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Abstract

The generalized covering radius is an interesting property of error correcting
codes that was recently proposed by Elimelech et al. (3). Because the work is
very recent, little is known about the generalized covering radius, particularly
on its bounds for most error correcting codes. This thesis summarizes the
requisite background necessary to understand the literature surrounding
the generalized covering radius. We then go on to establish a new, highly
general bound on the covering radius of all codes which satisfy the chain
condition, and compare it asymptotically to previously known bounds on
Reed-Muller codes. This new bound produces an efficient algorithm which
we show can be used with Reed-Muller codes. The new algorithm can
also be used to modify the covering algorithm in (4), vastly improving the
running time while having an unknown effect on performance.
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Chapter 1

Introduction

Richard Hamming pioneered the field of error correcting codes in 1950s and
today they are used in almost every piece of digital technology. The genius
of Hamming’s codes is that they allow errors in messages to be detected and
also corrected—a novel concept at the time of their conception.

To briefly illustrate how error correcting codes work, suppose we are
given an ordered triple of three numbers, (0, 1, 2) and we want to encode
them in such a way that someone else can deduce the original numbers from
the encoded version even if they are altered slightly. How might we do this?

Perhaps the simplest way is to repeat the numbers over and over again.
For instance, we can simply repeat each number three times to get the
encoding (0, 0, 0, 1, 1, 1, 2, 2, 2). If any one element of this encoding is
altered by noise we can still extract the original message.

Figure 1.1 Example of encoding and decoding a message using an error cor-
recting code

Our "decoding algorithm" for this code would be to find the most
frequently occurring character every three letters. The code would be
considered 1-error correcting since it is guaranteed to correct any one error.
This code can correct up to three errors, but unfortunate errors can lead to
our decoding algorithm decoding the message incorrectly. For instance, if
our encoding gets corrupted to (0, I, I, 1, 1, 1, 2, 2, 2), then we will decode it
as (I, 1, 2), despite there only being two errors introduced.



2 Introduction

Furthermore, while the construction of this code is quite simple, we had
to lengthen our message from three characters to nine to guarantee that any
one error is correctable. This is quite inefficient, and in fact we can do much
better.

One way is to consider our numbers as coefficients of a polynomial,
?(G) = 0G2 + 1G + 2. Then to encode our message we can evaluate the
polynomial at some predetermined points—one example is the encoding
(?(0), ?(1), ?(2), ?(3), ?(4), ?(5), ?(6)). Because any quadratic polynomial is
uniquely determined by three points with different x-values, we’ve actually
evaluated the polynomial four more times than necessary to be able to
recover 0, 1, and 2. The added redundancy is what allows us to correct
errors that are introduced. In fact, this scheme is significantly better than
the previous one. How so? Well, with our new encoding we can find any
two errors that are introduced. Let’s say two of our coordinates change, so
that the altered message is (?(0) + B, ?(1) + C , ?(2), ?(3), ?(4), ?(5), ?(6)), for
B, C ≠ 0. Our original polynomial still passes through five of the points, while
any other polynomial can pass through at most four of the points. Thus,
anyone can still recover the original polynomial 0G2+ 1G+ 2 (and thus 0, 1, 2)
by finding the polynomial which passes through five or more points in the
message. This encoding scheme is able to correct any two errors that occur
while only using seven characters to encode the message—much better than
the first construction which could only correct one error while using nine
characters in the length of the encoding.

Figure 1.2 Original polynomial is evaluated at green points to encode it
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Figure 1.3 Even with two errors introduced, only the original polynomial can
pass through at least five points

These twoexamples give a smallwindow into theworldof error correcting
codes—a world that we will formalize and explore in depth in the following
chapters.

Once we have defined and explored the fundamentals of error correcting
codes, we will dive into the core of the thesis—the generalized covering
radius and its properties.





Chapter 2

Preliminaries

2.1 What is a code?

In this chapter we will go through the basic definitions surrounding error
correcting codes and afterwards the theory of generalizedHammingweights.
To start, let us define a code, the basic object we will be working with
throughout the entire document. The definitions and theorems in this
section can be found in MacWilliams and Sloane (9).

Definition 1. Let & be a finite set with @ elements. A nonempty subset � of &= is
a @-ary code of length =.

We call & the alphabet, elements of � codewords, and elements of &=

words or vectors. Although & need not be a field, in this document it nearly
always will be.

Fundamental to the study of codes is the concept of distance between
words.

Definition 2. TheHamming distance between two vectors D and E, denoted 3(D, E),
is defined to be the number of coordinates in which they differ.

This distance is conveniently a metric on the space &=—that is, for all
D, E, F ∈ &= :

3(D, E) ≥ 0 and 3(G, H) = 0 iff G = H (2.1)
3(D, E) = 3(E, D) (2.2)

3(D, E) ≤ 3(D, F) + 3(F, E) (2.3)
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(2.1) and (2.2) come straight from the definition of the Hamming distance,
and the proof of (2.3), while nontrivial, is also fairly intuitive and left to the
reader.

If & is a group, then we can further define the (Hamming) weight of a
word which is closely related to the distance between words:

Definition 3. The weight of a vector E ∈ &= , denoted ℎ(E) is the Hamming
distance between E and 0 , i.e ℎ(E) = 3(E, 0). In other words, it is the number of
nonzero coordinates of E.

An interesting and useful property of the Hamming distance is that it
is translation invariant, that is, 3(D, E) = 3(D − F, E − F) ∀ F ∈ &= . This is
because if we translate both D and E by the vectorF, theywill still differ in the
same coordinates, and remain equal in the same coordinates as well. Since
ℎ(E) = 3(E, 0), then we see that 3(D, E) = 3(D − E, E − E) = ℎ(D − E)—that is,
the distance between two vectors is also the weight of their difference. This
will also be useful when working with Hamming distances in later sections.

We can further define the minimum distance of a code:

Definition 4. The minimum distance of a code � is the smallest distance between
any two codewords, that is,

3(�) = min{3(D, E)) | D, E ∈ �, D ≠ E}.

We can also define the weight of a code, ℎ(�):
Definition 5. The weight of a code �, ℎ(�), is the smallest weight of any nonzero
codeword, that is,

ℎ(�) = min{ℎ(2) | D ∈ �, D ≠ 0}.

2.1.1 The Covering Radius

The covering radius is a concept that lies at the core of this thesis. It has been
extensively studied and there is a large body of work on finding bounds on
the covering radius of various codes (2; 5; 7; 8; 9). In this section we spend
some time discussing the covering radius and some of it’s most general
bounds. To understand this idea, we first turn to the concept of a Hamming
ball.

Definition 6. The Hamming ball of radius A centered at a vector G ∈ &= , is defined
to be �A(G) = {D ∈ &= : 3(D, G) ≤ A}.
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We can then ask, for fixed r, whether radius A balls centered at codewords
of a code � cover the entirety of &= . The covering radius of the code C is
the smallest number A such that this is the case. Alternatively:

Definition 7. The covering radius of C is

'(�) = max
D∈&=

3(D, �) = max
D∈&=

min
E∈�

3(D, E).

We can see from this definition that every vector must be less than
distance '(�) away from some codeword in �, and so every vector is
contained in an '(�)-radius Hamming ball centered at a codeword.

These Hamming balls allow us to compute a general upper bound on the
size of codes with a set covering radius and length. We derive the bound
by seeing that if the codewords of a code are spaced "optimally" so that the
space of all words could be covered by disjoint balls, then each vector would
be contained in exactly one Hamming ball of radius '(�). The volume of
each Hamming ball is

+@(=, A) =
A∑
8=0

(
=

8

)
(@ − 1)8 .

This is a combinatorial formula. At each distance 8, each vector is different
in 8 places (

(
=
8

)
different total combinations), and there are @ − 1 ways each

position can be different.
Hence, since every vector in &= must be contained in at least one

Hamming ball of radius '(�) centered at a codeword, we achieve a lower
bound on the covering radius of the code based on the volume of the balls
and the size of the alphabet @. Equality in this lower bound is achieved
when every word is contained in exactly one ball of radius '(�).
Theorem 1. Let � be a code with covering radius ' and length =. Then |� | ≥
@=/+@(=, ').

Proof. Since ' is the covering radius, we know every vector in &= lies in
some Hamming Ball of radius ' centered at a codeword. There are @= such
vectors, |� | codewords, and +@(=, ') vectors in each Hamming ball. The
total volume of all Hamming balls is then at most |� | · +@(=, '), which is
achieved only when all of the balls are disjoint. Otherwise the balls must
intersect and the true volume is smaller. We know there are exactly @=
distinct vectors in the balls (since they cover&=), so |� | ·+@(=, ') ≥ @= . Thus,
|� | ≥ @=/+@(=, '). �
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Codes for which this code satisfies equality are called perfect codes.
Notice that while it is not so easy to express in a closed form, this also puts a
lower bound on covering radius for any code of a given size.

2.2 Linear Codes

While the field of error correcting codes is broad and containsmany subfields,
the most commonly studied codes are linear codes. The key feature of linear
codes is that their codewords live in a linear subspace of some vector space.
Put more formally:

Definition 8. Let Q be an =-dimensional vector space over some finite field. Then
any :-dimensional subspace of F =@ is an [=, :] linear code.

Since any arbitrary linear code � is a vector subspace of F =@ , we can find
a basis of : linearly independent codewords 21 , 22 , ..., 2: which span �. The

matrix : × = matrix � =


21
22
...

2:


is the generator matrix of �. � can be thought

of as a linear transformation that maps vectors from F :@ to �.
Additionally, the subspace � has an orthogonal complement �⊥ which

is called the dual code of �. The generator matrix � of �⊥ is also called the
parity-check matrix of �. Notice that for any codeword 2 ∈ �, �2 = 0 which
is an important property in many decoding algorithms. Additionally, notice
that because the rows of � and � are bases for � and �⊥ (by definition),

then � and � are both full rank, and
[
�

�

]
is invertible.

Computing the minimum distance between all codewords of linear codes
is important for this thesis, and computationally it’s not feasible to do so by
brute-force computing all pairwise distances between codewords. However,
with the following theorem we don’t have to:

Theorem 2. Let � be a linear code. Then the minimum weight and minimum
distance of � are equal.

Proof. Let � be a linear code, ℎ(�) its minimum weight, and 3(�) its mini-
mum distance. We suppose for the sake of contradiction that ℎ(�) ≠ 3(�).
Clearly since ℎ(�) = 3(D, 0) for some D ∈ �, then 3(�) < ℎ(�). Now, we
choose D, E ∈ � such that 3(D, E) = 3(�). We see that 3(D, E) = 3(D − E, 0) =
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ℎ(D − E). Since � is linear, D − E ∈ �, so ℎ(D − E) < ℎ(�), a contradiction.
Thus ℎ(�) = 3(�). �

Let’s quickly run through an example: Suppose our vector space is F 6
2 ,

and our code � will be the subspace 〈[111000], [000111]〉, which makes � a
[6, 2] linear code. There are only four codewords of �:

[000000], [111000], [000111], [111111]

and it has generator matrix � =

[
1 1 1 0 0 0
0 0 0 1 1 1

]
. We see that the four

codewords can also be written as [00]�, [10]�, [01]�, and [11]�. The parity
check matrix is the 4 × 6 matrix

1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 1

 .
We can easily see that the minimum weight/distance is 3. But what’s

the covering radius? In this code we see that we can choose the first three
and last three coordinates independently and still get a codeword. The
only constraint is that all three must be the same in each half of the vector.
Thus, since we’re in F2, any arbitrary vector must have either two 0s or
two 1s in the first three coordinates, and two 0s or 1s in the second three
coordinates, so we can always choose a codeword that will differ by 1 in
the first three coordinates and 1 in the second three coordinates. Thus the
covering radius is 2. However, notice that if wewere in a fieldwithmore than
two elements (but keeping the generator matrix the same), then the covering
radius would be 4, because we could only match one coordinate from each
of the first/second three. So while minimum distance isn’t affected by @, the
covering radius is!

2.3 Error Correcting Codes

Codes have the nice property that it is possible to correct a certain number
of errors that can be introduced to codewords in a variety of applications.
Formally, if a code has an error correcting capability 4, then if we change
any codeword in 4 places, we can still recover the original codeword. In the
language of linear codes, this allows us to recover a codeword 2 from a given
word 2 + E, provided ℎ(E) ≤ 4.
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In reality, 2 is not known when the message is received, so we perform
what is called nearest neighbor decoding, which means that we simply find
the codeword that is closest to the received word to decode the message.
This means that if an error is introduced that pushes the message closer
to a different codeword, we can no longer correctly decode the message.
This establishes a relationship between the error correcting capability and
minimum distance of a code.

Theorem 3. If a code � can correct C errors, then 2C + 1 ≤ 3(�).

Proof. Let 2 be the sent codeword, D be that codeword with C errors in-
troduced, and 2′ be another arbitrary codeword. We want to prove
that D is closer to 2 than 2′. We see that by the triangle inequality
2C + 1 ≤ 3(�) ≤ 3(2, 2′) ≤ 3(2, D) + 3(D, 2′) = C + 3(D, 2′). So C + 1 ≤ 3(D, 2′).
Thus 3(D, 2) ≤ 3(D, 2′), and so 2 is still the closest codeword to D. Thus we
can decode any C errors that are introduced. �

The error correcting capability of a code is the maximum number of
errors that can be corrected, or b3(�)/2c.

To actually decode something, we are given a message D which we know
can be written as 2 + E. We can find the error E by finding the vector of least
weight in the coset � − D, which is the set of all possible error vectors. This
vector is called the elected coset leader. This can be done somewhat efficiently
by computing the syndrome of D, �D. We see that �D = �(2 + E) = �E.
The parity check matrix is not invertible, and in reality it maps all elements
of cosets of � to the same syndrome. This is ideal since we are trying to find
the error vector, so we can decode any linear code by creating a bĳection
between syndromes and error vectors. This of course can get very difficult
as the size of the code and hence number of possible error vectors grows.

2.4 Generalized Hamming Weights

Generalized Hamming weights (GHWs) were introduced in the namesake
paper by Wei (11) to analyze the algebraic and cryptographic properties of
codes. They have proven to be extremely useful in a number of applications,
and we will see that one of them is in the analysis of the generalized covering
radius.

First, the support of a vector is the set of coordinates where it is nonzero.
Accordingly, the support of a code � is the set of coordinates where code-
words of � are nonzero. More formally:
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Definition 9. supp(�) = {8 : ∃(G1 , ..., G=) ∈ �, G8 ≠ 0}.
With this, we can define the A-th generalized Hamming weight of a code,

3A(�).
Definition 10. (11) 3A(�) = {min |supp(�)| : D is an r-dimensional subcode of
C}.

We see that 31(�) is just the weight of a code, hence the name generalized
Hamming Weights. Another way we can define the generalized Hamming
weight comes from the idea of the support of a matrix. Similar to the support
of a code or a vector, we define the support of a matrix to be the set of
nonzero columns of the matrix. Then the generalized Hamming weight can
also be defined as the following:

Definition 11. 3A(�) = {min |supp(-)| : - is a rank A matrix with codewords
as rows }.

The generalized Hamming weights allow us to define a property that
certain codes have called the chain condition.

Definition12. (12) Let� be an [=, :] linear codewithGHWs 31(�), 32(�), ..., 3:(�).
Then � satisfies the chain condition if there are : linearly independent vectors
21 , 22 , ...2: such that 3A(�) = |

⋃A
8=1 supp(28)| .

A large number of codes satisfy the chain condition, such as Reed-Muller
codes, Hamming codes, MDS codes, and the extended Golay code.

Generalized Hamming weights can be related to the covering radius of
any code that satisfies the chain condition using the following theorem:

Theorem 4. (7) Let � be an [=, :] code that satisfies the chain condition with
GHWs 31 , 32 , ..., 3: . Then the covering radius of �, '(�) satisfies the following
bound:

'(�) ≤ = −
:∑
A=1

⌈
3A − 3A−1

@

⌉





Chapter 3

Constructions of Linear Error
Correcting Codes

In this chapter we will go through a number of common error correcting
codes that are frequently studied in the literature. Many of these codes
are used in real world applications and knowing their properties can be
important. The constructions can be found in MacWilliams and Sloane (9).

3.1 Hamming Codes

One of simplest yet most elegant codes, the Hamming code, was invented
by Richard Hamming in his seminal work on error correcting codes during
the 50s (6). While they can only correct a single error, which we will see,
they are highly efficient and are used in a variety of applications including
computer memory to compensate for hardware failure. They are defined as
follows:

Definition 13. Let A ≥ 2. An (A, @) Hamming code (denoted �0<(A, @)) is a
code over F@ whose parity check matrix has A rows and = columns, where = is the
maximum number of possible columns such that any two are linearly independent.

While this definition does not specify the exact structure of the code, a
true fact that will not be proven here is that all Hamming codes with the
same parameters are equivalent, up to a permutation of their coordinates.

In F =2 , two vectors are linearly independent if and only if they are distinct.
Thus since the parity check matrix is (=− :)×=, we get that = = 2A −1, which
is the number of nonzero vectors in F A2 . It follows from the dimension of the
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parity check matrix that : = = − A.
In F =@ , each vector has @ − 1 nonzero multiples, and as such every 1-

dimensional subspace of F =@ contains @ − 1 vectors. There are @A − 1 different
possible columns of the parity check matrix, and we know that know two of
the columns can be in the same 1-dimensional subspace. Thus the maximum
number of pairwise independent vectors is

= = (@A − 1)/(@ − 1).

One of the main properties of Hamming codes is the following:

Theorem 5. Hamming codes have minimum distance 3 and can correct any 1 error.

Proof. Let � be a Hamming code and � its parity check matrix. If we can
prove that the minimum distance is 3, it immediately follows that it can
correct any 1 error from Theorem 3. Since no two columns of � are linearly
independent, there is no vector E of weight 2 or less such that �E) = 0. Since
� has the greatest number of columns such that no two are independent,
then there must be a vector D of weight 3 such that �D) = 0. Thus the
minimum distance of � is 3. �

Hamming codes also have another property which makes them highly
efficient:

Theorem 6. Hamming codes are perfect and thus have covering radius 1.

Proof. To prove this we must show that Hamming codes satisfy the sphere-
packing bound. Let’s consider the total volume of all spheres of radius 1
centered at codewords:

|� | ·+@(1) = @=−1 ·
1∑
8=0

(
=

8

)
(@ − 1)8 = @=−1 · (1 + @1 − 1) = @= .

Thus Hamming balls of radius 1 are disjoint and cover the entire space,
proving the desired result. �

3.2 Reed Muller Codes

Another ubiquitous class of codes are the Reed-Muller codes, which will
be discussed at length in future chapters. A Reed-Muller code has two
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parameters, A and<, and is denoted '"(A, <), with 0 ≤ A ≤ <. Reed-Muller
codes can be thought of subspaces of the space of multivariate polynomials.
In particular, an '"(A, <) code can be thought of as the subspace of <-
variate polynomials with total degree A or less. Because polynomials over
finite fields satisfy the relation that G@ = G, the linear space of all <-variate
polynomials over F@ is in fact finite.

For simplicity we will only consider the Reed-Muller codes over F2,
although they can easily be extended to any finite field. In the binary case,
there are 2< possiblemonomials in< variables, and there are

∑A
0
(
<
A

)
possible

monomials of total degree A or less, so an '"(A, <) code is an [=, :] linear
code where = = 2< and : =

∑A
0
(
<
A

)
.

The "message" we are sending in a Reed-Muller code is really the
coefficients of a polynomial, and we encode it by evaluating the polynomial
at every possible input. As an example, consider the '"(2, 4) code, which
is a [16, 11] linear code. If we want to send a message, say, 11010010101, we
encode it as a polynomial %G of total degree 2 or less in four variables, with
coefficients coming from the message:

%G[-1 , -2 , -3 , -4] = 1+ 1 ·-1 + 0 ·-2 +-3 + 0 ·-4 + 0 ·-1-2 + ... + 1 ·-3-4.

We then encode %G by evaluating it at all 24 possible input points,

%G(0, 0, 0, 0), %G(0, 0, 0, 1), ..., %G(1, 1, 1, 1)

which gives us the encodedvector 1111101001010000. The details of decoding
the encoded message are unimportant for this thesis, but it can be done
very quickly and efficiently which is part of why Reed-Muller codes are so
popular.

Reed-Muller codes can be explicitly constructed in a variety of ways, but
they have a nice inductive definition which involves the use of the following
construction, called the (D, D + E) construction:
Definition 14. If �1 and �2 are codes of the same length =, then there is a code
�3 = {(D, D + E)|D ∈ �1 , E ∈ �2}.

Using this, we can define Reed-Muller codes inductively. We first let
'"(0, ") be the code containing only the vector of all 0s and the vector
of all 1s. This follows because polynomials in 0 variables are constant no
matter where they are evaluated. Then

'"(A, <) = {(D, D + E) : D ∈ '"(A, < − 1), E ∈ '"(A − 1, < − 1)}.
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The (D, D + E) construction also gives us a nice way of inductively finding
the generator matrix of arbitrary Reed-Muller codes.

Theorem 7. If �A,< is the generator matrix of an '"(A, <) code, then

�A,< =

[
�A−1,<−1 0
�A,<−1 �A,<−1

]
.

Proof. Follows directly from the (D, D + E) construction of Reed-Muller
codes. �

3.2.1 The Generalized Hamming Weights of Reed-Muller Codes

In this section we will briefly discuss the Generalized Hamming Weights
of Reed-Muller codes, as we will need to compute them in later chapters.
While the Hamming Weight hierarchy of @-ary Reed-Muller codes is known,
we only need to compute them in the binary case, so only the binary case
will be discussed here.

To understand the GHWs, we must first understand what is called
the (A, <) decomposition of a nonnegative integer, which is related to its
Macaulay representation.

In the following we let �(A, <) = Rank('"(A, <)) = ∑A
8=0

(
<
8

)
.

Theorem 8. (11) Given A, <, and I, 0 ≤ C ≤ �(A, <), we can write C as the sum

C =

:∑
8=1

�(A8 , <8)

where the A8 are decreasing, and <8 − A8 = < − A − 8 + 1

As a quick example to illustrate this, we see that the (D, <) canonical
representation of 7 is 7 = �(4, 1) + �(2, 0) + �(1, 0).

Now that we have established this representation, we can write out the
GHWHierarchy for Reed-Muller Codes:

Theorem 9. (11) 3C(�) =
∑:
8=1 2<8 , where C =

∑:
8=1 �(A8 , <8).



Chapter 4

The Generalized Covering
Radius

4.1 The Generalized Covering Radii of Error Correct-
ing Codes

4.1.1 Definitions

In this section we will state each of the definitions of the C-th generalized
covering radius introduced in (3) and prove they are equivalent. We will
start with the following definition:

Definition 15. Let C be an [n,k] code over F@ with parity check matrix �. Then
for every C ∈ ℕ we define the C-th generalized covering radius, 'C(�), to be the
minimal integer A such that for any set of vectors ( = {B1 , B2 , ..., BC |B8 ∈ F =−:@ },
there exist some A columns of �, indexed by � ∈

([=]
A

)
, such that ( ⊆ 〈��〉 .

This brings us to our second definition:

Definition 16. Let C be an [n,k] code over F@ with parity check matrix �. Then for
every C ∈ ℕ we define the C-th generalized covering radius, 'C(�), to be the minimal
integer A such that for every E1 , E2 , .., EC ∈ F =@ , there exist codewords 21 , 22 , ..., 2C

and � ∈
([=]
A

)
such that supp(E8 − 28) ⊆ � for all 8 ∈ [C].

We now prove these definitions equivalent:

Proof. We begin fromDefinition 15. Let E1 , ..., EC be arbitrary column vectors
of a matrix + ∈ F C×=@ , and let ( = �+) . Since � is full rank, ( is also
arbitrary. Let A = '(() be the minimal number such that � ∈

([=]
A

)
is a
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minimal set of columns of � such that ( ⊆ 〈��〉 . Then for each column
B8 ∈ ( there is some vector 48 such that supp(48) ⊂ � and �48 = B8 . Then
since �48 = �E8 , we can write that 48 = E8 − 28 , where 28 is a codeword of the
code �. Let '′(+) = |⋃8 supp(48)| Notice that '′(+) = A = '(() = '(�+).
Furthermore, from Definition 15, 'C(�) = max( '((). Since the linear
map � : F =×C@ → F

(=−:)×C
@ (mapping + to () is onto, then max+ '′(+) =

max( '(�+) = max( '(() = 'C(�), so since max+ '′(+) is the number
described in Definition 16, then this is equivalent to 'C(�). �

We now introduce a more formal version of this definition, for which
we first define a new metric on the space of matrices F C×=@ . The C-weight of
a matrix + ∈ F C×=@ is defined to be FC(C)(+) = |⋃8 supp(E8)|. Notice that for
C = 1 this is just the Hamming weight. Then the C-distance between two
matrices +,+′ is just 3(C)(+,+′) = FC(C)(+ −+′). We can then define a C-ball
of radius A centered at a matrix + , �(C)(+), as the set of all matrices +′ such
that 3(C)(+,+′) ≤ A. We can now introduce a new definition:

Definition 17. Let � be an [=, :] linear code over F@ . Then we define the C-th
generalized covering radius of �, 'C(�), to be the minimal integer A such that C-balls
of radius A centered at matrices �C = [21 , ..., 2C]) ∈ F C×=@ , 28 ∈ �, that is, matrices
where all row vectors are codewords in �, covers F C×=@ . We now prove that this
definition is equivalent to the previous one.

Proof. Let C be a code with C-th generalized covering radius A. Consider an
arbitrarymatrix+ ∈ F C×=@ . Thenwe know fromDefinition 15 that we can find
a matrix with codewords as rows �C such that for each row 48 , 0 ≤ 8 < C in
+−�C , for some � =

([=]
A

)
, supp(48) ⊆ �. Then it follows that |⋃8 supp(48)| ≤ A,

and by theminimality of A there is somematrix+ such that |⋃8 supp(48)| = A,
and there is no matrix �C that makes |⋃8 supp(48)| smaller. By the definition
of our C-th distance metric, for all + , 3(+, �C) ≤ A for some �C , and for some
+ , 3(+, �C) ≥ A for all �C . Thus, A is the minimal integer such that radius A
C-balls centered at the �C cover F =×C@ . �

We now move to our final definition:

Definition 18. Let � be an [=, :] linear code over F@ with generator matrix �.
Then we define the C-th generalized covering radius of �, 'C(�), as simply the
standard covering radius of �′, where �′ is the code with generator matrix � over
F@C
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Proof. We know there is an isomorphism Φ from F@C → F C@ , and so there
is also an isomorphism Φ : F C×=@ → F =

@C
, defined by appling ) to each

column of + element-wise. So we can think of + ∈ F =×C@ as a vector Φ(+) =
(E1 , E2 , ...E=) ∈ �=@C . Then we see that the C-distance between two matrices
3(C)(+,+′) is equivalent to the Hamming distance (or 1-distance) between
their images in F =

@C
. That is, 3(C)(+,+′) = 3(1)(Φ(+),Φ(+′)). Furthermore, we

know that matrices with codewords from the code � are just codewords
in �′, so it follows directly from the previous definition that the covering
radiius of �′, '1(�′), is equivalent to 'C(�). �

We now briefly turn our attention to the effect of basic code operations
on the C-th generalized covering radius of the code. It is easy to show that for
the operations of code puncturing, code extension, (D, D + E) construction,
and direct sum, the C-th generalized covering radius has the same properties
as the generalized covering radius. It is known that if � is a code, with � it’s
code puncturing and � it’s code extension, '1(�∗) = '1(�) or '1(�) − 1, and
'1(�) = '1(�) or '1(�)+1. The same is true of the C-th generalized covering
radius, that is, 'C(�∗) = 'C(�) or 'C(�) − 1, and '1(�) = 'C(�) or 'C(�) + 1.
Furthermore, if �1 , �2 are codes and � = {(D, D + E), D ∈ �1 , E ∈ �2}, then
'C(�) ≤ 'C(�1)+'C(�2). Lastly, if � = �1

⊕
�2, the direct sum of �1 and �2,

then 'C(�) = 'C(�1) +'C(�2) is The proof is nearly identical for all theorems,
and will be presented only for the code puncturing:

Proof. Let � be an [=, :] linear code with generator matrix � over F@ and �C
be the code with the same generator matrix but over F@C . Then the generator
matrices for tbe code puncturings of �∗ and �C∗ are identical. It follows that
'C(�∗) = '1(�C∗) = '1(�C) or '1(�C) − 1. �

The theorems for the other three operations can be proven with a near-
identical proof.

We will now prove that the C-th generalized covering radius of any
Hamming code is C.

Definition 19. A Hamming code is a [2A − 1, 2A − A − 1] linear code. It is a perfect
code with covering radius 1.

Theorem 10. (3) Let � be an [=, :]Hamming code. Then 'C(�) = min(C , = − :).

Proof. Let � be an [=, :]Hamming code and� its parity checkmatrix. Recall
that the parity check matrix �, which is of size (= − :) × 2(=−:) − 1 contains
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every possible nonzero column vector. For any C ≤ (= − :), we can then
choose C linearly independent columns of � as our ( = B1 , B2 , ...BC as defined
in 15. Since 38<(() = C, then clearly for any �� , � ∈

([=]
A

)
, where (〈��〉, A ≥ C,

meaning C is a lower bound on 'C(�). Since C is an upper bound on the
generalized covering radius (due to subadditivity and the fact that '1(�) = 1,
it follows that 'C(�) = C. �

4.2 A new bound on the generalized covering radius

One of the primary findings of this thesis is that Theorem 4 can be extended
to a new bound for the generalized covering radius, which we denote*C(�):
Theorem 11. Let � be a code satisfying the chain condition with C-th generalized
covering radius 'C(�) and generalized Hamming weights 31 , 32 , ..., 3: . Then

'C(�) ≤ = −
:∑
A=1

⌈
3A − 3A−1

@C

⌉
= *C(�).

Proof. To prove this theorem, we will use the fact that 'C(�) is the covering
radius of code generated by the generator matrix of � over F C@ , which we
denote �C . Therefore, Theorem 4 will extend to 'C(�) if �C both satisfies the
chain condition and has the same generalized Hamming weights as �.
We first prove that �C has the same generalized Hamming weights as �. To
prove this, let 3A be the A-th generalized Hamming weight of � and 3CA be the
A-th generalized Hamming weight of �C . We first note that because F@ is a
subfield of F C@ , every codeword in � naturally embeds into a codeword of �C .
Remember that 3A(�) = {min |supp(�)| : D is an r-dimensional subcode of C .
The basis for this A-dimensional subcode therefore also exists in �C and has
the same support, and so it follows that 3CA ≤ 3A .
Now to show that 3A = 3CA , we must just show that 3CA ≥ 3A . To see
this, consider that F@C is isomorphic to F C@ since both are isomorphic to
C-dimensional vector spaces over F@ . Therefore, we can view codewords in
�C , which are vectors in F =

@C
as elements of F C×=@ , that is, C × = matrices over

F@ . If 2 ∈ �C , then

supp(2) =
C⋃
8=1

supp(2 8)

where the 2 8 are the rows of 2 when 2 is viewed as a matrix. Furthermore,
the rows of 2 are codewords of �. It follows that |supp(2)| ≥ |supp(2 8)|.
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It follows immediately that for any basis of an A-dimensional subcode
of �C , {D1 , ..., DA}, we can always choose rows of the D8 which are linearly
independent and nonzero. This is because the generalized Hamming weight
hierarchy is strictly increasing aswe see in Theorem 1 of (11), so every D8 must
have a rowwith a new nonzero coordinate. Our chosen rows form a subcode
of � with support of magnitude less than or equal to the original subcode.
Since 3A and 3CA are the magnitudes of the supports of such subcodes, it
follows that 3A ≤ 3CA . Therefore 3A = 3CA .

It immediately follows that since 3A = 3CA , �C also satisfies the chain
condition. Why? Because we can use the exact same codewords in �C that
were used to satisfy the chain condition in �. We can do this because the
embedding of a vector in �=@ in �=

@C
has the same support as the original

vector, and since the emebeddings of the codewords of � are codewords in
�C , the result follows. �

Upon some exploration, this bound has proven to be better, both asymp-
totically and in many specific cases to the bounds derived in (4). Since this
bound is highly general and can be applied to any code that satisfies the
chain condition, there is a huge amount of further analysis that can be done
in this regard. Furthermore, there are potentially more results in (7) that can
be applied to improve the above bound, such as for codes which partially
satisfy the chain condition.

4.3 A comparison to other known bounds

It is difficult to compare this bound to other bounds on the generalized
covering radius for a few reasons. One is that there aren’t that many bounds
out there, and the ones that exist all have restrictions on either C, @, or the
type of code such as the bounds in (3), (4). In contrast, the only restriction
on*C is that the code needs to satisfy the chain condition, which is satisfied
by almost all commonly discussed codes including Reed-Muller, MDS, BCH
(partially), Dual Hamming, and extended Golay codes as discussed in (12),
(7). Specifically in this section we will use computational tools to compare
the bounds derived in (4) with our new bound. For ease of reference, table
4.1 summarizes the results from (3).

One challenge with comparing*C(�)with these bounds is that most of
them are asymptotic approximations rather than exact bounds. However, we
can still compare the bounds’ performance asymptotically. In the following
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'C(A, <) ≤ (1 − 1
2C )2

< −
√

2C−1
2C (1 +

√
(2)A−1 · 2</2 + $(<A−2)

'C(< − B, <) ≤ C
(B−2)! · <B−2 + $(<B−3)

'C(
<, <), for 0 < 
 < 1 − 1√
(2)

≤ (1 − 1
2C )2

< −
√

2C−1
2C (2+
√
(2)
· 2<·(1/2+
·log2(1+

√
(2)) · (1 + >(1))

'C(
<, <), for 1 − 1√
(2)
≤ 
 ≤ 1/2 ≤ (1 − 1

2C )2
< −

√
2C−1
2C ·

1√
(8<
(1−
))

· 2<�2(
)

'C(
<, <), for 1/2 ≤ 
 ≤ 1 ≤ C · 4�2(
) · 2<�2
 · (1 + >(1))

Table 4.1 Table of upper bounds for Reed-Muller Codes

comparisons, the $ terms are ignored, leading to underestimates of the first
two bounds and overestimates of the third bound.

4.3.1 Comparison with 'C(A, <)

Figure 4.1 A plot of log(*C('"(A, 12))/'C(A, 12)) for various values of A and
C.

We first compare *(�)with 'C(A, <). In all following plots, a negative
value means that *C(�) takes on a lower value than the bound it is being
compared to. For this chart it is especially true because we cannot account
for the $(<A−2) term which occurs in the bound 'C(A, <). We see that in
Figure 4.1 our bound appears to outperform 'C(A, <) asymptotically as C



A comparison to other known bounds 23

gets larger and also as A gets larger.
However, we can still determine asymptotic performance in < by fixing

A = 5 and comparing the bounds for various values of < and C. We see
that for fixed A and C, the bounds appear to approach each other as < →∞.
Because this bound is exponential in <, the $(<A) term does not matter
here. However, our new bound is still an improvement on the old one for a
variety of values.

Figure4.2 A plot of log(*C('"(5, <))/'C(5, <)) for various values of< and
C.

Furthermore, in the next chapter we will discuss bounding the general-
ized covering radius of '"(1, <) and finding vectors within the bound, so
this comparison is highly relevant.

4.3.2 Comparison with 'C(< − B, <)
We now move on to comparing our new bound with the second bound of
Table 4.1.

Interestingly, for this bound we find that while*C is an improvement for
low values of < (so when B is large relative to <, for fixed B 'C(< − B, <) is
clearly better asymptotically as < →∞. However, we also see that for fixed
B and <,*C outperforms as C gets larger.

Perhaps unsurprisingly, we see that when < is fixed and B is increased,
*C performs better than 'C(< − B, B).
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Figure4.3 A plot of log(*C('"(1, <))/'C(1, <)) for various values of< and
C.

4.3.3 Comparison with 'C(
<, <)
In this section we will compare*C with the last 3 upper bounds of table 4.1
for 'C(
<, <) that are given for various values of 
. We will consider each
as 
 changes and as < changes.

Interestingly, when B is small and fixed, 'C performs better significantly
than *C asymptotically. Furthermore, we see that when 
 ≥ 1 − 1/

√
(2),

*C appears to be asymptotically better in 
, and of course in all cases *C

appears to be asymptotically better in C. Interestingly,*C appears to perform
significantly better than 'C when 
 ≥ .5, taking on values 3-5 orders of
magnitude smaller than 'C .
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Figure 4.4 A plot of log(*C('"(<−5, <))/'C(<−5, <)) for various values
of < and C.

Figure4.5 A plot of log(*C('"(15−B, 15))/'C(15−B, 15)) for various values
of B and C.
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Figure 4.6 A plot of log(*C('"(
 ·18, 18))/'C(
 ·18, 18)) for various values
of 
 and C.

Figure 4.7 A plot of log(*C('"(
 ·18, 18))/'C(
 ·18, 18)) for various values
of 
 and C.
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Figure 4.8 A plot of log(*C('"(.5<, <))/'C(.5<, <)) for various values of
< and C.

Figure 4.9 A plot of log(*C('"(
 ·18, 18))/'C(
 ·18, 18)) for various values
of 
 and C.
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Figure 4.10 A plot of log(*C('"( 23<, <))/'C( 23<, <)) for various values of
< and C.



Chapter 5

A General Covering Algorithm

In Chapter 4 we established a new bound on the generalized covering radius
for all codes which satisfy the chain condition. The paper (4) establishes a
bound on the generalized covering radius of Reed-Muller codes, and goes on
to define an algorithm which could theoretically be used to find codewords
of an RM code which can cover any given vector E. It is a natural question
to ask whether the same can be done for*C . The answer is yes, and in this
section we present an algorithm which, given that the code satisfies the
chain condition and the generator matrix is in a specific form, can cover
any arbitrary input vector in $(= · : · log(@)2) time. Furthermore, a major
shortcoming of the covering algorithm presented in (4) is that it required
many brute force searches of the codewords of '"(1, <) to cover vectors as
a basic function of the covering algorithm. However, our new algorithm can
be easily applied to cover vectors in '"(1, <) in linear time. This leads to a
significant asymptotic speed up of the old covering algorithm. However, the
effect on performance is unknown and can be easily researched in the future.

5.1 Derivation

The derivation of this algorithm comes from the complete proof of Theorem
4 discussed in Section 2.4. Thus, we will dig into this proof, starting from
the basics.

For the rest of this chapter, we will let � be an [=, :] code and � be a
subset of the coordinates of �. Furthermore, we consider a generator matrix
of � of the form
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�[
g(C0) 0
� g(C�)

]
where 6(��) is the generator matrix of �� , the projection of � onto the

coordinates �, and 6(�0) is the generator matrix of �0, the subcode of �
which is 0 on � (but does not contain the coordinates in �).

Theorem 12. (10) '(�) ≤ '(��) + '(�0).

Proof. Let E be an arbitrary vector of length =. We see that E can be written as
(E0 , E�), where E� is a length |� | vector in the coordinates �, and E0 is a length
= − |� | vector in the remaining coordinates. Then there is some codeword
of � which is of the form (0, 2�) where 2� ∈ �� , such that 3(E� , 2�) ≤ '(� 9).
Furthermore, there is a codeword of the form (20 , 0), where 20 ∈ �0, such
that 3(E0+ 0, 20) ≤ '(�0). Therefore E is at most distance '(��)+'(�0) from
(0, 2�) + (20 , 0). �

We also introduce a new definition:

Definition 20. Let � be a code which satisfies the chain condition and has general-
ized Hamming weights 31 , 32 , ..., 3: . Then there exist codewords of �, 21 , ..., 2:
such that 38 = |

⋃8
9=1 supp(2 9)| and each 28 is of the form (48 , 0), where |48 | = 38 .

We define the generator matrix

Γ(�) :=


c1
c2
...

c:


From this definition we can see that Γ(�) has the form

3A[
g(CA) 0
� g(C0)

]
where �A is the [3A , A] code generated by the nonzero coordinates of

21 , ..., 2A . It has this form for all A, 1 ≤ A ≤ : (although in the A = : case it is
understood that the entire matrix is just 6(�A)).
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Theorem 13. (7) Let � be an [=, :] code that satisfies the chain condition with
GHWs 31 , 32 , ..., 3: . Then the covering radius of �, '(�) satisfies the following
bound:

'(�) ≤ = −
:∑
A=1

⌈
3A − 3A−1

@

⌉
Proof. Let � be an [=, :] code which satisfies the chain condition and has
GHWs 31 , 32 , ..., 3: . Consider the matrix Γ(�)which is of the form described
in definition 20. Wewill prove this theorem by induction on A, or the number
of rows of 6(�A). In our base case A = 1, and �(�1) = 41. We note that 41
has weight 31 and is thus a codeword of minimum distance of �. Since 41 is
0 nowhere, by the pidgeonhole principle any vector E must share at least
d31/@e equivalent coordinates with 41 or a scalar multiple of 41—in other
words 3(E, 41) ≤ 31 − d31/@e, so '(�1) ≤ 31 − d31/@e.

In the inductive step, we assume that '(�A) ≤ 3A −
∑A
8=1d(38 − 38−1)/@e.

Next, consider that by construction

6(�A+1) =
3A 3A+1 − 3A[

g(CA) O
eA+1

]
Since the last 3A+1 − 3A elements of 4A+1 must be nonzero (because 6(�A+1)
cannot have columns of all zeros), we can apply Theorem 9 to this to see
that '(�A+1) ≤ '(�A) + 3A+1 − 3A − d(3A+1 − 3A)/@e. Using our induction
hypothesis, this implies that '(�A+1 ≤ 3A −

∑A
8=1d(38 − 38−1)/@e + 3A+1 − 3A −

d(3A+1− 3A)/@e = 3A+1−
∑A+1
8=1 d(38 − 38−1)/@e. Thus, our induction is complete.

Simply substituting : into the proven formula, and observing that �: = �
and 3: = = yields the desired result.

�

Hopefully from this proof the covering algorithm becomes clear. If we
have the matrix Γ(�), then starting with the very last row (which is 4:), we
find the closest multiple of the rightmost 3: − 3:−1 coordinates of 4: to those
same coordinates in the vector we wish to cover with a codeword. We then
add the remaining coordinates of 4: to our vector and continue the process
with 4:−1, iterating until we arrive at 41. We are effectively reversing the
induction used to prove the bound, covering our input vector in parts as we
do. The actual algorithm is presented below:
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Algorithm 1 A C-covering algorithm for any code which satisfies the chain
condition
Input: Γ(�), E, (31 , ..., 3:) ⊲ To find a C-covering, v must be a vector over F C@
Output A vector 2 ∈ F C@ such that 3(2, E) ≤ *C(�)
+ ← E

 ← :

while  ≥ 1 do
2 ← Γ(�) ⊲ Get Kth row of Γ(�)
0 ←Min_dist_coeff(+ , 2 , (3 −1 , 3 ])
+ ← + − 0 · 2 
 ←  − 1

end while
Return E −+

5.2 Asymptotic Analysis

Now we turn to analyzing the running time of this algorithm:

Theorem 14. The algorithm T-COVER(Γ(�), E, (31 , ..., 3:)) runs in $((: +
log(@)2)(=)) time.

Proof. The function "Mindist" in this algorithmsimply computes+ 8(2 8
:
)−1 , ∀8 ∈

(3 −1 , 3 ]), and then finds the most frequently occurring value out of these
values. Computing (2 8

:
)−1 can be done using the extended Euclidean

algorithm which runs in $(log(@)2) time. Thus cover has complexity
$(log(@)2 · (3 − 3 −1)). However, when we consider the total amount
of calls of Mindist, we see that it is computing in total = inverses, and so
takes in total $(log(@)2 · =) time.

Furthermore, computing+− 0 · 2 takes$(=C) time and this computation
is done : times, taking $(= · C · :) time in total.

Thus, in total the algorithm runs in $((:C + log(@)2)(=)) time.
�

5.2.1 A note on usefulness

At first glance this algorithm seems quite attractive. It’s running time is linear
or sublinear in all code parameters, and as we’ve seen in previous sections
the bound can be quite good compared to other bounds. Unfortunately,
for almost all codes �, computing Γ(�) is an open problem with unknown
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complexity. One method to find this generator matrix would be to iteratively
compute codewords of minimum distance. Furthermore, computing the
codeword of minimum distance is believed to be NP-Hard in most cases,
although efficient algorithms do exist for cyclic codes (1). Fortunately, once
Γ(�) is computed for a code, it never needs to be computed again and no
additional computation is needed to run the C−Covering algorithm. It is
unclear how useful this algorithm is in practice, although it is useful when
we have an "infinite" stream of vectors to cover such as in the example
presented in (3), and the amount of preprocessing that needs to be done is
irrelevant.

5.2.2 Example

Let’s quickly run through an example of the algorithm at work to make
things clear. Consider a code � , which satisfies the chain condition, and for
which

Γ(�) =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 .
We can easily read off from the rows of Γ(�) that it has a GHW hierarchy

of (4, 6, 7, 8). We know that � satisfies the chain condition because this is in
fact the generator matrix of an '"(1, <) code for which this is proven (in the
next section!). Now suppose we want to use the algorithm to find the closest
codeword to E = (1, 0, 0, 1, 1, 1, 0, 1). Our first pass through of the algorithm
simply looks at the last coordinate place and sees that they are matching. So
we compute E′ = E − Γ(�)4 = (0, 1, 1, 0, 0, 0, 1, 0). Next, we look at the 7th
coordinate place and see that they are also now matching in both vectors,
so we compute E′′ = E′ − Γ(�)3 = (1, 1, 0, 0, 1, 0, 0, 0). We repeat the same
procedure but in the 5th and 6th coordinate places. When we do this we see
that 1 · (1, 1) and 0 · (1, 1) are equidistant from E′′[5 : 6] = (0, 1), so it doesn’t
matter what vector we add, but each one will give us different results. If
we choose to compute E′′′ = 1 · Γ(�)2 + E′′ = (0, 0, 0, 0, 0, 1, 0, 0) and we are
done! We see that E − E′′′ = (1, 0, 0, 1, 1, 0, 0, 1) is a codeword close enough
to E to be within our bound. However, if we compute E′′′ = 0 · Γ(�)2 + E′′,
then we go on to our last vector and find again that 0 · Γ(�)1 and 1 · Γ(�)1 are
equidistant to E′′′, and in fact it doesn’t matter which onewe chose. Choosing
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the coefficient 1, we get that E′′′′ = (0, 0, 1, 1, 1, 0, 0, 0), so the codeword we
find in this instance is E − E′′′′ = (1, 0, 1, 0, 0, 1, 0, 1), which is distance 3 away
from E.

5.2.3 Γ('"(1, <))
In order to apply our covering algorithm to any code C we need to know
Γ(�). Thus, in order to apply our covering algorithm to '"(1, <), we need
to know Γ('"(1, <)). Recall that an '"(1, <) code is the subspace of all
<-variate polynomials of total degree 1 or less in the space of <-variate
polynomials over F2. Furthermore, recall that the encoding of one of these
polynomials is simply their evaluation at every point in F<2 .

To find the matrix Γ('"(1, <)), we need to find a list of polynomials
which are representative of the GHW hierarchy.
Theorem 15. (11) Let � be an '"(1, <) code. Then 3A(�) = 2<−1+ 2<−2+ ...+
2<−A for 1 ≤ A ≤ <, and 3<+1(�) = 2< .

Now that we know this hierarchy, if we can find a series of polynomials
whose encodings’ total support is equal to these GHWs, then we also have
Γ(�). Fortunately, finding and proving a series of polynomials is quite easy.
Theorem 16. Let � be an '"(1, <) code in variables G1 , G2 , ..., G< , and let
�(%(−→G )) be a linear transformation from F<+1

2 → F 2<
2 which encodes degree 1

polynomials as codewords in �. Let %:(−→G ) =
∑:
8=1 G8 and %0(−→G ) = 1.

Then Γ(�) =



�(%<)
�(%<−1)

...

�(%1)
�(%0)


Proof. To prove this we will prove that |⋃A−1

8=0 supp(�(%<−8))| = 3A(�) for all
1 ≤ A ≤ <, and we will do so by inducting on A.

Our base case is when A = 0. Consider that in the evaluation of the
polynomial %<(G) = G1 + ... + G< , we are really evaluating the parity of the
weight of the binary vector (G1 , ..., G<), and the support set of �(%<) has
size equal to the number of binary vectors of length < with odd weight. We
can prove that this quantity is 2<−1 using another inductive argument on <.

In our base case is when < = 1. The two vectors are 1 and 0, so 2<−1 = 1
have odd weight.
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Next, assume this is true for some < ∈ N. Clearly the vectors of odd
weight in F<+1

2 are all of the vectors of even weight in F<2 concatenated with
a 1, as well as all of the vectors of odd weight in F<2 concatenated with a 0.
The total number of these vectors is 2<−1 + (2< − 2<−1) = 2< .

Therefore, |supp(�(%<))| = 2<−1 = 31(�).
Now, assume our inductive hypothesis is true for some A ≤ <. Clearly,

the coordinates which are 0 on all %< , %<−1 , ..., %<−A+1 are 0 only when
G< = G<−1 = ... = G<−A+1 = 0. (Consider that if %:(G) = 0 and %:−1(G) = 0,
then %:(G) + %:−1(G) = G: = 0). Therefore, the remaining 0 coordinates are
precisely the zeros of %<−A+1 considering only the first < − A + 1 variables
(the rest of the variables must be 0). By our previous inductive argument,
half these zeros are when G<−A−1 = 1 and %<−A = 1. Therefore half of them
will be 1 on %<−A . Thus, since the number of zeros of %<−A+1 when the last
A − 1 coordinates are fixed to 0 is 2<−A , the total support will increase by
2<−A/2 = 2<−A−1. Thus, |⋃ 8 = 0(A+1)−1supp(�(%<−8))| = 3A(�) + 2<−A−1 =

3A+1(�) by Theorem 15. �

5.2.4 Γ('"(A, <))
As we now know the form of Γ('"(1, <)), it is nice to note that we may be
able use this to compute Γ('"(A, <)) for arbitrary Reed-Muller codes. We
see that the generator matrix for '"(A, <) as given in theorem 14 follows
the form of Γ(�). This leads to the following conjecture:

Conjecture 17. Let � be an '"(A, <) code with generator matrix

�A,< =

[
�A−1,<−1 0
�A,<−1 �A,<−1

]
.

Then
Γ(�) =

[
Γ(�A−1,<−1) 0
�A,<−1 Γ(�A,<−1)

]
.

and the following theorem:

Theorem 18. Conjecture 17 is true for all < ≤ 20

Proof. Done by checking all cases by computer. �

The proof for this theorem comes from verifying all possible cases up to
< = 20. It is only a conjecture that this theorem holds for all A, <, and the
proof likely lies in the form of the GHW hierarchy for Reed-Muller codes.
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We also note that since Γ('"(<, <)) is the identity matrix, this allows us to
recursively compute Γ('"(A, <)) in general, since we know the exact form
of Γ('"(1, <)) and Γ('"(<, <)).

5.3 An improvement toElimelech’s coveringalgorithm

In (4) a C-covering algorithm is presented to find C-coverings of vectors for
Reed-Muller codes within a bound that they specify within the paper.

A major shortcoming of the algorithm is that the base case requires a
brute force computation of the minimum distance between all codewords of
'"(1, <) and a fixed vector E. This leads the algorithm to be at minimum
quadratic in the length of the code, and exponential in C. Fortunately, our
algorithm can be used to avoid this brute-force method and significantly
improve the run-time, while having a negligable impact on performance.

The algorithm, taken from (4) is as follows:

We see that because we know Γ('"(1, <), we can use our algorithm on
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the A = 1 base case, which can greatly increase the running time, but has a
negative impact on performance due to the fact that we are no longer finding
the closest vector to E in the base case, but just a vector within our bound.

5.3.1 Runtime analysis

We will first note, without proof, the following:

Theorem 19. (4) For any C , A , < ∈ N, COVER(E, A) has complexity

$(C2C2(C+1)(<+1)(2C+1 − 1)−A + C<2<).

Furthermore, let COVER’ be the version of the above algorithm with
the modified base case which runs in $(= · : · C) time. Then we have the
following:

Theorem 20. For any C , A , < ∈ N, COVER’(E, A) has complexity $(= · log(=) · C,
where = = 2< .

Proof. We will prove that this is the complexity of RECURSIVE(E, A) , and
hence the complexity of the entire algorithm. We denote the running time
of RECURSIVE(E, A) as )(C , A , <). We have two base cases:

We see that when A = <,)(C , <, <) = 2′ ≤ 2 ·= log(=) · C for some constant
2. Furthermore, when A = 1, we see that : = log(2<) + 1 = log(=) + 1 ≤
2 · log(=). Therefore, )(C , <, <) = 2′ · (= · (log(=) + 1)C ≤ 2 · = log(=) · C. In
our inductive step, we assume that the claim holds for all )(C , A , < − 1), for
all 1 ≤ A ≤ < − 1, and want to prove that it holds for )(C , A , <). If A ≠ 1 and
A ≠ <, then the algorithm splits a matrix of size C · = and then calls two
recursive instances. Thus,

)(C , A , <) = 2′ · =C + )(C , A − 1, < − 1) + )(C , A , < − 1)
= 2′ · =C + 2 · =/2 log(=/2)C + 2 · (=/2 log(=/2) · C)

≤ 2′(=C + = log(=)C − =C) = 2 · = log(=) · C.

This completes the proof of RECURSIVE(E, A). To complete the proof of
the overall algorithm, notice that SUBADDITIVE is just calling RECURSIVE
for C = 1 C times, and so does not increase the complexity of the overall
algorithm. �





Chapter 6

Conclusions and Future Work

This thesis provides the necessary background needed to understand the
basics of the field of error correcting codes and their generalized covering
radius. Furthermore, we establish a new bound and compare it asymptoti-
cally to previously established bounds for the generalized covering radius
of Reed-Muller codes. We further prove the existence of an algorithm to
find vectors within this bound and show that the algorithm can be used
to vastly improve the efficiency of the algorithm in (4). Furthermore, we
show that our algorithm can likely be applied to find C-coverings for general
Reed-Muller codes.

There are many areas of this thesis that can be easily expanded on in
the future. Since so little work has been done in this field, the work is likely
quite tractable. The most challenging area is likely any theoretical work
regarding*C of Reed-Muller codes because of the lack of any closed form
of their generalized Hamming weight hierarchies. Potential future areas of
work are listed below:

• Evaluating*C(�) for other codes which satisfy the chain condition and
comparing to other known bounds.

• Exploring methods for computing Γ(�) for codes which are not Reed-
Muller codes, and furthermore exploring the complexity of computing
Γ(�) for Reed-Muller codes.

• Computational confirmation of the complexity of the T-COVER algo-
rithm.

• Finding a general proof for the form of Γ('"(A, <)) in line with
Conjecture 17.
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• Finding more upper and lower bounds on the generalized covering
radius.

• Theoretical asymptotic analysis of*C , especially for Reed-Muller codes,
which would allow for a theoretical comparison with the bounds in
Table 4.1.

• Comparison of performance of the modified Elimelech’s covering
algorithm to the performance of the original as discussed in Section
5.3.
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