
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

5-1-1985

Approaching Distributed Database
Implementations Through Functional
Programming Concepts
Robert M. Keller
Harvey Mudd College

Gary Lindstrom
University of Utah

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more
information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Keller, Robert M., and Gary Lindstrom. "Approaching Distributed Database Implementations Through Functional Programming
Concepts." Proceedings of the Fifth International Conference on Distributed Computing Systems (May 1985): 192-200.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Approaching

Distributed Database Implementations
through

Functional Programming Concepts

Robert M .. Keller
Gary Lindstrom

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

Abstract: The application of functional programming
concepts to the data representation and query!ng aspects
of databases has been discussed by Shipman and
Buneman, et al. respectively. We argue the suitability of a
function-based approach to additional aspects of database
systems, including updating, transaction serialization, and
physical distribution and communication. It is shown how
the NmergeH extension of a purely functional model permits
seriallzable concurrent "primary site" distribution control.
We also present preliminary experimental results which
indicate that a reasonable degree of concurrency is
attainable from the functional approach.

Key phrases: appl icative programming, functional
programming, lenient data constructors, distributed
databases, primary site model, concurrency, distributed
systems.

1. An Applicative Approach to Distributed
Computing

We select as our distributed computing context a model
presenting flexible, logical and physical organization, in
which computing load can be shifted transparently from
one PE to another. It Is based on the notion of appl icative
(or functional) multiprocessing (5, 10J.

Computation in applicative systems proceeds by the
appl ieation of functions (either primitive or programmer
defined) to data structures as abstract objects, rather than
as expl icitlv modifiable representations in memory cells.
As such, there is no explicit notion of "locking" as is found
in typical discussions of concurrent database systems
Thus, functional programs can give rise to substantial
advantages, including:

£ asiry- real ized concurrency: Due to the absence of visible
side-effects in functional languages, sub-expressions

This work was supported by a grant from the IBM
corporation, and by National Science Foundation grants
MCS 81 -06 177 and MCS 78-03832. A preliminary version
appeared as (12].

CH2149-3/85/0000/0 J92$01.OO©1985 IEEE
192

which exhibit no data dependencies may freely be
evaluated concurrently without reservation. The typical
use of powerful recursion and mapping operators, which
conceptually expand into large expressions with many
independent sub-expressions, provides numerous tasks
which may be concurrently evaluated.

Semantic basis: Functional languages have relatively clean
uniform semantics, facilitating formal reasoning about
programs, and hence their verification;

Modularity: The adoption of the mathematical notion of
function as a basis for programming enhances incremental
understanding and module reusability.

In addition, less obvious features of modern applicative
programming are relevant to distributed systems,
including:

Selective object copying: While new objects are
conceptually created ab InItio whenever they are produced
as a function result, in practice only selected components
are created anew, with references to components of
previously constructed data objects achieving a sharing
effect. Since assignment side-eHects are precluded. this
space-efficient sharing is semantically transparent.

Processing incomplete objects: Through the use of lenient
data constructors (our phrase [10] for the semantic
counterpart of the operational notion of 1~lazy

evaluation" [4, 7]), data structures need not be constructed
in their entirety before they are used as components in
other structures. For example, a lenient tuple constructor
creates a tuple (1 -dimensional vector) which itself is an
object, the components of which are made positionally
accessible before any of the components are necessarily
completely computed. Several systems supporting such
data constructors have been implemented [2, 13, 22). An
important consequence of this technique is that input
sequences of unknown or infinite length, called streams,
are bona fide data objects. Moreover, the possibility of
overlapped access and generation of lenient data
constructors gives rise to further opportunities to exploit
parallel processing capability [5].

In the database context our goals of programmer freedom
from explicit process and processor management
correspond to two of four forms of transparency
enumerated by Traiger et al. [21]:

Location transparency: "Although data is geographically
distributed and may move from place to place, the
programmer can act as though the data is all in one
node."

Concurrency transparency: "Although the system runs
many transactions concurrently, it appears to each
transaction as though it is the only activity in the system.
Alternately, it appears as though there is no concurrency
in the system."

It may be observed that these forms of transparency arise
naturally in the functional approach to distributed database
design. While we will not touch on the other two forms
of transparency discussed by Traiger, et a!. (replication
transparency and failure transparency), we do not consider
them to be alien to the functional approach, but rather
opportunities for future investigation.

We offer a note on types of concurrency that may be
helpful in understanding certain points brought out in the
remainder of the paper. Concurrent processing can
informally be classified into two types:

Pipelining, in which several (logical) processors operate
on different items in a sequence, the result produced by
one processor being passed on to the next; and

Flooding, in which a set of independent data are operated
on concurrently by a set of processors.

As an example from database systems, we can classify
concurrency such as would occur in the search of several
relations within one transaction as being flooding. On the
other hand, concurrent processing of parts of successive
transactions would be pipelining, this relationship arising
from, e.g., write-read dependencies on particular relations.

Despite the aforementioned advantages of applicative
programming, a number of questions have persisted
concerning the ultimate suitability of the functional
approach for adequately treating certain aspects of
database systems, both physical and logical. These
include:

Updatable objects: How can shared object updating be
modeled without wholesale compromise of the functional
approach?

Distributed access control: How can the fundamentally
non-sequential control model be reconciled with the need
to establish temporal ordering (Le. "serialization") among
conflicting accesses to shared objects? Must this
introduce bottlenecks that severely constrict the potential
distributed evaluation associated with the applicative
approach?

193

Site addressing: What techniques can be used to
represent optional explicit physical node accesses in the
system, as would be required, for example, for the on-line
addition of new database users, and the release of
terminated ones?

Load management: In a true mUltiprocessing setting, a
general solution must be found for the task migration
problem, Whereby overloaded PEs can export portions of
their activity backlog to less burdened neighbors.

The first three of these issues are addressed in this paper.
The last is discussed in [14]. We first indicate a general
method for dealing with updating, indicating how the
applicative viewpoint can be retained without requiring
reconstruction of the entire database when updating. The
sharing and concurrency aspects of this approach are
emphasized. We then show how the approach can be
incorporated into a concurrently-accessed database, and
how concurrency control can be effected. Lastly, we
present evidence of the merit of our approach by giving
figures for degree of concurrency obtained from some
simple experiments.

2. Functional Database Processing

2.1. A Functional Formulation of Transaction Processing
It is common to employ a transaction {nodel in the
application domain of databases, distributed or otherwise.
Briefly, a transaction is a sequence of operations on the
database which must have the effect of uninterrupted
execution. An individual user or application program
interacts with the database system by submitting a stream
of transaction requests ("queries"), from which there is
generated a stream of corresponding transaction
responses.

The functional approach to programming entails
representing the entire programming task in terms of a
specification of objects created from other objects. The
essential contrast with traditional assignment-based
approaches is that the functional approach does not
directly modify any object. However, unneeded objects
may be destroyed (through garbage collection) at the
system's convenience. Consequently, one problem to be
solved is that of representing the phenomenon normally
thought of as database updating.

Our viewpoint is that each transaction reads a database,
and conceptually produces a new instance of it. Thus, we
describe

transaction: databases -- > responses x databases

(We adopt the convention that the plural (e.g. databases) of
a name to indicate the set of objects of that name (e.g.
database).) As mentioned previOUSly, each transaction
produces some response which is returned to the user.
The new database is then used for the nex.t transaction to
be processed, the database resulting from that transaction
is used for the transaction following, etc.

Of course, if the databases in question are large, it is
infeasible to physically produce a new database for each
transaction. However, this is not likely to be necessary if
appropriate structuring techniques are used. There exists
a variety of contemporary methods for logically
decomposing a database and accessing its data. We
indicate how these methods may be used to achieve a
complete logical reconstruction of databases through a
partial physical reconstruction. We shall also argue that in
a paged environment, the time overhead resulting from
this viewpoint is negligible.

The techniques to be described can be applied to any of
the popular structuring schemes, such as the network,
entity-relationship, hierarchical, or relational model [23].
For simplicity, we choose to work with only one of these,
although the level at which we present our approach is
sufficiently high that the details of the model do not
appreciably invade the presentation.

the output databases of apply-stream, as shown in Figure
2-1, we achieve a functional program for the complete
processing. This may also be expressed as a set of
functional equations

old-databases = initial-database 1'\ new-databases

[responses, new-databases] =

apply-stream:[transactions, old-databases]

responses

new-databases

Assume the use of the relational model (cf. [23]) for
concreteness. For notational simplicity in what follows 1

we assume that a relational database is a set of relations l

along with a mapping

names -- > relations

from a set of relation names to the relations themselves,
for purposes of identification. Each relation is a set of
tuples of data Items.

apply-stream

By a query we mean a symbolic description of a
transaction which, for a given database, will produce a
response and a new database. Thus, we assume a
function

translate: queries -- > transactions

which provides such functions from their symbolic
descriptions. Thus, translate must parse the query and
produce a function which is the transaction itself. Here is
where a language capability for "higher-order" (or
function-producing) functions is very useful.

We reemphasize that an incoming query is in symbolic
form. To map a stream of such queries (such as might be
entered from a terminal) into a stream of transactions, we
merely apply translate to each query. Thus, we can say (In
the language FEL [13])

transactions == translate II queries

where II is the apply-ta-all operator, which applies the
function on the left to each component of the stream on
the right.

We have already mentioned the formal nature of a
transaction; each transaction maps a database to a new
database and a response. Let apply-stream be an operator
which applies a stream of transactions one-by-one to a
stream of databases, yielding a pair of streams: the
stream of responses to the transactions and the stream of
databases resulting from the transactions. By feeding to
apply-stream the stream of transactions and a stream of
databases consisting of the initial database followed by

194

1n1 tia l-database

transact1ons

Figure 2-1: Transaction application in graphical form.

Notatlonally, the colon represents the application of the
function on the left to the argument on the right. Brackets
represent tupling; a multi-argument function is
represented as a function applied to the tuple of its
arguments. The symbol 1'\ is the infix form of the lenient
stream-building function "followed-by" which constructs a
stream by following the first argument with the second (a
stream). It should be pointed out that this graph, or
equivalently the system of equations, forms a top-level
functional program for solving the database update
problem.

Similarly, a functional expression for apply-stream may be

given as

apply-stream:[transactions, databases] =

if transactions = []
then [[], []]
else

{
[response, new-database] =

(first:transactions):(first:databases),

[more-responses, more-databases] =

apply-stream[resttransactions,

rest:databases],
RESULT [response I' more-responses,

new-database I'more-databases]

01 = [R1, SO] where Rl = insert-in-relation:[RO, xl

and
}

Here first and rest are the functions which, when applied
to a stream, yield the first object in the stream and the
rest of the stream respectively, and [] represents the
empty stream.

02 = [R1, S1] where 51 = insert-in-relation:[SO, y]

Thus, we see that DO and D 1 both share the relation SO,
while D 1 and D2 share the relation S1. Thus, a net
reconstruction of two relations, rather than four, has taken
place in processing the indicated two transactions.

The principle articulated above generalizes. Clearly, the
greater the number of relations, the more sharing possible,
and thus the less reconstruction. Furthermore, the same
idea can be used withi n the relations themselves.
Supposed that a relation is implemented as a set of pages,
with each page containing a set of tuples, and that there
is a directory page which indexes the other pages. If an
insertion or modification affects only a few pages, then all
other pages can be shared. A new directory structure is
created, the old one being left intact. This is illustrated in
Figure 2-2.

"modified"
page

data pages

7
/ D

"new" directory

directory pages

"old" directory

We now demonstrate how partial reconstruction is
accomplished. Suppose that the initial database is

insert-in-relation: relations x tuples -- >Jelations

which will be used in the implementation of the function

insert-in-db: databases x relation-names x tuples
-- > databases

2.2. Functional Database Updating
To demonstrate how our model can achieve full logical
updating through partial physical updating, it now
becomes necessary to consider typical transactions.
Obviously, a transaction tr is read-only if it returns the
same database as its argument:

tr:db = [...some response.", db]

For such transactions, no physical modification is
necessar.y.

Another type of transaction involves insertion of tuples
into one or more relations, Usually the specific relations
are syntactically derivable from the query, and in a large
number of cases, involve only one relation per transaction.
We assume this to be the case for the sake of illustration
in what follows.

In the same way that we view a transaction as creating a
new database, we also view the insertion of a tuple into a
relation as the creation of a new relation. Thus, we
assume a function

DO = [RO, SO]

where RO and SO are two relations.
transaction sequence:

insert x into R

insert y into S

Consider the

D"modified"
page

The database resulting from the first command is

01 = insert-in-db:[DO, R, x]

Figure 2-2: Sharing of
directories

pages through separate

wh ile that resulting from the second is

02 = insert-in-db:[01, S, yl

= insert-in-db:[insert-in-db:[DO, R, xl, S, y]

But

The technique extends with even further sharing
possibilities by making the directory structure into a tree.
In such methods, a path on the order of log n, where n is
the number of tuples, is traversed to find a given tuple.
Furthermore, insertion or deletion of a tuple requires the
replacement of a number of internal node records of the
same order. Thus, all but a proportion (log n)/n of a
relation can be shared during updating. Moreover, as this

195

sharing is achievable when the result of the update is
expressible as a function of the relation prior to updating,
the functional approach is indeed attractive for such
representations.

2.3. Database Concurrency and Synchronization
Conventional methods for accomplishing concurrent
updates to a database required the systems programmer
to program locks, semaphores, etc. (cf. [23]). In contrast,
the functional approach to updating, as exemplified by the
discussion in the previous section, performs all necessary
synchronization implicitly.

To see how synchronization is accomplished, consider
again the database composed of relations Rand S. Each
transaction yields a new database, which is represented by
a new pair. Thus, if a transaction following the Insert in S
depends only on the R component, it can proceed
immediately without waiting for the S component to be
completely established. We are here relying on the
Hlenient'" aspect of the tupling constructor, [. ...1, i.e. that we
can select and use one component while other
components are as yet uncomputed. Regarding the
previous example, since the relations R1 and 51 in 02 are
cle8l'Iy derivable independently from RO and SO
respectively, the corresponding insertions can be done in
parallel. This means that the database versions can
effectively be pipel i ned through the function apply
stream, in that different transactions can be processing
constituent objects concurrently.

A corollary use of lenient data constructors is that many
potential sites for concurrent execution within data
structures are available, due to a reduction in the amount
of forced synchronization. Although a stream is produced
conceptually in sequence, at the top level, many elements
of the output sequence are demanded in an anticipatory
fashion, to generate as much parallel execution as
possible.

The degree of potential concurrency is sensitive to the
programming style employed In the transaction functions
and the underlying data structures used. For example, a
great deal of attention has been devoted to exploiting
concurrency in such tree representations using explicit
locking [1, 161 In contrast, the functional approach to
tree-updating induces implicit synchronization. While the
space overhead in the latter is greater due to the
avoidance of in-place modification, the concurrency should
in principle be at least as good or better, since only
essential data dependencies playa role in synchronization.
We also claim that the functional versions are much
simpler to program and therefore less susceptible to error.

2.4. Multi-user Transactions and Serialization
Non-functional aspects of distributed database systems
cannot be represented within the approach outlined thus
far. In the case of several users or application programs
submitting requests on the same database, there is
interaction among them when one transaction modifies a

196

portion of the database which is used by a subsequent
transaction. Hence there is a distinct non-functional
appearance in the customary formulation of such systems.
Nevertheless, there turns out to be a simple way of
specifying the desired behavior in a "pseudo-functional"
manner. This entails the use of a merge (or "multiplex'~)

operation, which provides an interface consistent with
other functional operators, but is not strictly a function (cl.
(91).

This merge technique is widely known in the functional
programming community, so we treat it only briefly. A
semi-functional definition of a (2-way) merge can be
found in [1 1] and will not be repeated here. Informally, a
merge has as its input several query streams and its
output is an arbitrary interleaving of those streams. We
henceforth refer to a specific interleaving as the merged
stream of requests. The order of interleaving can be that
in which the merge receives the requests. In order to
direct the response for each transaction back to its origin,
a tag indicating that origin must be paired with each
request. The function processing the transactions ignores
the tag, but keeps it associated with the data so that the
response can be routed when desired. (The tagging idea
was also used, for example, in (6].) The discussion below
ignores such tags for simplicity.

A sufficient condition for the standard criterion of
"serializability", (cf. [23]) for the processing of concurrent
transactions is as follows:

Process the merged stream sequentially.

This condition conveniently decomposes the overall
problem into a pseudo-functional part (the merge) and a
purely functional part (the apparently-sequential
processing of the merged stream).

It may appear that this approach loses concurrency;
however this is not the case. We assume an execution
mechanism capable of evaluating independent stream
components concurrently, such as that described in
[10, 14]. Due to the construction of streams and other

data objects with lenient data constructors, executable
operations wi'" be extracted from the merged stream as
they become available, rather than in the implied
sequence. Then the pipelined processing of transactions
can take place, as described earlier. The apparent
bottleneck due to merging is minimized if components of
the transactions are sufficiently independent.

There is a momentary "locking" eHect among transactions
as transaction streams are merged; this establishes a
definite sequence from which concurrent operations are
extracted. In effect, the linkage mechanism underlying the
functional implementation effects the equivalent of a
"timestamp order" execution (c/. [23]) but without explicit
reliance on timestamps. It can thus be seen that the
stream structures induce the effect of version-based
objects [19] on the relations which form the database. It is
further possible to "optimize" the transactions for greater
concurrency among relational components by judiciously
ordering the transactions to be merged, so long as the

order of transactions from each individual stream is
maintained. This is a topic for future research.

Figure 2-3 illustrates the merging of two independent
transaction streams, and one possible decomposition of
the merged stream for concurrent execution. This type of
behavior has been experimentally verified. We re-
emphasize that no clever compilation or locking
techniques need be employed in causing the concurrency
to materialize.

(resulting de-facto parallel execution schedule)

model and primary-copy model (cf. [23]). In the former, at
every instant of time, some site plays the role of the
primary site, through which all transactions must pass for
coordination, regardless of origin. This creates a
bottleneck which is temporary, in the sense that once a
transaction passes through the site, finer grain actions
associated with it may be' done concurrently. In the
primary-copy model, a transaction simply proceeds
without initial coordination, all required coordination being
done at a "primary copy" of each database object. (If the
database is non-redundant, then each object is its own
primary copy.)

insert x into R,
find x in R

insert z into S

f
insert V into S

f
find z in S

The technique demonstrated in this paper is applicable to
the primary-site model. As we have already discussed,
the required coordination can be done in a manner which
is almost completely functional. Although functional
representations for the primary-copy model also appear
possible, they are more complicated, due to the need to
retain the ability to abort transactions to resolve deadlock.
We leave the handling of such behavior to a future
exposition.

(merged transaction stream)

insert x into R

insert z into S

find x in R

insert y into S

find z in S

(input transaction streams)

"insert x into R insert z into S

For sake of simplicity, assume a non-hierarchical "local"
network model, in which the physical connectivity permits
each site to send a message to each other. The
"Ethernet" model [17] is a workable example. An important
Observation is that the network medium acts as one large
merge pseUdo-function. The strearn of messages which
appear on it over time will not be deterministic, but will
consist of an interleaving of messages generated at
different nodes. Interestingly enough, a functional
representation of message handling is possible in a
manner analogous to the handling of merged streams in
Section 2.4. Instead of transactions, we have arbitrary
messages, again accompanied by destination tags, for
ultimate routing of responses. A site effectively selects
the messages directed to it by applying a choose function

to the entire message stream, which selects those
messages having a tag which coincides with the site tag.
Figure 3-1 b illustrates the logical view of a network, the
physical structure of which is suggested in Figure 3-1a.

Figure 2-3: Merging and decomposition of transaction
streams

3. Application fo Physical Aspects of Distributed
Database Systems

3.1. Relevance to the Primary Site Model
Two principal models which have been identified for
distributed database update control are the primary-site

3.2. Site-Selection Pragmas
Logically, the site at which database functions are
processed is irrelevant. However, it mClY be physically
more efficient or otherwise important to choose one site
over another for the application of a given function. For
this reason, we suggest the use of a site pragma as an
option to a function. This pragma can take the form of a
parameter to the function which gives the address of the
preferred site of execution. A tentative form might be

RESULT-ON:[functional-expression, site]

which yields the value of the first argument, but requires
the outermost function to be computed on the specified
site. That function could likewise specify the execution of
subsidiary functions on particular sites, or on its own site,
which it could obtain by evaluating the expression

MY-SITE:[]

197

find x in R

find z in S

insert y into S

To retain functionality, site parameters could be made
unavailable for use by any function except RESULT-ON. If
a primary-site is used, It could consult the root directory
for the overall database to obtain any necessary site
values.

&.

b.

Figure 3-1: Site-based substream selection; a. Physical
network; b. logical merge/choose.

3.3. Secondary Storage Considerations
To further suggest that advantages of functional
programming can be obtained in database applications
without appreciable extra time costs, the paging aspect of
physical implementations may be considered. It Is
common to use a balanced tree strategy in which the size
of a tree node is one physical page, rather than being
based on a specific fan-out. Since the transit time of a
page from secondary to main memory is likely to
dominate the processing time, the cost of reconstructing
the page, ·as required by applicative updates, is likely to be
negligible. Of course, additional parameters and
experimental investigation are necessary to substantiate
this claim.

Space cost is more of a problem. However, there is
reason to believe that some ~pplications will permit
"tcomplete archiv9s N to be cons1 ucted, using e.g. optical.
storage. For others, garbage collection must be used to
reclaim data, the access to which is dropped.

198

3.4. Network Topology
In order to better describe how our approach to database
processing fits into a distributed architecture, we discuss
some aspects of a multiprocessor/network architecture
oriented toward the execution of functional programs. The
ideas here derive from our work presented in [101 with
emphasis on logical interconnectedness, rather than
physical topology. The functional implementation
described there avoids the shared-memory bottleneck
common to many multiprocessors by integrating memory
with processing capability. More specifically, it is
stipulated that a PE shall have both a processor and a
memory which it alone directly accesses.

Access by one processor of another processor's memory
is logically possible, but physically occurs by the former
processor sending a message to the latter containing the
variables to be accessed. After this message makes its
way through the interconnection network, it becomes a
task for the receiving processor. The latter returns a
message containing the contents of the requested
variables, which becomes a task to be executed by the
processor desiring to use the contents of those variables.
The fact that each processor is solely responsible for
direct access to its own memory simplifies considerations
for implementing mutual exclusion. Each processor
effectively becomes a "serializer" of its own local
activities.

The coordination of distributed execution in our model is
simply due to the assignability of a unique system-wide
address to each object, and the ability for the physical
topology to route information to any specified address.
Since a PE will likely have a fixed memory size, such
addressing could be achieved by concatenating a PE
address with the address of a location within a PE. Nodes
which route information within the network must, of
course, take the physical topology into account.

4. Experimental Results
The techniques mentioned in this paper have been
implemented in the functional language FEL [13] and
tested using a simulator which simulates the Rediflow
evaluation mechanism [14].

An experiment was performed which processed 50
transactions on three versions of a database, with 1, 3,
and 5 relations respectively, having a total of 50 tuples
among them initially. The transactions were all either
single-tuple inserts or finds, and the percentage of inserts
was varied through 4, 7, 14, 24, and 38 percent.

For simplicity, a linked-list implementation of both the
database and individual relations was used. Intuitively,
indications of concurrency for this implementation are apt
to be conservative. Tree representations are projected to
be even more efficient, since fewer nod~s need to be
modified on insertion.

The Rediflow simulator [14] has a number of modes
available. The ffrst mode assumes an arbitrary degree of
parallelism (effectively infinitely-many processors), unit
task lengths, and zero communication costs. It is used
primarily to estimate the degree of concurrency in the
application with given input data. In this mode, the
simulator measures maximum and average concurrency in
the form of "ply width", where a ply is a maximal set of
tasks, all of which can be executed in parallel.

Table I displays the results of execution in this mode. It is
notable that the degree of concurrency seems reasonably
high for such a small example. It should also be
mentioned that the observed concurrency can be classified
as the "pipelinell variety, since, by design, no transaction
entailed the updating of more than one relation.

Table I: Maximum and Average Degree of Concurrency

percent number of relations
updates 5 3

0% 25 14 27 15 39 17
4% 25 14 28 15 45 17
7% 26 14 46 15

14% 26 14 29 13 42 13
24% 24 12 28 11 36 9
38% 24 10 24 9 22 9

A second simulation mode specifies a network topology
and a specific number of processors. In this mode,
communication delay is taken into account. Table II shows
the speedup resulting from the same programs and data
using an 8-node binary hypercube, while Table III shows it
for a 27-node (Euclidean) cube (3x3x3).

Table II: Speedup, 8-node hypercube

percent number of relations
updates 5 3

0% 5.6 5.7 6.2
4% 5.6 5.7 6.1
7% 5.6 5.9

14% 5.4 5.5 5.6
24% 5.2 5.0 4.7
38% 4.8 4.6 4.7

Table III: Speedup, 27 node Euclidean cube

percent number of relations
updates 5 3

0% 7.2 7.6 8.9
4% 7.2 7.6 8.9
7% 7.1 8.9

14% 7.2 7.6 7.8
24% 6.8 6.4 6.1
38% 6.0 6.2 6.0

199

5. Relation to previous work
The use of a functional programming model for database
applications has been only partly explored, notably by
Buneman, et al. (2) and Shipman [20].. However, the first
reference does not deal with the question of updating,
whUe the second is mainly concerned with modeling data,
rather than modeling the programs which operate on data.

We observed earlier that our functional formulation of
updating provides one approach similar to version-based
objects [19], but the need for explicit version numbers is
suppressed. It remains to be seen whether our
formulation can correspondingly be used to simplify the
programming of error recovery mechanism.

The conceptual exploitation of concurrency in balanced
trees was first discussed by Bayer and Schkolnick [1]. A
survey of subsequent work is given by Kwong and
Wood [16]. A functional formulation of B-tree insertion
and deletion was implemented by Paul Hudak and was
incorporated into a simple network (Le. Codasyl) database
in a master's thesis by Rima Doany-Bhakit [3]. Equational
code for th'e special case of 2-3 trees was developed by
Hoffman and O'Donnell [8]; Mamdouh Ibrahim has
transcribed that code to FEL [13]. A related work is that of
Myers [18] which discusses advantages of appllcative
updating in AVL trees. Kim [15] showed how a functional
language with set abstraction can be used as an effective
database query language.

6. Conclusion
We have examined the suitability of functional
programming concepts for the design and implementation
of distributed database applications. We conclude that
this approach has considerable merit, especially in its
facilitation of transparent concurrency detection and
potential exploitation of multiple PEs. Many data
representation schemes, such as tree schemes which
permit a high degree of sharing, can be expressed in a
purely functional way. These offer the possibility of
updating without gross modification to the database, as
would be suggested by the mathematical view of updating
in which the entire database is recopied on each update.
This view entails a stream of databases (versions), where
the first element is the initial database, and the i+ 1th

element is the result of applying the ith transaction to the
ith element. The individual transactions then proceed with
as much potential concurrency as their data
interdependencies permit. In particular, non-update
transactions don't lock out each other (once their initial
serialization order is determined).

While the timely servicing of mUltiple transaction streams
is fundamentally indeterminate, and hence requires a non
applicative approach, we have shown how this
nonfunctionality can be contained in a relatively small
portion of the overall system. This is accomplished by a
pseudo-functional merge operation combining the various
transaction streams, thereby serializing the transaction
processing logically, but not temporally. Observations
were also offered on pragmatic extensions to the

functional approach for control of physical system
management issues, such as site selection and network
Interfacing.

7. Acknowledgment
We thank the referees for their comments which resulted
in improvement of the presentation.. We also thank Paul
Hudak, Rima Doany-Bakhit, and Mamdouh Ibrahim, Peter
Badovinatz, and Frank Un for coding help in related
experimental work.

8. References

[1] R. Bayer and M. Schkolnick. Concurrency of
operations on B-trees. Acta I nlormatica 9: 1-21, 1977.

[2] D.P. Buneman, R.E. Frankel, and R. Nikhll. An
Implementation technique for database query languages.
ACM TODS 7(2):164-186, June, 1982.

(3] R. Doany. Implementation of a network database
using a function graph language. Master's thesis,
University of Utah, Dept. of Computer Science, June, 1981

[4] D.P. Friedman and D.S. Wise. CONS should not
evaluate Its arguments. In S. Michaelson and R. Milner
(editor), Aulornafa, Languages, and Programming, pages
257-284. Edinburgh University Press, 1976.

[5] D.P. Friedman and D.S. Wise. The impact of
applicative programming on multiprocessing. I EEE Trans.
on COlnputers C-27(4):289-296, Apr, 1978.

[6] D.P. Friedman and D.S. Wise. Appl feative
multiprogramming. Technical Report 72, Computer
Science Dept., Indiana University, April, 1979.

[7] P. Henderson and J.H. Morris, Jr. A lazy evaluator.
In Proc. Third ACM Conference on Principles of
Programming Languages, pages 95-103. 1976.

[8] C.M. Hoffman and M.J. O'Donnell. Programming
with equations. TOPLAS 4(1):83-112, January, 1982.

[9] R.M. Keller. Denotational models for parallel
programs with indeterminate operators. In E.J. Neuhold
(editor), Formal description of programming concepts,
pages 337-366. North-Holland, 1978.

[10] R.M. Keller, G. Lindstrom, and S. Patil. A loosely
coupled applicative multi-processing system. In AFIPS,
pages 613-622. AFIPS, June, 1979.

[11] R.M. Keller, G. Lindstrom, and S. Patil. Data-flow
concepts for hardware design. In IEEE Compcon '80,
pages 105-111. Feb., 1980.

200

[12] R.M. Keller and G. Lindstrom. Approaching
Distributed Database I mplementations through Functional
Programming Concepts. Technical Report UUCS-82-100,
University of Utah, Department of Computer Science, June,
1982.

[13] R.M. Keller. FEL (Function Equation Language)
Programmer's guide. 1982. AMPS Technical Memorandum
No.7, University of Utah, Department of Computer
Science.

[14] R.M. Keller and F.e.H. Lin. Simulated performance of
a reduction-based multiprocessor. Computer 17(7):70-82,

July, 1984.

[15] J. Kim. Set abstraction and databases in a Function
Equation Language. Master's thesis, University of Utah,
August, 1983.

(16] V.S. Kwong and D. Wood. Approaches to
concurrency in B-trees. In P. Dembinski (editor),
Mathematical foundations of computer science, pages
402-413. Springer Verlag, September, 1980. Lecture Notes
in Computer Science, No. 88.

[17] R.M. Metcalfe and D.R. Boggs. Ethernet: distributed
packet switching for local computer networks. Cornrnun.
ACM 19(7):395-404, Jut, 1976.

[18] E.W. Myers. EHicient applicative data types. In
Proc. Eleventh ACM Conference on Principles of
Programming Lanr;uages, pages 66-75. ACM, 1983.

[19] D.P. Reed. Naming and synchronization I n a
decentra/ ized computer system. PhD thesis, MIT,
September, 1978.

(20] D.W. Shipman. The functional data model and the
data language DAPLEX. ACM TODS 6(1): 140-173, March,
1981.

[21] I.L. Traiger, J.N. Gray, e.A. Galtieri, B.G. Lindsay.
Transactions and consistency in distributed database
systems. Transactions on database systerns 7(3):323-342,

1982.

[22] D.A. Turner. A new implementation technique for
applicative languages. Software - Practice and
Experience9:31-49, 1979.

(23] J.D. Ullman. Principles of database systerns, 2nd
edition. Computer Science Press, 1982.

	Claremont Colleges
	Scholarship @ Claremont
	5-1-1985

	Approaching Distributed Database Implementations Through Functional Programming Concepts
	Robert M. Keller
	Gary Lindstrom
	Recommended Citation

	tmp.1318372926.pdf.NM_kt

