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Abstract

Models of opinion dynamics have been used to understand how the spread

of information in a population evolves, such as the classical Hegselmann–

Krause model (Hegselmann and Krause, 2002). One extension of the model

has been used to study the impact of media ideology on social media

networks (Brooks and Porter, 2020). In this thesis, we explore various

models of opinions and propose our own model, which is an adaptive

version of the Hegselmann–Krause model. The adaptive version implements

the social phenomenon of homophily—the tendency for like-minded agents to

associate together. This is done by having agents dissolve connections if their

opinions are too different from one another and establish new connections

probabilistically, with it being more likely to establish a connection with an

agent with a similar opinion to theirs. We study how our model changes

with various values of the parameters in the model, namely the confidence

parameter and homophily parameter, as well as different initial graph

topologies and varying the number of nodes in the graph.
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Chapter 1

Duties to Democracy

“As citizens of this democracy,

you are the rulers and the ruled,

the lawgivers and the

law-abiding, the beginning and

the end”

— Adlai Stevenson

We open this thesis with the debate Walter Lippman and John Dewey

had pertaining to democracy and people’s obligations to democracy. Starting

in 1922, Lippman and Dewey argued back and forth what the impact of

public opinion and the obligations people have to democracy (Whipple, 2005).

Lippman was fearful of the role that media had to play and feared that the

mixture of media and human bias would result in a “pseudo-environment”

where people only confirm their own biases and championed the democratic

process of only the select elite in his book Public Opinion (1922). Dewey, on

the other hand, welcomed the ambiguity of knowledge but placed a greater

emphasis on everyday people’s obligations to contribute to democracy not

only as a realization of community but as an ethical obligation of all in his

book The Public and its Problems (1927). Whether one takes a Lippmannian

or Deweyian perspective on democracy, their debate brings to light to the

danger democracy is in due to media.

Scholars have debated on how social media has been used as a tool for

“information welfare” which may have contributed to democracy decay in

various states (Sloss, 2020). Scholars have also noted that through social

media platforms that false information and propaganda are often shared to
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reinforce previous biases (Cinelli et al., 2020). The idea of information spread

is not new, as there has been previous work to examine the spread of content

of media through the viewpoint as disease spread with compartmental

models, as studied in (Wang et al., 2014) and (Liu et al., 2017). Another thing

that we also consider is the manifestation of “echo chambers” (Flaxman et al.,

2016) on social media, where scholars typically define these environments

where individuals primarily interact with like-minded individuals. Some

scholars have argued these echo chambers have been caused by the spread of

misinformation in social media networks and online platforms particularly

(Flaxman et al., 2016), (Del Vicario et al., 2016), and some have proposed

models for echo chambers in social media (Baumann et al., 2020). These

social media networks, such as Twitter, Facebook, and Instagram, have a

graph-like structure from people following and being followed by others.

These networks can be modeled as a graph and provides a possibility in

which we may study the spread of information in social media networks.

Scholars believe the study of polarization to be of importance because

of its threat to U.S. democracy. Mann and Ornstein argue this in their book

(2012) and claims that polarization’s threat to U.S. democracy is due to the

dysfunction between the political parties. Some of the consequences includes

the rise of obstructionist tactics and abandonment of compromise between

the two parties. Because of obstructionist tactics and lack of compromise

between the political parties in the U.S., a deadlock in Congress has occurred,

effectively stalling progress and policy-making that could help alleviate

inequalities. Since there has been evidence suggesting that misinformation

causes polarization, my hope is that by studying misinformation in social

media networks, we may better understand the characteristics that allow

polarization to occur.

Various models of opinion dynamics have been proposed to understand

the spread of misinformation, such as the compartmental models mentioned

before (Wang et al., 2014) (Liu et al., 2017) and one through a network

perspective (Brooks and Porter, 2020)1. One way that we can further

extend this work is to consider the social phenomenon of homophily, which

sociologists have defined to be the tendency for people to associate with

other like minded people (McPherson et al., 2001). Here we incorporate the

idea of homophily to the Hegselmann–Krause model of opinion dynamics.

It is difficult to study these models analytically and one thing that has been

1I do not mean to imply that this is the only network model that has studied the spread of

misinformation.
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done in the past is study the effect of initial topologies of the graphs , which

has been examined for the Deffaunt–Weisbuch model(Meng et al., 2018).

Here we take inspiration and investigate how the initial topology of the

graph affects the "components" or manifestation of community structure

when our model is at convergence.

The structure of the thesis will be as follows. First we will explore

some basic models of opinion dynamics, done in Chapter 2. From there,

we present the rules of the adaptive Hegselmann–Krause model in Chapter

3. After introducing the model, we give the summary statistics in which

we evaluate the model, the results of the model, and the analysis itself in

Chapter 4. Finally, give the recap of the findings in the conclusion and we

comment on possible future work in Chapter 5.





Chapter 2

Background Information:
Various Models of Opinion
Dynamics

“Happiness is promoted by

associations of persons with

similar tastes and similar

opinions"

— Bertrand Russell

2.1 French–Degroot Model

Our first model of opinion dynamics will be one averaging the opinions of

agents in a population, also known as the French–Degroot Model (Degroot,

1974). Let 𝐺(𝑉, 𝐸) be a graph with the vertex set 𝑉 and edge set 𝐸. 𝑉

represents the 𝑁 people in the population and 𝐸 encodes the interactions of

the people in the population. That is, if two people interact with each other,

then there will be an edge between them. We associate an opinion to each

person (i.e., each node). We do this by assigning a value 𝑥𝑖 ∈ [0, 1] which

represents the opinion of node 𝑖. This value can be construed to measure

one’s political ideology—e.g., 0 may represent a person having the most

liberal ideology, 1 may represent a person having the most conservative

ideology and any value in between represents a mix of both ideologies.
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Each node’s opinion updates over time based on the interactions with

surrounding nodes. One way we can encode the interactions to update the

opinions is through the French–Degroot model, as this is one way to model

consensus-seeking behavior. For some node’s opinion 𝑥𝑖 we say its new

updated opinion may be represented as

𝑥𝑡+1

𝑖 = 𝑥𝑡𝑖 +
1

𝐼(𝑖) + 1

𝑁∑
𝑛=1

𝑥𝑡𝑗 (2.1)

where 𝐼(𝑖) represents the number of neighbors node 𝑖 has.

This averaged opinion model can be also understood as a heat equation

projected onto the graph. These models and their behavior are well under-

stood. Their behavior is beyond the scope of this paper but one may refer

to the following resources for their behavior (Lawler, 2010). We include an

example in Figure 2.1.1

2.2 The Hegselmann–Krause Model

One development of the model above was proposed by Rainer Hegsel-

mann and Ulrich Krauss (see 2002 and 2015). In this model, Hegselmann

and Krause sought to incorporate complexities in how opinions are shared.

In particular, they incorporate the notion of selective exposure, which is

the idea is that one only want to incorporate ideas that are “close" to you

or opinions that align closely with your opinion. This reflects a lack of

willingness of individuals to incorporate opinions that are widely dissonant

from their own.

This idea of being selective in incorporating one’s opinion to their has

developed into a model known as the bounded-confidence model. The idea

of “closeness" for opinions may be represented through a metric.2 Let the

opinions be the same as in the repeated opinion averaging model, that is

𝑥𝑖 ∈ [0, 1]. Then one sufficient metric in measuring the difference of opinions

can be through

𝑑(𝑥𝑖 , 𝑥 𝑗) = |𝑥𝑖 − 𝑥 𝑗 |.

1In the examples that follows, characters will be used to represent the agents. The

characters are: Hans the hedgehog, Tera the penguin, Pudgy the pug, Cat the cat, and Mudd

Squirrel the squirrel. No feelings were hurt in the production of this thesis.

2Usually these metrics satisfy the conditions that define metric spaces in Real Analysis.
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A. The initialization of the model

B. The opinion update of one agent

C. The opinion update of all agents

Figure 2.1 An example of the French–Degroot model of opinion dynamics. The

characters in this model are asked their opinions of acorns, where an opinion

of 0 represents absolute disgust with acorns and an opinion of 1 represents

utter infatuation with acorns. Any opinion in between 0 and 1 will represent a

combination of these views. In 2.1a we randomly assign each character an opinion

and have arrows representing the interactions they have with each other. In 2.1b

we display one node’s opinion update with the Hans the hedgehog. 2.1c gives

what the new opinions are for all characters for the first timestep.
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With this metric defined, we modify the opinion update rule of the

French–Degroot model by having the opinion update rule for node 𝑖 node

to be given by

𝑥𝑡+1

𝑖 = 𝑥𝑡𝑖 +
1

𝐼(𝑖) + 1

𝑁∑
𝑛=1

𝑥𝑡𝑗 · 𝑓 (𝑥
𝑡
𝑖 , 𝑥

𝑡
𝑗 ) (2.2)

where 𝑓 is an indicator function given by

𝑓 (𝑥𝑖 , 𝑥 𝑗) =
{

1 if

��𝑥𝑖 − 𝑥 𝑗 �� ≤ 𝐶

0 otherwise.

Here 𝐶 is called the confidence parameter. This parameter controls

how receptive an agent is to an opinion. For large values of 𝐶, agents are

more likely have a higher tolerance of taking in different opinions than

theirs while low values of 𝐶 will have agents be less receptive to different

opinions than theirs. This new opinion update, in Equation 2.2, gives us our

first bounded-confidence model of opinion dynamics, which is called the

Hegselmann–Krause (HK) model. One noteworthy thing we would like to

point out is this model of opinion dynamics has agents update their opinions

synchronously–that is, all the agents update their opinions at the same time.

While this seems like a benign feature, our next model shows that this

feature can lead to different quantitative results of other models of opinion

dynamics. In particular, one model of opinion dynamics that has opinions

update asynchronously is called the Deffaunt–Weisbuch model, which is a

stochastic process. Furthermore, the HK model not only incorporates the

idea of selective exposure but also consensus-seeking. The French–Degroot

model only considers consensus-seeking behavior.

We consider another example given in Figure 2.2. Consider the same

network as given in 2.1. Let us set the confidence parameter to be 𝐶 = 0.2.

We note that only one pair of agents exchange opinions as their difference is

0.1 < 𝐶 = 0.2. For all other agents in the graph, we do not update opinions.

With this bounded-confidence rule, we can already see that the end behavior

is different from the French-Degroot model after many time steps.

2.3 Deffaunt–Weisbuch Model

In the Deffaunt–Weisbuch (DW) model, randomly-selected neighboring

agents interact in a pairwise manner and make a compromise toward each
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Figure 2.2 In this example we use the same network as in 2.1. Here we let 𝐶 = 0.2

and we observe that only one node pair and influences each other’s opinions.

other’s opinion whenever their opinion difference is below a given threshold.

Consider a population of 𝑁 agents, who are connected to each other socially

via a network 𝐺(𝑉, 𝐸) with vertex set 𝑉 and edge set 𝐸. Let [0, 1] be the

opinion space. At time 𝑡, suppose that each agent 𝑖 holds a time-dependent

opinion 𝑥𝑖(𝑡) ∈ [0, 1]. Given an initial profile ®𝑥(0) ∈ [0, 1]𝑁 , a confidence

bound 𝐶 ∈ [0, 1], and a cautiousness parameter that we call the multiplier

𝑚 ∈ (0, 0.5], the Deffaunt–Weisbuch model is the random process defined

as follows: at time 𝑡, a pair of neighboring agents 𝑖 and 𝑗 ≠ 𝑖 are selected

uniformly at random and updated according to the equations

𝑥𝑖(𝑡 + 1) =
{
𝑥𝑖(𝑡) + 𝑚Δ𝑗 ,𝑖(𝑡) if

��Δ𝑖 , 𝑗(𝑡) �� < 𝐶,

𝑥𝑖(𝑡) otherwise,

(2.3)

𝑥 𝑗(𝑡 + 1) =
{
𝑥 𝑗(𝑡) + 𝑚Δ𝑖 , 𝑗(𝑡) if

��Δ𝑗 ,𝑖(𝑡)
�� < 𝐶,

𝑥 𝑗(𝑡) otherwise,

(2.4)

where Δ𝑗 ,𝑖(𝑡) = 𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡).
One thing that we would like to stress that this model has agents

update their opinions in a pairwise manner, which is not the same as
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updating opinions synchronously. Work has been done to explore the model

quantitatively through simulations ( 2018).

2.4 An Adaptive Deffaunt–Weisbuch Model

One thing that has not been considered in these models of opinion

dynamics is the fact that connections among agents may not stay static.

Agents often form new connections as well as dissolve connections with

other agents. This phenomenon is call homophily, or the tendency for like-

minded agents to form connections with other like-minded agents (2001).

Unchitta Kan, Mason A. Porter, and Michelle Feng implemented this idea of

homophily to the Deffaunt–Weisbuch model as an adaptive model and we

discuss their work below Kan et al. (2021).

Let 𝐺(𝑉, 𝐸) be a undirected graph. Let the opinion space be [0, 1] and

let each agent 𝑖 have an opinion 𝑥𝑖 ∈ [0, 1]. Let us define the discordant
edge set to be 𝐸

𝛽
𝑑
= {(𝑖 , 𝑗) ∈ 𝐸 : |𝑥𝑖 − 𝑥 𝑗 | > 𝛽} where we call 𝛽 the homophily

parameter. At each time step, two processes occur in sequence:

1. 𝑀 discordant edges are chosen uniformly at random to rewire—this is

called the rewiring rule.

2. 𝐾 edges are chosen uniformly at random to interact based off the

opinion update rules of DW in Equation 2.3 and Equation 2.4—this is

called the opinion update rule.

The rewiring is as follows:

1. 𝑀 edges are selected uniformly at random from 𝐸
𝛽
𝑑
.

2. Each edge (𝑖 , 𝑗) is dissolved, and either 𝑖 or 𝑗 is selected with randomly

from a uniform distribution to rewire to another node 𝑘.

3. 𝑘 is chosen from the probability distribution 𝑃(𝑖 → 𝑘) ∝ (1 − 𝑑(𝑥𝑖 , 𝑥𝑘)
where 𝑑(𝑥𝑖 , 𝑥𝑘) = |𝑥𝑖 − 𝑥𝑘 |.

4. Edges (𝑖 , 𝑘) or (𝑗 , 𝑘) is added to 𝐸𝑡+1
and 𝐸

𝛽
𝑑
(𝑡 + 1) if it discordant.

Afterwards, the model follows the opinion update rules of the classical

Deffaunt–Weisbuch model given by (2.3) and (2.4). An example is given in

Figure 2.3. In their explorations of the model, they found that the initial

graph topology and the homophily parameter 𝛽 played a big role in the
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convergence time of the model and community formation. In particular, low

values of 𝐶 and 𝛽 resulted in a large number of clusters while convergence

time was greatest for low values of 𝐶 and 𝛽. For more detail on the work,

see Kan et al. (2021).



12 Background Information: Various Models of Opinion Dynamics

A. The DWmodel dissolving the connection

Figure 2.3 An example of the adaptive DW model. The initial graph topologies

and opinions are the same as 2.1a. In 2.3a we have the the discordant set defined

with 𝛽 = .3 and it was chosen randomly that the connection with the squirrel and

hedgehog character that their connection would be dissolved. In 2.4a we establish

a new connection with the squirrel and penguin character.

A. The DWmodel reestablishing a new connection

Figure 2.4 An example of the adaptive DW model. The initial graph topologies

and opinions are the same as 2.1a. In 2.3a we have the the discordant set defined

with 𝛽 = .3 and it was chosen randomly that the connection with the squirrel and

hedgehog character that their connection would be dissolved. In 2.4a we establish

a new connection with the squirrel and penguin character.
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Inspired by Kan et al.’s work on the adaptive Deffaunt–Weisbuch model,

we seek to develop and analyze an adaptive version of the synchronously-

updating Hegselmann-Krause model. We discuss our model in the next

chapter.





Chapter 3

The Adaptive HK Model

In this chapter we provide our work in developing an adaptive Hegsel-

-mann–Krause model of opinion dynamics. Our work was heavily influenced

by Kan et al. (2021) in developing an adaptive DW model. In this section we

give the model and summary statistics used to evalaute the model.

3.1 The Adaptive HK Model

Let 𝐺(𝑉, 𝐸) be our graph with the vertex set 𝑉 and edge set 𝐸. Let

|𝑉 | = 𝑁 and let 𝐶 and 𝛽 be the confidence bound parameter and homophily

parameter as we described in (2.2) and (2.4) respectively. Furthermore, we

randomly assign each vertex 𝑖 an opinion as done in (2.1). Our model first

begins by considering all vertices in the graph. A vertex 𝑖 has a chance to

form an edge with vertex 𝑘, where this probability is given by

𝑃(𝑖 → 𝑘) = 1 − |𝑥𝑖 − 𝑥𝑘 |. (3.1)

We call the step above the rewire step. After considering all rewires, each

vertex 𝑖 then dissolves a connection with a neighboring vertex 𝑗 if

|𝑥𝑖 − 𝑥 𝑗 | > 𝛽. (3.2)

Finally, the next opinion at time step 𝑡 + 1 is given by (2.2). We note that we

propose two different types of update rules: (1) updating opinions first, then

rewiring and (2) rewiring first, then updating opinions. See Algorithm 1

and Algorithm 2—which correlate to the corresponding update rules—to

see the overview for each update model.

We provide two update different update rules for two reasons:
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1. We initially formulated the model rewiring first then updating first

because it was more convenient to code in MATLAB. We noted, however,

that this ordering was different from the adaptive Deffaunt-Weisbuch

model (Kan et al., 2021)—namely they updated first then rewired. We

wanted to see if there were any differences for the sake of it. However,

early simulations led us to surprising results, leading to the second

reason, namely that

2. We discovered our model was sensitive to updating or rewiring first

and we wanted to discover if any conditions changed these results and

document where these differences appeared.

We thus explore these two different type of update rules in this work.

For any simulation of updating, a criteria for convergence needs to be

given, barring any outstanding circumstances.1 We would like our model

to converge (or rather say agents have reached an opinion consensus of

sorts) and thus we say that our model has converged if for all nodes in the

graph the change in opinions between two time steps |𝑥𝑡
𝑖
− 𝑥𝑡+1

𝑖
| < 10

−4
and

no edges were dissolved nor established between the two time steps. The

convergence time of the model is the number of iterations the model takes

to converge per the rules above. We had a bailout time of 𝑡 = 500, that is,

we halt the model if the model did not converge after 500 time steps. We

picked the bailout time to be 𝑡 = 500 because early simulations of the model

resulted in convergence times of around 20 iterations.2

When the model has converged, there needs to be a way to analyze the

end results. There are various ways one can do so but we decide to do so

with summary statistics. They are

1. the convergence time

2. the number of “components”

3. the “difference” metric and

4. the scalar assortativity coefficient.

1For example, some models do not want a convergence critera exactly because they would

like to run forever.

2The choice of 𝑡 = 500 is going overboard but the author thought it would be better

safe than sorry in case there would be any simulation information could be missed or any

anomalies.
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Algorithm 1 Update, then rewire

Initialize graph topology

Randomly assign each node 𝑥𝑖 an opinion from [0, 1]
while model has not converged OR bailout time not exceeded do

for all vertices 𝑖 do
if |𝑥𝑖 − 𝑥 𝑗 | ≤ 𝐶 then

Update opinions via average (HK rule)

end if
if |𝑥𝑖 − 𝑥 𝑗 | > 𝛽 then

Dissolve the edge between vertex 𝑖 and vertex 𝑗

end if
Add edge from vertex 𝑖 to vertex 𝑘 with 𝑃(𝑖 → 𝑘) = 1 − |𝑥𝑖 − 𝑥𝑘 |

end for
end while

Algorithm 2 Rewire, then update

Initialize graph topology

Randomly assign each node 𝑥𝑖 an opinion from [0, 1]
while model has not converged OR bailout time not exceeded do

for all vertices 𝑖 do
if |𝑥𝑖 − 𝑥 𝑗 | > 𝛽 then

Dissolve the edge between vertex 𝑖 and vertex 𝑗

end if
Add edge from vertex 𝑖 to vertex 𝑘 with 𝑃(𝑖 → 𝑘) = 1 − |𝑥𝑖 − 𝑥𝑘 |
if |𝑥𝑖 − 𝑥 𝑗 | ≤ 𝐶 then

Update opinions via average (HK rule)

end if
end for

end while



18 The Adaptive HK Model

The convergence time is the simpliest statistic out of the four, giving

us the number of time steps in which the convergence criteria was met.

We explain what the other three statistics are in greater detail and the

interpretation.

3.2 Components in the graph & the graph Laplacian

Because of the evolving edges, we hypothesize that converged models

will have disjoint subgraphs that may manifest. These disjoint subgraphs

will be called the components of the graph. However, this begs the question

in how can study the number of components of a graph. Surprisingly, we

can do this through the study of zero eigenvectors of the graph Laplacian.

In this section, we give the background in how the number of components

of a graph is related to the graph Laplacian.

Let 𝐺 be a graph and let 𝐴 be the adjacency matrix of 𝐺 and let 𝐷 be a

diagonal matrix with the degree of node 𝑖 at entry 𝐷𝑖𝑖 . Then we define the

graph Laplacian to be

𝐿 = 𝐷 − 𝐴, (3.3)

where the elements of 𝐿 are given by

𝐿𝑖 , 𝑗 =


𝜅𝑖 if 𝑖 = 𝑗

−1 if 𝑖 ≠ 𝑗 and 𝑣𝑖 is adjacent to 𝑣 𝑗
0 otherwise,

(3.4)

where 𝜅𝑖 = deg(𝑣𝑖).
Another useful definition of the Laplacian is also given by

𝐿𝑖 𝑗 = 𝜅𝑖𝛿𝑖 𝑗 − 𝐴𝑖 𝑗 (3.5)

where 𝛿𝑖 𝑗 is the Kronecker delta and 𝐴𝑖 𝑗 is the entry of the adjacency matrix.

We derive the property that the number of zero eigenvalues of the graph

Laplacian is equal to number of components of a graph in the series of

lemmas below.

Lemma 3.2.1. The rows of the Laplacian sum to zero.

Proof. The elements of each row of the Laplacian is given by (3.4). For any

row 𝑖, −1 appears 𝜅𝑖 times because the adjacency matrix must have the 𝜅𝑖
1’s in each row by definition. Thus taking the sum of the elements of any

row yields 𝜅𝑖 − 𝜅𝑖 = 0. □
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Lemma 3.2.2. 𝐿 is real and symmetric.

Proof. Since 𝐿 is the sum of a diagonal matrix and an adjacency matrix, 𝐿 is

real and symmetric by construction. □

Lemma 3.2.3. The eigenvalues of 𝐿 are real and nonnegative.

Proof. From (3.2.2) since we know that 𝐿 is real and symmetric, this implies

that the eigenvalues of 𝐿 must be real. Thus all that is left to show is that the

eigenvalues are nonnegative.

Let 𝑣 be the eigenvalue of 𝐿 such that 𝑣 is normalized—that is 𝑣⊺𝑣 = 1.

Observe that by definition of the eigenvalue, we have

𝐿𝑣 = 𝜆𝑣.

Left multiplying both sides by 𝑣⊺ yields

𝑣⊺𝐿𝑣 = 𝑣⊺𝜆𝑣 (3.6)

= 𝜆. (3.7)

The goal of this proof is to show that the left hand side of (3.6) is

nonnegative and thus 𝜆 is consequently nonnegative as well.

Using the definition of (3.5) we may expand (3.6) to be

𝑣⊺𝐿𝑣 =
∑
𝑖

∑
𝑗

𝐿𝑖 𝑗𝑣𝑖𝑣 𝑗 . (3.8)

Substituting the definition of 𝐿 given by (3.5) we get∑
𝑖

∑
𝑗

𝐿𝑖 𝑗𝑣𝑖𝑣 𝑗 =
∑
𝑖

∑
𝑗

(
𝜅𝑖𝛿𝑖 𝑗 − 𝐴𝑖 𝑗

)
𝑣𝑖𝑣 𝑗 . (3.9)

Summing across all 𝑗’s, we note that we only get a contribution from the

Kronecker delta when 𝑗 = 𝑖. This simplifies our sum to be∑
𝑖

∑
𝑗

(
𝜅𝑖𝛿𝑖 𝑗 − 𝐴𝑖 𝑗

)
𝑣𝑖𝑣 𝑗 =

∑
𝑖

𝜅𝑖𝑣
2

𝑖 −
∑
𝑖

∑
𝑗

𝐴𝑖 𝑗𝑣𝑖𝑣 𝑗 .

We suspect that we would like to factor in the near future, so we split the

first term in half, write the sum indexed with 𝑗, and rewrite the sum as

∑
𝑖

𝜅𝑖𝑣
2

𝑖 −
∑
𝑖

∑
𝑗

𝐴𝑖 𝑗𝑣𝑖𝑣 𝑗 =
1

2

∑
𝑖

𝜅𝑖𝑣
2

𝑖 −
∑
𝑖

∑
𝑗

𝐴𝑖 𝑗𝑣𝑖𝑣 𝑗 +
1

2

∑
𝑗

𝜅 𝑗𝑣
2

𝑗 .
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Recall from (3.2.1) that the sums of any row equals 0 and that it was a direct

consequence because the sum of all the elements of all 𝐴 must equal 𝜅𝑖 . We

use this fact and substitute 𝜅𝑖 with 𝐴𝑖 𝑗 terms so that we have

1

2

∑
𝑖

∑
𝑗

𝐴𝑖 𝑗𝑣
2

𝑖 −
∑
𝑖

∑
𝑗

𝐴𝑖 𝑗𝑣𝑖𝑣 𝑗 +
1

2

∑
𝑗

∑
𝑖

𝐴 𝑗𝑖𝑣
2

𝑗 .

We factor out
1

2
and observe that because 𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 we may rewrite the sum

to be

1

2

∑
𝑖

∑
𝑗

𝐴𝑖 𝑗𝑣
2

𝑖 − 2𝐴𝑖 𝑗𝑣𝑖𝑣 𝑗 + 𝐴𝑖 𝑗𝑣2

𝑗 .

Consequently, this may be factored as

1

2

∑
𝑖

∑
𝑗

𝐴𝑖 𝑗(𝑣𝑖 − 𝑣 𝑗)2. (3.10)

We observe that 𝐴𝑖 𝑗 ≥ 0 since 𝐴 only has entries of 1’s and 0’s and that

(𝑣𝑖 − 𝑣 𝑗)2 ≥ 0 as well. Thus we see that

𝜆 =
1

2

∑
𝑖

∑
𝑗

𝐴𝑖 𝑗(𝑣𝑖 − 𝑣 𝑗)2 ≥ 0

which proves that eigenvalues of the Laplacian are nonnegative.

□

Lemma 3.2.4. 𝐿 always has at least one zero eigenvalue.

Proof. From (3.2.1) we know that∑
𝑗

𝐿𝑖 𝑗 = 0. (3.11)

Define 𝟙 = (1, . . . , 1). Then (3.11) implies that

𝐿𝟙 = 0 (3.12)

or that 𝐿 has an eigenvector 𝟙 which corresponds to a 0 eigenvalue. □

Lemma 3.2.5. 𝐿 is not invertible.

Proof. This follows directly from Lemma 3.2.4. □
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This finally leads us to the major result:

Theorem 3.2.6. 𝐿 has 𝑐 zero eigenvectors if and only if the corresponding graph
has 𝑐 components.

Proof. First, let us assume that we have a graph with 𝑐 components. Enu-

merate each component to have sizes 𝑛1 , 𝑛2 , . . . , 𝑛𝑐 respectively. Next, let

us construct the adjacency matrix have to have block diagonal matrices 𝑁𝑖

with size 𝑛𝑖 × 𝑛𝑖 corresponding to the adjacency matrix for component 𝑖 as

shown below: 

𝑁1 0 · · · 0 0

0 𝑁2 · · · 0 0

...
...

. . . 0 0

0 0 0 𝑁𝑐−1 0

0 0 0 0 𝑁𝑐


.

For each component, each one has an associated eigenvector of

𝟙𝑖 =
[
0 · · · 0 1 · · · 1︸     ︷︷     ︸

𝑛𝑖

0 · · · 0

]
.

From (3.2.4) we know that the eigenvectors we constructed correspond to a

zero eigenvalue as they correspond to each block diagonal. Since we have

𝑐 block diagonals, we therefore have 𝑐 linearly independent eigenvectors

associated with the eigenvalues 𝜆 = 0 as desired.

Finally, we consider the backwards direction. Assume to the contrary

that we do have 𝑐 linearly independent eigenvectors associated with the

eigenvalues 𝜆 = 0 but we only have 1 component. We are guaranteed one

zero eigenvector for our graph Laplacian, which we will call 𝑣′. Because

there is only one component of the graph, we know that from the proof of

(3.2.3), notably (3.10), that the graph Laplacian must satisfy the relationship∑
𝑖

∑
𝑗

𝐴𝑖 𝑗(𝑣𝑖 − 𝑣 𝑗)2 = 0.

This implies that 𝑣𝑖 = 𝑣 𝑗 for all elements. This relationship must also hold

for 𝑣′ as well. However, this means that all the elements in 𝑣′ are the same,

meaning that 𝑣′ is a scalar multiple of 𝟙. This cannot be because we cannot

have 𝑐 linearly independent eigenvectors, contrary to our assumption. Thus
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A. 𝐶 = 0.1 and 𝛽 = 0.1 B. 𝐶 = 0.1 and 𝛽 = 0.3

Figure 3.1 The converged model for 𝐶 = 0.1 and 𝛽 = 0.1 for 3.1a and 𝐶 = 0.1

and 𝛽 = 0.3 for 3.1b. Observe that the number of components would be calculated

to be 1 in either case but the distribution of opinions varies widely. Notice though

that if we were to use the difference metric that 𝑑 < 1 for 3.1a while 𝑑 = 1 for 3.1b.

it cannot be that we cannot only have 1 component. We may repeat this

argument for components less than 𝑐. For components more than 𝑐, say

𝑐 + 1, this will yield 𝑐 + 1 zero eigenvectors, which cannot be because this

implies that the geometric multiplicity is greater than algebraic multiplicity

(which is false). Thus, we must have exactly 𝑐 components when we have 𝑐

zero eigenvectors. □

The theorem above is profound as we may analyze the number of

components of a graph simply by computing the number of zero eigenvectors

of the graph Laplacian.

3.3 The Difference Metric

Early runs of the converged models suggested that the structure of

converged models sometime differed in that the number of components did

not align with the distribution of opinions. Consider two examples below,

one where 𝐶 = 0.1 and 𝛽 = 0.2 and one where 𝐶 = 0.3 and 𝛽 = 0.1.

Using the component metric, the structure of the graph would be

identified as the same because the number of components of the graph

would register as 1. However, the graph topologies are widely different, as

the former has an opinion distribution on containing many distinct values



The Difference Metric 23

from [0, 1] while the latter only has an opinion distribution 𝑥𝑖 ≈ 0.5 for

all 𝑖. The question then becomes how can we identify structures where

the opinions of the converged model do not necessarily correspond to the

number of components of the model. We do this by creating a new metric,

called the “difference metric.” Let

𝑑 =
the number of components

number of unique elements(⌊𝑥⌋) (3.13)

where 𝑥 is the vector of opinion distributions of the converged model. The

key insight is the denominator of the metric, where it measures the number

of unique elements in the opinion distribution. With our converged models,

there will be various opinion distributions such that they are sufficiently

distinct from other opinions. We round each element in 𝑥 to the nearest tenth

place such that they correspond an opinion “bin" of some sort. Counting

the number of unique elements of this rounded vector yields the number of

unique opinions in the converged model. We note that 𝑑 = 1 if and only if

there is a one-to-one correspondence between the number of components

and the number of unique elements in the graph. Consider 3.1b, with one

dominant opinion and one cluster in the converged graphs. It also may

suggest that if 𝑑 = 1 and the number of clusters is greater than one, that

each cluster contains a unique opinion from one another. For 𝑑 < 1, this

suggest that the number of unique elements is greater than the number of

components. One example is 3.1a where we see we have one cluster but a

uniform distribution of opinions throughout. This would correspond to a

difference metric of 𝑑 = 0.4.

One objection may be made is that the rounding of the number of

elements may miss opinion bins if the opinions are sufficiently close. We do

not have sufficient evidence to prove this, but in simulations that were run

because of the averaging of the opinions if the opinions were sufficiently close

to each other, we expect the opinions would converged to the average of those

opinions. Notice that in the examples above that the distinct opinion clusters

that formed were those whose difference were significant. Furthermore,

for the purpose of analyzing our model, we simply wanted a metric to

differentiate when we have one dominant cluster and one dominant opinion

from other forms, indicated above. The final metric, the scalar assortativity

coefficient, helps us distinguish more of the structure.
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3.4 Scalar Assortativity Coefficient

Our final metric that we use to evaluate converged models is called the

scalar assortativity coefficient, a metric of measuring how characteristics

align with the connectivity of a network, as explained in Newman (2018).

We say a network is assortative if the connectivity among agents correlate

with the studied characteristics. The scalar assortativity coefficient is given

by

𝑟 =

∑
𝑖 𝑗 𝐴

(
𝐴𝑖 𝑗 −

𝑘𝑖 𝑘 𝑗
2𝑚

)
𝑥𝑖𝑥 𝑗∑

𝑖 𝑗 𝐴
(
𝑘𝑖𝛿𝑖 𝑗 −

𝑘𝑖 𝑘 𝑗
2𝑚

) (3.14)

where 𝑥𝑖 is the opinion of node 𝑖 , 𝐴 represents the adjacency matrix of the

converged graph (and thus 𝐴𝑖 𝑗 = 1 if there is an edge between node 𝑖 and

𝑗 and 0 otherwise), 𝑘𝑖 is the degree of node 𝑖 and 𝑚 is the total number of

edges in the converged graph. We note that that 𝑟 ∈ [−1, 1]. What 𝑟 indicates

to us is if there is any correlation between the features of the graph and

the connectivity via the edges in the graph. When 𝑟 = 1, this tells us that

the graph is perfectly assortative and the the opinions perfectly align up

with the structure of the network. When 𝑟 = −1, this tells us there’s an

inverse relationship between the opinions of the graph and the structure of

the network, that is edges only occur between nodes of different opinions.

When 𝑟 = 0, this tells us that there is no correlation between the opinions of

the graph and the topology of the network. One may ask how one gets this

interpretation from the above formula. It may be helpful to think about the

formula in terms of expectation. The term

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗

gives us the actual number of opinions given the adjacency matrix while

𝑘𝑖𝑘 𝑗𝑥𝑖𝑥 𝑗

2𝑚

gives us the expected value of the degree distribution of the network.

Specifically this quantity gives the expected value of the opinion distribution

according to the degree distribution of the network. Thus when the expected

value exactly equals that of the true network topology, it is no better than

being connected randomly and thus there is no correlation between the
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opinions and the network topology. We note that the denominator serves as

a normalizing constant.





Chapter 4

Results of the Adaptive HK
Model

4.1 Analyzing the HK model

In this section we give the analysis of the converged model. For all

models given below we ran 100 trials and we averaged the summary statistics

accordingly for the figures. Furthermore, the number of nodes in the model

is 𝑁 = 100. We noted that there were two significant differences when (1)

updating, then rewiring versus (2) rewiring, then updating. As a result, we

give the analysis for each of these results below. For each ordering, there are

various initial topologies that we run the model under in order to understand

the effect of initial topologies on the summary statistics.

4.2 Graph topologies of interest

The initial graph topologies are interest are: the Erdős–Rényi model,

the configuration model, the complete graph, cycle, barbell, star, and square

lattice. The graphs, definitions, and visual examples can be found in Table

4.1.
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Network Definition Example

𝐺(𝑛, 𝑝) The Erdős–Rényi model is a random graph with

two parameters, 𝑝 and 𝑁, where 𝑝 represents

the probability there is an edge between given

any two nodes among the 𝑁 nodes.1

𝐶𝜆
𝑛 The configuration model is a graph that first

initializes stubs, which are nodes that have an

assigned degree drawn from a Poisson distribu-

tion. In our model, the Poisson distribution had

rate 𝜆 = 4. We then iterate through each stub

and assign edges to each available stub.

𝐾𝑛 A complete graph of size 𝑛 is defined to be a

graph where for any node they have a connection

to every other node in the graph, without any

self loops.

𝐶𝑛 We define a cycle of 𝑛 nodes to have each node

that have a degree of 2 with no self-loops.

𝐵𝑛 We define a barbell of nodes 𝑛 to contain two

subgraphs of 𝑛/2 complete graphs and one edge

that connects the subgraphs together.

𝑆𝑛 We define a star of 𝑛 nodes to be a 2-partite

graph where the partite sets are of size 1 and

𝑛 − 1 respectively.

𝑆𝑙 We define a square lattice based on its length 𝑙 ∈
ℤ≥0

and we say that the number of nodes in the

graph is 𝑛 = (𝑙+1)2.We define a square lattice to

be the graph with the node set {(𝑥, 𝑦) | 0 ≤ 𝑥, 𝑦 ≤
𝑙 ,with 𝑥, 𝑦 ∈ ℤ} and edges ((𝑥1 , 𝑦1), (𝑥2 , 𝑦2))
such that | |(𝑥1 − 𝑥2), (𝑦1 − 𝑦2)| |2 = 1.

Table 4.1 The graphs—and their corresponding definitions and examples—

that we study in the model. In the network examples, the solid black lines

denote deterministic edges while the red dashed lines denote probabilistic edges.

Inspiration for this table was drawn from (Meng et al., 2018).
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4.3 Update, then rewire

In this section, we run the version of the model where we update the

opinions of the agent first, then perform the rewire step. For a recap of the

overview of the algorithm, see Algorithm 1.

4.3.1 Convergence Time

The results summarizing the convergence time for various initial graph

topologies can be found in Figure 4.1. We observe that there was only
dependence on 𝐶. When 𝐶 = 0, this results in the quickest convergence

time. We believe this is the case because no opinions change in the first

two time steps as 𝐶 = 0 imposes that condition that no agents exchange

opinions among each other. Because no agents exchange opinions with each

other, the convergence criteria is met, resulting in a convergence time of

𝑡 = 2. Furthermore, we note that the slowest convergence time occurs for

0.2 ⪅ 𝐶 ⪅ 0.3—why could this be? We believe this is because we update

opinions first and the confidence parameter bound of 0.2 ⪅ 𝐶 ⪅ 0.3 is big

enough (but not too small!) such that the agents are receptive, not so much,

that they are pulled by extremes of opinions.2 Although the opinions are

drawn from a uniform distribution from the interval [0, 1], opinions are not

established to an average of the opinions. As the model progresses, agents

are being pulled fragmented opinions that slowly converge to either two

dominant opinions or one dominant opinion.3

For 𝐶 ≈ 0.2 there are two dominant opinions and for 𝐶 ≈ 0.3 there

is only one dominant opinion, as indicated by the difference metric of

approximately 0.5 versus the one approximately 1 in Figure 4.3. For 𝐶 ⪆ 0.3

the convergence time speeds up because agents are less receptive and more

welcoming to different opinions. This results in agents converging to the

dominant average opinion of 𝑥 ≈ 0.5 and no longer changing.

2You can imagine this being analogous to a really indecisive person trying to buy ice cream

and your friends are there trying to convince you to get the best ice cream. It, however, takes

a long time for you guys to decide on your ice cream because you are open to ideas slightly

different from yours, but your friends are so hungry that they are indecisive themselves, so

your ice cream opinion changes and your friends’ ice cream opinion changes as well, but not

too much that you are sure what ice cream you want. The next thing you know, an hour has

past, time that could have been reduced to five minutes if no one was indecisive and hungry.

The moral of the story is that going to Handels with hungry friends is a bad, bad idea.

3See section 4.3.2 and 4.3.3 on the rationale of why there are one and two dominant

opinions.
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Figure 4.1 Convergence times for the various graph topologies for 𝑛 = 100. The

deepest shade of blue represents the fastest convergence time of 𝑡 = 2 while the

yellow represents the slowest convergence time of 𝑡 = 7.
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Figure 4.2 Number of components for the various graph topologies for 𝑛 = 100.

The deepest shade of blue represents the smallest number of components of 𝑐 = 1

while the yellow represents the largest number of components of 𝑐 ≈ 2.
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Figure 4.3 The difference metric for various graph topologies for 𝑛 = 100. The

deepest shade of blue represents the smallest difference metric value of 𝑑 = 0.1

while the yellow represents the largest value of 𝑑 = 1.
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Figure 4.4 The scalar assortativity coefficient for 𝑛 = 100. The deepest shade

of blue represents the smallest scalar assortativity coefficient of 𝑟 = 0 while the

yellow represents the largest coefficient value of 𝑟 = 1.
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One last interesting phenomenon that occurs is when 𝐶 = 1, where the

convergence time speeds up again but not as fast as 𝐶 = 0. This is because

this 𝐶 = 1 is the French–Degroot model and agents update opinions based

only on the connectivity, not on receptivity and there is no struggle to be

pulled toward an average and hence no additional time is added for this

struggle.

4.3.2 Components

Convergence time, however, doesn’t inform us entirely of the story

behind this model. As we hinted above, there is a the emergence of

dominant opinions that affects convergence time. With the addition of

adaptive edges, the number of components changes—and indeed they do

with a dependence on both 𝐶 and 𝛽. The results summarizing the number

of components can be found in Figure 4.2. We observe that the initial graph

topologies do not affect the number of components when 𝑛 = 100. We first

note that for 𝐶 = 0 that the number of components is 𝑐 = 1 because only the

rewiring step only happens and the dissolution of edges is counteracted by

reestablishment of edges to like-minded agents. Because the opinions are

uniformly distributed and we reestablish edges probablistically, more often

than not we get 𝑐 = 1. We also note that the seemingly “interesting” part

seems to occur when 0.1 ⪅ 𝐶 ⪅ 0.2 and 0.1 ⪅ 𝛽 ⪅ 0.4—values that do not fall

within these range have their 1 component at convergence. The max number

of components is 𝑐 ≈ 2 for 𝐶 ≈ 0.1 and 𝛽 ≈ 0.1. For 𝐶 ≈ 0.2 and 0.1 ⪅ 𝛽 ⪅ 0.3

the number of components is 𝑐 ≈ 1.7. This suggests the emergence of two

components appear more often than one component in the graphs.4 For

𝐶 ≈ 0.1 and 𝛽 ≈ 0.2 note that there are some emergence of graphs with two

components, but the model is more likely to have one component. As 𝛽
increases, we note that the number of components decreases because agents

are less likely to exceed a bigger value of 𝛽 and thus less likely to dissolve

connections to form components.

4.3.3 Difference Metric

Could that be all that we can find out about the structure of the model

just from the number of components and the convergence time? Surely not!

Indeed, Figure 3.1 showed us that the number of components reveal one part

of story but not all—namely the distribution of opinions in a component. The

4Recall that components can only be integer values.
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difference metric gives us a proxy understanding of what the distribution

of opinions are and the results summarizing the difference metric found in

Figure 4.3. As with the prior summary statistics, we note that results stayed

invariant for different initial graphs and 𝑛 = 100 nodes. For 0 ⪅ 𝐶 ⪅ 0.1 the

difference metric was 0.1 ⪅ 𝑑 ⪅ 0.2, suggesting that the converged graph

maintained a distribution of approximately 10 opinion “bins” in the model.

Why is this so? For 𝐶 = 0 there are no opinions being exchanged and only the

rewiring step. Because no opinions are being exchanged, the convergence

criteria is met by 𝑡 = 2 yet we maintain the uniform distribution drawn from

[0, 1], which sorts the opinions into 10 “bins.” What is left to consider is the

component, which from 4.3.2 we know we only have 1 component for 𝐶 = 0.

This results in a difference metric of 𝑑 = 1

10
= 0.1.

A similar phenomena occurs for 𝐶 = 0.1. The confidence parameter

is not big enough to allow for the agent’s opinions to converge quickly to

a dominant opinion—rather the uniform distribution of the 10 “bins” is

maintained in the cluster. As indicated by the number of components, there

is a slight increase in the number of components for 𝛽 = 0.1, resulting in a

difference metric of approximately 𝑑 = 2

10
= 0.2.

For 𝐶 = 0.2 we notice that the distribution of opinions begins a phase

transition. The number of components for 𝛽 ⪅ 0.4 fluctuates between 1 and

2 with a difference metric of approximately 0.6. Using the difference metric

formula and a value of 1.7 for the number of components, we can conclude

that the average number of “bins” is approximately
1.7
0.6 ≈ 2.67.5 For 𝛽 ⪆ 0.4

we note that the difference metric is 𝑑 ≈ 0.3 with one component suggests

that there were 3 opinion “bins,” about the same for 𝛽 ⪅ 0.4. What we notice

is that the number of dominant opinions decreased and we see this trend

continuing as 𝐶 increases. For 𝐶 ⪆ 0.2 we note that we have a difference

metric of 𝑑 ≈ 1 with the number of components being 𝑐 = 1, implying that

the number of opinion “bins” or dominant opinions is 1.

Thus, we conclude that as 𝐶 increases that the number of “bins” or

dominant opinions in the converged graph decreases. This may be explained

intuitively that as agents are more receptive to different opinions that they

take in different opinions that propels them to a dominant averaged opinion.

5We do realize that we could have calculated the number of bins directly and used that as

a summary statistic itself. Hindsight is 20/20.
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4.3.4 Scalar Assortativity Coefficient

The final summary statistic we explore is the scalar assortativity coeffi-

cient. The results summarizing the scalar associativity coefficient are found

in Figure 4.4. We first noticed that for 0 ⪅ 𝐶 ⪅ 0.2 that there is a dependence

on 𝛽. For 𝛽 ⪅ 0.3 we note that the coefficient averages to 1, indicating that

graph is perfectly assortative with respect to opinions. This means that

agents are connected to other agents with similar opinions. When there are

more than one component, what may happen is that

1. The components either only contain a dominant opinion or

2. Agents are mostly connected to other agents with similar opinions and

are sparsely connected with agents with differing opinions.

We noticed that as 𝛽 increases for this 𝐶 range that the coefficient decreases to

0, which may suggest that agents are no longer being connected with agents

with similar opinions. An explanation for this is that the for 𝐶 ⪅ 0.2 that a

uniform distribution of opinions is maintained in the network throughout

and the establishment of connections via the rewiring rule connects agents

with different opinions than theirs. Indeed, the number of components

from Figure 4.3.2 suggests that there is only one component throughout.

Furthermore, as 𝛽 it becomes harder to dissolve connections, yet connections

are being made.6 Connections are thus more likely to be maintained and
new connections are being made as 𝛽 increases. There is then an excess of

edges that can result in the converged model being no better than being

connected randomly as the homophily principle is exerting less force onto

the model, explaining why the coefficient is decreasing.

What is perplexing is that for 𝐶 ⪆ 0.2 we see a coefficient of nearly 0. This

seemingly contradicts with our difference metric results as they established

that there was one dominant opinion in one cluster—how could it be that

our model is no better than being connected randomly?

The explanation is that

1. Our rewire rule establishes connections independent of the dissolution

of edges and

6We note that in the rewire rule, the dissolution of connections is independent from

the establishment of edges. That is, even if there is no dissolution of edges, edges can be

established. This is where our model differs from Kan et al. (2021) where their rewire step

rather has a dependency.
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2. The establishment of connections has probability 1 for agents with the

exact opinion.

1 implies that the establishment of edges always happens for each

iteration, which may result in an excess of edges. Furthermore, 2 implies that

if we have a component of agents with the same opinion that the component

will be a complete graph. The scalar assortativity coefficient measures

homophily in the sense of comparing the expected number of edges with

the given characteristics with the given degree distribution to what actually

occurs in the graph. When the degree distribution, however, is always that a

complete graph, the expected number of edges with the characterstics will

always be equivalent to a complete graph and thus these two values will be

equal—resulting in a coefficient of 0. Our metric then seems contradictory

because of our graphs degree distribution, but seeing this fact we realize

that this is simply a shortcoming of the metric and were it not for this, the

coefficient should be 1 to indicate that there is perfect assortativity occuring

for 𝐶 ⪆ 0.2, aligning with our intuitions.7

4.4 Rewire, then update

In this section, we run the version of the model where we rewire first

and then update the opinions of the agent. For a recap of the overview of

the algorithm, see Algorithm 2.

4.4.1 Convergence Time

We begin our analysis again looking at the convergence time for various

graph topologies. The results can be found in Figure 4.5. What strikes us

immediately is that the convergence time is almost the same as the “Update

first, then rewire” version of the model. We also note that the convergence

time is constant for different initial graph toplogies for 𝑛 = 100 nodes. While

there is now a dependency on both the 𝐶 and 𝛽 parameter, what we observe

is that the slowest and fastest convergence time mirrors what we investigated

in Section 4.3.2.

7We speculate that one may be able to revise the scalar assortativity coefficient to account

for extreme cases such as this but we leave this as an exercise for the reader.
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Figure 4.5 Convergence times for the various graph topologies for 𝑛 = 100. The

deepest shade of blue represents the fastest convergence time of 𝑡 = 2 while the

yellow represents the slowest convergence time of 𝑡 = 6.
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Figure 4.6 Number of components for the various graph topologies for 𝑛 = 100.

The deepest shade of blue represents the smallest number of components of 𝑐 = 1

while the yellow represents the largest number of components of 𝑐 ≈ 2.2.
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Figure 4.7 The difference metric for various graph topologies for 𝑛 = 100. The

deepest shade of blue represents the smallest difference metric value of 𝑑 = 0.1

while the yellow represents the largest value of 𝑑 = 1.
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Figure 4.8 The scalar assortativity coefficient for 𝑛 = 100. The deepest shade

of blue represents the smallest scalar assortativity coefficient of 𝑟 = 0 while the

yellow represents the largest coefficient value of 𝑟 = 1.
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In particular, we notice that

1. the slowest convergence for 0.2 ⪅ 𝐶 ⪅ 0.3 and 0.2 ⪅ 𝛽 ⪅ 0.3,

2. a speed up in convergence time for 𝐶 ⪆ 0.3 and 𝛽 ⪆ 0.3, and finally

3. one final increase in convergence time for 𝐶 = 𝛽 = 1.

There is thus a symmetric phenomenon occurring here—if we we to

take the upper half8 and reflect it across the diagonal line 𝐶 = 𝛽, we would

get the results in Figure 4.5. Why could this be?

Unfortunately, analysis with merely the convergence time is not suf-

ficient to explain the phenomena occurring here. Rather, supplementary

information from Sections 4.4.2, 4.4.3 and 4.4.4 is needed and we resume

analysis of the convergence time in Section 4.4.5.

4.4.2 Components

Left unsatisfied by the lack of explanation of the convergence time, we

look for the number of components to see what can potentially illuminate

this puzzle. What immediately strikes us from the results of the number

components from Figure 4.6 is that there is a column of components where

𝑐 > 1. Indeed, for 𝛽 ⪅ 0.2 and 𝐶 ⪆ 1 we observe that the average number of

components is 𝑐 > 1. More specifically for 𝛽 ≈ 0.1, we see that the number of

components is 𝑐 ≈ 2 while for 𝛽 ≈ 0.2 the number of components is 𝑐 ≈ 1.6.

We ask again, why could this be?

One thing to consider is that because we rewire first, we dissolve

connections that satisfy |𝑥𝑖 − 𝑥 𝑗 | > 𝛽. With 0.1 ⪅ 𝛽 ⪅ 0.2 this is fairly easy to

meet. We are left with components with agents that have opinions satisfying

|𝑥𝑖 − 𝑥 𝑗 | ⪅ 0.1 or |𝑥𝑖 − 𝑥 𝑗 | ⪅ 0.2 depending on our value of 𝛽. We then

reestablish connections agents probabilistically, with a greater chance of

having a connection with agents whose opinions are similar to their own.

What manifests are components or loosely connected communities that have

very similar opinions. When we update the opinions, we note that opinions

were going to be exchanged will have done so regardless of connections

that would be dissolved. Furthermore, the addition of edges with like-

minded agents accelerates and encourages formation of components of

similar opinions that are not connected with other components. If we look

8Or lower half if one prefers.
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at Figure 4.8 at the scalar assortativity coefficient, we see that the coefficient

suggests connections of perfect assortativity, suggesting that agents are

connected to agents with similar opinions to their own. We note that the

number of components decreases for 𝛽 ≈ 0.2 because less components will

form as it is harder to satisfy |𝑥𝑖 − 𝑥 𝑗 | > 0.2 than |𝑥𝑖 − 𝑥 𝑗 | > 0.1.

We note that it was interesting that for 𝛽 ⪆ 0.3 that the number of com-

ponents averaged to 𝑐 = 1, with the exception of 𝐶 ≈ 0.2. More specifically,

there is a recurrence of the number of components in Section 4.3.2 of the

“Update, then rewire” version for when we have 𝐶 ≈ 0.2 and 𝛽 ⪅ 0.4. Be-

cause 𝛽 ⪅ 0.2 has been considered, we would like to consider 0.2 ⪅ 𝛽 ⪅ 0.4.

However, this is analogous to the case of where 𝛽 > 𝐶. There are two cases

that are fundamental, we (1) rewire or (2) we don’t rewire. When we do

rewire, then |𝑥𝑖 − 𝑥 𝑗 | > 𝛽. Because we know that 𝛽 > 𝐶, this implies that

|𝑥𝑖 − 𝑥 𝑗 | > 𝐶 and that we do not dissolve update opinions. However, the

dissolving of connections is equivalent to not updating an opinion—when

connections are dissolved, they are turned “off” and the dissolving acts as a

phantom confidence bound in the sense of not allowing agents to exchange

opinions by virtue of the lack of connection between agents.9 Thus, if we are

to dissolve a connection, it substitutes the opinion update in the sense that it

prevents an update. If we are to not to dissolve, then the opinion update

happens normally.

In both cases, the opinion update occurs and acts synonymous as if the

“Update, then rewiring” step was occurring. Thus, this may explain why we

see approximately the same behavior of clusters for 𝐶 = 2 and 𝛽 ⪅ 0.4.

4.4.3 Difference Metric

Once more, we investigate the distribution of opinions in the converged

model via the difference metric. The results can be found in Figure 4.7 for

various graph topologies. We note that for 𝛽 ⪅ 0.2 that the difference metric

of 𝑟 ≈ 0.5 conveys this iteration of the model has components that contain

a mixture of opinions distributed throughout. From our investigation of

components we note that we have more than one component for 𝛽 ⪅ 0.2,

barring 𝐶 = 0. We can then expect some components that have a mixture of

opinions and some subgraphs that have only one opinion in the component.

For 𝛽 ⪆ 0.2 and 𝐶 ⪆ 0.2 we see a difference metric of 𝑟 ≈ 1. We also note

9The reestablishment of connections is the caveat here but we realize that if we did dissolve

and the connection was indeed reestablished, the condition of |𝑥𝑖 − 𝑥 𝑗 | > 𝐶 prevents the

update of the opinion again.
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that the number of components from Figure 4.6 suggest for this region we

have one component with one dominant opinion. For 𝐶 ⪅ 0.2 we note that

with one component throughout, we can expect a distribution of 10 “bins”

throughout the component.

The behavior of the difference metric is very similar to the “Update, then

rewire” version—what sets them apart is the fact that this version of the

model rewires first, and thus affects the behavior for 𝛽 ⪅ 0.2, creating the

characteristic column we see.

4.4.4 Scalar Assortativity Coefficient

The theme of augmenting the results from the previous version of the

model continues with scalar assortativity coefficient. Indeed, looking at

Figure 4.8 we see that the behavior is similar to that of Figure 4.4. For

0 ⪅ 𝐶 ⪅ 0.2 we note again the eventual decrease of the coefficient, explained

by the increased connectivity because of the rewiring aspect. For 𝛽 ⪅ 0.2

we see the emergence of the small fragmented components emerge and, as

mentioned previously, they tend to be connected with like-minded agents,

but loosely enough to allow for a mixture of opinions. For 𝛽 ⪆ 0.2 and

𝐶 ⪆ 0.3 we note the shortcomings of the scalar assortativity coefficient once

more—as the difference metric, as explained in Section 4.4.3 and seen in

Figure 4.7, demonstrates that there is one component throughout with one

dominant opinion. Thus, we can expect that the model has a complete graph

for these parameters.

4.4.5 Convergence Time (continued)

We resume again with our analysis of the convergence time, noting that

the observed characteristics of

1. the slowest convergence for 0.2 ⪅ 𝐶 ⪅ 0.3 and 0.2 ⪅ 𝛽 ⪅ 0.3,

2. a speed up in convergence time for 𝐶 ⪆ 0.3 and 𝛽 ⪆ 0.3, and finally

3. one final increase in convergence time for 𝐶 = 𝛽 = 1

can be explained by the fact that this version is an augmentation of the

previous model with a special behavior on 𝛽 ⪅ 0.2. The two thing we would

like to highlight is that for 𝛽 = 0 that we have a convergence time of 2,

which is rather quick. The explanation we have is that 𝛽 = 0 dissolves all
connections and hence no opinions are updated.
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4.5 Varying the number of nodes

In the previous sections, we noticed that the number initial graph

topologies seemed to not impact the summary statistics. A question then

arises: what other features of networks can we investigate? One answer is

the number of nodes. We run both versions of the model on the Erdős–Rényi

model with a fixed 𝑝 = 0.6 but varying the number of nodes, which we

do for 𝑛 = 10, 50, 100, 200, and 500. Results for the “Update, then rewire”

version can be found in Figure 4.9 while the “Rewire, then update” version

can be found in Figure 4.10—they are rather exciting.

4.5.1 Convergence Time

For the “Update, then rewire” version, we find that as the number of

nodes increase, the region in which we see the slowest convergence time

changes. We see that for 𝑛 = 10, 50, and 100 that the slowest convergence

time when 0.2 ⪅ 𝐶 ⪅ 0.4. For 𝑛 = 200 we see that this pattern persists

but we faintly see a region from 0.4 ⪅ 𝐶 ⪅ 0.9 where the convergence time

slows down. For 𝑛 = 500, we see the that the 0.2 ⪅ 𝐶 ⪅ 0.4 no longer

has the slowest convergence time but rather the region 0.4 ⪅ 𝐶 ⪅ 0.9 does.

We also note that the colorbar tells us that the convergence time speeds up

as 𝑛 increases, with the average convergence time around 3.5 for 𝑛 = 500

compared to slowest convergence time of 5 for 𝑛 = 10.

The “Rewire, then update” version also has the same behavior as the

previous version. Indeed, we see that the emergence of the 0.2 ⪅ 𝐶 ⪅ 0.4

and 0.2 ⪅ 𝛽 ⪅ 0.4 for 𝑛 = 100 that contains the slowest convergence time

changes to be 𝐶, 𝛽 ⪆ 0.4 when 𝑛 = 500. Furthermore, we also note that the

convergence time also speeds up as 𝑛 increases as well.

4.5.2 Number of Components

The region in which we see components whose averages are greater than

one remains approximately the same. Indeed, for the “Update, then rewire”

version we see 𝑐 > 1 for 𝐶 ≈ 0.2 and 𝛽 ⪅ 0.4; for the “Rewire, then update”

version we see 𝑐 > 1 for 𝐶 ≈ 0.2 and 𝛽 ⪅ 0.2. The noteworthy phenomenon

is that as 𝑛 increases, the number of components decrease regardless of the

rewiring rule. Indeed, for 𝑛 = 500 we see 𝑐 ≈ 1.05 for both versions. With

the convergence time, we can speculate that the large single component

forms faster as the number of nodes increases.
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Figure 4.9 Summary statistics for “Update, then rewire” version on 𝐺(𝑛, 𝑝 = 0.6)
for various values of 𝑛.
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Figure 4.10 Summary statistics for “Rewire, then update” version on 𝐺(𝑛, 𝑝 =

0.6) for various values of 𝑛.
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4.5.3 Difference Metric

From the number of components, we note that are more likely to have

one component as 𝑛 increases. That, however, doesn’t tell us the distribution

of opinions in the overall graph itself. Looking at the third row for both

version of the models, we find that the distribution of opinions increase.

Indeed, for 𝑛 = 10,we see primarily a difference metric of 𝑑 ≈ 1.However, for

𝑛 = 200 and 𝑛 = 500 we see the region for having 10 “bins” increase. For the

“Update, then rewire” version, we notice this region is 𝐶 ⪆ 0.4 while for the

“Rewire, then update” version, we notice that this region is 𝐶, 𝛽 ⪆ 0.4. Since

we know that for 𝑛 = 500 we often have one component in the converged

model, this indicates that the distribution of the opinions is affected by the

parameters. For the “Update, then rewire” version, since the model is only

dependent on 𝐶, we note that for 𝐶 ⪅ 0.4 we one big component but can

expect almost a uniform distribution of opinions in the component. For the

“Rewire, then update” version, we note that for 𝐶, 𝛽 ⪅ 0.4 we can expect one

large component but one dominant opinion throughout.

4.5.4 Scalar Assortativity Coefficient

Finally, the scalar assortativity coefficient can illuminate more of our

puzzle. Immediately looking at the 𝐶 ⪆ 0.4 and 𝐶, 𝛽 ⪆ 0.4 region for the

“Update, then rewire” and “Rewire, then update“ version respectively, we

see that we have a coefficient of 𝑟 ≈ 0. Our analysis previously tells us

this is not a suggestion that the converged model is not assortative with

respect to the opinions but rather these regions likely have a complete graph

structure because of a shortcoming of the coefficient. For 𝛽 ⪅ 0.2 for both

version of the models, we see that the coefficient is 𝑟 ≈ 1, suggesting that the

converged models are not as fully connected compared to a complete graph

and displays perfectly assortative behavior.

4.6 Varying 𝑝 in the Erdős–Rényi model

In this section, we considered what would happen if 𝑝 varied for a fixed

𝑛 = 100, and thus changing the initial connectivity among agents. 𝑝 = 0

represents a graph that has no connections while 𝑝 = 1 represents a complete

graph. The results for the “Update, then rewire” can be found in Figure 4.11

while the ”Rewire, then update” can be found in Figure 4.12. The results, to

put it bluntly, are unremarkable.
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Figure 4.11 Summary statistics for “Update, then rewire” version on 𝐺(𝑛 =

100, 𝑝) for various values of 𝑝.
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Figure 4.12 Summary statistics for “Rewire, then update” version on 𝐺(𝑛 =

100, 𝑝) for various values of 𝑝.
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As we investigated with previous graph topologies, we noted that

there were no changes in quantative behavior for the summary statistics

in our results as well. Indeed, looking at all the rows at each summary

statistic, we see no major changes in behavior, barring differences noise

via the probabilistic aspect of establishing connections. We thus conclude

that varying 𝑝 and the initial graph topology has no major impact on the

summary statistics and the model itself.





Chapter 5

Conclusion & Future Work

“All good things must come to

an end.”

5.1 Conclusion

Many things were learned from this thesis. We learned about various

models of opinion dynamics: the French–Degroot model, the Hegselmann–

Krause model, the Deffaunt–Weisbuch model, and an adaptive Deffaunt–

Weisbuch model from Kan et al. (2021). We took inspiration from Kan et al.

(2021)’s work and developed an adaptive Hegselmann–Krause model, using

summary statistics to understand the behavior of the model. We also further

developed two versions of the model, finding the importance of the order in

updating opinions and rewiring connections. In particular, our results are

as follows:

For the update, then rewire version of the model for fixed 𝑛 = 100 we

found that

(a) The slowest convergence time when 0.2 ⪅ 𝐶 ⪅ 0.4. When 𝐶 = 0 we

see the quickest convergence time of 𝑡 = 2. When 𝐶 = 1 we see the

convergence time speed up, but not as quick as when 𝐶 = 0.

(b) The number of components was mostly 𝑐 = 1. We found the average

number of components to be 𝑐 > 1 when 0.1 ⪅ 𝐶 ⪅ 0.2 and 𝐶 ⪅ 0.4.

The max average number of components was 𝑐 ≈ 2.
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(c) The difference metric was 𝑑 ≈ 0 for 𝐶 ⪅ 0.2, which indicates that the

distribution of opinions was similar to that of the initial distribution

of opinions. For 𝐶 ⪆ 0.2 the difference metric was 𝑑 ≈ 1, indicating

that we had a one-to-one ratio with the number of components and

the number of dominant opinions. With the component information,

we can conclude that it was likely that we have one large component

with one dominant opinion.

(d) The scalar assortativity coefficient shows us that for 𝐶 ⪅ 0.2 that there

was less assortative behavior with respect to agents’ opinions as 𝛽
increases. For 𝐶 ⪆ 0.2 we note that the coefficient of 𝑟 ≈ 0 conveys

that there is no assortativity happens but our difference metric tells

us otherwise. What is happening here is the emergence of complete

graph for the large component, which predicts 𝑟 ≈ 0. This extreme

cases tells us that the coefficient has a shortcoming when it comes to

complete graphs.

For the rewire, then update version of the model for fixed 𝑛 = 100 we

found that the results were analogous to what happened in the update, then
rewire case, but there was a particular phenomena for 𝛽 ⪅ 0.2. Because we

rewire first, the initial graph is fragmented and agents are likely to be rewired

to agents that share similar opinions with their own, creating components

of similar opinions. These characteristics manifest in the summary statistics

and can be thought as augmented to the results for the update, then rewire
version.

Next, we noted that there was a significant behavioral change when

the number of nodes changes. In particular, as 𝑛 increases the general

structure of the converged graph tended to a singule component, whose

opinion distribution varied depending on the version of the model and

the parameters 𝐶 and 𝛽. Finally, simulations on the Erdős–Rényi graph

reaffirmed the fact that the initial graph topology seemingly did not play a

huge rule for the summary statistics for the fixed 𝑛 = 100.

5.2 Future Work

Our work hopefully illuminates exciting inquires one can take up. With

our findings we found shortcomings as well. As mentioned in (d), we found

the scalar assortativity coefficient’s limit when exposed to a complete graph

with similar characteristics throughout—rather than indicating a perfectly
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assortative graph it indicates a graph that was no better than connected

randomly with respect to the opinions. Indeed, this was based on the

calculation of comparing the expected edges with the opinions with respect

to the degree distribution and to the actual connectivity with the opinions.

Some future work may include accounting for this extreme and developing

a new version of the coefficient.

Further potential future work may include expanding upon the proposed

model or changing the assumptions with it. Our work was based on the

social phenomenon of homophily but other rewiring rules modeling other

social phenomena, such as replicating the mechanism of retweeting on

Twitter, could be explored. Furthermore, our rewiring rule did not separate

the dissolving of edges with the reestablishment of edges—rather they we

independent. This feature explained the phenomenon of the complete graph

component with one dominant opinion throughout. Work can be done to

have the rewire rule have the two aspects be augmented with one another.

One may also explore a different convergence criteria for this model

as well. Recall that we said our model converged if the difference between

the opinion in the prior time step did not change significantly, given by

𝜀 = 10
−4. For an adaptive model, however, it may be desirable instead to

impose a convergence criteria based on the connections—that is let the model

converge in the connections among agents.

After further developing and studying this model more in-depth, one

could also extend this model to include Zinn-Brooks and Porter’s work on

studying media influence in online social networks (Brooks and Porter, 2020).

In particular, we are excited to consider time-evolving edges and see how

our model predicts polarization and connections between these polarized

communities. We also would like to further develop this model to be a

multi-layer graph with time dependent connections (Kivela et al., 2014). In

particular, it would be interesting to consider one layer representing social

media interactions and one layer representing real world interactions.
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