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A Look at Biseparating Maps
from an Algebraic Point of View

M. Henriksen and F.A. Smith

ABSTRACT. In [ABNJ, Araujo, Beckenstein, and Narici add the capstone to
a series of papers by several groups of authors by showing that if 'P is a bisep­
arating map between two algebras of all real or complex-valued functions on
realcompact spaces, then it is a continuous multiple of an isomorphism between
these rings. Their proof uses relatively powerful analytic and topological tech­
niques. In what follows, the extent to which such a result can be generalized
to a wider class of algebras using algebraic techniques is investigated. We are
unable, however to obtain the main result of [ABN] using these techniques.

1. Introduction

Throughout, A and B will denote unital, commutative rings or algebras over a
field whose identity elements are denoted by I A and IE, respectively (or just 1 if
which ring is meant is clear from context). Unless the contrary is stated explicitly,
the rings considered are assumed to be reduced (i.e., their only nilpotent element is
0). A mapping <p : A --+ B is called separating if ab = 0 in A implies <p(a)<p(b) = 0 in
B, and <p is called biseparating if it is a bijection and both <p and <p~ are separating.
If SeA, let Sd = {a E A: as = {O}}, and if s E S, abbreviate {s}d by sd Sd is
called the annihilator of S, and is clearly an ideal of A.

A (group) homomorphism of (A,+) into (B,+) is called a linear map of the
ring A into the ring B. If F is a field and A is an algebra over F, then a mapping
<; of A into an F-algebra is said to be F -linear if for all Di, j3 E F and x, yEA,
,(DiX + j3y) = Di<;(X) + j3,(y). That is, <; is F-linear if it is a linear map such that
,(Dia) = Di,(a) for all Di E F and a E A. Note that in an F-algebra, an ideal I is
assumed to be closed under multiplication by elements of F. An ideal (respectively,
subspace) M of an F-algebra A is called an F-ideal (respectively, F-subspace) if
AIM and F are isomorphic as algebras (respectively, vector spaces). Clearly every
F-ideal is an F-subspace. It is an exercise to verifY that:

(*) A subspace of an F-algebra is an F-subspace
if and only if it has co-dimension 1.

While no use of (*) is made below, it does show that a linear biseparating map
sends F-ideals into F-subspaces.
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136 M. HENRIKSEN AND F. A. SMITH

Throughout, X and Y will denote completely regular (Hausdorff) spaces, unless
additional restrictions are placed on them explicitly.

The rational, real, and complex fields are abbreviated by Q, R, and C, re­
spectively. In [GJ], an R-ideal of the algebra C(X) of all continuous functions
into the field of real numbers is called a real maximal ideal. We call X realcom­
pact if for each homomorphism e of C (X) into R, there is an x E X such that
e(f) = f(x) for all f E C(X) (that is, e is a point evaluation). In [ABN], Araujo,
Beckenstein, and Narici show that if X and Yare realcompact topological spaces,
and 'P : C(X) -+ C(Y) is an R-linear biseparating map, then there is a home­
omorphism 1/J : Y -+ X and an h E C(Y) such that 'P(f) = (f o1/J)h (that is,
'P(f)(y) = f(1/J(y))h(y) for all f E C(X) and y E Y). Such a mapping 'P is called a
weighted homomorphism. [ABN] is the capstone of a series of papers establishing
this in special cases. They show also that the corresponding result also holds for
algebras of complex-valued continuous functions; see [ABN], where references to
variations on this result are also given. Their proofs make use of function space
topologies.

In this paper l biseparating maps are regarded as mappings between rings
or algebras that send annihilator ideals to annihilator ideals, and the Araujo­
Beckenstein-Narici theorem is generalized to some classes of R-algebras and es­
tablished with techniques from ordered algebraic systems.

Throughout, Z denotes the set of integers considered either as a ring or as an
additive group, depending on the context.

Let Spec(A) denote the space of prime ideals of ideals of A in the hull-kernel
topology, and let Max(A) (respectively, Min(A)) denote the subspaces of maximal
ideals (respectively, minimal prime ideals) of A.

Several kinds of questions are pursued in what follows. In particular:
Can one find a class of rings or algebras containing all rings or algebras of

continuous functions on realcompact spaces such that whenever A and B are in
that class:

I If there is a linear biseparating map 'P of A onto B, then Min(A) and Min(B)
are homeomorphic?

II If there is a linear biseparating map 'P of A onto B, then Max(A) and Max(B)
are homeomorphic?

III If 'P is a linear biseparating map of A onto B, then 'P is a weighted homomor­
phism?

Below, reasonable sufficient conditions are obtained that yield affirmative an­
swers to I and II.

The next example shows that an affirmative answer to I and II need not imply
one to III even for F-linear maps unless the field F is chosen carefully.

EXAMPLE 1.1. Suppose A = B = R (which may be regarded as C(X) for X a
one-point topological space), regard R as a Q-algebra, and let B denote a (Hamel)
basis for Rover Q as a vector space. Any permutation of the set B (which has
cardinality c) induces a one-to-one Q-linear map 'P of R onto itself. There are 2'
such linear maps; but because the only automorphism of the field R is the identity,
there are at most c weighted homomorphisms of R onto itself. So III has a negative
answer even though there is a positive one to I and II. It is an exercise to construct
a similar example in case A = B = C.
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EXAMPLE 1.2. Suppose A = B = R[x] is the algebra of real polynomials, let
7i" denote a permutation of the set of nonnegative integers, and define tp7l" : A ---t A
by letting 'P~(L7~oaixi) = L7~o aiXrr(i). If 'if is not the identity, then this cannot
be a weighted homomorphism, because the only units of R[x] are the (nonzero)
constant polynomials. So, even for real algebras, III may have a negative answer
even though there is a positive one to I and II.

2. Biseparating maps and spaces of minimal prime ideals

As in [D], a proper ideal I of the ring A is called pure if I = UiEI(I-i)d It is
shown in [JM] and [Hel] that iff is an ideal of A, then mI := {a E A : I +ad = A}
is the largest pure ideal of A that is contained in I and that mI = n{p E Min(A) :
I + P # A}. This latter ideal is also discussed in [M]. An ideal I is called a
d-ideal if add C I whenever a E I, and is called pseudoprime if ab = 0 implies
a E I or bEl. More generally, if n is a positive integer, call an ideal I of A an
n-pseudoprime ideal if whenever a product of n elements of A is 0, one of them is
in I. A ring is called reduced if 0 is its only nilpotent element. As is well known, A
is reduced if and only if the intersection of all of its prime ideals is {O}.

(<» Pseudoprime ideals are studied thoroughly in [GK] where it is shown that
an ideal I contains a prime ideal if and only if it is n-pseudoprime for every positive
integer n.

It is easy to see, using Zorn's lemma, that every prime ideal of A contains a
minimal prime ideal, and that:

((3) A prime ideal P of a reduced commutative ring is minimal if and only if
a E P implies ad ct P.

It follows that add C P. Thus
(1) Every minimal prime ideal of a reduced commutative ring is ad-ideal.
Let S(A) denote a collection of ideals of A. If SeA, let h(S) = {P E S(A) :

S c P}, and let hC(S) = S(A) \ h(S). We regard S(A) as a topological space
whose closed sets are generated by {h C

( a) : a E A}. This topology is usually called
the hull-kernel or Zariski topology. Min(A) with this topology is usually called the
space of minimal prime ideals of A and carries the relative topology induced by
the Zariski typology.

An element a E A such that ad = {O} is called regular.
If 1> : A --> B is linear, and if A is an integral domain, then 1> is separating; this

is immediate from the definition at the beginning of Section 1. If, in addition, 1> is
bijective and B, too, is a domain, then ¢ is biseparating. So, linear biseparating
maps between domains need not preserve much of the multiplicative structure. In
particular, such maps need not send units to units, as the next example shows.

EXAMPLE 2.1. Some linear biseparating maps between integral domains.
Suppose A and B are integral domains whose additive subgroups are free mod­

ules over a principal ideal domain D with bases B(A) and B(B) respectively of
the same cardinality. Any bijection of B(A) onto B(B) has a bijective extension
'P from (A, +) onto (B, +) that is biseparating, since neither A nor B have proper
divisors of O. Applying this in case A = Z(v'2) and B = Z(v'3) or Z(i), or when

A = Q(v'2) and B = Q(v'3) or Q(i), illustrates that such linear biseparating maps
can exist between nonisomorphic rings. Note in particular that if A = Z(v'2) and
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E = Z(y'3) and <p(a + bv'2) = a + by'3 whenever a,b E Z, then -1 + v'2 is a unit
of A, while its image -1 + y'3 under <p is not.

The next proposition illustrates, however that linear biseparating maps do pre­
serve ideals determined in some sense by their zero divisors.

PROPOSITION 2.2. Suppose <p : A --+ E is a linear biseparating map. Then:
(a) A is reduced if and only if E is.
(b) If SeA, then <p(S)d = <p(Sd). Thus if S = {s} is a singleton, then <p(sd)d =

<p(sdd) = <p(s)dd In particular, <p sends regular elements to regular elements.
(c) If I is a union of annihilator ideals, then <p(I) is an ideal of E that is a sum

of annihilator ideals. Moreover:
(i) The image under <p of a d-ideal of A is a d-ideal of E, and

(ii) if I is an ideal of A and <p(I) is an ideal of E, then <p(mI) = m<p(I). So
the image under if of a pure ideal is a pure ideal. Moreover:

(d) If A is reduced and P E Min(A), then <p(P) is a pseudoprime d-ideal such that
<pta) E <p(P) implies <p(a)d is not contained in <p(P).

PROOF. Since <p is a bijection, each element of E may be written as <pta) for a
unique a E A.

(a) If <p(a)2 = 0, then <pta) = 0, whence a = O.
(b) Since <p~ is separating, if <p(a)<p(S) = 0, then as = {O}, i.e., a E Sd It

follows that <pta) E <p(Sd), so <p(S)" C <p(Sd). The reverse inequality holds since <p
is also separating. In particular, <p(sd)d = <p(sdd).

(c) The first part of (c) and (i) follow immediately from (b).
(ii) By assumption <p(I) is an ideal of E. Because mI = {a E A : I + ad =

A}, <p(I) is an ideal of E, and <p(mI) = {<p(a) E E: <p(I) + <p(a)d = E} = m<p(I).
The last assertion is immediate.

(d) By b) and (c), <p(P) is a d-ideal. Suppose <p(a)<p(b) = 0, in which case
ab = O. Because P is prime, a E P or b E P; say a E P. So <pta) E <p(P) and we
conclude that <p(P) is a pseudoprime ideal. If <p(a)d is contained in <p(P) for some
<pta) E <p(P), then by (b), <p(ad) C <p(P). So both a and ad are in the minimal
prime ideal P, contrary to ((3). D

A group G that is also a lattice (with lattice-operations V and f\) in which
the sum of nonnegative elements is nonnegative is called a lattice-ordered group or
an f.-group. If G is also a vector space over R, then it is called a vector lattice or
a Riesz space; see [LZ]. An abelian i-group that is a ring in which a product of
positive elements is positive is called an i-ring, and an i-ring in which a f\ b = 0 and
c ::: 0 imply a f\ be = a f\ cb = 0 is called an f -ring. It is easily seen that a subdirect
product of totally ordered rings is an I-ring, and the converse holds in the presence
of the prime ideal theorem for boolean algebras; see [FR]. Many authors (including
[BKW]) use the property of being a subdirect product of totally ordered rings as
the definition of f-ring and make the axiom of choice a blanket assumption.

The kernel of a homomorphism of one i-ring into another that preserves the
lattice as well as the ring operations is called an i-ideal. An i-ideal is a ring ideal
I such that lal <:; Ibl and b E I imply a E I. It is well-known and easily seen that:

(8) Every d-ideal of a commutative reduced I-ring is a semiprime i-ideal.
(For background, see Section 4 of [RdeP3].)
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A commutative f-ring A with identity is said to closed under bounded inversion
if each a ?: 1 in A is invertible, or equivalently if each maximal ideal of A is an
i-ideal. See IHIJ].

DEFINITION 2.3. An ideal I of a commutative semiprime ring A is said to be
close to minimal prime or cmp provided that a E I if and only if ad ct I. The space
of cmp-ideals of A with the hull-kernel topology is denoted by Cmp(A).

PROPOSITION 2.4. Suppose A is a unital reduced commutative ring.
(a) If P E Min(A), then P is cmp.
(b) An ideal I is cmp if and only if (i) it is pseudoprime, (ii) it is a d-ideal, and

(iii) a E I implies ad ct I.

PROOF. (a) If P E Min(A) and a E P, then ad ct I by ((3). Because P is prime
and a(ad) = {O}, if ad ct I, then a E I.

(b) If I is cmp, then (iii) holds, by definition. Suppose ab = 0 and a ric I. Then
ad C I, so b E I and hence (i) holds. If a E I and c E add, then since adadd = {O},
ad ct I, and I is pseudoprime, (ii) holds as well.

Conversely, suppose (i), (ii), and (iii) hold. If a E I, then ad ct I by (iii). If
ad ct I, then a E I by (i). D

We are indebted to Suzanne Larson for the next example. It is a modification
of Example 21 in [Hel] and exhibits a unital commutative reduced algebra with a
cmp-ideal that fails to be prime.

EXAMPLE 2.5 (S. Larson). Let A = Flxo,x"", ,xn,"·] denote the ring of
polynomials in a countable infinity of (commuting) variables {xn}n<w over a field
F, let K denote the smallest ideal of A containing all XiXjXk, where i < j < k,
and let B = AIK. For each pEA, abbreviate the coset p + K by K(p), and let
I denote the smallest ideal of B containing all K(XiXj), where i < j. It will be
shown that I is a cmp-ideal that is not prime.

To see this, note first that every zero divisor in B is a finite sum of elements
that lie in K(xj)B for some j < w. If K(a) E I, then there is an n < w such
that K(a) is a finite sum of elements in K(XiXj)B, where i < j :'S n. Thus,
K(xn+l) E K(a)d \ I. Conversely, if K(a) ct I, then K(a) is regular, or there is a
j < w such that K(a) E K(xj)B \ K(Xi)B for any i i j, in which case K(a)d C I.
Hence I is a cmp-ideal. Because K(X,X,) E I and neither K(XI) nor K(x,) is in
I, the ideal I fails to be prime.

The next result follows immediately from 2.3 and 2.4.

COROLLARY 2.6. If A and B are reduced and 'P : A -+ B is a linear biseparating
map, then I is a cmp-ideal of A if and only if 'P(I) is a cmp-ideal of B.

DEFINITION 2.7. A is called a cmp-ring if each of its cmp-ideals is prime.

It is shown in IHdePI, 4.2] and IS, 2.5] that:
(E) Every pseudoprime semiprime ideal of a commutative f-ring with identity

is a prime ideal. Hence every commutative reduced I-ring is a crop-ring.
The next theorem provides an answer to Question I of the introduction.

THEOREM 2.8. If A and B are reduced, and 'P is a linear biseparating map of
A onto B, then:
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into another that preserves scalar multiplication as well as the lattice and group
operations is called a Riesz homomorphism. Its kernel ker.,p is a Riesz subspace
such that Ihl <:: Igi and 9 E ker.,p imply h E ker.,p. It is noted in Section 18 of [LZI
that:

(**) An R-linear map .,p of one Riesz space into another is a Riesz
homomorphism if and only if a 1\ b ~ 0 implies .,pa 1\ .,pb = o.

An element e E A + such that a 1\ e = 0 implies e = 0 is called a weak order
unit. An archimedean f -algebra is called a if!-algebra. Equivalently, a if!-algebra is
an archimedean lattice-ordered algebra over R with an identity element that is a
weak order unit. See [BKW] or [HRI.

EXAMPLE 4.1. R[x] becomes an archimedean lattice-ordered algebra if we let
a polynomial be nonnegative if each of its coefficients is nonnegative. The linear
biseparating maps described in Example 1.2 are positive while failing to be weighted
homomorphisms, because the only units of this ring are the nonzero constant func­
tions.

In the remainder of this section, our efforts are concentrated on <!I-algebras.
It is well known and easily seen that in a reduced f-ring A, if a, bE A+, then

a 1\ b = 0 if and only if ab ~ o. It follows from (**) that:

LEMMA 4.2. If A and B are reduced f -algebras, then an R-linear positive bi­
jection of A onto B is biseparating if and only if it is a Riesz homomorphism.

The question of when a Riesz homomorphism is a <p-algebra homomorphism is
considered by A. Hager and L. Robertson in [HRI, where they show in Corollary
4.3 that:

LEMMA 4.3 (Hager-Robertson). A Riesz homomorphism between if!-algebras
that sends the identity element to the identity element is a if!-algebra homomor­
phism.

Their proof makes use of the fact that a if!-algebra may be represented (using
AC) as an algebra of extended real-valued functions on its compact (in the hull­
kernel topology) space of maximal i-ideals. See [HR] for details. This result was
obtained later independently by C. Huijsmans and B. de Pagter in [HdeP2] using
the weaker definition of f -ring. Indeed, they show that it is enough to assume that
the image of the identity element of A is idempotent.

To make use of Lemma 2.2, the following definition is introduced which appears
in [HJ].

DEFINITION 4.4. If A is an R-algebra and a E A is invertible only if a is in no
R-ideal, then A is said to be closed under inversion.

It is easy to verify that if A is closed under inversion, then J(A) is the inter­
section of all the R-ideals of A. Hence:

PROPOSITION 4.5. A semiprimitive R-algebra A that is closed under inversion
is a subdirect product of copies of R. Thus A is an algebra of real-valued functions.

The main result of this section follows.

THEOREM 4.6. If A and Bare if!-algebras closed under R-inversion, and 'P :
A ---+ B is a positive linear biseparating map, then tp is a weighted homomorphism.
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PROOF. By Lemma 4.2, <p is a Riesz homomorphism. We show first that <p(lA)
is a unit of B. Otherwise, <p(lA) is in a real maximal ideal M of B. In his Leiden
doctoral dissertation B. de Pagter showed that because A is archimedean,

x-x/\nlA ::; n-1x2 for each n <w and x E A+.

(For a proof, see 8.22 in [AB].) So, <p(x) - <p(x) II n<p(lA) :s; n- 1 <p(x2
) and

hence n<p(x) :s; <p(x2) mod M whenever n < w. Because R is archimedean, this
implies that <p[A+] = °and hence that <p(lA) = 0, contrary to the fact that <p is
one-one.

Let 'IjJ = [<p(lA)r'<p. Then'IjJ is a Riesz homomorphism such that 'IjJ(lA) = lB.
So, by Lemma 4.3, 'IjJ is a p-algebra homomorphism, and hence <p = [<p(lA)]'IjJ is a
weighted homomorphism. 0

Note that the hypothesis of Theorem 4.6 is satisfied by p-algebras that need
not be uniformly closed; e.g., by the algebra of continuous real-valued functions on
[0,00) that are eventually rational functions with no poles on [0,00).

The last theorem is the best positive result we have been able to obtain using
our techniques. We close with a number of questions that illustrate their limitations.

QUESTIONS AND REMARKS 4.7. Suppose A and B are soft rings and <p : A --+ B
is a linear biseparating map.

A. Suppose in addition A and Bare f-algebras and <p is positive. Must <p be
a weighted homomorphism?

OUf guess is that this has a negative answer, but we have been unable to find an
example to support it. Note that if the requirement that <p is positive were dropped,
Example 1.2 provides a negative answer to the modified question. Observe that R[x]
can be made into a (totally ordered) f-algebra in a number of ways (e.g., by letting

I::~~oakxk > °if ak > 0).

B. Suppose in addition A and Bare p-algebras. Must <p be a unit multiple of
a Riesz homomorphism?

!The Araujo-Beckenstein-Narici theorem yields an affirmative answer to this
question in case A and B are each the ring of all continuous real-valued functions
on a realcompact space. We seem neither to be able to establish this with the tech­
niques developed above or to find examples to show that this conclusion need not
hold without assuming such strong hypotheses. For example, does the conclusion
of B hold if A and B are algebras of real-valued functions that fail to be uniformly
closed?

C. In Sections 91 and 92 of [Z], linear spaces and algebras of the form A + iA
are considered, where A is a Riesz space or f -algebra, and are called complex Riesz
spaces or complex f-algebras. Note that the Riesz space or algebra of all complex
valued continuous functions on a topological space X takes this form. An absolute
value function may be defined on the algebras A + iA with the usual properties in
case A is uniformly complete.

Can the theory developed above be extended to cover complex f-algebras A+iA
in case A is uniformly complete and A + iA is closed under some appropriate kind
of inversion?
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