
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2022

Check Yourself Before You WREK Yourself: Unpacking and Check Yourself Before You WREK Yourself: Unpacking and

Generalizing Randomized Extended Kaczmarz Generalizing Randomized Extended Kaczmarz

William Gilroy

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

 Part of the Data Science Commons, and the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Gilroy, William, "Check Yourself Before You WREK Yourself: Unpacking and Generalizing Randomized
Extended Kaczmarz" (2022). HMC Senior Theses. 264.
https://scholarship.claremont.edu/hmc_theses/264

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/264?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

Check Yourself Before You WREK Yourself:

Unpacking and Generalizing Randomized Extended

Kaczmarz

Will Gilroy

Jamie Haddock, Advisor

Heather Zinn-Brooks, Reader

Department of Mathematics

May, 2022

Copyright © 2022 Will Gilroy.

The author grants Harvey Mudd College and the Claremont Colleges Library the nonexclusive

right to make this work available for noncommercial, educational purposes, provided that this

copyright statement appears on the reproduced materials and notice is given that the copying is by

permission of the author. To disseminate otherwise or to republish requires written permission

from the author.

Abstract

Linear systems are fundamental in many areas of science and engineering. With the advent

of computers there now exist extremely large linear systems that we are interested in. Such

linear systems lend themselves to iterative methods. One such method is the family of

algorithms called Randomized Kaczmarz methods.

Among this family, there exists a Randomized Kaczmarz variant called Randomized

Extended Kaczmarz which solves for least squares solutions in inconsistent linear systems.

Among Kaczmarz variants, Randomized Extended Kaczmarz is unique in that it modifies

input system in a special way to solve for the least squares solution.

In this work we unpack the geometry underlying Randomized Extended Kaczmarz

(REK) by uniting proofs by Zouzias and Freris (2013) and Du (2018), leading to more

insight about why REK works. We also provide novel proofs showing: that REK will

converge with an alternative sequence of z updates, and giving a closed form for REK’s

original z updates. Lastly we have done some work generalizing the ideas behind REK and

QuantileRK (Haddock et al., 2020) to lay foundations for a new Randomized Kaczmarz

variant called Weighted Randomized Extended Kaczmarz (WREK) which aim to solve weighted

least squares problems with dynamic reweightings.

Contents

Abstract iii

Acknowledgments xi

Preface xiii

1 Background on Linear Systems 1
1.1 Matrix Jargon . 1

1.2 Consistent Linear Systems . 4

1.3 Inconsistent Systems . 7

1.4 “Solutions” to Inconsistent Systems . 10

1.5 Notation . 13

2 Randomized Kaczmarz 15
2.1 Convergence Properties . 17

2.2 REK and WREK . 21

3 Randomized Extended Kaczmarz 23
3.1 Definition and Convergence Properties . 23

3.2 What is Up With the z Vectors? . 26

3.3 Theoretical Foundations of REK . 28

3.4 REK Convergence for an Arbitrary Sequence of b Vectors 39

4 Weighted Randomized Extended Kaczmarz 43
4.1 Extending Randomized Extended Kaczmarz 43

4.2 Dynamic Reweightings . 45

4.3 Behaviour of the WLS solutions . 47

4.4 Proposed Definition for WREK . 52

4.5 Future Directions & Conclusion . 54

Bibliography 55

List of Figures

1.1 Visualization of the geometry of the given linear system. 6

1.2 Geometric depiction of a rank one linear system as given in example (1.2.1). 7

1.3 The geometry of an inconsistent linear system. There is no solution to this

linear system as seen since there is no point inℝ2
where all three hyperplanes

intersect simultaneously. 8

1.4 The geometry of a noisy linear system. The original linear system is

represented by the dotted lines. The hyperplanes have been modified by a

small amount of noise. 9

1.5 The geometry of a corrupted linear system. In this case nearly all the

hyperplanes intersect at a single point but with a few highly perturbed

hyperplanes. One solution we might want is the point where most of the

hyperplanes intersect, in this case on the left. However, the least squares

solution for such a system is far away from that point, instead it is somewhere

between the corrupted hyperplanes and the point we would actually want. 10

2.1 Iterations from Randomized Kaczmarz. At each step x(𝑘) is orthogonally

projected onto a randomly selected affine hyperplane. Each hyperplane

represents a single equation from our linear system. 16

2.2 Recall that in corrupted linear systems the solution we would want is the one

where the corrupted hyperplanes are ignored. Here, the desired solution is

denoted by x∗. However, Randomized Kaczmarz will never converge to x∗.
Instead, Randomized Kaczmarz may get close, but every time a corrupted

hyperplane is projected onto the x iterates will move far away from x∗. . . . 21

3.1 Steps of REK iterations demonstrating the system updates and the solution

vector estimate updates x(𝑘). The hyperplanes of the original inconsistent

system is represented with the black lines and the modified system is

represented by the red dotted lines. 25

viii List of Figures

3.2 A geometric depiction of Du’s Fundamental Triangle. The black lines indicate

the inconsistent system 𝐴x = b, indicate the convergent system 𝐴x = b𝑐𝑜𝑙(𝐴).
The magenta triangle depicts Du’s Fundamental Triangle. Here both x(𝑘)
and x̂(𝑘) are orthogonal projection from x(𝑘−1)

. Note that x(𝑘−1)
and x(𝑘) is not

necessarily on either system’s hyperplanes because REK’s iterates are some

modified system between the original system and the convergent system. . 34

4.1 Here we have an inconsistent linear system visualized by the black lines.

Our single reweighting only affects the thick hyperplane. The magenta line

indicates the line along which the pseudosolutions move. 50

List of Algorithms

1 Randomized Kaczmarz . 16

2 Randomized Extended Kaczmarz . 24

3 QuantileRK . 46

4 Weighted Randomized Extended Kaczmarz 53

Acknowledgments

Thank you to Prof Haddock for guiding and mentoring me over these months. What a

wonderful journey. I will always appreciate your support and encouragement.

Thank you also to the Large Linear Systems UCLA Applied Mathematics Group, we

created some delightful stories together.

Thank you to the many Mudd Profs (Maths and otherwise!) who have given me

important support over the years. Mathematics used to be one of my least favourite subjects

until I met you all and rekindled a new relationship with the subject. Thank you for all

the help, through every the stumble and celebration. Thank you Patty for helping me

understand that it’s not bad to see things a bit differently, and for introducing me to LW.

Thank you to all my friends and their families who invited me in during the years we

could not be on campus and I could not go home, I really do not know what I would have

done without you all. Thank you to all my friends, I’m so happy to have spent these years

with you. If any of my Physics frosh are here, thank you for spending your evenings with

us, meeting you all was such a joy. You’re all going to do wonderful things.

Thank you for taking the time to read This Work.

Preface

To my dear reader.

In my experience, the preface is a space for me as an author to speak to you as a reader.

Readers, like humans, are non-homogenous. You’re bringing particular experiences, and

intentions to the table. I will acknowledge you as best I can. That is, I will try my best to

write for a human being. At this moment, I will acknowledge certain groups of people that

I imagine might find their way to a text like this.

To the undergraduate reader. Welcome! Perhaps you are interested in seeing what

Harvey Mudd Maths students get up to. Perhaps you are thinking of doing Maths Thesis

yourself and you want to see what kind of work Prof Haddock gets up to. Maybe you’re

here for an entirely different reason. Whatever the reason, I’m glad you’re here. Compared

to other senior theses you might read I think the background to read this text will be

relatively managable. I would say that you only need one or two undergraduate classes

on linear algebra to follow this text in as much detail as you want. I’ve tried to make

clear the ideas I will be leaning on, and so some parts of this document can provide as a

reference point or a very quick review. The numerical analysis in this text can be a hive

of symbols but nothing super arcane is being pulled out. If you prefer, there is a good

amount of geometric intuition that I emphasize which you are free to lean on. I would

recommend reading from the start, skipping around, or reading at whatever pace feels fun

and engaging.

To the academic. Welcome! Thanks for taking an interest in my thesis. I imagine you

are experienced in navigating Mathematical texts. Nevertheless, if you are interested in

learning about Randomized Kaczmarz then I would recommend starting at Chapter two.

If you are familiar with Randomized Kaczmarz then my main contributions can be found

in chapters three and four. My main contributions are outlined in the Abstract of this

document.

Lastly, in my experience, an important part a part of Mathematics is the doing. I believe

“doing maths” is a multifaceted human experience. I think it should not be as difficult as it

is for someone with the right curiousity and desire to “do mathematics”. To this end, I want

to emphasize all the non-rational parts of mathematics; all the time spend investigating,

conjecturing, failing, proving, confusing, realizing, hoping, forgetting, enjoying. I will do

xiv Preface

my best to acknowledge these non-rational parts of “doing maths” in the following ways.

Usually texts like this are for me to tell you the adventures I’ve been on, to tell you what

hill I’ve climbed and how exactly I climbed it. That sort of writing is mostly fun for me only.

However, I’ve already had my fun climbing this hill and so, apart from articulating myself

to clarify my ideas, that kind of writing is not useful at all. That said, I want to graduate

and we exist in a certain subculture which expects a certain kind of writing, so I will meet

you halfway. I will write this document about my adventures, but I will point out places

which might be interesting to explore for yourself (of course, what you find fun depends on

who you are, but I will do my best to guess). At various points in this text I will leave a

small which indicates that I think the following idea might be fun to think about, or

that there’s a deep idea lurking here which is worth experiencing, or that this is an affluent

place look.

I will also try to write in such a way that emphasizes where all the pieces fit into the

bigger story of this hill that we’re climbing together. Of course, there are parts which

cannot be told, only experienced. I think Mathematics is its least fun if I am a tour guide

and you are a tourist. So instead, let’s go as friends exploring together.

One last thing. Life is bigger outside of Mathematics. For you, I, and everyone else.

I want to take a moment to acknowledge wherever we are, in whatever sense is most

meaningful.

Chapter 1

Background on Linear Systems

In this document we are motivated by linear systems and how to solve them numerically.

From a very abstract level, a system is described by an operator which maps input functions

to output functions. Furthermore, a system is linear if and only if it satisfies the property

that the net response caused by two or more inputs is equivalent to the sum of the responses

that each of these inputs cause individually. This informal definition outlines why linear

systems appear in places like engineering — where our input and output functions might

be special kinds of signals, mechanical systems, or other kinds of systems1. This definition

might also show why linear systems arise in quantum mechanics where the state of a

particle can be represented by linear combinations of states which remain constant under

the time operator. In many of these applied systems we are interested in the quantities

which are output by a system. In the case of a quantum system we may want to compare

our output quantity to experimental measurements. As a result, there is much interest in

solving linear systems, exactly and analytically where we can, and numerically where we

cannot. Throughout this document we are interested in the cases where analytical methods

fail, where we instead focus on numerical methods.

At its heart the ideas explored in this thesis are all to the end of solving linear systems.

However, before we can focus our attention fully on linear systems it will be important to

state explicitly some of the matrix concepts which are pertinent to our discussion of linear

systems. In this chapter we present the foundational theory to grapple with the numerical

work in the rest of this document. To that end, let 𝐴 ∈ ℝ𝑚×𝑛
.

1.1 Matrix Jargon

This Section in particular will be quite terse as we provide rapid summaries of the

foundational linear algebra ideas which will be important for the points of research within

1https://en.wikipedia.org/wiki/Linear_time-invariant_system

https://en.wikipedia.org/wiki/Linear_time-invariant_system

2 Background on Linear Systems

this document. We do not recommend this Section as a way to study the ideas presented

here. Instead, we intend for this Section to serve as a high-level overview of some of the

relevant matrix theory.

1.1.1 Important Matrix Subspaces

There are some important vector subspaces that we will be addressing consistently

throughout this document. Here we will present some informal definitions. The column
space of 𝐴, denote col(𝐴), is the vector space spanned by the columns of 𝐴. Similarly, the

row space of 𝐴, denoted row(𝐴) or col(𝐴𝑇), is the vector space spanned by the rows of 𝐴.

We will also be interested in the orthogonal complement to the column space of 𝐴, denoted

col(𝐴)⊥ which is the vector space of vectors which are orthogonal to the column space.

The orthogonal complement to the column space of 𝐴 is also given by the nullspace of 𝐴𝑇 .

Recall that the null space of a matrix 𝐴 is the set of vectors x ∈ ℝ𝑛
such that 𝐴x = 0.

1.1.2 Rank and Nullity

The rank of 𝐴 is the dimension of col(𝐴). If the rank of 𝐴 is min(𝑚, 𝑛) then we say 𝐴 is full

rank. Intuitively the rank of 𝐴 tells you how large of a space 𝐴 can map vectors onto. As

we will discuss later, in the case of a consistent linear system the system 𝐴x = b will have a

unique solution when 𝑚 ≥ 𝑛 and 𝐴 is full rank. On the other hand if 𝐴 is less than full

rank then the system 𝐴x = b will have many solutions.

The nullity of 𝐴 is the dimension of the null space of 𝐴. By the rank-nullity theorem we

have that the rank of 𝐴 plus the nullity of 𝐴 equals 𝑚.

1.1.3 Vector space decomposition

Given an ambient space and a vector subspace we can always decompose the ambient

subspace into the direct sum of that vector space and its orthogonal complement space.

In particular if we consider our ambient space to be ℝ𝑚
then we can decompose ℝ𝑚 =

col(𝐴) ⊕ col(𝐴)⊥. This means for any b ∈ ℝ𝑚
we can decompose b = b𝑐𝑜𝑙(𝐴)+b𝑐𝑜𝑙(𝐴)⊥ where

b𝑐𝑜𝑙(𝐴) denotes the orthogonal projection of b onto the column space of 𝐴 and b𝑐𝑜𝑙(𝐴)⊥
denotes the orthogonal projection of b onto the orthogonal complement of the column

space of 𝐴. Note that for any vector b ∈ ℝ𝑚
the system 𝐴x = b𝑐𝑜𝑙(𝐴) is always consistent.

1.1.4 Singular Values

The singular values of 𝐴 are the eigenvalues of the symmetric matrix 𝐴𝑇𝐴. Note that since

𝐴𝑇𝐴 is symmetric, all of its eigenvalues are real . We denote the 𝑚 singular values

𝜎𝑚𝑖𝑛(𝐴) ≤ 𝜎1(𝐴) ≤ · · · ≤ 𝜎𝑚𝑎𝑥(𝐴). We also have ∥𝐴x∥2

2
≤ 𝜎2

𝑚𝑎𝑥(𝐴) ∥x∥2

2
and the rank of 𝐴 is

the number of nonzero singular values.

Matrix Jargon 3

The singular values of 𝐴 will be of interest to us because the speed of convergence of

various numerical methods will depend the singular values. In this sense, the singular

values govern the “difficulty” of solving a linear system numerically.

Now we define some quantities, the relevence of which will become clear later. Set

𝜅2

𝐹
(𝐴) = ∥𝐴∥2

𝐹

𝐴†

2

2

and define the condition number of 𝐴 is 𝜅2(𝐴) = 𝜎2

𝑚𝑎𝑥(𝐴)/𝜎2

𝑚𝑖𝑛
(𝐴). Also

note 𝜅2(𝐴) ≤ 𝜅2

𝐹
(𝐴).

1.1.5 Pseudoinverses

If 𝐴 is square and of full rank then it will have an inverse 𝐴−1
. If you can easily compute

the matrix inverse then a linear system 𝐴x = b can be solved as x = 𝐴−1b. Not every matrix

has an inverse, but every matrix has a Moore-Penrose pseudoinverse (MP inverse), denoted

𝐴†
. The MP pseudoinverse is a generalized inverse. The MP pseudoinverse has a number

of rich properties but must important for us is that 𝐴†b gives the minimum-norm solution

to the least-squares problem. This problem is discussed in detail in Section (1.4.1).

The Moore-Penrose pseudoinverse can be calculated using singular value decomposi-

tion2. However, for us our linear systems will be so large that we cannot compute the MP

pseudoinverse.

1.1.6 Various Matrix Norms

For vectors x ∈ ℝ𝑛
we will usually only be interested in the Euclidean norm or 2-norm of that

vector,

∥x∥2

2
=

𝑛−1∑
𝑖=0

𝑥2

𝑖 = x · x = x𝑇x.

Note that we generally consider the square of the given norms because it will be useful for

later analysis. On the other hand, when it comes to matrix norms we will be interested in

more than one. We can have multiple matrix norms because a “norm” is just a mapping

from a matrix 𝐴 to a non-negative real number satisfying a predefined set of properties.

For our purposes we will simply list the matrix norms which will appear in this document.

Firstly the spectral norm of 𝐴 is given by

∥𝐴∥2

2
= 𝜎2

𝑚𝑎𝑥(𝐴).

And the Frobenius norm of 𝐴 is given by

∥𝐴∥2

𝐹 =

𝑚−1∑
𝑖=0

𝑛−1∑
𝑗=0

|𝑎𝑖 𝑗 |2.

2For those who are interested, https://mathformachines.com/posts/least-squares-with-the-mp-inverse/

https://mathformachines.com/posts/least-squares-with-the-mp-inverse/

4 Background on Linear Systems

Note that ∥𝐴∥2

2
≤ ∥𝐴∥2

𝐹 . A pertinent related fact is the Cauchy-Schwarz inequality for vectors.

For any u, v ∈ ℝ𝑛
we have | ⟨u, v⟩ |2 ≤ ∥u∥2

2
∥v∥2

2
. In particular ∥𝐴x∥2

2
≤ ∥𝐴∥2

2
∥x∥2

2
=

𝜎2

𝑚𝑎𝑥 ∥x∥2

2
. Finally, note that

𝐴†

2

2

= 1/𝜎2

𝑚𝑖𝑛
(𝐴).

1.2 Consistent Linear Systems

Above we discussed the spirit and applications of linear systems. Now we will define linear

systems formally

Definition 1.2.1. A linear system is a set of 𝑚 linear equations in 𝑛 variables, each equation

takes the form

𝑎𝑖0𝑥0 + 𝑎𝑖1𝑥1 + · · · + 𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖 ,

where, for each 𝑖 we do not have 𝑎𝑖 𝑗 = 0 for all 𝑗. That is, we assume there are no equations

of the form 0 = 𝑏𝑖 . Often we will leverage matrix and vector algebra to represent such a

system as

𝐴x = b,

where 𝐴 ∈ ℝ𝑚×𝑛
and b ∈ ℝ𝑚

are given.

We say that a linear system is consistent if there exists a vector x∗ ∈ ℝ𝑛
which makes the

above equation true. If we know that a system is consistent we will often be interested in

finding a solution x∗. One example of how to do this, which the reader may be familiar

with, is Gaussian elimination. From a high level, Gaussian elimination involves performing

one of three elementary row operations to manipulate the system of equations until we are

left with the solutions to the variables 𝑥0 , 𝑥1 , · · · , 𝑥𝑛 . One issue with this method is that it

requires the entire matrix to be represented at each step of the process. There exist cases

where this cannot be done. For example, if the matrix is extremely large, then it is often

infeasible to consider the entire matrix, even if we were to perform Gaussian elimination

on a computer. In this document we are motivated by linear systems which are large, in

particular those linear systems which are tall where 𝑚 ≫ 𝑛. An example of such a system

is in computer tomography where, for example, a number of X-ray samples are reconstructed

computationally to create a high quality image for medical uses. Some discussion on the

setup and the matrices which are used in computer tomography problems be found at the

end of Section two by Gustafsson (1996).

For the rest of this chapter we will discuss some foundational theory behind different

kinds of linear systems.

Consistent Linear Systems 5

1.2.1 Geometry of Consistent Linear Systems

If we have a linear system 𝐴x = b then notice each linear equation defines an affine3

hyperplane and then the solution to our linear equation is given by the intersection of each

of these hyperplanes

Definition 1.2.2 (Geometric Interpretation of a Linear System). A linear system 𝐴x = b
with 𝐴 ∈ ℝ𝑚×𝑛

induces a geometry of 𝑚 affine hyperplanes in ℝ𝑛
. In particular, each

hyperplane is given by “each row” of 𝐴,

𝐻𝑖 = {x ∈ ℝ𝑛
: 𝐴(𝑖)x = 𝑏𝑖}.

And then the solution to our linear system is given by the intersection over all such

hyperplanes

𝐿 =

𝑚⋂
𝑖=0

𝐻𝑖 .

If 𝐴 is full-rank then 𝐿 is a point. As the rank of 𝐴 decreases the dimension of 𝐿 increases.

For example if 𝐴 is one less than full rank then 𝐿 will be one dimensional.

Recall that we can uniquely define any hyperplane in ℝ𝑛
in terms of a normal vector

and a distance from the origin. Choose a vector n ∈ ℝ𝑛
and a distance 𝑑 ∈ ℝ, then we

can uniquely define any hyperplane as the subspace of ℝ𝑛
which is orthogonal to n and a

distance 𝑑 from the origin.

Example 1.2.1. Suppose we have the linear system

𝐴 =


5 6

10 3

1 −1

 b =


0

0

0

 .
Notice𝐴 ∈ ℝ3×2

is full rank; this can be seen since the columns of𝐴 are linearly independent.

Since 𝑛 = 2 this system defines affine hyperplanes in the plane ℝ2
. Hyperplanes are one

dimension less than the ambient space (also referred to as codimension 1) and so in this

case our hyperplanes are of dimension 2 − 1 = 1 which corresponds to lines in the plane.

Since this document happens to be locally embedded within ℝ2
we can straightforwardly

visualize the geometry of this linear system, as shown in Figure (1.1).

3What does affine mean here? It’s a technical thing used to distinguish the hyperplane geometry we care

about from projective geometry and hyperplane geometry that we are familiar with from linear algebra. It is

important to note that the hyperplanes we are familiar with from linear algebra, have the condition that they

need to include the 0 vector. This means that these hyperplanes must pass through the origin. However, we

want to include hyperplanes which do not necessarily pass through the origin.

6 Background on Linear Systems

𝑥∗

Figure 1.1 Visualization of the geometry of the given linear system.

Notice also that the solution is given by x∗ = [0, 0]𝑇 where all of the hyperplanes

intersect. In this case 𝐿 was a zero-dimensional point, however, if 𝐴 was rank one then we

would have a one-dimensional solution space. For example if we had

𝐴 =

[
1 −1

2 −2

]
and b =

[
0

0

]
,

then 𝐴 is rank one, since the column space of 𝐴 has dimension 1. Then the solution set are

all the vectors x∗ = [𝑥𝑦]𝑇 which satisfy 𝑦 = 𝑥. A geometric depiction is given in Figure (1.2).

Inconsistent Systems 7

Figure 1.2 Geometric depiction of a rank one linear system as given in example (1.2.1).

1.3 Inconsistent Systems

Often linear systems will not be consistent. In terms of applications we might expect

perfectly consistent linear systems but then empirically measure inconsistent linear systems.
Informally, these are systems where there is no exact vector x∗ which solves the system

defined by 𝐴 and b. We might measure such systems because of noise in measuring

signals or realities of empirical measurement. In these cases, we usually want a solution

which is “the next best thing” to an exact solution. In this Section we will discuss what an

inconsistent system is, what different kinds of inconsistent systems we might come across,

and what kinds of “next best” solutions that we might hope to find.

Definition 1.3.1. (Inconsistent Linear System) A linear system 𝐴x = b is inconsistent if there

is no x which satisfies 𝐴x = b. To avoid confusion with consistent linear systems we will

often write 𝐴x = b when we expect there to be an exact solution, otherwise we will refer to

the problem defined by 𝐴 and b.

Remark 1.3.1. (Geometry of Inconsistent Linear Systems) Recall that we can understand

linear systems in terms of hyperplanes 𝐻𝑖 defined by each of the equations in the systems.

When the linear system is inconsistent then we find

𝑛⋂
𝑖=0

𝐻𝑖 = Ø.

8 Background on Linear Systems

In other words, there is no point in ℝ𝑛
where all of the hyperplanes intersect.

Figure 1.3 The geometry of an inconsistent linear system. There is no solution to this linear
system as seen since there is no point inℝ2 where all three hyperplanes intersect simultaneously.

Remark 1.3.2 (When are Linear Systems Inconsistent?). The linear problem is defined by

both 𝐴 and b. A linear system is always consistent when b ∈ col(𝐴) (consider what

it means to perform 𝐴x). And so, since a system can either be consistent or inconsistent

and since we can always decompose ℝ𝑛 = col(𝐴) ⊕ col(𝐴)⊥, it follows that a system is

inconsistent when b𝑐𝑜𝑙(𝐴)⊥ ≠ 0. In other words when b has any “part” which lies outside

the column space of 𝐴 then our system will be inconsistent — i.e., no linear combination of

the columns of 𝐴 will ever “reach” that “part” of b which lives outside 𝐴’s column space.

However, this means that inconsistency is due to both 𝐴 and b.

1.3.1 Types of Inconsistent Linear Systems

There are two kinds of inconsistent linear systems that we are interested in. Informally

we might call one kind “those in which the errors are small but ubiquitous” and the other

“those in which the errors are large in a few places.” If we have a system where the error is

“large and ubiquitous” then we may need heavier hammers than simply Mathematics.

Definition 1.3.2 (Noisy Linear Systems). Suppose 𝐴x = b is a consistent system. Then a

noisy linear system is one given by 𝐴, and b + r, where r has a “small magnitude.” For our

purposes we will not assume exactly what it means for r to be “small”. However, as an

example, you might sample r from multivariate Gaussian distribution with expectation 0
and “small” diagonal covariances.

Inconsistent Systems 9

Noisy linear systems are often of interest because they model noise which might come

from sensor measurements. A geometric depiction is given in Figure (1.4). Intuitively,

we might want to deal with noisy linear systems by finding the point “in the average” of

all the hyperplanes. In this case we can “average out” the error and have a reasonable

approximation of the underlying consistent system.

𝑥∗

Figure 1.4 The geometry of a noisy linear system. The original linear system is represented by
the dotted lines. The hyperplanes have been modified by a small amount of noise.

Another case of inconsistent systems are corrupted linear systems.

Definition 1.3.3 (Corrupted Linear Systems). If 𝐴x = b is a consistent linear system then

a corrupted linear system is one given by 𝐴 and b + b𝐶 where b𝐶 is sparse but where the

non-zero entries are large.

This definition captures the linear system with a few adversarial components. A

geometric depiction is given in Figure (1.5). Since a very small portion of the system is

modified in a corrupted linear system, it would be ideal if we could detect the corrupted

equations and ignore them completely. If we could strip away the few corrupted equations

then we could simply treat the remaining system as consistent. This is in contrast to the

noisy linear system where we might not worry about removing the error entirely but rather

“average it out”.

It is worth noting that there are different kinds of corrupted systems. For example,

instead of corruptions being found in b you might instead corrupt the entries of 𝐴. For

this document we will only be considering corruptions to b. Note that when b is modified

the new hyperplanes shift paralell along their original normal vector as can be seen in

Figure (1.4).

We will now turn our attention to different ways of solving these kinds of inconsistent

systems.

10 Background on Linear Systems

x𝐿𝑆x∗

Figure 1.5 The geometry of a corrupted linear system. In this case nearly all the hyperplanes
intersect at a single point but with a few highly perturbed hyperplanes. One solution we might
want is the point where most of the hyperplanes intersect, in this case on the left. However, the
least squares solution for such a system is far away from that point, instead it is somewhere
between the corrupted hyperplanes and the point we would actually want.

1.4 “Solutions” to Inconsistent Systems

By definition, we cannot find exact solutions to inconsistent linear systems, however, we

can find various approximate solutions by optimizing different objectives.

1.4.1 Least Squares

One approximation is called the least squares solution which is found by solving the least
squares problem.

Definition 1.4.1 (The Least Squares Problem). Given a linear system defined by 𝐴 and b
the least squares solution x∗ ∈ ℝ𝑛

is a vector x∗ such that

∥b − 𝐴x∗∥2

2
≤ ∥b − 𝐴x∥2

2

for all other vectors x ∈ ℝ𝑛
. Equivalently the least squares solution is the vector x∗ ∈ ℝ𝑚

which optimizes

min

x∈ℝ𝑛
∥𝐴x − b∥2

2
.

In the context of the least squares problem, we will use the term pseudosolution to refer to

the least squares solution of a linear system.

“Solutions” to Inconsistent Systems 11

When 𝐴 is not full rank then we expect there to be multiple vectors which satisfy the

least squares problem. Having multiple solutions to the least squares problem is not a

concern for us and in this case we will let x∗ denote the least squares solution of minimum

2-norm.

To distinguish the Least Squares Problem from the Weighted Least Squares Problem we

may also call the least squares problem the Ordinary Least Squares Problem.

When we expect the error to be small, e.g., in noisy linear systems, then the least squares

solution is usually a good approximation for the solution of the system. For example, in

Figure (1.4) the vector x∗ also happens to be the solution to the least squares problem for

that system.

We can compute the least squares solution in a few ways. We can compute the least

squares solution via the normal equations

𝐴𝑇𝐴x = 𝐴𝑇b.

If 𝐴 is full column rank then the normal equations have solution

x∗ = (𝐴𝑇𝐴)−1𝐴𝑇b.

On the other hand, we can use the Moore-Penrose pseudo inverse

x∗ = 𝐴†b.

Both of these methods require loading the entire matrix into memory. As a result these

methods cannot be used when 𝐴 is sufficiently large. For this reason we will later turn to

iterative methods for solving the least squares problem.

When the expected error is small and affects all of our equations equally then the least

squares solution is in some sense the optimal solution4. However, least squares may not be

optimal when different equations are affected by different amounts of error. One example

of this is the corrupted system where most equations are unaffected by the error and a few

are heavily affected by the error. As an example, in Figure (1.5) the least squares solution,

denoted by x∗ is far away from the place where most of the hyperplanes intersect to the left

of x∗. In this case we would prefer a different solution to x∗. In this case we present another

kind of optimization problem in the following Section.

1.4.2 Weighted Least Squares Problem

For an inconsistent system the weighted least squares problem solves for a vector x∗ where

a weight is assigned to each of the equations. Intuitively the weight of an equation is

4There is a rich statistics theory. For those interested, one might say that the least squares solution is the

Best Linear Unbiased Estimator (BLUE) when the conditions for linear regression are met.

12 Background on Linear Systems

how “reliable” you expect a particular equation to be. As an example, if you are using the

outcomes of games to assign ratings to teams then you may “trust” some outcomes more

than others and thus assign a higher weight to them. For example, if a team’s key player

was injured for one game then you may want to down-weigh that game because it might

not be as good an indication of that team’s performance compared to when they do have

their key player. Formally the weighted least squares problem is given as follows

Definition 1.4.2 (Weighted Least Squares Problem). Let 𝐴 and b define an inconsistent

system, and let𝑊 ∈ ℝ𝑚×𝑚
be a diagonal matrix of non-negative weights where𝑊𝑖𝑖 is the

weight assigned to equation 𝑖. The Weighted Least Squares Problem (WLS) is to find a vector

x ∈ ℝ𝑛
which minimizes

min

x∈ℝ𝑛
∥𝑊b −𝑊𝐴x∥2

2
.

In the context of the context of WLS we call x∗ the pseudosolution.

Note that the Ordinary Least Squares problem is a special case of the Weighted Least

Squares problem where𝑊𝑖𝑖 = 1 for all 𝑖. Like the OLS problem there may not always be

a unique vector which solve the WLS problem. In this case we usually let x∗ denote the

pseudosolution of minimum 2-norm.

Remark 1.4.1 (Reweightings do not change the geometry of a linear system). If

(𝐴(𝑖))𝑇x = 𝑏𝑖 defines a hyperplane then 𝑊𝑖𝑖(𝐴(𝑖))𝑇x = 𝑊𝑖𝑖𝑏𝑖 defines the same hyperplane,

so long as 𝑊𝑖𝑖 ≠ 0. Instead, the weighting changes the position of the pseudosolution

compared to OLS.

Remark 1.4.2 (WLS Problems not uniquely defined by 𝑊). Let us fix a matrix 𝐴 and a

vector b. Suppose we are also given a matrix 𝑊 to define a WLS problem. Notice that

𝑎𝑊 for some nonzero 𝑎 ∈ ℝ defines the same WLS problem as𝑊 . Consider the following

example. Let𝑊1 be defined by (𝑊1)11 = 𝑎 and (𝑊1)𝑖𝑖 = 1 for 𝑖 ≠ 1. And let𝑊2 be defined

by (𝑊2)11 = 1 and (𝑊2)𝑖𝑖 = 0 for 𝑖 ≠ 1. As 𝑎 → ∞, both𝑊1 and𝑊2 define the same WLS

problem.

Later we will be considering sequences of WLS problems, to make such statements

well-defined let us constrain ∥𝑊 ∥2

𝐹 = 1 unless otherwise stated.

For those who have a background in statistics, if the variances of each equation 𝜎2

𝑖
are

known5 then it can be shown that the weighted least squares solution is a Best Linear

Unbiased Estimator (BLUE) if we choose𝑊𝑖𝑖 = 1/𝜎2

𝑖
. In this sense, the weighted least squares

solution is optimal if we have heteroskedasicity (i.e., unequal but diagonal variances).

If our inconsistent linear system is corrupted then we may want to solve the WLS

problem. As an extreme example, suppose we knew which equations had been corrupted

then we could set𝑊𝑐𝑖 = 0 for all corrupted equations indexed by 𝑐𝑖 . Intuitively, one may

5This is usually difficult to do, see https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd143.htm

https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd143.htm

Notation 13

want to use WLS when we do not trust all the data equally, but we do not want to prune

the equations we trust less. The difficulty with Weighted Least Squares is assigning the

weights to each of the equations, as estimating the variances of each of the equations can

be difficult.

Similar to the Ordinary Least Squares Problem there are normal equations for finding

the weighted least squares solution of a problem.

𝐴𝑇𝑊𝐴x∗ = 𝐴𝑇𝑊b.

Similar to the normal equations for least squares problems, the normal equations methods

require loading the entire matrix 𝐴 into memory which is not feasible for large linear

systems.

This is the required linear system background to understand the numerical methods

contributions of this text. In the following chapter we will introduce the Randomized

Kaczmarz method as a way of solving large linear systems.

1.5 Notation

Let [𝑘] = {0, 1, 2, · · · , 𝑘 − 1}. Unless otherwise stated we let 𝐴 ∈ ℝ𝑚×𝑛
and b ∈ ℝ𝑚

. Let

𝐼𝑚 ∈ ℝ𝑚×𝑚
denote the identity matrix in 𝑚 dimensions. We let 𝐴(𝑖)

denote the 𝑖th row of

𝐴 and 𝐴(𝑖) denote the 𝑖 column of 𝐴, both taken as column vectors. Often 𝛼 will denote

the quantity 1 − 1/𝜅2

𝐹
(𝐴) where 𝜅2

𝐹
(𝐴) = ∥𝐴∥2

𝐹

𝐴†

2

2

. For a linear system 𝐴x = b we let x∗
denote the vector which exactly solves the linear system. In a least squares problem x∗ will

denote the minimum norm solution. And in a weighted least squares problem we let x∗
denote the minimum norm solution.

Chapter 2

Randomized Kaczmarz

Methods such as computing the inverse or Gauss elimination involve loading the entire

matrix into memory. Often, the linear systems that we are interested in are so large that

loading the entire matrix into memory is not feasible. In these cases we turn to iterative
methods which numerically solve the linear system by only using a portion of the input

matrix 𝐴 at a time. Within this chapter we will focus our attention on a particular numerical

method called Randomized Kaczmarz1.

Given a consistent system, Randomized Kaczmarz is an iterative method which finds

the solution to linear systems by exploiting the geometry of the hyperplanes. In particular,

from a high-level geometry standpoint, it performs a sequence of orthogonal projections

onto a randomly selected hyperplane, eventually converging to the solution x∗.

Definition 2.0.1 (Randomized Kaczmarz). Let 𝐴x = b be a linear system. Define any initial

iterate x(0) ∈ col(𝐴𝑇). The iterates of the Randomized Kaczmarz algorithm are given by

x(𝑘+1) = x(𝑘) +
𝑏𝑖𝑘 −

〈
x(𝑘) ,A(𝑖𝑘)

〉
| |A(𝑖𝑘) | |2

2

A(𝑖𝑘) ,

where index 𝑖𝑘 is chosen with probability 𝑞𝑖 =
| |𝐴(𝑖) | |2

2

| |𝐴| |2
𝐹

.

This algebraic expression can be intense at first sight, however, we will break it down

together in the following remarks. We also define Randomized Kaczmarz in algorithm

form in Algorithm (1).

1Kaczmarz was a polish fellow, knowing this might aid with pronouncing his name and the name of the

algorithms. From what I understand, Google Translate has a decent pronunciation for this name.

16 Randomized Kaczmarz

𝑥∗

𝑥(0)

𝑥(1)

𝑥(2)

Figure 2.1 Iterations from Randomized Kaczmarz. At each step x(𝑘) is orthogonally projected
onto a randomly selected affine hyperplane. Each hyperplane represents a single equation from
our linear system.

Algorithm 1 Randomized Kaczmarz

1: function RandomizedKaczmarz(𝐴, b, 𝑇) ⊲ where 𝐴 ∈ ℝ𝑚×𝑛
, b ∈ ℝ𝑚

, and 𝑇 ∈ ℕ

2: Initialize x(0) ∈ ℝ𝑛
arbitrarily

3: for 𝑘 = 1, 2, 3, . . . , 𝑇 do

4: Pick 𝑖𝑘 with probability 𝑞𝑖 :=
∥𝐴(𝑖)∥2

2

∥𝐴∥2

𝐹

, 𝑖 ∈ [𝑚]

5: Set x(𝑘+1) = x(𝑘) + 𝑏𝑖𝑘−⟨x
(𝑘) ,𝐴(𝑖𝑘)⟩

∥𝐴(𝑖𝑘)∥2

2

𝐴(𝑖𝑘)

6: end for
7: return x(𝑇)
8: end function

Remark 2.0.1 (Kaczmarz Updates are Projections onto Hyperplanes). Whilst the RK updates

may look intimidating, we can break it down and extract a nice geometry. First consider

ℓ = b𝑖𝑘 −
〈
x(𝑘) ,A(𝑖𝑘)

〉
.

The inner product

〈
x(𝑘) ,A(𝑖𝑘)

〉
can be thought intuitively like the matrix vector multiplication

𝐴x executed on a single row 𝐴(𝑖𝑘)
. Then ℓ is the difference between 𝐴x and b for a single

equation of the system. And so, intuitively, the modification term

𝑏𝑖𝑘−⟨x(𝑘) ,𝐴(𝑖𝑘)⟩
| |𝐴(𝑖𝑘) | |2

2

𝐴(𝑖𝑘)

will move the current x iterate in the direction of 𝐴(𝑖𝑘)
as to solve equation 𝑖𝑘 exactly.

Geometrically this corresponds to projecting x(𝑘) onto the hyperplane given by a single

Convergence Properties 17

hyperplane 𝐻𝑖𝑘 . Later we will show that these projections are orthogonal, which will be

important for guarenteeing RK’s convergence.

Remark 2.0.2 (Row Distribution is Superficial). The probability of picking each row 𝑞𝑖 is

usually given in a form which may make one ask which rows are more likely to be chosen

than others. It turns out that this probability distribution of picking the rows is superficial.

Consider, we can normalize2 the rows of 𝐴 by setting 𝐴(𝑖) = 𝐴(𝑖)/

𝐴(𝑖)

2

2

and 𝑏𝑖 = 𝑏𝑖/

𝐴(𝑖)

.

Here

𝐴(𝑖)

2

2

= 1 for all 𝑖. Moreover, the solution to the whole system does not change

by such a transformation. Suppose 𝐵 ∈ ℝ𝑚×𝑚
is diagonal such that 𝐵𝑖𝑖 = 1/

𝐴(𝑖)

2

2

. And

so if x∗ solves 𝐴x = b then x∗ will also solve 𝐵𝐴x = 𝐵b. That is the geometry of the

underlying system is unchanged. Since

𝐴(𝑖)

2

2

= 1 for all 𝑖 it follows that 𝑞𝑖 defines a

uniform distribution. That is, the original distribution for choosing the rows is uniform.

2.1 Convergence Properties

Randomized Kaczmarz projects onto hyperplanes in such a way that the algorithm

is guaranteed to converge in a very fast time. Orthogonal projections are key to the

convergence of RK. So, to understand how this convergence works we must first show that

these projections are actually orthogonal.

Proposition 1 (RK Updates are Orthogonal Projections). Let 𝐴x = b be some linear system.
On a given iterate of Randomized Kaczmarz, the error x∗−x(𝑘+1) and the update vector x(𝑘+1)−x(𝑘)
are orthogonal.

Proof. We will show this by definition. Consider the following

(x∗ − x(𝑘+1))𝑇(x(𝑘+1) − x(𝑘)) = (x∗ − x(𝑘+1))𝑇
𝑏𝑖𝑘 −

〈
𝑥(𝑘) , 𝐴(𝑖𝑘)

〉

𝐴(𝑖𝑘)

2

2

𝐴(𝑖𝑘)

= (x∗ − x(𝑘+1))𝑇𝛽𝐴(𝑖𝑘)

= 𝛽(x∗)𝑇𝐴(𝑖𝑘) − 𝛽(x(𝑘+1))𝑇𝐴(𝑖𝑘)

= 𝛽𝑏𝑖𝑘 − 𝛽(x(𝑘+1))𝑇𝐴(𝑖𝑘)
Since 𝐴x∗ = b

= 𝛽𝑏𝑖𝑘 − 𝛽𝑏𝑖𝑘
= 0,

2Here, we do not have to worry about

𝐴(𝑖)

2

2

= 0. Recalling the properties of norm, this would only happen

if 𝐴(𝑖) = 0, however, these are discounted from discussion.

18 Randomized Kaczmarz

Where the second to last line follows because 𝐴(𝑖𝑘)x(𝑘) = 𝑏(𝑖𝑘) by definition of Kaczmarz

updates. Informally, a single RK update makes it so that x(𝑘+1)
satisfies the hyperplane that

it projects onto. Thus Randomized Kaczmarz updates are orthogonal projections. □

This orthogonality means that we can show the following.

Proposition 2 (RK Error is Monotonically Non-Increasing). The norm of the error | |x∗ − x(𝑘) | |2
2

is monotonically non-increasing.

Proof. Consider the following

x∗ − x(𝑘+1)

2

2

=

x∗ − x(𝑘) + x(𝑘) − x(𝑘+1)

2

2

≤

x∗ − x(𝑘)

2

2

+

x(𝑘) − x(𝑘+1)

2

2

. By the triangle inequality,

And so since, (x∗ − x(𝑘+1)) and (x(𝑘+1) − x(𝑘)) are orthogonal, we have

x∗ − x(𝑘+1)

2

2

≤

x∗ − x(𝑘)

2

2

+
(

x∗ − x(𝑘)

 −

x(𝑘+1) − x∗

2

2

)
2

x∗ − x(𝑘+1)

2

2

≤ 2

x∗ − x(𝑘)

2

2

x∗ − x(𝑘+1)

2

2

≤

x∗ − x(𝑘)

2

2

.

Thus the error vectors are monotonically increasing. (Can you see this proposition

geometrically in Figure 2.1?) □

At the very least we have shown that the iterations of Randomized Kaczmarz will never

take us farther from the pseudo solution. However, we can do one better and show that

RK, in expectation, converges exponentially fast (also called linearly in expectation).

Theorem 2.1.1 (Randomized Kaczmarz Converges Linearly in Expectation). Suppose 𝐴 is
full column rank. After 𝑘 iterations of Randomized Kaczmarz we have the following

𝔼| |x∗ − x(𝑘+1) | |2
2
≤

(
1 − 1

𝜅2

𝐹
(𝐴)

) 𝑘
| |x∗ − x(0) | |2

2
,

where 𝐴 and b define a consistent linear system and x(0) ∈ col(𝐴𝑇).
This result was first proved in Strohmer and Vershynin (2009), and we will closely

follow their proof with some modifications presented by Zouzias and Freris (2013).

Convergence Properties 19

Proof. Let 𝑍 be a random variable over [𝑚] with probability mass function 𝑃(𝑍 = 𝑖) =

𝐴(𝑖)

2

2

/∥𝐴∥2

𝐹. We will first show that

𝔼| |x∗ − x(𝑘+1) | |2
2
≤

(
1 − 1

𝜅2

𝐹
(𝐴)

)
| |x∗ − x(𝑘) | |2

2
,

and then repeating the same argument 𝑘 − 1 more times will give us the desired result.

By Proposition (1) it suffices to show that 𝔼𝑍

x(𝑘+1) − x(𝑘)

2

2

≥ 1/𝜅2

𝐹
(𝐴)

x(𝑘) − x∗

2

2

. By

definition of x(𝑘+1)
, and by linearity of inner product, we have

𝔼𝑍

x(𝑘+1) − x(𝑘)

2

2

= 𝔼𝑍


(
𝑏𝑧 −

〈
x(𝑘) , 𝐴(𝑍)〉

𝐴(𝑍)

2

2

)
2

𝐴(𝑍)

2

2


= 𝔼𝑍

[〈
x∗ − x(𝑘) , 𝐴(𝑍)〉2

𝐴(𝑍)

2

2

]
Since 𝐴x∗ = b.

=

𝑚−1∑
𝑖=0

〈
x∗ − x(𝑘) , 𝐴(𝑍)〉2

𝐴(𝑍)

2

2

·

𝐴(𝑍)

2

2

∥𝐴∥2

𝐹

=

𝑚−1∑
𝑖=0

〈
x∗ − x(𝑘) , 𝐴(𝑍)〉2

∥𝐴∥2

𝐹

=

𝐴(x∗ − x(𝑘))

2

2

∥𝐴∥2

𝐹

≤
𝜎2

𝑚𝑖𝑛
(𝐴)

(x∗ − x(𝑘)

2

2

∥𝐴∥2

𝐹

=
1

𝜅2

𝐹
(𝐴)

(x∗ − x(𝑘)

2

2

.

The second to last line follows by the Cauchy-Schwarz inequality. We can apply this

reasoning because x(𝑘) ∈ col(𝐴𝑇) which follows from and definition of RK updates x(0) ∈
col(𝐴𝑇). (Why did choosing the hyperplanes randomly help with our convergence

speed? What happens if we choose the hyperplanes deterministically in a cycle?) □

In the case where 𝐴 is not full column rank the final position of x will vary with the

initial iterate x(0). This exponential convergence rate dependent only on the input matrix is

the gold standard for Randomized Kaczmarz and its variations. It is the gold standard in

the sense that when designing different variants of RK we aim to have a convergence rate

as fast as linear in expectation.

20 Randomized Kaczmarz

We have seen wonderful results from Randomized Kaczmarz. However, it all comes

with one important caveat — the input system must have an exact solution. However, not

every linear system is consistent. So next we turn our attention to the behaviour of RK on

inconsistent systems.

2.1.1 Behavior on Inconsistent Systems

Recall that the behavior of RK is to orthogonally project onto each hyperplane in our linear

system until it converges to the solution. When our linear system is inconsistent then in the

limit 𝑇 → ∞, RK will not converge to any particular point in ℝ𝑛
, because its convergence

will be bounded by the “horizon” defined by the geometry of the hyperplanes in the

inconsistent system.

This intuition is captured by the following theorem, first proved by Needell (2010).

Theorem 2.1.2 (Horizon of Convergence). Assume that the system 𝐴x = y has some solution x∗
for y ∈ ℝ𝑚 . Let x(𝑘) denote the 𝑘-th iterate of Randomized Kaczmarz applied on the system 𝐴x = b
where b = y + w for some fixed w ∈ ℝ𝑚 . It follows that

𝔼

x(𝑘) − x∗

2

2

≤
(
1 − 1

𝜅2

𝐹
(𝐴)

) 𝑘

x(0) − x∗

2

2

+ ∥w∥2

2

∥𝐴∥2

𝐹

.

This theorem says that on an inconsistent linear system RK will converge to the solution

exponentially in expectation, except its convergence will be bounded proportional to | |w| |2
2
,

where | |w| |2
2

is in some sense the “displacement” of our system from a consistent system.

Notice that a linear system is always convergent if w = 0, i.e., when b ∈ 𝑐𝑜𝑙(𝐴). An example

of this behavior is depicted in Figure (2.2).

Theorem (2.1.2) says that Randomized Kaczmarz will converge to some bounded

horizon exponentially quickly. As discussed earlier, there is no exact solution to inconsistent

systems and so we instead prefer a least squares solution or weighted least squares solution.

However, RK is bound to projecting onto hyperplanes of the input system. This behaviour is

a superpower of RK since it grants us orthogonal projections and exponential convergence

in the consistent case. However, it is RK’s downfall in the case where our hyperplanes do

not intersect at a meaningful point. In response to this, there have been modifications to

RK to grant better convergence in the case of inconsistent systems. (Try to draw a figure

similar to Figure (2.2) for a noisy linear system. Can you see the horzion w on each of these

pictures?)

REK and WREK 21

x∗

x(1)

x(2)
x(3)

x(4)
x(5)

Figure 2.2 Recall that in corrupted linear systems the solution we would want is the one where
the corrupted hyperplanes are ignored. Here, the desired solution is denoted by x∗. However,
Randomized Kaczmarz will never converge to x∗. Instead, Randomized Kaczmarz may get close,
but every time a corrupted hyperplane is projected onto the x iterates will move far away from x∗.

2.2 REK and WREK

In the case where we would prefer the least squares solution of a linear system, we have

a Randomized Kaczmarz variant called Randomized Extended Kaczmarz (REK). The main

contributions of this document come from expositing and generalizing the theory behind

REK. The focus of our next chapter will be entirely on REK.

In the summer of 2021 Haddock’s UCLA summer research group proposed a new

variation of RK called Weighted Randomized Extended Kaczmarz (WREK). This variation

is quite new but aims to solve weighted least squares problems in a similar way to REK. We

will discuss this variant more in the final chapter, Chapter 4.

Chapter 3

Randomized Extended Kaczmarz

We now turn our attention to Randomized Extended Kaczmarz (REK). REK was first

proposed by Zouzias and Freris (2013) as a modification to RK to converge to the least

squares solution of an inconsistent system. Unlike other variants of RK, REK iteratively

modifies the input system and then solves the new system. One may ask what resemblance

a different linear system has to our original linear system. We will unpack the theory

behind REK to hopefully shed understanding on how REK carefully modifies the given

linear system to result in a meaningful convergent solution. Understanding REK and its

convergence properties will set the foundation for our investigation into WREK.

If you are familiar with REK then my personal contributions are as follows. I have done

work expositing Zouzias and Freris (2013) original proof of convergence. Additionally,

one might argue that the original proof of REK’s convergence does not reveal the same

geometry that we see in proofs of RK’s convergence. To me, it was important work to reveal

more of the underlying geometry behind REK. To this end I also exposit the ideas in Du

(2018) in a more similar langauge to Zouzias and Freris (2013) to provide a unified way of

thinking about the two proofs. In particular, I do some work to emphasize the underlying

geometry of REK. In addition to this, I provide some novel propositions including an

explicit closed form of the z updates in REK.

3.1 Definition and Convergence Properties

Throughout this section, unless stated otherwise, we let 𝐴 ∈ ℝ𝑚×𝑛
and b ∈ ℝ𝑚

.

Randomized Extended Kaczmarz iterates the same way as Randomized Kaczmarz, but

also iteratively modifies the system as it iterates. The consequence of the modifications is to

project b onto the column space of 𝐴. By doing so the system 𝐴x = b𝑐𝑜𝑙(𝐴) is consistent and

it turns out the solution to this new system is the least squares solution to the old system.

We describe Randomized Extended Kaczmarz in algorithm form.

24 Randomized Extended Kaczmarz

Algorithm 2 Randomized Extended Kaczmarz

1: function RandomizedExtendedKaczmarz(𝐴, b, 𝑇) ⊲ where 𝐴 ∈ ℝ𝑚×𝑛
, b ∈ ℝ𝑚

, and

𝑇 ∈ ℕ

2: Initialize x(0) = 0 and 𝑧(0) = b
3: for 𝑘 = 0, 1, 2, . . . , 𝑇 − 1 do

4: Pick 𝑖𝑘 ∈ [𝑚] with probability 𝑞𝑖 :=
∥𝐴(𝑖)∥2

2

∥𝐴∥2

𝐹

, 𝑖 ∈ [𝑚]

5: Pick 𝑗𝑘 ∈ [𝑛] with probability 𝑝 𝑗 :=
∥𝐴(𝑗)∥2

2

∥𝐴∥2

𝐹

, 𝑗 ∈ [𝑛]

6: Set z(𝑘+1) = z(𝑘) −
〈
𝐴(𝑗𝑘) ,z

(𝑘)
〉

𝐴(𝑗𝑘)

 𝐴(𝑗𝑘)

7: Set x(𝑘+1) = x(𝑘) +
𝑏𝑖𝑘−𝑧

(𝑘+1)
𝑖𝑘

−⟨x(𝑘) ,𝐴(𝑖𝑘)⟩

∥𝐴(𝑖𝑘)∥2

2

𝐴(𝑖𝑘)

8: end for
9: return x(𝑇)

10: end function

Note Zouzias and Freris (2013) present a stopping criterion that the interested reader

may investigate. We will discuss some of the spirit and ideas behind REK.

Remark 3.1.1 (Reducing the Horizon). Recall Theorem (2.1.2) states that RK on an in-

consistent system converges up to a horizon. In particular if we have a measurement

vector b = y + w such that y ∈ col(𝐴) and w ∈ col(𝐴)⊥ then RK will converge more

tightly if ∥w∥2

2
is smaller. The idea with REK is to iteratively reduce the horizon to zero by

projecting b onto a randomly chosen column of 𝐴. As we will show later, such a process

will eventually orthogonally project b onto the column space of 𝐴. This works because

we can decompose any vector space into a subspace and its orthogonal complement, in

particular ℝ𝑚 = 𝑐𝑜𝑙(𝐴) ⊕ 𝑐𝑜𝑙(𝐴)⊥.

Remark 3.1.2 (REK is just double RK). The updates to x and z look very similar to each

other in Algorithm (2) and this is not a coincidence. The updates to the z vector are the

result of running Randomized Kaczmarz on the system 𝐴𝑇z = 0.

3.1.1 Geometric Interpretation of REK

Before we move onto the theoretical foundations of REK, we present some geometric

interpretations of the action of REK based on the underlying hyperplanes. A geometric

interpretation is displayed and discussed in Figure (3.1). (The actual change in geometry

of the hyperplanes is a bit more subtle than the following figure. Sketch/Graph an 𝑚 × 2

linear system. Project b onto a column of 𝐴 and see how the hyperplanes change.)

Definition and Convergence Properties 25

𝑥(0)

a. Original unmodified system with initial x
iterate

𝑥(0)

𝑥(1)

b. System after one step of modification
along with first x update. Notice that the
new x iterate projects onto the new mod-
ified hyperplanes.

𝑥(1)

𝑥(2)

c. One more step of iteration. Modified system is now
consistent, seen since all the hyperplanes intersect
at a point. Next x iterate projects on the now consis-
tent system.

Figure 3.1 Steps of REK iterations demonstrating the system updates and the solution vector
estimate updates x(𝑘). The hyperplanes of the original inconsistent system is represented with
the black lines and the modified system is represented by the red dotted lines.

26 Randomized Extended Kaczmarz

3.2 What is Up With the z Vectors?

By understanding what the z vectors are doing one may understand how REK works. In

Zouzias and Freris (2013) we know that the z vectors converge to b𝑐𝑜𝑙(𝐴)⊥ . However, what

do the z iterates look like? What are they doing? Qualitatively, REK is doing something

like taking projections of b onto a random column of 𝐴 and then using some sum of these

projections in the x updates. But, what does this mean? Can we get anymore insight into

the z updates? In this Section we will be unpacking the iterative definition of the z updates

into a closed form.

Definition 3.2.1 (b Iterates). Let

b(𝑘) = b − z(𝑘).

At each step of REK these b(𝑘)
iterates are the actual vectors input to the x updates.

Rather than discussing what the z vectors look like in each step, for understanding it

will be easier to talk about the b(𝑘)
updates. The final form for b(𝑘)

will be quite slick. First

we will illustrate with an example.

Example 3.2.1 (First z Iterates). We will unpack the first couple iterations of the z updates

for REK. Recall that we have

z(𝑘+1) = z(𝑘) −
〈
𝐴(𝑗𝑘+1

) , z(𝑘)
〉

𝐴(𝑗𝑘+1

)

 𝐴(𝑗𝑘+1

)

with z(0) = b. Let 𝛼𝑘 =
1

𝐴(𝑗𝑘)

 . Also let

b(𝑗𝑘) = 𝛼𝑘
〈
𝐴(𝑗𝑘) , b

〉
𝐴(𝑗𝑘)

be a projection term. Finally, let us define the correction terms by

c𝑘 = 𝛼𝑘
〈
𝐴(𝑗𝑘) , b

(𝑘−1)
〉
𝐴(𝑗𝑘)

for 𝑘 > 1 and let

c1 = 0.

Now consider the following first few iterations of the z vectors. We have z(0) = b and so

b(0) = 0. Then following the updating rule for z we have

z(1) = b − b(𝑗1).

Then, it follows

b(1) = b(𝑗1) = b(𝑗1) − c1.

What is Up With the z Vectors? 27

So, the first b(𝑘)
iterate is just the projection of b onto a random column of 𝐴. Next,

z(2) = z(1) − 𝛼2

〈
𝐴(𝑗2) , z

(1)
〉
𝐴(𝑗2)

= b − b(𝑗1) − 𝛼2

〈
𝐴(𝑗2) , b − b(𝑗1)

〉
𝐴(𝑗2)

Using linearity and symmetry of inner product on real numbers we have

z(2) = b − b(𝑗1) − 𝛼2(
〈
𝐴(𝑗2) , b

〉
−

〈
𝐴(𝑗2) , b(𝑗1)

〉
)𝐴(𝑗2)

= b − b(𝑗1) − b(𝑗2) + c2 + c1.

Then, it follows

b(2) = b(𝑗1) + b(𝑗2) − c2 − c1.

By a similar line of reasoning we have

b(3) = b(𝑗1) + b(𝑗2) + b(𝑗3) − c1 − c2 − c3.

Now we generalize this as a Proposition. (If you followed the preceding example then

you have the tools to prove the following proposition yourself!)

Proposition 3 (Closed Form of b Iterates). Let b(𝑘) be the iterates of b. Let b(𝑗𝑘) and c𝑘 be defined
as in Example (3.2.1). Then the b iterates are sums of projection terms and correction terms

b(𝑘) =
𝑘∑
𝑖=1

b(𝑗𝑖) − c𝑖 .

Proof. We prove this by induction on 𝑘. Above we have shown the base case for 𝑘 = 1. By

our inductive hypothesis we can write

b(𝑘) =
𝑘∑
𝑖=1

b(𝑗𝑖) − c𝑖 .

Recalling our definition for b(𝑘)
this is equivalent to

z(𝑘) = b −
𝑘∑
𝑖=1

b(𝑗𝑖) − c𝑖 .

Now consider b(𝑘+1)
. By definition, we have b(𝑘+1) = b − z(𝑘+1)

where

z(𝑘+1) = z(𝑘) − 𝛼𝑘+1

〈
𝐴(𝑗𝑘+1

) , z(𝑘)
〉
𝐴(𝑗𝑘+1

).

28 Randomized Extended Kaczmarz

By our inductive hypothesis we have

z(𝑘+1) = b −
𝑘∑
𝑖=1

(b(𝑗𝑖) − c𝑖) − 𝛼𝑘+1

〈
𝐴(𝑗𝑘+1

) , b − b(𝑘)
〉
𝐴(𝑗𝑘+1

).

Using linearity of real inner product we have

z(𝑘+1) = −𝛼𝑘+1

(〈
𝐴(𝑗𝑘+1

) , b
〉
−

〈
𝐴(𝑗𝑘+1

) , b(𝑘)
〉)
𝐴(𝑗𝑘+1

) + b −
𝑘∑
𝑖=1

b(𝑗𝑖) − c𝑖

= −𝑏 𝑗𝑘 + 𝑐𝑘 + b −
𝑘∑
𝑖=1

b(𝑗𝑖) − c𝑖

= b −
𝑘+1∑
𝑖=1

b(𝑗𝑖) − c𝑖 .

Then, by definition, it follows

b(𝑘+1) =
𝑘+1∑
𝑖=1

b(𝑗𝑖) − c𝑖 .

□

We have a closed form for the b iterates. These vectors are significant because they

are input into the x iterate updates. We can interpret the above result as follows. Each b
iterate “adds in” a projection term b(𝑗𝑘). However, when we “add in” the 𝑗𝑘th column we

need to subtract the portion of b(𝑘−1)
which lies in the 𝑗𝑘th column, so that it is not “double

counted” in b(𝑘)
. This rings a similar flavor as inclusion-exclusion.

3.3 Theoretical Foundations of REK

Similar to other Kaczmarz methods, REK is guaranteed to converge exponentially in

expectation. The first proof of convergence was presented by Zouzias and Freris (2013) and

improved on by Du (2018). Du claims to provide a tighter bound on the convergence of

REK and uses a different strategy. We discuss both proofs here because understanding

each perspective may give us more diverse tools for laying the foundations of WREK.

Whilst most ideas presented here can be found in Zouzias and Freris (2013) and in Du

(2018) we present these ideas with significant exposition towards understanding of the

author’s methods and their significance. We also present the author’s ideas in allusion to

extension for WREK.

Theoretical Foundations of REK 29

3.3.1 Zouzias et al.’s Proof of Convergence

REK modifies its underlying system and one may ask what resemblance the modified

system holds to the original system. The following proposition means that the modified

system holds a special significance to the original system.

Proposition 4 (Fundamental Proposition of REK). Let 𝐴 be any non-zero real 𝑚 × 𝑛 matrix
and let b ∈ ℝ𝑚 . Let x∗ be the minimum norm solution to the least squares problem defined by 𝐴
and b. Then x∗ is an exact solution to 𝐴x = b𝑐𝑜𝑙(𝐴).

Proof. By definition x∗ is the vector which optimizes min

x
| |𝐴x − b| |2

2
. We can rewrite this

problem as min

z
| |z − b| |2

2
such that z = 𝐴x. Notice z is restricted to lie in the column space

of 𝐴. So, by definition, the solution to this new optimization problem is the vector which is

in the column space of 𝐴 and is closest to b. By definition this solution is z = b𝑐𝑜𝑙(𝐴) the

projection of b onto the column space of 𝐴. However, we also have z = 𝐴x. So x𝐿𝑆 which

solves the least squares problem also solves 𝐴x = b𝑐𝑜𝑙(𝐴). Since 𝐴x = b𝑐𝑜𝑙(𝐴) has an exact

solution the least squares solution to this system is the same as its exact solution. Thus if x∗
is the least squares solution to 𝐴x = b then x𝐿𝑆 is also the solution to 𝐴x = b𝑐𝑜𝑙(𝐴). □

This significance of this proposition is that REK can modify the given linear system so

that b → b𝑐𝑜𝑙(𝐴) and RK on this new system will result in the least squares solution of the

original system.

Theorem 3.3.1 (Convergence of z). Let z(𝑘) denote the 𝑘th iterate of RK applied to the system
𝐴𝑇z = 0. In exact arithmetic, it holds

𝔼

z(𝑘) − b𝑐𝑜𝑙(𝐴)⊥

2

2

≤
(
1 − 1/𝜅2

𝐹(𝐴)
) 𝑘

b𝑐𝑜𝑙(𝐴)

2

2

.

Now, we present the rate of convergence of REK as presented by Zouzias et al..

Theorem 3.3.2 (Zouzias et al.. REK Convergence). After 𝑇 > 1 iterations, in exact arithmetic,
REK with input matrix 𝐴 (possibly rank deficient) and b computes a vector x(𝑇) such that

𝔼

x(𝑇) − x∗

2

2

≤
(
1 − 1

𝜅2

𝐹
(𝐴)

) ⌊𝑇/2⌋

(1 + 2𝜅2(𝐴)) ∥x∗∥2

2
.

We will now go through Zouzias et al.’s proof. We will take the steps of the proof slower

than Zouzias et al. and we will add additional explanation. At the very least this reiteration

of REK’s convergence will provide some expository value, and we will indicate where we

might find that this proof may be useful to show theoretical foundations for WREK.

30 Randomized Extended Kaczmarz

Proof. Let 𝛼 = 1 − 1/𝜅2

𝐹
(𝐴) and let 𝔼𝑘 be the expected value conditioned on the first 𝑘

iterations of REK. The idea of this proof is to bound the convergence by considering each

half of the 𝑇 steps separately.

Note that the steps of modifying z are independent of the steps modifying x and so

Theorem (3.3.1) implies that for every 𝑙 ≥ 0

𝔼

z(𝑙) − b𝐶𝑜𝑙(𝐴)⊥

2

2

≤ 𝛼𝑙

b𝑐𝑜𝑙(𝐴)

2

2

≤

b𝑐𝑜𝑙(𝐴)

2

2

(3.1)

This inequality will be used to bound the horizon of RK with respect to b𝑐𝑜𝑙(𝐴). Fix a

parameter 𝑘∗ =
⌊
𝑇
2

⌋
. After the 𝑘∗th iteration of REK it follows from Theorem (2.1.2) that

𝔼(𝑘∗−1)

x(𝑘∗) − x∗

2

2

≤ 𝛼

x(𝑘∗−1) − x∗

 +

b𝑐𝑜𝑙(𝐴)⊥ − z(𝑘∗−1)

2

2

∥𝐴∥2

𝐹

.

This can be seen because we can decompose b = b𝑐𝑜𝑙(𝐴) +b𝑐𝑜𝑙(𝐴)⊥ and note that 𝐴x = b𝐶𝑜𝑙(𝐴)
has an exact solution since b𝑐𝑜𝑙(𝐴) ∈ 𝑐𝑜𝑙(𝐴).

Averaging the inequality over the random variables 𝑖1 , 𝑗1 , · · · , 𝑖𝑘∗−1 , 𝑗𝑘∗−1 and using the

linearity of expectation it follows that

𝔼

x(𝑘∗) − x∗

2

2

≤ 𝛼𝔼

x(𝑘∗−1) − x∗

2

2

+
𝔼

b𝑐𝑜𝑙(𝐴)⊥ − z(𝑘∗−1)

2

2

∥𝐴∥2

𝐹

≤ 𝛼𝔼

x(𝑘∗−1) − x∗

2

2

+

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

Using inequality (3.1)

≤ 𝛼

(
𝛼𝔼

x(𝑘∗−2) − x∗

2

2

+

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

2

)
+

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

Using the same reasoning as above

≤ · · · ≤ 𝛼𝑘
∗

x(0) − x∗

2

2

+
𝑘∗−1∑
𝑙=0

𝛼𝑙

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

Iterating these steps a total of 𝑘∗ times.

(3.2)

≤ 𝛼𝑘
∗

x(0) − x∗

2

2

+
∞∑
𝑙=0

𝛼𝑙

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

Since 𝛼 ≤ 1,

≤ 𝛼𝑘
∗

x(0) − x∗

2

2

+ 1

1 − 𝛼

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

By the infinite geometric series.

≤ 𝛼𝑘
∗

x(0) − x∗

2

2

+ 𝜅(𝐴)2𝐹

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

By definition of 𝛼.

Theoretical Foundations of REK 31

≤ 𝛼𝑘
∗

x(0) − x∗

2

2

+ ∥𝐴∥2

𝐹

𝐴†

2

2

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

By definition of 𝜅(𝐴)2𝐹

≤ 𝛼𝑘
∗

x(0) − x∗

2

2

+

b𝑐𝑜𝑙(𝐴)

2

2

𝐴†

2

2

≤ 𝛼𝑘
∗

x(0) − x∗

2

2

+

b𝑐𝑜𝑙(𝐴)

2

2

𝜎2

𝑚𝑖𝑛
(𝐴)

𝔼

x(𝑘∗) − x∗

2

2

≤ 𝛼𝑘
∗ ∥x∗∥2

2
+

b𝑐𝑜𝑙(𝐴)

2

2

𝜎2

𝑚𝑖𝑛
(𝐴)

Since x(0) = 0. (3.3)

Inequality (3.3) gives us a bound on the first half of the iteration. We will use a similar

line of reasoning to find the desired bound on the total number of iteration steps. Similar

to inequality (3.1), notice that for any 𝑙 ≥ 0 we have

𝔼

b𝑐𝑜𝑙(𝐴)⊥ − z(𝑙+𝑘∗)

2

2

≤ 𝛼𝑙+𝑘
∗

b𝑐𝑜𝑙(𝐴)

2

2

≤ 𝛼𝑘
∗

b𝑐𝑜𝑙(𝐴)

2

2

(3.4)

Let 0 < 𝑘 < ⌊𝑇/2⌋, using similar reasoning to above we have

𝔼

x(𝑘+𝑘∗) − x∗

2

2

≤ 𝛼𝔼

x(𝑘+𝑘∗−1) − x∗

2

2

+
𝔼

b𝑐𝑜𝑙(𝐴)⊥ − z𝑘+𝑘∗−1

2

2

∥𝐴∥2

𝐹

≤ 𝛼𝔼

x(𝑘+𝑘∗−1) − x∗

2

2

+
𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

By inequality (3.4)

≤ 𝛼

(
𝔼

x(𝑘+𝑘∗−2) − x∗

2

2

+
𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

)
+

𝛼𝑘
∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

≤ · · · ≤ 𝛼𝑘𝔼

x(𝑘∗) − x∗

2

2

+
𝑘−1∑
𝑙=0

𝛼𝑙
𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

(3.5)

≤ 𝛼𝑘𝔼

x(𝑘∗) − x∗

2

2

+
∞∑
𝑙=0

𝛼𝑙
𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

Since 𝛼 < 1

≤ 𝛼𝑘𝔼

x(𝑘∗) − x∗

2

2

+
∞∑
𝑙=0

𝛼𝑙
𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

= 𝛼𝑘𝔼

x(𝑘∗) − x∗

2

2

+ 1

1 − 𝛼

𝛼𝑘
∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

By the infinite geometric series

(3.6)

32 Randomized Extended Kaczmarz

= 𝛼𝑘𝔼

x(𝑘∗) − x∗

2

2

+ 𝛼𝑘
∗

b𝑐𝑜𝑙(𝐴)

2

2

𝜎2

𝑚𝑖𝑛
(𝐴)

≤ 𝛼𝑘

(
𝛼𝑘

∗ ∥x∗∥2

2
+

b𝑐𝑜𝑙(𝐴)

2

2

𝜎2

𝑚𝑖𝑛(𝐴)

)
+ 𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

𝜎2

𝑚𝑖𝑛
(𝐴)

By inequality (3.3)

= 𝛼𝑘+𝑘
∗ ∥x∗∥2

2
+ (𝛼𝑘∗ + 𝛼𝑘)

b𝑐𝑜𝑙(𝐴)

2

2

𝜎2

𝑚𝑖𝑛
(𝐴)

≤ 𝛼𝑘+𝑘
∗ ∥x∗∥2

2
+ (𝛼𝑘∗ + 𝛼𝑘)𝜅2(𝐴) ∥x∗∥2

2
Since

b𝑐𝑜𝑙(𝐴)

2

2

≤ 𝜎2

𝑚𝑎𝑥(𝐴) ∥x∗∥2

2

≤ 𝛼𝑘+𝑘
∗ ∥x∗∥2

2
+ (2𝛼𝑘∗)𝜅2(𝐴) ∥x∗∥2

2

≤ 𝛼𝑘
∗ ∥x∗∥2

2
+ (2𝛼𝑘∗)𝜅2(𝐴) ∥x∗∥2

2
.

(3.7)

So, in summary, we have

𝔼

x(𝑘+𝑘∗) − x∗

2

2

≤ 𝛼𝑘
∗(1 + 2𝜅2(𝐴)) ∥x∗∥2

2
.

□

There’s a lot happening in this proof. One may ask why we performed a series of

manipulations on the first 𝑘∗ iterations and then perform almost the same iterations on

the second 𝑘 iterations. First, notice that the action of REK is concurrent RK iterates with

iterative system modifications to reduce the horizon of convergence. And so intuitively,

we have this strange two part convergence proof because the horizon of convergence does

not converge as fast as the Randomized Kaczmarz iterates. In particular the Randomized

Kaczmarz steps in REK converge exponentially, seen in the 𝛼𝑘
∗

x(𝑘∗−1) − x∗

2

2

terms, whereas

horizon terms end up decaying geometrically, as seen in the

∑𝑘∗−1

𝑙=0
𝛼𝑙

∥𝑏𝑐𝑜𝑙(𝐴)∥2

2

∥𝐴∥2

𝐹

terms. As a

result, we split up the convergence proof into two parts because intuitively “by the time

we reach the second 𝑘 iterates, the horizon will have converged sufficiently, for the overall

convergence rate we are trying to show”.

This proof by Zouzias and Freris (2013) and seems difficult to generalize. Since the

introduction of REK there has emerged a new proof of convergence by Du (2018). As

mentioned previously, Du claims to improve on the convergence presented by Zouzias et

al.. and takes a new strategy to do so. One question we want to answer in this project is

how different are these proofs? If they are fundamentally different then this may give us

more tools and insight to generalize the theoretical results of REK to WREK. We will now

unpack Du’s proof of convergence.

Theoretical Foundations of REK 33

3.3.2 Du’s Proof of Convergence

First we give Du’s rate of convergence with the notation modified to match the notation

found in this document.

Theorem 3.3.3 (Du REK Convergence). After 𝑘 iterations with x(0) ∈ 𝑐𝑜𝑙(𝐴𝑇) and z(0) ∈
b + 𝑐𝑜𝑙(𝐴), in exact arithmetic it holds

𝔼

x(𝑘) − x∗

2

2

≤ 𝛼𝑘

x(0) − x∗

2

2

+ 𝛼𝑘(1 − 𝛼𝑘)
𝜎2

𝑚𝑖𝑛
(𝐴)

b𝑐𝑜𝑙(𝐴)⊥ − z(0)

2

2

.

Du claims to improve Zouzias et al.’s bound. Since there is a form difference between

Du’s bound and Zouzias et al.’s bound it is worth exploring the difference in the bounds so

far. Recall Zouzias et al.’s bound, after 𝑘 iterations we have

𝔼

x(𝑘) − x∗

2

2

≤ 𝛼⌊𝑘/2⌋(1 + 2𝜅2(𝐴)) ∥x∗∥2

2
.

In terms of the number of iterations we see that Zouzias et al.’s bound decays like

𝛼⌊𝑘/2⌋
. And so it looks like Du’s speed upgrade converges much faster than Zouzias et. al.’s

time (𝛼𝑘 vs 𝛼𝑘/2
). One may argue that this speed upgrade is an artifact of Zouzias et al..’s

approach of splitting up the first 𝑘/2 iterations from the second 𝑘/2 iterations, indeed we

explore this more in section (3.3.4).

3.3.3 Du’s Proof of REK Convergence

Now we will unpack the proof of Du’s REK convergence rate. This proof is notable because

Du’s approach is fundamentally different from Zouzias’ and so unpacking this proof may

give us more tools for laying the theoretical foundations for WREK.

Before going into the details of Du’s proof, we will provide some geometric intuition

for the strategy of the proof. Du puts a bound on the convergence of REK by decomposing

the error as follows.

Proposition 5 (Du’s Fundamental Triangle). Given the 𝑥(𝑘)th iterate of REK we have

x(𝑘) − x∗

2

2

=

x(𝑘) − x̂(𝑘)

2

2

+

x̂(𝑘) − x∗

2

2

.

Where x̂(𝑘) is a one step RK update on the system 𝐴x = b𝑐𝑜𝑙(𝐴) starting from x(𝑘−1). This geometry
is displayed in Figure (3.2).

The approach of Du is to first prove that this triangle holds on each step of REK. Then

he bounds the error

x(𝑘) − x∗

2

2

by bounding each of the terms of the right hand side.

34 Randomized Extended Kaczmarz

x∗
x(𝑘−1)

x̂(𝑘)

x(𝑘)

Figure 3.2 A geometric depiction of Du’s Fundamental Triangle. The black lines indicate the
inconsistent system 𝐴x = b, indicate the convergent system 𝐴x = b𝑐𝑜𝑙(𝐴). The magenta triangle
depicts Du’s Fundamental Triangle. Here both x(𝑘) and x̂(𝑘) are orthogonal projection from x(𝑘−1).
Note that x(𝑘−1) and x(𝑘) is not necessarily on either system’s hyperplanes because REK’s iterates
are some modified system between the original system and the convergent system.

Before we begin the formal proof, we introduce a couple of lemmas which will help us

with the proof.

Lemma 3.3.1. Let 𝐴 be any nonzero real matrix. For every u ∈ 𝑐𝑜𝑙(𝐴), it holds

u𝑇
(
𝐼 − 𝐴𝐴𝑇

∥𝐴∥𝐹

)
u ≤ 𝛼 ∥u∥2

2
.

Lemma 3.3.2 (Double Projections). Let a be any nonzero vector. Then(
aa𝑇

∥a∥2

2

)
2

=
aa𝑇

∥a∥2

2

and

(
𝐼 − aa𝑇

∥a∥2

2

)
2

= 𝐼 − aa𝑇

∥a∥2

2

.

Following Du (2018) we present this new bound on REK’s convergence.

Proof. (Proposition (5) and Theorem (3.3.3)) Let

x̂(𝑘) = x(𝑘−1) −
(𝐴(𝑖))𝑇x(𝑘−1) − (b𝑐𝑜𝑙(𝐴))𝑖

𝐴(𝑖)

2

2

𝐴(𝑖).

Theoretical Foundations of REK 35

Then it follows

x̂(𝑘) − x∗ = x(𝑘−1) − x∗ −
(𝐴(𝑖))𝑇x(𝑘−1) − (b𝑐𝑜𝑙(𝐴))𝑖

𝐴(𝑖)

2

2

𝐴(𝑖)

= x(𝑘−1) − x∗ − (𝐴(𝑖))𝑇x(𝑘−1) − (𝐴(𝑖))𝑇x∗

𝐴(𝑖)

2

2

𝐴(𝑖)

=

(
I − 𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

) (
x(𝑘−1) − x∗

)
. (3.8)

Moreover,

x(𝑘) − x̂(𝑘) =
(b𝑐𝑜𝑙(𝐴)⊥)𝑖 − z𝑘

𝑖

𝐴(𝑖)

2

2

𝐴(𝑖).

We show that x̂(𝑘) − x∗ and x(𝑘) − x̂(𝑘) are orthogonal. Consider,

(x(𝑘) − x̂(𝑘))𝑇(x̂𝑘 − x∗) =
(
(b𝑐𝑜𝑙(𝐴)⊥)𝑖 − z(𝑘)

𝑖

𝐴(𝑖)

2

2

𝐴(𝑖)

)𝑇 (
𝐼 − 𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

)
(x(𝑘−1) − x∗)

Let 𝛽 =
(b𝑐𝑜𝑙(𝐴)⊥)𝑖−z(𝑘)

𝑖

∥𝐴(𝑖)∥2

2

, then

(x(𝑘) − x̂(𝑘))𝑇(x̂𝑘 − x∗) = 𝛽(𝐴(𝑖))𝑇
(
𝐼 − 𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

)
(x(𝑘−1) − x∗)

= 𝛽(𝐴(𝑖))𝑇(x(𝑘−1) − x∗) − 𝛽
(𝐴(𝑖))𝑇𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

(x(𝑘−1) − x∗)

= 𝛽(𝐴(𝑖))𝑇(x(𝑘−1) − x∗) − 𝛽

𝐴(𝑖)

2

2

(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

(x(𝑘−1) − x∗)

= 𝛽(𝐴(𝑖))𝑇(x(𝑘−1) − x∗) − 𝛽(𝐴(𝑖))𝑇(x(𝑘−1) − x∗)
= 0.

Hence, we have

x(𝑘) − x∗

2

2

=

x(𝑘) − x̂(𝑘)

2

2

+

x̂(𝑘) − x∗

2

2

.

Now, let 𝔼𝑘−1 denote the expectation conditioned on the first 𝑘 − 1 iterations of REK. That

is, conditioned on 𝑖𝑙 for 0 ≤ 𝑙 ≤ 𝑘 − 1 and 𝑗𝑙 for 0 ≤ 𝑙 ≤ 𝑘 − 1, the first 𝑘 − 1 rows chosen and

36 Randomized Extended Kaczmarz

the first 𝑘−1 columns chosen respectively. And let 𝔼𝑖
𝑘−1

denote the expectation conditioned

on the first 𝑘 − 1 iterations of REK and the 𝑘th column chosen. Lastly, let 𝔼
𝑗

𝑘−1
denote the

expectation conditioned on the first 𝑘 − 1 iterations of REK and the 𝑘th row chosen. Then,

by the law of total expectation we have

𝔼𝑘−1[·] = 𝔼
𝑗

𝑘−1
[𝔼𝑖

𝑘−1
[·]].

To find our final result we will show the expected norms on each term in Du’s Fundamental

Triangle. First consider

𝔼𝑘−1

[

x(𝑘) − x̂(𝑘)

2

2

]
= 𝔼𝑘−1

[
((b𝑐𝑜𝑙(𝐴)⊥)𝑖 − z𝑘

𝑖
)2

∥𝐴(𝑖)∥2

2

]
= 𝔼

𝑗

𝑘−1

[
𝔼𝑖
𝑘−1

[
((b𝑐𝑜𝑙(𝐴)⊥)𝑖 − z𝑘

𝑖
)2

𝐴(𝑖)

2

2

]]
By law of total expectation

= 𝔼
𝑗

𝑘−1


𝑛∑
𝑖=0


((b𝑐𝑜𝑙(𝐴)⊥)𝑖 − z𝑘

𝑖
)2

𝐴(𝑖)

2

2

·

𝐴(𝑖)

2

2

∥𝐴∥2

𝐹


 By def. of expectation.

= 𝔼
𝑗

𝑘−1



(b𝑐𝑜𝑙(𝐴)⊥) − z(𝑘)

2

2

∥𝐴∥2

𝐹

 By def. of 2-norm.

=
1

∥𝐴∥2

𝐹

𝔼𝑘−1

[

(b𝑐𝑜𝑙(𝐴)⊥) − z(𝑘)

2

2

]
≤ 𝛼𝑘

∥𝐴∥2

𝐹

𝔼

[

z(0) − (b𝑐𝑜𝑙(𝐴)⊥)

2

2

]
By Theorem (3.3.1).

Now consider

𝔼𝑘−1

[

x̂(𝑘) − x∗

2

2

]
= 𝔼𝑘−1

[
(x̂(𝑘) − x∗)𝑇(x̂(𝑘) − x∗)

]
By def. 2-norm.

= 𝔼𝑘−1

(x̂(𝑘−1) − x∗)𝑇
(
𝐼 − 𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

)
2

(x̂(𝑘−1) − x∗)
 By Equality (3.8)

= 𝔼𝑘−1

[
(x̂(𝑘−1) − x∗)𝑇

(
𝐼 − 𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

)
(x̂(𝑘−1) − x∗)

]
By Lemma (3.3.2)

=

𝑚∑
𝑖=0

(x̂(𝑘−1) − x∗)𝑇
(
𝐼 − 𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

)
(x̂(𝑘−1) − x∗) ·

𝐴(𝑖)

2

2

∥𝐴∥2

𝐹

.

Theoretical Foundations of REK 37

Note that we are conditioning on the first 𝑘 − 1 iterations and so the only random variable

We are considering is the 𝑖 chosen at the 𝑘th iteration. So by linearity of sum and matrix

multiplication we have

𝔼𝑘−1

[

x̂(𝑘) − x∗

2

2

]
= (x̂(𝑘−1) − x∗)𝑇

𝑚∑
𝑖=0


(
𝐼 − 𝐴(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

)
·

𝐴(𝑖)

2

2

∥𝐴∥2

𝐹

 (x̂(𝑘−1) − x∗),

𝐼 is a constant and recall that by our pmf we have

∑
𝑖

𝐴(𝑖)

2

2

/∥𝐴∥2

𝐹 = 1. Thus, we have

𝔼𝑘−1

[

x̂(𝑘) − x∗

2

2

]
= (x̂(𝑘−1) − x∗)𝑇 ©­«𝐼 −

𝑚∑
𝑖=0

𝐴
(𝑖)(𝐴(𝑖))𝑇

𝐴(𝑖)

2

2

·

𝐴(𝑖)

2

2

∥𝐴∥2

𝐹

ª®¬ (x̂(𝑘−1) − x∗)

= (x̂(𝑘−1) − x∗)𝑇
(
𝐼 − 1

∥𝐴∥2

𝐹

𝑚∑
𝑖=0

[
𝐴(𝑖)(𝐴(𝑖))𝑇

])
(x̂(𝑘−1) − x∗)

= (x̂(𝑘−1) − x∗)𝑇
(
𝐼 − 𝐴𝑇𝐴

∥𝐴∥2

𝐹

)
(x̂(𝑘−1) − x∗) By def. of 𝐴𝑇𝐴

≤ 𝛼

x(𝑘−1) − x∗

2

2

. By lemma 3.3.1

We can use Lemma (3.3.1) because x(𝑘) − x∗ ∈ col(𝐴𝑇) for all 𝑘. By assumption, we have

x(0) ∈ col(𝐴𝑇) and by definition x∗ ∈ col(𝐴𝑇). And so since vector spaces are closed under

addition and scalar multiplication, we have x(0) − x∗ ∈ col(𝐴𝑇). Then x(𝑘) − x∗ ∈ col(𝐴𝑇)
follows by induction on 𝑘. Plugging both of these inequalities into Du’s fundamental

triangle (Proposition (5)) gives us

𝔼

[

x(𝑘) − x∗

2

2

]
= 𝔼

[

x(𝑘) − x̂(𝑘−1)

2

2

]
+ 𝔼

[

x̂(𝑘) − x∗

2

2

]
≤ 𝛼𝑘

∥𝐴∥2

𝐹

z(𝑘) − (𝑏𝑐𝑜𝑙(𝐴)⊥)

2

2

+ 𝛼𝔼

[

x(𝑘−1) − x∗

2

2

]
≤ · · · ≤ 𝛼𝑘

∥𝐴∥2

𝐹

z(𝑘) − (𝑏𝑐𝑜𝑙(𝐴)⊥)

2

2

𝑘−1∑
𝑙=0

𝛼𝑙 + 𝛼𝑘

x(𝑘−1) − x∗

2

2

.

The last statement is by repeating the above arguments 𝑘 − 1 more times. We then have

𝔼

[

x(𝑘) − x∗

2

2

]
≤ 𝛼𝑘

∥𝐴∥2

𝐹

z(𝑘) − (𝑏𝑐𝑜𝑙(𝐴)⊥)

2

2

(
1 − 𝛼𝑘

1 − 𝛼

)
+ 𝛼𝑘

x(𝑘−1) − x∗

2

2

. By finite geometric series.

38 Randomized Extended Kaczmarz

The finally, by definition of 𝛼,

𝔼

[

x(𝑘) − x∗

2

2

]
≤ 𝛼𝑘(1 − 𝛼𝑘)

𝜎2

𝑚𝑖𝑛
(𝐴)

z(𝑘) − (𝑏𝑐𝑜𝑙(𝐴)⊥)

2

2

+ 𝛼𝑘

x(𝑘−1) − x∗

2

2

.

□

Some remarks before we move on. We note that the strategy of Du’s approach has a

clear geometric motivation in the form of Du’s Fundamental Triangle. As we think about

the foundations of WREK this will be significant because if we can just show that Du’s

Fundamental Triangle holds for Weighted Least Sqaures problems then we can leverage

most of the machinery from this proof out of the box.

3.3.4 Finding Du’s Result in Zousias’ Approach

One of Du’s fundamental claims is that he improves on Zousias’ bound significantly.

This improvement seems doubly significant when considering that Du seems to take a

fundamentally different approach to Zouzias et al.. However, we will show that Du’s

convergence rate can be nearly obtained from Zouzias et al..’s approach with only a few

modifications. Starting from inequality (3.2) consider

𝔼| |x(𝑘∗) − x∗ | |2
2
≤ 𝛼𝑘

∗ | |x(0) − x∗ | |2
2
+
𝑘∗−1∑
𝑙=0

𝛼𝑙
| |b𝑐𝑜𝑙(𝐴) | |
| |𝐴| |2

𝐹

.

At this point the authors expand the upper bound on this sum by using the fact that 𝛼 < 1

and then they use the infinite geometric series. However, let us instead use the finite

geometric series. We then obtain

𝔼| |x(𝑘∗) − x∗ | |2
2
≤ 𝛼𝑘

∗ | |x(0) − x∗ | |2
2
+
𝑘∗−1∑
𝑙=0

𝛼𝑙
| |b𝑐𝑜𝑙(𝐴) | |2

2

| |𝐴| |2
𝐹

≤ 𝛼𝑘
∗ | |x(0) − x∗ | |2

2
+ 1 − 𝛼𝑘

∗

1 − 𝛼
·
| |b𝑐𝑜𝑙(𝐴) | |
| |𝐴| |2

𝐹

≤ 𝛼𝑘
∗ | |x(0) − x∗ | |2

2
+ 1 − 𝛼𝑘

∗

𝜎2

𝑚𝑖𝑛
(𝐴)

| |b𝑐𝑜𝑙(𝐴) | |22. By definition of 𝛼

.

REK Convergence for an Arbitrary Sequence of b Vectors 39

Then folowing all of Zouzias et al.’s steps until inequality (3.5) we have

𝔼

x𝑇 − x∗

2

2

≤ 𝛼𝑘

x(𝑘∗) − x∗

2

2

+
𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

𝑘−1∑
𝑙=0

𝛼𝑙

≤ 𝛼𝑘

x(𝑘∗) − x∗

2

2

+
𝛼𝑘

∗

b𝑐𝑜𝑙(𝐴)

2

2

∥𝐴∥2

𝐹

· 1 − 𝛼𝑘

1 − 𝛼
By finite geometric series.

≤ 𝛼𝑘

(
𝛼𝑘

∗

x(0) − x∗

2

2

+ 1 − 𝛼𝑘
∗

𝜎2

𝑚𝑖𝑛
(𝐴)

b𝑐𝑜𝑙(𝐴)

2

2

)
+ 𝛼𝑘

∗(1 − 𝛼𝑘)
𝜎2

𝑚𝑖𝑛
(𝐴)

b𝑐𝑜𝑙(𝐴)

2

2

≤ 𝛼𝑇

x(0) − x∗

2

2

+ 𝛼𝑘
∗(1 − 𝛼𝑘) + 𝛼𝑘(1 − 𝛼𝑘

∗)
𝜎2

𝑚𝑖𝑛
(𝐴)

b𝑐𝑜𝑙(𝐴)

2

2

≤ 𝛼𝑇

x(0) − x∗

2

2

+ 𝛼𝑘
∗ + 𝛼𝑘 − 2𝛼𝑇

𝜎2

𝑚𝑖𝑛
(𝐴)

b𝑐𝑜𝑙(𝐴)

2

2

≤ 𝛼𝑇

x(0) − x∗

2

2

+ 2𝛼𝑘
∗(1 − 𝛼𝑘)

𝜎2

𝑚𝑖𝑛
(𝐴)

b𝑐𝑜𝑙(𝐴)

2

2

.

Although there are some differences between this rate and Du’s exact rate the above

demonstrates that we can find something like Du’s convergence rate in Zousias et al.’s proof.

This then shows that the significant contribution of Du’s approach is the new approach

with a clear geometric motivation, rather than his convergence upgrade.

3.4 REK Convergence for an Arbitrary Sequence of b Vectors

Zouzias et al.. proved that REK converges when the z(𝑘) updates converge to b𝑐𝑜𝑙(𝐴). Here

we show a generalization of Zouzias et al..’s proof to demonstrate that 𝑅𝐸𝐾 will converge

for a sequence of vectors which converge to a vector in the column space of 𝐴. As we think

to theoretical foundations for WREK this proof serves as an indication that some of the

REK convergence properties may carry over to more general problems.

Proposition 6 (Convergence of REK for alternative b projections). Let b′ ∈ col(𝐴) be any
vector in the column space of 𝐴. Then let b(𝑘) ∈ ℝ𝑚 be a sequence of vectors with b(0) = 0 which
converge to b′ at least as fast as

b(𝑘) − b′

2

2

≤ 𝛼𝑘 ∥b∥2

2
.

after 𝑘 iterations. Denote x∗ as the solution to 𝐴x = b′. We apply Randomized Kaczmarz with
input 𝐴 and b′. After 𝑇 > 1 iterations this process computes a vector x(𝑇) such that

𝔼

x(𝑇) − x∗

2

2

≤ 𝛼⌊𝑇/2⌋(1 + 2𝜅2(𝐴)) ∥x∗∥ .

40 Randomized Extended Kaczmarz

Proof. Let 𝛼 = 1 − 1/𝜅2

𝐹
(𝐴). Also note that, by assumption, for every 𝑙 ≥ 0 the following

inequalities hold

𝔼| |b(𝑙) − b′ | |2
2
≤ 𝛼𝑙 | |b′ | |2

2
≤ ||b| |2

2
(3.9)

Fix a parameter 𝑘∗ = ⌊𝑇/2⌋. After 𝑘∗ iterations it follows from Theorem (2.1.2) that

𝔼| |x(𝑘∗) − x∗ | |2
2
≤ 𝛼 | |x(𝑘∗−1) − 𝑥∗ | |2

2
+
𝔼| |b(𝑘∗−1) − b′ | |2

2

| |𝐴| |2
𝐹

≤ 𝛼𝔼| |x(𝑘∗−1) − x∗ | |2
2
+

||b′ | |2
2

| |𝐴| |2
𝐹

. By Inequality (3.9)

Then by another application of Theorem 7 and Inequality (3.9) we have

𝔼| |x(𝑘∗) − x∗ | |2
2
≤ 𝛼

(
𝛼𝔼| |x(𝑘∗−2) − x∗ | |2

2
+

||b′ | |2
2

| |𝐴| |2
𝐹

)
+

||b′ | |2
2

| |𝐴| |2
𝐹

≤ 𝛼2𝔼| |x(𝑘∗−2) − x∗ | |2
2
+ (𝛼 + 𝛼0)

| |b′ | |2
2

| |𝐴| |2
𝐹

≤ 𝛼2

(
𝛼𝔼| |x(𝑘∗−3) − x∗ | | +

||b′ | |2
2

| |𝐴| |2
𝐹

)
+ (𝛼 + 𝛼0)

| |b′ | |2
2

| |𝐴| |2
𝐹

≤ · · · ≤ 𝛼𝑘𝔼| |x(0) − x∗ | |2
2
+
𝑘∗−1∑
𝑙=0

𝛼𝑙
| |b′ | |2

2

| |𝐴| |2
𝐹

≤ 𝛼𝑘
∗
𝔼| |x(0) − x∗ | |2

2
+

∞∑
𝑙=0

𝛼𝑙
| |b′ | |2

2

| |𝐴| |2
𝐹

Since norms non-negative and 𝛼 > 0

≤ 𝛼𝑘
∗
𝔼| |x∗ | |2

2
+

∞∑
𝑙=0

𝛼𝑙
| |b′ | |2

2

| |𝐴| |2
𝐹

Since x(0) = 0

≤ 𝔼| |x∗ | |2
2
+

∞∑
𝑙=0

𝛼𝑙
| |b′ | |2

2

| |𝐴| |2
𝐹

. Since 𝛼 = 1/(1 − 𝜅2

𝐹(𝐴)) < 1.

Recall that by the geometric series we have

∞∑
𝑙=0

𝛼𝑙 = 1/(1 − 𝛼) = 𝜅2

𝐹
(𝐴). Also recall

𝜅2

𝐹
(𝐴) = | |𝐴| |2

𝐹
| |𝐴† | |2

2
. We thus have

𝔼| |x(𝑘∗) − x∗ | |2
2
≤ ||x∗ | |2

2
+

||b′ | |2
2

𝜎2

𝑚𝑖𝑛

, (3.10)

since | |𝐴† | |2
𝐹
= 1/𝜎2

𝑚𝑖𝑛
.

REK Convergence for an Arbitrary Sequence of b Vectors 41

Now we reapply a similar line of reasoning to find the convergence rate stated. Similar

to Inequality (3.9), for every 𝑙 ≥ 0 we have the following inequality,

𝔼| |b(𝑘) − b′ | |2
2
≤ 𝛼𝑘

∗+𝑙 | |b′ | |2
2
≤ 𝛼𝑘

∗ | |b′ | |2
2
. (3.11)

Then, for any 0 < 𝑘 < ⌊𝑇/2⌋, we have the following

𝔼| |x(𝑘+𝑘∗) − x∗ | |2
2
≤ 𝛼 | |x(𝑘+𝑘∗−1) − x∗ | |2

2
+

||b(𝑘+𝑘∗−1) − b′ | |2
2

| |𝐴| |2
𝐹

≤ 𝛼𝔼| |x(𝑘+𝑘∗−1) − x∗ | |2
2
+ 𝛼(𝑘∗) | |b

′ | |2
2

| |𝐴| |2
𝐹

By Inequality (3.11)

≤ 𝛼

(
𝛼𝔼| |x(𝑘+𝑘∗−2) − x∗ | |2

2
+ 𝛼(𝑘∗) | |b

′ | |2
2

| |𝐴| |2
𝐹

)
+

||b′ | |2
2

| |𝐴| |2
𝐹

≤ · · · ≤ 𝛼𝑘𝔼| |x(𝑘∗) − x∗ | |2
2
+

𝑘−1∑
𝑙=0

𝛼(𝑘∗+𝑙) | |b
′ | |2

2

| |𝐴| |2
𝐹

= 𝛼𝑘𝔼| |x(𝑘∗) − x∗ | |2
2
+

𝛼𝑘
∗ | |b′ | |2

2

| |𝐴| |2
𝐹

𝑘−1∑
𝑙=0

𝛼𝑙

≤ 𝛼𝑘𝔼| |x(𝑘∗) − x∗ | |2
2
+

𝛼𝑘
∗ | |b′ | |2

2

| |𝐴| |2
𝐹

∞∑
𝑙=0

𝛼𝑙 Since 𝛼 > 0

≤ 𝛼𝑘𝔼| |x(𝑘∗) − x∗ | |2
2
+

𝛼𝑘
∗ | |b′ | |2

2

𝜎2

𝑚𝑖𝑛

By infinite geometric series

≤ 𝛼𝑘(| |x∗ | |2
2
+ ||b′ | |2

2
/𝜎2

𝑚𝑖𝑛) +
𝛼𝑘

∗ | |b′ | |2
2

𝜎2

𝑚𝑖𝑛

By Inequality (3.10)

= 𝛼𝑘 | |x∗ | |2
2
+ 𝑎𝑘 + 𝑎𝑘∗

𝜎2

𝑚𝑖𝑛

| |b′ | |2
2

Since b′ = 𝐴x∗. We have | |b′ | |2
2
= | |𝐴x∗ | |2

2
≤ ||𝐴| |2

2
| |x∗ | |2

2
= 𝜎𝑚𝑎𝑥 | |x∗ | |2

2
, by the Cauchy-

Schwarz inequality, hence

42 Randomized Extended Kaczmarz

𝔼| |x(𝑘+𝑘∗)−x∗ | |2
2
≤ 𝛼𝑘 | |x∗ | |2

2
+ (𝑎𝑘 + 𝑎𝑘∗)𝜎2

𝑚𝑎𝑥

𝜎2

𝑚𝑖𝑛

| |x∗ | |2
2

≤ 𝛼𝑘 | |x∗ | |2
2
+ (𝛼𝑘 + 𝛼𝑘

∗)𝜅2(𝐴)| |x∗ | |2
2

By definition of 𝜅2(𝐴)
≤ 𝛼𝑘 | |x∗ | |2

2
+ 2𝛼𝑘

∗
𝜅2(𝐴)| |x| |2

2
By definition of 𝑘 and 𝑘∗

≤ 𝛼𝑘
∗ | |x∗ | |2

2
+ 2𝛼𝑘

∗
𝜅2(𝐴)| |x| |2

2

= 𝛼𝑘
∗(1 + 2𝜅2(𝐴))| |x∗ | |2

2
.

And by definition of 𝛼, we are done. □

Note that there are no obvious ways of generating sequences of b vectors which converge

to some place in the column space of 𝐴, apart from the one presented by Zouzias and Freris

(2013). As a result this is more of a proof of concept that a more general version of REK

should converge to some solution.

In this chapter, we have studied how and why REK works. Recall that REK solves for

the least squares solution of a given linear system. Such solutions are desired for noisy

linear systems, however, as discussed in Section (1.4), least squares solutions are not desired

for corrupted linear systems. That is to say REK will not work well for corrupted linear

systems. Nevertheless, our discussion in this chapter, and specifically Proposition (6),

demonstrates that the there is potential to take REK’s idea of modifying the given linear

system to find other meaningful solutions. Generalizing REK to solve corrupted linear

systems is our motivation going into the following chapter about WREK.

Chapter 4

Weighted Randomized Extended
Kaczmarz

4.1 Extending Randomized Extended Kaczmarz

REK is a fantastic method for solving solving large noisy linear systems quickly. However,

as discussed at the end of Chapter 3, the least squares solution is not desirable for corrupted

linerar systems, and so REK is not suited for solving corrupted linear systems. Generalizing

REK for corrupted linear systems is our motivation going into this chapter.

Apart from its ability to solve noisy linear systems quickly, Randomized Extended

Kaczmarz is interesting because, unlike other variants of RK, REK modifies the underlying

system as it iterates and the iterates on this new system give a meaningful answer to our

original system. In particular, we can “orthogonally project our given system down into

its consistent subspace” and solve that new system to solve the least squares problem for

our original system. As we begin to think about corrupted linear systems, a motivating

question moving forward is

are there other ways to modify a given linear system so that the solution to the modified system tells
us something meaningful about the original linear system?

Let us ask this question more precisely. As we saw in Section (1.4.1), given an inconsistent

linear system there are many ways to find an approximate solution. Can we find other RK

variants similar to REK which solve for these other approximate solutions?

4.1.1 REK and Weighted Least Squares Problems

As we saw in Section (1.4.2), given an inconsistent linear system and matrix of weights𝑊

we can find the weighted least squares solution. Following our motivating question at the

44 Weighted Randomized Extended Kaczmarz

top of this Section, we ask “is there a way to modify 𝐴 and b to solve the weighted least

squares problem?”

Lemma 4.1.1. (REK solves WLS problems) Let 𝐴 ∈ ℝ𝑚×𝑛 and b ∈ ℝ𝑚 define a linear system.
Then let 𝐴, b, and 𝑊 ∈ ℝ𝑚×𝑚 define a Weighted Least Squares problem. Then REK with the
inputs𝑊𝐴 and𝑊b solves the given Weighted Least Squares problem. 1

Proof. The OLS solution of the system defined by 𝑊𝐴 and 𝑊b is equivalent to the WLS

solution to the problem defined by 𝐴, b, and 𝑊 . Recall that in the WLS problem we are

searching for a vector x∗ ∈ ℝ𝑛
defined by

x∗ = arg min

x∈ℝ𝑛

∥𝑊b −𝑊𝐴x∥2

2
.

Moreover, recall that the least squares problem for a system 𝐴′ ∈ ℝ𝑚×𝑛
and b′ ∈ ℝ𝑚

solves

for a vector (x∗)′ ∈ ℝ𝑛
defined by

(x∗)′ = arg min

x∈ℝ𝑛

∥b′ − 𝐴′x∥2

2
.

Comparing definitions gives us that the OLS solution on𝑊𝐴 and𝑊b is the WLS solution

defined by 𝐴, b, and𝑊 .

Recall Theorem (3.3.2) gives us that REK with input𝑊𝐴 and𝑊b will converge to the

least squares solution of that input system. Therefore, REK will converge to the solution of

the Weighted Least Squares problem defined by 𝐴, b, and𝑊 . □

Remark 4.1.1. Note that by the above lemma and Proposition (4) the WLS solution defined

by 𝐴, b,𝑊 is given by the exact solution to

𝑊𝐴x = (𝑊b)𝑐𝑜𝑙(𝑊𝐴).

The above lemma means that, certainly, there is a meaningful way to modify a given

linear system to find its weighted least solution. Namely, you map 𝐴 ↦→𝑊𝐴 and b ↦→𝑊b
and then iteratively modify𝑊𝐴 and𝑊b as REK does. In the end we will end up with the

weighted least squares solution to the original system.

Notice that the weighted least squares problem requires a weighting matrix prior to

solving the problem. However, recall that we are motivated by large linear systems where

𝑚 ≫ 𝑛. In this case it might be unreasonable to expect a known, meaningful weighting

on all 𝑚 equations. In particular, it can be shown that the WLS solution is a Best Linear

Unbiased Estimator if we select𝑊𝑖𝑖 = 1/𝜎2

𝑖
where 𝜎2

𝑖
is the variance of equation 𝑖. Generally,

estimating the variances of a number of equations is difficult (See Section (1.4.2)). Thus,

for large linear systems, where we have so many equations that we cannot load the whole

1You could prove this yourself using ideas we have already seen earlier in the text!

Dynamic Reweightings 45

matrix into working memory, estimating the variances to solve the WLS problem seems

intractable. Currently, we can still solve the OLS problem with REK. However, we saw in

Section (1.4.2) that the OLS solution is far from the desired solution in corrupted linear

systems. Instead, the WLS solution is desirable for such systems. So we have a method

which solves for the WLS solution, a solution desirable for corrupted linear systems, but

the current setup of the WLS problem is not amenable to our case of large linear systems.

All hope is not lost. There is another RK variant which deals with corrupted linear systems

in a different way. To find and motivate new ideas, we will take a brief detour to explore

QuantileRK.

4.2 Dynamic Reweightings

At the end of the last section we saw that in WLS problems it is difficult to assign a weighting

for large linear systems. However, WLS problems seem to be good for solving corrupted

linear systems. Instead of assigning a weight to each equation in the system a priori, we

might instead learn the weightings as we iterate. Let us call this idea dynamic reweightings.
Our goal is to investigate whether we can construct an RK variant which incorporates

dynamic reweightings to solve corrupted linear systems.

Part of dynamic reweightings is to use local system information to generate RK variant

iterates. We do not define a precise notion of local system information, but the idea is to

use quantities which can be easily measured at each iteration. We are concerned with large

linear systems and so local system information is desirable to keep the RK variant fast. If

one understands the idea of residuals this is an example of something we might count as

local information. If the reader has not heard of residuals, we will discuss this idea in the

following subsection.

4.2.1 QuantileRK

In Haddock et al. (2020) the authors discuss a variation of Randomized Kaczmarz called

QuantileRK. QuantileRK is a variant of RK for corrupted linear systems. Recall that

corrupted systems are those where most of the linear equations intersect at a point, but a

small number of equations have a large error.

Speaking generally, QuantileRK converges in corrupted systems in the following sense.

Given a corrupted linear system QuantileRK will converge to the point where most of the

equations intersect. Recall that in Section (2.1.1) we saw that RK would not converge to

any point. Before we proceed we briefly define the residuals in linear systems. Let 𝐴 and b
defined a linear system. Let x ∈ ℝ𝑛

. Then the residual of equation 𝑖 with respect to x is the

quantity

〈𝐴(𝑖) , x
〉
− 𝑏𝑖

2

2

. In a sense, the residual of equation 𝑖 with respect to x is how far

away x is from solving equation 𝑖, equivalently how far away x is from hyperplane 𝑖. We

46 Weighted Randomized Extended Kaczmarz

will give the algorithm for QuantileRK, although, for our purposes it is not as important to

understand in as much detail as RK and REK.

Algorithm 3 QuantileRK

1: function QuantileRK(𝐴, b, 𝑇, 𝑞) ⊲ where 𝐴 ∈ ℝ𝑚×𝑛
, b ∈ ℝ𝑚

, and 𝑇 ∈ ℕ

2: Initialize x(0) ∈ ℝ𝑛
arbitrarily

3: for 𝑘 = 1, 2, 3, . . . , 𝑇 do

4: Pick 𝑖𝑘 with probability 𝑞𝑖 :=
∥𝐴(𝑖)∥2

2

∥𝐴∥2

𝐹

, 𝑖 ∈ [𝑚]

5: if

〈𝐴(𝑗𝑘) , x(𝑘)

〉
b𝑘

2

2

≤ 𝑄𝑞(𝑘) then

6: Set x(𝑘+1) = x(𝑘) + 𝑏𝑖𝑘−⟨x
(𝑘) ,𝐴(𝑖𝑘)⟩

∥𝐴(𝑖𝑘)∥2

2

𝐴(𝑖𝑘)

7: else
8: Set x(𝑘+1) = x(𝑘)
9: end if

10: end for
11: return x(𝑇)
12: end function

Here 𝑄𝑞(𝑘) is the 𝑞-th quantile of all the residuals of all equations with respect to x(𝑘).
The main idea2 behind QuantileRK is to use the residuals to change the probability that

a hyperplane is chosen. In Chapter (2) we saw that, if we normalize our linear system,

the distribution for choosing which hyperplane to project onto hyperplane is uniform. In

QuantileRK the probability distribution for picking each hyperplane is uniform, however,

some hyperplanes have 0 probability of being chosen if they are “too far away” in the

residual sense. That is, QuantileRK uses strictly local information about the system based

on the current x iterate to change the way that it will iterate next. This is significant because

it is not necessary to know which hyperplanes are corrupted for QuantileRK to converge.

4.2.2 Using Local Information to Generate New Solutions

Here, we want to generalize this idea of using local information to solve for other approxi-

mate solutions to inconsistent systems. QuantileRK uses local information to adjust the

probabilities of selecting each hyperplane at each step. In particular, if a hyperplane is “too

far away” then its probability of selection is set to zero. One way that we can change the

probability of selecting a row to project onto is as follows. We can use information from 𝐴,

b, and x(𝑘) to generate a probability distribution for row selection at each step. Alternatively,

recalling the definition of the row probabilities, we can iteratively apply a reweighting to

2Please note this is more of a summary than our other discussions of RK and its variants. There is much

more richness and technical differences to QuantileRK which are not discussed for the purposes here.

Behaviour of the WLS solutions 47

the system. The probability of choosing hyperplane 𝑖 to project the RK iterate onto is given

by

𝑞𝑖 :=

𝐴(𝑖)

2

2

∥𝐴∥2

𝐹

.

And so a reweighting 𝑊𝐴 changes the norm of each 𝐴(𝑖)
by 𝑊𝑖𝑖 and thus changes the

probabilities by a corresponding factor. So to change the probablities of row selection we

can use local system information at each step to generate a reweighting matrix𝑊𝑖 . However,

more things happen when we apply a reweighting to the system.

When we apply a reweighting to our linear system, the position of the pseudosolution

changes. Recall that under the mapping 𝐴 ↦→𝑊𝑖𝐴 and b ↦→𝑊𝑖b REK solves for the WLS

solution defined by 𝐴, b, and 𝑊 instead of the least squares solution defined by 𝐴 and

b. That is, everytime a new reweighting is applied𝑊𝑖𝐴 and𝑊𝑖b, REK will converge to a

different vector.

To summarize, the idea is as follows. We seek an algorithm which uses local system

information to generate a reweighting𝑊𝑖 which converges to some reweighting𝑊 such that

REK applied to𝑊𝐴 and𝑊b will converge to a solution that we care about. In particular,

we might want this new algorithm to converge to the desired solution in a corrupted linear

system. This is an idea which looks like it has some promise, it builds off previous variants

of RK of which we have a good understanding. However, there is some foundational

theory to establish. In particular, how does the pseudosolution change for a sequence

of reweightings 𝑊𝑖? Another question to ask is whether any part of REK might break if

we have apply a sequence of reweightings. We have seen that REK already modifies the

underlying system as we iterate. How would REK’s z updates interact with a varying𝑊𝐴

and𝑊b? We will investigate these questions in the following Sections.

4.3 Behaviour of the WLS solutions

We are lead here motivated by an RK variant with dynamic reweightings. For such an

RK variant to be convergent to any solution it must be that the dynamic reweightings are

convergent. Consider the following example

Example 4.3.1 (Non-convergent reweightings). Let 𝐴 ∈ ℝ𝑚×𝑛
and b ∈ ℝ𝑚

define a linear

system. Let𝑊𝑛 be a sequence of reweightings such that

(𝑊𝑛)𝑖𝑖 =
{

1 if 𝑖 = 𝑛 mod 𝑚

0 otherwise

.

In this reweighting scheme we “turn off” every row except a single row and we cycle which

row is “turned on”. Recall that in WLS problems we constrain ∥𝑊𝑛 ∥2

𝐹 = 1 unless stated

otherwise.

48 Weighted Randomized Extended Kaczmarz

This sequence of rewightings induces a sequence of pseudosolutions (x∗)𝑛 which each

solve the WLS problem3 defined by 𝐴, b, and𝑊𝑛 . Since𝑊𝑛 does not converge it follows

that (x∗)𝑛 also does not converge. Since our new RK variant is to solve some WLS problem

defined by our sequence of reweightings, it follows that no such algorithm would converge.

(Can you visualize the geometry of the pseudosolutions in this reweighting scheme?)

Given the above example we see that we at least want our sequence of dynamic

reweightings to converge. We want to develop an algorithm which solves some WLS

problem which is derived from a sequence of reweightings. In this sense, we want our

algorithm to converge to some WLS solution. To this end it would be useful to understand

how the pseudosolution changes as the reweightings change. In the rest of this section we

develop foundations to show how the pseudosolution moves with respect to a sequence of

reweightings.

4.3.1 Single Reweightings

To begin we explore how the pseudosolution moves when the weighting on a single

equation is changed. To begin we will consider what happens to the pseudosolution

between two reweightings.

Example 4.3.2 (Single Reweightings). Without loss of generality suppose on the first

reweighting we reweight the first equation

(𝑊1)𝑖𝑖 =
{
(𝑊0)𝑖𝑖 if 𝑖 ≠ 1

(𝑊0)𝑖𝑖 + 𝛿 if 𝑖 = 1

where (𝑊0)𝑖𝑖 = 1 for all 𝑖 and where 𝛿 ≥ −(𝑊0)11. Also suppose that we normalize𝑊1 so

that ∥𝑊1∥2

𝐹 = 1. We ask, how does (x∗)1 change to (x∗)2?

First, consider a couple of edge cases. Suppose 𝛿 = −(𝑊0)11 or equivalently (𝑊1)11 = 0.

In this case, as long as 𝑊𝐴 is still overdetermined, then the pseudosolution will be the

least squares solution on the system with every equation in 𝐴, b without the first equation,

because the remaining solutions are equally weighted. Since our systems are large we can

expect that this new system will still be overdetermined and so the pseudosolution will

be unique. Let (x∗)−∞ denote the pseudosolution associated with the weighting where

(𝑊1)11 = 0.

Suppose 𝛿 is very large. We can consider what happens as 𝛿 → ∞ which results in

(𝑊1)11 → ∞. This is equivalent to (𝑊1)1 = 1 and (𝑊1)1 = 0 for all 𝑖 ≠ 1. In this case𝑊𝐴 is no

longer over determined and so the WLS problem does not have a unique solution. That said,

3It is worth noting that with this set of reweightings there is not a single vector (x∗)𝑛 which solves the WLS

problem. As stated in Section (1.4.2) we let (x∗)𝑛 denote the pseudosolution of minimum 2-norm.

Behaviour of the WLS solutions 49

the pseudosolution (x∗)1 will be somewhere on the hyperplane defined by the first equation.

Let (x∗)∞ denote a pseudosolution associated to the weighting where (𝑊1)11 → ∞.

Now consider our example where we reweight the first equation to some other positive

number. Let (x∗)
0

denote the pseudosolution defined by 𝑊0𝐴,𝑊0b. Since 𝑊0 = 𝐼𝑚 then

it follows that (x∗) is the least squares solution to the system defined by 𝐴 and b. In the

next step we only modify the weight associated with equation 1. There are two meaningful

cases. Either the weight for equation 𝛿 > 0 or 𝛿 < 0. If 𝛿 < 0 then, since the weighting for a

given equation is continuous, the new pseudosolution moves towards (x∗)−∞. Similarly, if

𝛿 > 0 then the new pseudosolution moves towards some (x∗)∞. We are interested in the

changes between pseudosolutions, Δx∗ = (x∗)1 − (x∗)0. Since Δx∗ is a vector then the change

in pseudosolutions moves along a line. We have argued above that the new pseudosolution

moves towards (x∗)±∞ and so a reasonable guess would be that the pseudosolutions move

along a line towards (x∗)±∞. If we continue with additional reweightings to only the first

equation then (x∗)±∞ will be the same point for each reweighting. And so for the case of

reweighting a single equation we can characterize the movement of the pseudosolution for

all reweightings. We will generalize this arugment as a conjecture. But first, some notation.

Definition 4.3.1 (WLS Solutions Without Some Equations). Let 𝐴, b define an inconsistent

linear system and let 𝑊 be a weighting matrix. Recall that 𝐴 ∈ ℝ𝑚×𝑛
and so we have

𝑚 equations. We index our 𝑚 equations with [𝑚]. Let a collection of equation indices

𝑛1 , 𝑛2 , · · · , 𝑛𝑘 be distinct integers between 1 and 𝑚 and 𝑘 < 𝑚. Then let

x◦
𝑛1 ,𝑛2 ,··· ,𝑛𝑘 |𝑊𝐴

denote the pseudosolution to the weighted least squares problem defined by 𝐴, b, and𝑊

without equations 𝑛1 , 𝑛2 , · · · , 𝑛𝑘 .
Remark 4.3.1 (Relationship between x◦

1|𝑊𝐴
and (x∗)−∞). In Example (4.3.2) we defined

(x∗)±∞. With the above definition notice that (x∗)−∞ = x◦
1|𝑊𝐴

. As discussed in Example

(4.3.2), generally we expect (x∗)−∞ to be a single vector we expect there to be many (x∗)∞.

As a result we focus on (x∗)−∞ which is generalized by the above definition.

Conjecture 4.3.1 (Single Reweighting Pseudosolution Movement). Let 𝐴, b define an

inconsistent linear system. Define a sequence of reweightings by𝑊0 = 𝐼𝑚 and

(𝑊𝑛)𝑖𝑖 =
{
(𝑊𝑛−1)𝑖 + 𝛿𝑛 if 𝑖 = 𝑘

(𝑊𝑛−1)𝑖 if 𝑖 ≠ 𝑘

where 𝑘 is a fixed row index, and −(𝑊𝑛−1)𝑘 ≤ 𝛿𝑛 ∈ ℝ.

Then the induced sequence of pseudosolutions (x∗)𝑛 is such that (x∗)𝑛 − (x∗)𝑛−1 lies on a

line defined by

(x∗)𝑛−1 and x◦
𝑘 |𝑊𝑛−1𝐴

This is visualized in Figure (4.1).

50 Weighted Randomized Extended Kaczmarz

Remark 4.3.2. I have written the above proposition in such a way that will generalize when

we will investigate how the pseudosolutions move with multiple reweightings. However,

it follows that the above proposition has some redundancies. In particular, in the single

reweighting case it can be shown that all the pseudosolutions (x∗)𝑛 lie on the same line

defined by x◦
𝑘 |𝐴 and x∗.

(x∗)0

x◦
𝑘

(x∗)1

Figure 4.1 Here we have an inconsistent linear system visualized by the black lines. Our single
reweighting only affects the thick hyperplane. The magenta line indicates the line along which
the pseudosolutions move.

The above is given as a conjecture because we do not currently have a proof. That

said, we have strong experimental evidence to suggest that the above conjecture holds.

A high-level description of our experiment is as follows. We define a sequence of

reweightings as in Conjecture (4.3.1) and then compute the pseudosolutions at each

step using x∗ = (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊b. We then computed (Δx∗)𝑛 = (x∗)𝑛 − (x∗)𝑛−1. If we let

d = (x◦
𝑘 |𝐴) − (x∗)0 then we verified that the direction of the updates (Δx∗)𝑛 followed d by

verifying the dot product |d · (Δx∗)𝑛 | = 1 for each n.

A future work is to prove this conjecture. A first line of attack might be to inspect (Δx∗)𝑛
by using the definition of the WLS solution using the normal equations.

We now discuss the movement of multiple reweightings. However, the following

discussion depends on the preceding discussion. As such much of the next ideas are given

as conjectures, although they have been tested with similar numerical experiments.

Behaviour of the WLS solutions 51

4.3.2 Multiple Reweighting

Now that we have how the pseudosolution moves according to a single reweighting we

want to understand how the pseudosolution moves according to more than one reweighting.

Without loss of generality, suppose we reweigh equations one and two,

(𝑊1)𝑖𝑖 =


(𝑊0)𝑖𝑖 + 𝛿 if 𝑖 = 1

(𝑊0)𝑖𝑖 + 𝜀 if 𝑖 = 2

(𝑊0)𝑖𝑖 Otherwise

We ask how does (x∗)1 change to (x∗)2. In the previous part we found that a single

reweighting followed a line defined by (x∗)0 and x◦
1|𝑊0𝐴

. Note that, the final pseudosolution

(x∗)2 is the same as the final pseudosolution given by the following reweightings

(𝑊 ′
1
)𝑖𝑖 =

{
(𝑊0)𝑖𝑖 + 𝛿 if 𝑖 = 1

(𝑊0)𝑖𝑖 Otherwise

(𝑊 ′
2
)𝑖𝑖 =

{
(𝑊1)𝑖𝑖 + 𝜀 if 𝑖 = 2

(𝑊1)𝑖𝑖 Otherwise

This is because 𝑊 ′
2
= 𝑊1 and so, as long as 𝑊 ′

2
𝐴 = 𝑊 ′

1
𝐴 are both overdetermined, they

must have the same pseudosolution defined by (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊b. We generalize this as a

lemma. The following lemma is true regardless of Conjecture (4.3.1).

Lemma 4.3.1 (Decomposing Multiple Reweightings). If a reweighting is given by

(𝑊𝑛)11 = (𝑊𝑛−1)11 + 𝛿1

(𝑊𝑛)22 = (𝑊𝑛−1)22 + 𝛿2

· · ·
(𝑊𝑛)𝑚𝑚 = (𝑊𝑛−1)𝑚𝑚 + 𝛿𝑚

Then this reweighting is equivalent to the sequence of reweightings

(𝑊 ′
𝑛)𝑖𝑖 =

{
(𝑊𝑛−1)11 + 𝛿1 if 𝑖 = 1

(𝑊𝑛−1) otherwise

(𝑊 ′
𝑛+1

)𝑖𝑖 =
{
(𝑊 ′

𝑛)22 + 𝛿2 if 𝑖 = 2

(𝑊 ′
𝑛) otherwise

· · ·

(𝑊 ′
𝑛+𝑚)𝑖𝑖 =

{
(𝑊 ′

𝑛+𝑚−1
)𝑚𝑚 + 𝛿𝑚 if 𝑖 = 𝑚

(𝑊 ′
𝑛+𝑚−1

) otherwise

In the sense that the final pseudosolution for both sets of reweightings will be the same vector.

52 Weighted Randomized Extended Kaczmarz

Proof. This follows since 𝑊 , 𝐴, b will be the same at the end of both sequences of

reweightings and a pseudosolution is determined by exactly these objects. □

By decomposing the multiple reweighting as two single reweightings we can unpack

the movement of the pseudosolution using our understanding of how a single reweighting

moves the pseudosolution. The following conjecture depends on Conjecture (4.3.1). If

Conjecture (4.3.1) is true then the following conjecture is also true by Lemma (4.3.1).

Conjecture 4.3.2 (Pseudosolution for Two Reweightings Follows a Sequence of Lines). Let

𝐴, b define an inconsistent linear system. Let 𝑘1 , 𝑘2 be equation indices. Then consider a

reweighting

(𝑊1)𝑖𝑖 =


(𝑊0)𝑖𝑖 + 𝛿 if 𝑖 = 𝑘1

(𝑊0)𝑖𝑖 + 𝜀 if 𝑖 = 𝑘2

(𝑊0)𝑖𝑖 Otherwise

The pseudosolution for this reweighting a line defined by the lines at each of the single

reweightings.

Proof. By lemma (4.3.1) we can decompose this reweighting as

(𝑊 ′
1
)𝑖𝑖 =

{
(𝑊0)𝑖𝑖 + 𝛿 if 𝑖 = 𝑘1

(𝑊0)𝑖𝑖 Otherwise

(𝑊 ′
2
)𝑖𝑖 =

{
(𝑊1)𝑖𝑖 + 𝜀 if 𝑖 = 𝑘2

(𝑊1)𝑖𝑖 Otherwise

with ((x′)∗)3 = (x∗)2. Assuming Conjecture (4.3.1) we know that ((x′)∗)2 − ((x′)∗)1 follows

a line (Δ(x′)∗)1 defined by x◦
𝑘1 |(𝑊′

1
)𝐴 and ((x′)∗)1. Similarly, ((x′)∗)3 − ((x′)∗)2 follows a line

(Δ(x′)∗)2 defined by x◦
𝑘2 |(𝑊′

2
)𝐴 and ((x′)∗)2. It follows that the final pseudosolution is a linear

combination (x∗)2 = ((x′)∗)3 = 𝑐1(Δ(x′)∗)1 + 𝑐2(Δ(x′)∗)2 which is also a line. (Can you

draw a similar figure to Figure (4.1) for two reweightings? How about three or more

reweightings?) □

Note that it seems plausible to determine how far a single reweighting moves a

pseudosolution. If we had that information then we would be able to compute 𝑐1 , 𝑐2

without needing to compute ((x′)∗)2 , ((x′)∗)3.

The previous couple of subsections is enough to completely characterize the movement

of the pseudosolution for any general reweighting. One can generalize the above arguments

into an inductive form, or use a similar argument for more than two reweightings in a

single step.

4.4 Proposed Definition for WREK

In the above Sections we have laid some foundations for how dynamic reweightings behave

in terms of the induced sequence of pseudosolutions. There is more theoretical foundations

Proposed Definition for WREK 53

which can be laid. We could ask which sequences of reweightings give meaningful

pseudosolutions? In particular, given our inspiration from QuantileRK, one might attempt

to construct a sequence of reweightings using only local residual information to generate a

sequence of pseudosolutions which converge to the desired solution for corrupted linear

systems. As well as understanding dynamic reweightings we want an RK variant which

will converge to the pseudosolution of interest.

Now we will turn to Weighted Randomized Extended Kaczmarz (WREK), a proposed

Randomized Kaczmarz variant which seeks to use dynamic reweightings to converge to a

pseudosolution of interest. The algorithm for WREK is as follows.

Algorithm 4 Weighted Randomized Extended Kaczmarz

1: function WREK(A, b, T, W, reweight(·)) ⊲ where 𝐴 ∈ ℝ𝑚×𝑛
, b ∈ ℝ𝑚

, and 𝑇 ∈ ℕ

2: x0 = 0
3: z0 = 𝑏

4: for 𝑗 = 1, .., 𝑇 do

5: Pick 𝑖𝑘 ∈ 𝑚 with probability 𝑞𝑖 :=
∥A(𝑖)∥2

2

∥A∥2

𝐹

, 𝑖 ∈ [𝑚]

6: Pick 𝑗𝑘 ∈ 𝑛 with probability 𝑞𝑖 :=
∥A(𝑗)∥2

2

∥A∥2

𝐹

, 𝑖 ∈ [𝑛]
7: W = reweight(𝐴, 𝑏, 𝑖𝑘 , 𝑗𝑘 ,𝑊)
8: Set 𝑧(𝑘+1) = 𝑧(𝑘) − ⟨(𝑊𝐴)(𝑗𝑘) ,𝑧

(𝑘)⟩
∥(𝑊𝐴)(𝑗𝑘)∥

2

2

(𝑊𝐴)(𝑗𝑘)

9: Set 𝑥(𝑘+1) = 𝑥(𝑘) + (𝑊𝑏)−𝑧(𝑘)−⟨(𝑊𝐴)(𝑖𝑘) ,𝑥𝑘⟩
∥(𝑊𝐴)(𝑖𝑘)∥2

2

(𝑊𝐴)(𝑖𝑘)

10: end for
11: return x𝑁
12: end function

We remark that the action of WREK is the same as the action of REK except that on each

pass you reweight the 𝐴 and b. The particular reweighting scheme is left as an input and

will depend on further investigations on useful sequences of reweightings which use local

system information. One may also remark that, by reading off the definition, if𝑊𝑛 = 𝐼𝑚 for

all 𝑛 then the definition of WREK matches the definition of REK exactly. And so in REK

should be a special case of WREK.

In this way, our proposed definition of WREK looks like “the minimal change to REK to

incorporate dynamic reweightings.” However, there is no guarantee that this is the correct

way to extend REK. The following are some important directions for further investigations.

54 Weighted Randomized Extended Kaczmarz

4.5 Future Directions & Conclusion

Before we conclude this work we discuss some future directions to carry the investigation.

• One could set up numerical experiments to investigate whether the proposed WREK

behaves like REK in the case where𝑊𝑛 = 𝐼𝑚 for all 𝑛.

• Another sanity check for this proposed definition of WREK is to investigate whether

WREK behaves like RK in the case where 𝐴, b define a consistent system and𝑊𝑛 = 𝐼𝑚
for all 𝑛.

• After these sanity checks one may want to investigate reweighting schemes for

corrupted linear systems. Given QuantileRK, one may investigate a reweighitng

scheme which uses system residuals at each iteration.

• There are also theoretical investigations to be made. For example, in Section (3.2) we

found a closed form for REK’s z updates. We can perform a similar investigation into

WREK’s z vectors. We could then ask whether the corresponding b(𝑘)
updates make

sense.

• The current definition of WREK modifies the linear system. However, another avenue

of investigation is to instead modifying the probability distributions to pick each

row and column. One difference between these two methods is that applying a

reweighting to 𝐴 changes the column space of 𝐴 which in turn changes the space of

consistent measure vectors b′
. That said, there could be other dangers to modifying

the column space of 𝐴 which have not yet been investigated.

• One could attempt to prove Conjecture (4.3.1) and similar propositions for many

reweightings in a single step.

Throughout this work we have considered large linear systems and numerical methods

to solve them quickly. We have been particularly interested in Randomized Extended

Kaczmarz’s action of system modifications to solve noisy linear systems. To that end we

unpacked how and why Randomized Extended Kaczmarz works so that we could lay

foundations for a generalization to solve corrupted linear systems.

Thank you for joining me on this journey; climbing this hill with me. I hope you enjoyed

traversing this space as much as I did and I hope you were able to develop your own

relationship with some of the ideas here. I wish you the best on the most important step

one can take, the next one.

Bibliography

Du, Kui. 2018. Refined upper bounds for the convergence of the randomized extended

kaczmarz and gauss-seidel algorithms. arXiv preprint arXiv:180103250 .

Gustafsson, Bertil. 1996. Mathematics for computer tomography. Physica Scripta
1996(T61):38.

Haddock, Jamie, Deanna Needell, Elizaveta Rebrova, and William Swartworth. 2020.

Quantile-based iterative methods for corrupted systems of linear equations. arXiv preprint
arXiv:200908089 .

Needell, Deanna. 2010. Randomized kaczmarz solver for noisy linear systems. BIT
Numerical Mathematics 50(2):395–403.

Strohmer, Thomas, and Roman Vershynin. 2009. A randomized kaczmarz algorithm with

exponential convergence. Journal of Fourier Analysis and Applications 15(2):262–278.

Zouzias, Anastasios, and Nikolaos M. Freris. 2013. Randomized extended Kaczmarz for

solving least squares. SIAM J Matrix Anal A 34(2):773–793.

	Check Yourself Before You WREK Yourself: Unpacking and Generalizing Randomized Extended Kaczmarz
	Recommended Citation

	Abstract
	Acknowledgments
	Preface
	Background on Linear Systems
	Matrix Jargon
	Consistent Linear Systems
	Inconsistent Systems
	``Solutions'' to Inconsistent Systems
	Notation

	Randomized Kaczmarz
	Convergence Properties
	REK and WREK

	Randomized Extended Kaczmarz
	Definition and Convergence Properties
	What is Up With the z Vectors?
	Theoretical Foundations of REK
	REK Convergence for an Arbitrary Sequence of b Vectors

	Weighted Randomized Extended Kaczmarz
	Extending Randomized Extended Kaczmarz
	Dynamic Reweightings
	Behaviour of the WLS solutions
	Proposed Definition for WREK
	Future Directions & Conclusion

	Bibliography

