grandparent
node which may be just an integer.

4.3 Correctness of the Recovery Scheme

The successful evaluation of an applicative program is signaled
by the completion of the root task. A necessary condition for
completing the root evaluation is to satisfactorily compute all
immediate descendants of the root. This observation, when
applied recursively, implies that all tasks must be evaluated
correctly.

In order to guarantee a task can be evaluated, the task has to be
generated in the first place. This means that every task is
flawlessly reproducible even if some processor may fail during
the evaluation. Reproducibility of tasks is the main criterion
for a resilient applicative system.

4.3.1 Reproducibility

If the failed processor contains the root of a task tree, the
regeneration of the root does not come naturally with recovery
schemes. The user must restart the program, or a
preevaluation functional checkpoint needs to be implemented.

One simple method to generate a preevaluation checkpoint is to
create a super-root which acts as the parent processor of all
user programs. When a user program is initiated, the super­
root checkpoints the program so that a duplicate copy of the
program can be found in the system should the root fail.

With this modification, every task in an applicative program
has a parent. A parent task is capable of generating and
regenerating any immediate child task as long as the parent is
infonned by some error detecting mechanism. This satisfies
the reproducibility requirement of a correct recovery algorithm.

4.3.2 Residue Effects

Without loss of generality, evaluation of an applicative tree
can be typified by scrutinizing the spawning process of a
three-task sequence. Figure 6 shows the state transition
diagram of spawning and reduction of task G. Task G
spawns task P which subsequently spawns C. Note that states
band d are transient. The existence of transient states is a
result of the dynamic load balancing method.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6: State transition diagram for evaluating G

The pointers being produced and reduced among tasks of each
state are depicted in Figure 7. The pointer from P to its
grandparent and the pointers to P from its grandchildren are
omitted for clarity. Assume that task P fails during the
evaluation of G, residue effects may affect anyone of the
related tasks at any stage of the state transition. A residue-free
fault tolerant measure must assure that tasks G and C are not
affected by the failure of P from state a through state g.

The failure of P obviously has no effect in state a. In state b,
failure of the processor which absorbs P means that parent
task G will not receive a positive acknowledge from task P.
As a result, processor G times out and reissues a new task P.
The system acts as if the first invocation of P did not take
place.

In state c, task G receives an acknowledge from P and
establishes a parent-to-child pointer to P. The new pointer
may provide additional fault detection capability, but the
impact of the failure remains similar to that of state b.

Residual effects, resulting from the failure of P, may happen at
state d and successive states. Parent task G is left in the same
situation as if it were in state b or c. However, there is a child
task C lingering around the system. Task C may be stranded

410

due to incomplete information from parent P. In this case, C
commits suicide and the recovery from G is free from residual
effects, or task C may complete the evaluation and try to return
the result. C sends the result to G after failing to communicate
with parent P. The case analysis in section 4.1 applies here.

State e has exactly the same recovery condition as state d,
since the transient state d becomes state e as soon as task C
finds an idle processor. The discussions on state d can be
applied here and will not be repeated. State f is similar to state
c as far as recovery is concerned.

(a) m
(b) m.--m
(c) m++m
(d)

~4 --m. [fl
(e)

~4 --m.. --[fl
(f) m++m
(g) m

Figure 7: Available pointers among tasks

5. Discussion and Related Research

5.1 Robust Storage Structures

Using a resilient structure for fault-tolerant computing is not a
new idea. Waldbaum [19], and Taylor, et al. [16, 17]
proposed a robust storage structure to ensure data integrity in
uniprocessor or shared memory machines. Item count,
identifier field, and/or additional pointers are commonly added
for error detection and recovery purposes. This paper extends
the concept of resilient structure to a distributed applicative
evaluation graph.

Conceptually, an evaluation structure is quite different from a
storage structure. A storage structure is an object manipulated
by programs, while an evaluation structure is a program itself.
Furthermore, most techniques developed for resilient storage
structure seem to be impractical in distributed systems. For
example, item count of a linear list is a convenient way for
checking broken links in a shared memory machine. To
maintain a correct item count and verify it regularly in a
network of processors would require significant traversing
overhead.

5.2 Multiple Faults

Both the rollback and splicing recoveries use functional
checkpoints to tolerate hardware failures. Although single
node failure is assumed throughout the discussion, it is
obvious that rollback recovery is not limited to tolerate only

single node failure. The difference between multiple faults and
single fault in the rollback algorithm is the placement of the
recovery border in the evaluation graph.

Splicing recovery can handle some combinations of multiple
faults gracefully. For example, multiple failures on different
branches of a structure do not disturb the recovery algorithm at
all. Separate recoveries take place at different parts of the
program in parallel. However, if both the parent and
grandparent processors of a task fail simultaneously, the
orphan task would be stranded. It is noted that the resilient
structure concept can be further extended to include pointers
to the great grandparent and beyond to tolerate multiple failures
on one branch of the graph.

5.3 Hardware Redundancy

In a hardware redundant fault tolerant system, several
redundant machines execute an identical program on replicated
data objects. An applicative system can emulate hardware
redundancy by simply replicating the task packets.
Eventually, a task is executed by several processors at random
times. The results are sent back to the originating node
asynchronously. The originating node compares these results
and selects a majority consensus as the correct answer.

A fundamental difference between applicative replicated task
redundancy and pure hardware redundancy is that applicative
systems execute redundant tasks asynchronously, while most
hardware redundant systems employ synchronous operation.
Asynchronous operations are subject to timing delays because
a node has to wait for the return from slower processors. But
a node does not have to wait for the slowest answer if it has
received the identical results from the majority of replicated
tasks. Replicating tasks provides a means of emulating
hardware redundancy in applicative systems. The user may
specify certain critical sections of a program for such a highly
reliable operation.

5.4 Related Research

Fault tolerant problems in data-driven systems have been
studied [6,7, 11, 14]. Misunas proposed a triple modular
redundancy implementation of a dataflow machine [4, 11].
Three complete copies of the program are stored in the
memory. Copies of each instruction are carefully distributed
so that each copy is executed by a different processor and
utilizes different communication paths. Thus, the failure of
any single block affects at most one copy of the program.

Hughes [7] described a variation of periodic checkpointing,
where a host processor periodically stored the whole system
state. Also discussed was a recovery technique, node-by-node
correction, which used a control unit of the system as a
monitoring device. Erroneous packets were recomputed and
re-sent.

Srini [14] suggested a node reassignment algorithm for error
recovery purposes. The algorithm depends on a global system
memory for collecting and communicating recovery messages.
The checkpointed node state is stored in the global memory.

Grit [6] proposed a structural recovery method where each
node in the system is limited to spawning child tasks to its
immediate neighbors. At system initialization time, a node
receives a list of recovery sites for each of its immediate
neighbors. When a node fails, a neighbor notifies the
recovery site. The recovery node polls all possible parent and
child nodes of the failed processor and tries to reconstruct the
lost task.

6. Summary

This paper discusses the reliability aspect of applicative
multiprocessor systems and suggests means for fail-soft
treatment. The concept of functional checkpointing is
proposed. Unlike conventional checkpoint schemes,
functional checkpointing is concise, distributed and
asynchronous. Two fault recovery techniques based on the
notion of functional checkpointing are proposed. The thrust of
these recovery models is to minimize the overhead while the
system is in a normal, fault-free operation.

The simple rollback recovery method attempts to reconstruct
the faulty section of the program structure by redoing the
functions from the most efficient parent task or tasks. In other
words, the recovery starts from the most recent functional
checkpoints. The scheme is simple and has very little
overhead in a normal operation. But, if a fault happens at a
later stage of the evaluation, the rollback recovery may be
costly.

The splice recovery scheme also uses the most recent
functional checkpoints for error recovery as in the rollback
method. In addition, the splicing scheme tries to salvage as
much intermediate partial results as possible. The salvage is
made possible by a backward grandparent linkage along with a
program graph stamping mechanism. This approach enables
the parent tasks of a faulty processor to regenerate the
corrupted substructure of the program and splice the recovery
results into the framework preceding the failure.

7. References

[1] T. Anderson and P.A. Lee. Fault Tolerance: Principles
and Practice. Prentice Hall International, 1981.

[2] G.R. Andrews and EB. Schneider. Concepts and
notations for concurrent programming. Computing Surveys
15(1):3-43, March, 1983.

[3] G. Barigazzi and L. Strigini. Application-transparent
setting of recovery points. In Proc. of 13th Int'l Conf. on
Fault-Tolerant Computing, pages 48-55. IEEE, June, 1983.

[4] J.B. Dennis and D.P. Misunas. A preliminary
architecture for a basic data-flow processor. In Proc. 2nd
Annual Symposium on Computer Architecture. IEEE, 1974.

[5] M.J. Fischer, N.D. Griffeth and N.A. Lynch. Global
states of a distributed system. IEEE Trans. on Software
Engineering SE-8(3):198-202, May, 1982.

[6] D.H. Grit. Towards fault tolerance in a distributed
applicative multiprocessor. In Proc. of the 14th Int'l Conf. on
Fault Tolerant Computing, pages 272-277. IEEE, June,
1984.

[7] J.L.A. Hughes. Error detection and correction
techniques for dataflow systems. In Proc. of the 13th Int'l
Conf. on Fault-Tolerant Computing, pages 318-321. IEEE,
June, 1983.

[8] R.M. Keller, G. Lindstrom, and S. Patil. A loosely­
coupled applicative multi-processing system. In AFIPS,
pages 613-622. AFIPS, June, 1979.

[9] R.M. Keller and EC.H. Lin. Simulated performance of
a reduction-based multiprocessor. IEEE Computer 17(7):70­
82, July, 1984.

411

[10] F.C.H. Lin and R.M. Keller. Gradient model: A
demand-driven load balancing scheme. In Proc. 6th Int'l
Conf. on Distributed Computing Systems, IEEE, Cambridge,
Massachusetts, May, 1986.

[11] D.P. Misunas. Error detection and recovery in a data­
flow computer. In Proc. 1976 Int'l Conf. on Parallel
Processing, pages 123-131. IEEE, August, 1976.

[12] K.N. Oikonomou and R.Y. Kain. Abstractions for node
level passive fault detection in distributed systems. IEEE
Trans. on Computers c-32(6):543-550, June, 1983.

[13] B. Randell. System structure for software fault
tolerance. IEEE Trans. on Software Engineering SE­
1(2):220-232, June, 1975.

[14] V.P. Srini. Node reassignment in a dataflow system. In
Proc. 4th Int'l Conf. on Distributed Computing Systems,
pages 15-27. IEEE, San Francisco, CA., May, 1984.

[15] Y. Tamir and C.H. Sequin. Error recovery in
multicomputers using global checkpoints. In Proc. of the 13th
Int'l Conf. on Parallel Processing, pages 32-41. IEEE,
August, 1984.

[16] D.J. Taylor, D.E. Morgan and J.P. Black. Redundancy
in data structures: Improving software fault tolerance. IEEE
Trans. on Software Engineering SE-6(6):585-594, November,
1980.

[17] D.J. Taylor, D.E. Morgan and J.P. Black. Redundancy
in data structures: Some theoretical results. IEEE Trans. on
Software Engineering SE-6(6):595-602, November, 1980.

[18] S.R. Vegdahl. A survey of proposed architectures for
the execution of functional languages. IEEE Trans. on
Computers C-33(l2):1050-1071, December, 1984.

[19] G. Waldbaum. Audit programs - A proposal for
improving system availability. Res. Rep. RC2811, IBM,
February, 1970.

412

	Claremont Colleges
	Scholarship @ Claremont
	8-1-1986

	Distributed Recovery in Applicative Systems
	Frank C. H. Lin
	Robert M. Keller
	Recommended Citation

	tmp.1318372926.pdf.3J161

