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1. Introduction

The topology most often used on a totally ordered group (G, <) is the interval
topology. There are usually many ways to totally order GxG (e.g., the lexicographic
order) but the interval topology induced by such a total order is rarely used since
the product topology has obvious advantages. Let R( +) denote the real line with
its usual order and Q( + ) the subgroup of rational numbers. There is an order on Q x Q
whose associated interval topology is the product topology, but no such order on
IR x IR can be found. In this paper we characterize those pairs G, H of totally ordered
groups such that there is a total order on G x H for which the interval topology is the
product topology.

Throughout (G, <G) will denote a group G with identity element e that is totally
ordered by a relation < G (abbreviated by < whenever the group G is clear from the
context) compatible with the multiplication of G. More precisely, if we let P(G) =
{geG: e <Gg}, we require that

(a) P(G)P(G)^P(G)
(/?) P(G) n P(G)~1 = 0
(y) P(G)g = gP(G) for each geG, and
(S) P(G) U P(G)~1 U {e} = G.

Also a <Gb if and only if a~lb or ab~* is in P(G). Any such order < G is called a
group order on G. If a subset P of G satisfies (a), (ft), (y) and (8), and we let a <Gb
mean ar^b e P, then < G is a group order on G for which P = P(G). See [3] or [1], where
the above is formulated in terms of G+ = P(G) U {e}.

Suppose < G is a group order on G and < H is a group order on H. A group order
< on G x H such that (e, e) < (a, e) if and only if e < G a and (e, e) < (e, b) if and only
if e < H b is said to extend the orders of G and H. Note that if < extends the orders
on G and H, then P(G)xP(H) £ P(GxH). If <G is a group order on G, then the
collection of all open intervals <gx, </2> of G where gx < g2 are in G, forms a base for
a topology T(<G) = r(G), called the interval topology on G. Note that the symmetric
open intervals {(jg~l, g}: e < g}, form a base of neighbourhoods of e, and that the map
(a, b) ->a6-1 on G x G to G is continuous, whence (G, T( < G)) is a topological group. See
[7], chapter VII.
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If the group order < on G x H extends the orders of 0 and H, and if the restriction
of the interval topology r( <) on Gx H to G x {e} is homeomorphic to the topology
T( < G) under the map (g, e)->g, we say that < is topologically compatible with the order
of G. Topological compatibility with the order of H is denned similarly.

In this paper, we determine precisely when the product of two totally ordered
groups admits an order topologically compatible with each of the factors.

A totally ordered group (G, <) is said to be densely ordered if gx < g2 in G implies
there is a g3 e G such that g1 < g3 < g2. Since g1 < g2 if and only if e < g^1 gt, it is clear
that (G, <) is densely ordered if and only if P(G) has no least element. If (G, <) is
not densely ordered, it is said to be discretely ordered. It is easy to show that T(G)
is the discrete topology if and only if the order on G is discrete.

It turns out that if either G or H is discretely ordered, then GxH admits an order
topologically compatible with the orders of G and H. If the orderings on G and H
are dense and archimedean, then we may identify G and H with subgroups of the
additive group U(+) of real numbers. We show below that under these hypotheses,
GxH admits an order topologically compatible with the orders of G and H if and
only if not every real number is of the form g/h, where g e G and 0 =t= h e H. We use
this latter result to characterize, more generally, those densely ordered groups G, H
for which GxH admits an order topologically compatible with the orders of G and
H, but this result is too complicated to state at this point; see Section 4.

2. Preliminary results and the hiding maps

If every element of the set A is also in the set B, we write A £ B, and if the inclusion
is proper we write A a B.

The lexicographic order on G x H with G dominating is the order < such that
(<7i,̂ i) < (02 >̂ 2) if 9i <G9'2 o r 9\ = 9 2 a n d \ <HK- The lexicographic order on GxH
with H dominating is defined similarly. Note that each of these orders extends the
orders on G and H.

2 1 . PROPOSITION. If (G, <G) and (H, <H) are totally ordered groups, one of which
is discretely ordered, then GxH admits an order < topologically compatible with the
orders of G and H.

Proof. Suppose < is the lexicographic order on GxH with G dominating, where
< G is discrete. If I is the least element of P(G), then (e, e) is the only element of the
open interval <(Z~\ e), (I, e)> of (Gx{e}, <). So < induces the discrete topology on
G x {e}. Since (I'1,1} = {e}, < G also induces the discrete topology on G. Thus T( < G)
is homeomorphic to T( <) restricted to G x {e}. Since {e} x H is a convex subgroup of
GxH, the order <' obtained by restricting < to {e}xH is such that ({e} x H, <')
and (//, < H) are order isomorphic. Hence < is topologically compatible with the
orders of G and H. In the case when, instead, < H is discrete, the proof is similar.

Dense orders on groups are characterized as follows.
(G, <) is densely ordered if and only if [P{G)f = P(G). (1)

To see this, assume first that P2 = P and geP. Then g = pq for some p,qeP. Since
e < p, we have e < q < pq = g, so P has no least element and < is a dense order on
G. Conversely, if P has no least element and geP, there is an feP such that / < g.
Then e <f~*g and g =f(f-1g)eP2. So P = P2 and (1) holds.
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An upper filter in a densely ordered group (0, <) is a subset U of 0 such that
UP = U. Thus 0 and G are always upper filters in G, as is gP for each geG by (1).
Let °U{G) denote the set of upper filters on G.

It is an exercise to verify
g1 < g2 if and only if g2 e g1 P. (2)

Hence If U ^aU(G),gxeU and g1 < g2 then g2eU. (3)

An upper filter of the form gP for some g e P is called a principal upper filter. Since
each non-empty Ueall(G) is the union of principal upper filters,

Each UetftiG) is open in the interval topology of G. (4)

If (G, <) is densely ordered, then the set of principal upper filters of G is dense in
%(G) in the following sense.

2-2. LEMMA. Suppose (G, <) is densely ordered, and U and V are distinct elements
of<%(G). Then

(a) U c V or V <= U, and
(b) there is a principal upper filter of G strictly between U and V.

Proof, (a) Either U <=. V or there is a ue U\V. By (3), if the latter holds, we cannot
have u ^ v for any veV. So u < v for each ve V, and hence V c: UP ^ UP = U.
Hence V cz U since V =t= U.

(b) Suppose F e d and geU\V. Then gP c UP = U and geU\gP. Thus
V c gP c Jjm If V 4= grP, we are done; otherwise, since G is densely ordered, gP U {g}
is not open. So there is an me U\(gP U {g})- Thus raP <S U,me U\mP, and m < g. So
<7 e raP and hence mP lies properly between V and U since g 6 raP\ V.

Our last lemma showed that %(G) is totally ordered under set inclusion. Although
it is an abuse of notation, we let (%(G), <G) denote aU{G) under the ordering defined
by letting U < G V mean V cr U.

2-3. PKOPOSITION. If (G, <) is a totally ordered group, then under the operation of set
multiplication (^(G), <G)isa totally ordered monoid with identity element eP. Moreover,
the map a: G-* °U(G) given by a(g) = gP is an order-preserving monomorphism of G onto
a dense subset of aU{G).

Proof. If U and V are in <%(G), then (UV)P = U(VP) = UV, and (eP)U
= PU = UP = U by (y) of Section 1. So <%(G) is a monoid. Clearly U c JJ' and
F c f imply UV c U'V, whence °U{G) is a totally ordered monoid.

If g1 < g2 in G, then g2€g1Pby (2), whence by (1), g2P ^ g1P
2 = g^^P, so ex. is order

preserving. But g2$g2P, so g2P =t= g1P and a is a monomorphism. It is immediate
from Lemma 2-2(6) that a[G] is dense in aU{G).

The following characterization of topological compatibility is the major tool in
solving the problem posed in the introduction.

2-4. THEOREM. Suppose < is a group order on the product GxH of two densely
ordered groups that extends the orders of G and H. Then:

(a) T(G) and T(H) are weaker than the order topologies induced on Gx {e} and {e} x H
by < ;

(b) < is topologically compatible with the orders on G and H if and only if, whenever
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(g,h)eP(OxH), there are g*eG and h*eH such that (e, e) < {g*, e) < (g, h) and
(e,e)<(e,h*)<(g,h);

(c) If < is topologically compatible with the orders of 0 and H, then G and H are totally
disconnected.

Proof, (a) If gx < g2 in G, then (gv g2) x {e} = ((gv e), (g2, e)> 0 (Gx {e}), so r(G) is
weaker than the order topology induced onGx {e} by <. The proof for T(H) is similar.

(b) Suppose < is topologically compatible with the orders of G and H and
(e, e) < (g,h). Since (e, e) is in the open interval {(g'1, h~l), (g, h}}, the topological
compatibility implies there are g*,g* in G such that (e, e)e(tg*,g%} x{e}
c <(gr~\ h~l), (g, h)}. Thus in particular, (e, e) < (g*,e) < (g, h). Since < G is a
dense order, there is a g* e G such that e < g* < g*. Then (g*, e) e < {g~l, h"1), (g, h)}.
Thus (e,e) < (g*,e) < (g,h). An element h*eH such that (e,e) < (e,h*) < (g,h)
can be produced similarly.

Suppose next that whenever (e, e) < (g, h), there are g*eG, h*eH satisfying the
inequalities in (b), and suppose (e,e)e^(g1,h1),(g2,h2)}. By assumption, there is a
g*sG such that (e,e) < (g*,e) < (g2,h2) and a g*^G such that (e,e)
<tof~1,e)<tor1»Ar1)- T h u s (e,e)e<(0*,e), (g*,e)} <r <(^1,A1), (ft.A,)). So the
restriction of T ( < ) to Gx{e} is weaker than T(G). Similarly, it is weaker than T(H).
Thus, by (a), < is topologically compatible with the orders on G and H.

(c) It suffices to show that the component of e in each of G and H is {e}. If e < G g,
then there is an heH such that (e,e) < (e,h) < (g,e). Thus ee{keG: (k,e) < (e,h)}
and ge{keG: (k,e) > (e, h)}, so there is a partition of G into disjoint open sets, one
containing e and the other g. Thus the complement Koie contains no positive element
and it follows that K = {e}. Similarly, the component of e in H is {e}.

For any set A, let exp^4 denote the family of all subsets of A.

2-5. DEFINITION. Suppose (G, <G) and (H, <H) are densely ordered groups and <
is an order on GxH that extends the orders on G and H. For each aeG, let
<j>{a) = {heH: (e, e) < (a,h)}. Then <j>: G^-expH is called the map that hides G from H
in exp H, or the hiding map.

Ifg,ae G, we abbreviate a~rga by ga. The terminology ' hiding map' will be justified
in part (c) of the following lemma.

2-6. LEMMA. Suppose < is a group order on the product GxH of two densely ordered
groups. Then:

(a) If < extends the orders of G and H, and <f>: G^-exjiH is the hiding map, then for
a,beG and heH

(i) ^(a"1) U ^(a)'1 = H if a 4= e, and <p(e) U ^(e)'1 = H\{e},
(ii) 0(a-1) fl <l>(a)~l is empty,

(iii) 0(a)0(6)£0(a6),
( i v ) <f>(a)h = 4>(a) = <}>{ab),
(v) fa) = P(H),

(vi) aeP(G) implies ee<f>(a), and
(vii) a <Gb implies <f>(a) £ <j)(b);
(b) If <j>:G-+eyi\>H satisfies (i) through (vi), and we let P(GxH) =

{(a,h)eGxH: he<f>(a)}, then P(GxH) defines a group order < on GxH that extends
the orders of G and H;
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(c) / / < is topologically compatible with the orders of 0 and H, then (j>(g) is never a
principal upper filter unless g = e. That is, <p[G] n oc[H] = {P(H)}.

Proof, (a) I t is clear from the definition of <j> that (j>(e) = P(H), so (v) holds. If a 4= e,
then (e,e) < (a"1, A) or (e, e) < (a"1,^)"1 = (a, A"1), so Ae^a"1) U^a)"1. Since
<j)(e) = P(H), </>(e) U (pie)'1 = H\{e), and (i) holds.

If Ae^fa"1) f| 0(«)~\ then (e, e) < (a"1, h) and (e, e) < (a, A"1) = (a"1,^)"1, contrary
to (/?) of Section 1. So (ii) holds.

If he<[>(a) and je<f>(b), then (e,e)<(a, A) and (e,e) <(&,_?'), whence (e,e)<
(a,h)(b,j) = (a&,/ij). Thus (iii) holds.

To see (iv), note that for keG, ke<p(a) if and only if (e,e) < (a,k) if and only if
(e,e) < (a,)fc)<6-'1"1). This is (y) of Section 1. Thus

</>(a) = 0(a6)ft-. (5)

Letting successively b = e and A = e in (5) yields (iv).
Since the order oiGxH extends the order of H, </>(e) = P(H), and (vi) restates the

assumption that < extends the order of G. So (vi) holds.
If a <Gb, then (a,e) < (b,e) since < extends the order of G. So if he<j>{a), then

(e,e) < (a,h) = (a,e)(e,h) < (b,e)(e,h) = (b,h) whence he<f)(b). Thus (vii) holds and
the proof of (a) is complete.

(b) To show that < is a group order, we will verify that (a), (/?), (y) and (S) of
Section 1 hold. Suppose (a,h) and (b,k) are in P(GxH)\ then he<f>(a) and ke<j)(b),
so by (iii), hke<j>(a)<j>{b) c 0(a6). Thus (ab,hk)eP(Gx H) and (a) holds.

If (a,h)eP(GxH), then he<f>(a), so A^e^a)"1. If also (a,h)eP(GxH)-\ then
(a~1,A~1)eP(Grx^), whence A^e^a" 1 ) as well as ^(a)"1, contrary to (ii). This
contradiction establishes (/?).

That (y) holds follows from (5), and that (i) implies (S) is an exercise.
By (v), e <Hh if and only if he<f>{e) if and only if (e,e) < (e, h). So < extends the

order of H. Also, if e <Ga, then ee<j>(a) by (vi), so (e, e) < (a, e). Thus < extends the
order of G as well as that of H. This completes the proof of (b).

(c) By (vi) and the definition of a, <f>(e) = a(e) = eP(#) = .P(#), so
P(H)e<f>[G] fl a[#]. Clearly A is the greatest lower bound of a(h) = hP{H), while,
as will be shown next, <j>(g) fails to have a greatest lower bound if gr 4= e.

For, \ihe<j>(g), then (e, e) < (g,h), and by Theorem 2-4(6), there is an h*eH such
that (e,e)<(e,A*)<(0,A). Thus (e,e)<(g,h(h*)^)- So h(h*)~le(/>(g), and
A(A*)-1 < A. Thus A is not a lower bound of (j>(g). If h$<f>(g), then, since <7 4= e,
(e, e) < (g,h)~x = (g'1,^1). Using Theorem 2-4(fe) again, there is an h*eH such that
(e,e)<(e,h*)<(g-\h-1). So (e,e) < (g-\h^h*)-1) = fa,A*A)-*. Thus h*h$<j>(g).
Also A < A*A, showing h is not a greatest lower bound for <j>(g). Thus no
heH can be a greatest lower bound for 4>(g).

Hence (c) holds and the proof of the lemma is complete.
This next example illustrates that the hiding map may assume fl or 0 as values,

that not every value need be open, and that (j>(a)(j>(b) need not equal (j>(ab) even if
both (j>(a) and <j)(b) are non-empty.

2-7. Example. Let IR1( +) and R2( +) denote two copies of the additive group of real
numbers with its usual order, and let < denote the lexicographic order of IRj x 0?2

with IRj dominating (clearly < extends the orders of IRj and 1R2). For each ge Uv let
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<j>i(9) = {heU2: (0,0) < (g,h)}, so fa is the hiding map of Kx in explR2. Routine
calculations show that Q^g) = U2 if g > 0, fa(0) = P(U2), and fi^g) = 0 if g < 0.

Let 02: fRg-^expO?! denote the hiding map of U2 into expfRj, so for each heU2,
<t>z{h) = {geU1: (0,0) < (g, h)}. I t is easy to see that <f>2(h) = G+ = P(G) U {0} if h > 0,
and <j>2(h) = P(G) if A ^ 0. In particular, 02(A) fails to be open if h > 0. Moreover,
0 2 ( - l ) + 02(2) = P(G) + G+ = P(£) c(?+ = 0,(1).

Much more can be said about the hiding map when the order on GxH is
topologically compatible with the order of each of its factors.

2-8. THEOREM. / / (G, <G) and (H, <H) are densely ordered groups, < is an order on
GxH that extends the orders on G and H, and <f>: (?-> expHis the hiding map, then the
following are equivalent:

(i) < is topologically compatible with the orders on G and H;
(ii) <j>\G\ <=• ^1{H) and <p is continuous with respect to the interval topologies on G and

Moreover, if (ii) holds, then there is a g + e in G such that <j>{g) is a non-empty proper
subset of H.

Proof. Suppose (ii) holds and (e,e) < (g,h). Elements g* and h* satisfying the
conditions of Theorem 2-4(6) will be produced. Since (j>(g)e%(H), he<f>(g) — <f>(g)P,
so h = kh* for some Jce<fi(g) and h*sP. Hence (e,e) < (e,h*) < (g,k)(e,h*) = (g,h).
By the continuity of <f>, since hP <= </>{g)P = <j>(g), there is a neighbourhood <gr

1,g
r
2)

of g in G such that if g1 < g' < g2, then <f>(g') => hP. Thus qe<f>(g') for some q ^Hh.
If q = h, then he<f>(g'). If q<Hh, then h = qp for some peP. Hence
heqP £ <t>(g')P = <fi(g'), and we have he<p(g'). Since <G is a dense order, there
is a keG such that gx < Gk < Gg. Thus e <GgrA;~1 = g*; and (e,e) < (k,h) whence
(e,e) < (g*,e) < (g*,e)(k,h) — (g,h). So, by Theorem 2-4(6), < is topologically
compatible with the orders of G and H.

In the proof of 2-6 (c), it was shown that <j>(g)etfl(H).
To establish the continuity of <f>, we begin by showing:

if (e,e)e((g,h1),(g,h2)y, then there are gltg2 in G such that

geig^g^ and if ke^g^g^, then (e,e)e<(fc, AJ, (k,h2)). (6)

To establish (6), we begin by using Theorem 2-4(6) to find g* < g* in G such
that (gr.AJ < (£*,e) < (e,e) < (g*,e) < {g,h2). Let gl = gg*'1 and g2 = ggf'1. Since
9? < Ge<a9t' 91 = 99^ <G9<G99t~l = 92- I f 9i<Gk<G9v then (fc,A1)<
(02A) = (9^hi)(9t~^e) < (e,e) < (g,K){9l~\e) = (9i,h) < (M 2 ) , and (6) holds.

Now suppose <C/1; C/2> is a neighbourhood of <f>{g) in °U{li); that is suppose
U2 c <f>(g) a Uv We wish to find a neighbourhood (g^g^ of g in G such that if
gx<k<g2, then <p(k)e<(Ul,U2y. Choose h2e<f>(g)\U2, whence (e,e) < (g,h2). If
h[e £̂ i\?H<7), then (g,h[) ^ (e, e). If g 4= e, then (g,^) < (e,e). If g = e, there is an
reU1= U1P such that r^He. Then r = hlp for some h^eU and peP, and
(gf,hx) < (e,e) < (g,h2). By (6), there is a neighbourhood (gx,g2y of g such that if
gx < k < g2, then (A,AJ < (e,e) < (k,h2); that is, h^U^^k) and h2e<j>(k)\U2,
whence (̂fc) e <( £/1: f/2>. Thus ^ is continuous at g, and the equivalence of (i) and (ii)
is established.

If (ii) holds and heP(H), then h'1 <He <Hh, whence hP c eP = <f>(e) c ^ P .
Now e = h~xheh~xP and e^eP, so 0(e) =)= A-1P. Also, since he<f>(e) and h$hP, the
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latter is included properly in <f>(e). Hence <p(e)e(_h~1P, hP}, which we call U. Since <f>
is continuous, there is a ke G such that V = (k~l,k} is a neighbourhood of e&ndge V
implies <f>(g) e U. Clearly <j>(g) is a non-empty proper subset of H and since < G is a
dense order, we may assume that g 4= e. This completes the proof of Theorem 2-8.

3. Topologically compatible pairs; the Archimedean case

Recall that a totally ordered group G is said to be archimedean if a e P(G) implies
{an: n = 1,2,3,...} has no upper bound.

3-1. PROPOSITION. If < is an order on the product GxH of two densely ordered
archimedean groups that is topologically compatible with the orders of G and H, and if
<l>: G^-%(H) is the hiding map, then <f> is a monomorphism of G onto a subgroup oftfl(H).

Proof. By Theorem 2- 8, <p[G\ <= ^(H), and by Lemma 2- 6 (a) and Theorem 2- 8 again,
there is an aeG such that both <j>(a) and ^(a"1) are non-empty proper subsets of H.
Choose he^a"1) <j>(a). It will be shown by induction that

if <f>(a) and ^(o"1) are non-empty, then for each positive integer ra,
there is a j)6{l(a"1)^(a) such that pm ^ h. (7)

Note first that ^(a'1) <f>(a) c 0(e) = P(H) by Lemma 2-6 (a).
If m = 1, take p = h.
Next assume that (7) holds for the positive integer TO; more precisely pick j e (f>(a~1),

ke$(a) such that (jk)m s$ h. Then jkeP(H), and by (1), there are p,qeP(H) such
that^'A = pq. If also p ^ q then £>2 ̂ jk. Since H is archimedean, there is a positive
integer s such that jk^Hps, whence psk~x ^ j = ^(a"1). Since (f>(a~1)eall{H),
p'k-ie^a-1). Now p0^1 = k'1 €^(a)'1, so by Lemma 2-6(a), pok~xi(j){a-x).
Hence there is a least positive integer r such that prk~1s0(a~~1). Then
pr-1/5T1e0(a)-1 and (^r-1jfc-1)-1e^(a), so p = (2/Jr1) (pr-1Ar1)-1e0(a-1)0(a), and
^m+i ^ 2̂m ^ (jk)m < A. If, instead, q < p, then g2 ^ jk and a similar argument
yields g e ^ O ^ a ) and gm+1 ^ h. Thus (7) holds.

Next, we show that

<f>(a~l) <j>(a) = <fr(e) if ^(a) is a non-empty proper subset of H. (8)

By Lemma 2-6(a), ^(a-1)^(a) £ 0(e). Suppose qe<p(e) = P(-#). Since / / is archi-
medean, there is a positive integer t such that h ^ ql, and by (7), there is &p e <j>(a~l) <fi(a)
such that pt^h^qt. Hence p^q- By Theorem 2-8 and Proposition 2-3,
<j){a-1)<l>{a)e^l{H), so qe^(a'1)<j>(a) and (8) holds.

Our next task is to verify

^(fc-1) <f>(b) = <f>(e) = <j>(b) fib'1) for any b e G. (9)

By Theorem 2-8, there is a,n aeP(G) that satisfies the hypothesis of (8). If beP(G),
then since G is archimedean, there is a positive integer n such that b <Gan. By Lemma
2-6(a), <f>(b) £ 0(an). If 0(are) = # , then for any heH, (a,h)n = (an,hn) > (e,e), and
by ([1], 12-12), (a,h) > (e,e), so <j)(a) = # , contrary to the choice of a. Hence <j>(b) is
a proper subset of H and is non-empty since it contains <j>{e) = P(H). So
^(b"1) 4>{b) = 0(e) by (8). By Lemma 2-6 (a), 0(6-1) is also a non-empty proper subset
of H, so (8) may also be used to show that <f>(b) ^>(b~x) = <j>(e), and may be used again
to show that ^(6-1) <j>(b) = <j>(e) = <j){b) (f>(b~x) if 6 < G e; that these latter equalities hold
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if b = e is the content of (1). Thus (9) holds; and we know that for each
is the inverse of <f>(b).

Next, suppose a,beG are arbitrary. By Lemma 2-6(a), <f>(a)<f>(b) £ <j)(ab). If this
inclusion is proper, and < denotes the order of °ll(H), then <f>(ab) < <j)(a)<f>(b),
so by (9),

This contradiction shows that </> is a homomorphism. So if we can show

implies g = e, (10)

we may conclude that 0 is a monomorphism.
If <j>(g) = ^(e), then since <f> is a homomorphism, 0(e) = ^(^)^(^"1) = ^(g'1), so

e^^(e) = $%)-1 U ^(9f~1), contradicting Lemma 2-6(i) unless g = e.
By a well-known theorem of Holder, every archimedean ordered group is iso-

morphic to a subgroup of (R( +) . If G and H are subgroups of IR( +) , let

G*H={g/h:geG,heH\{0}}. (11)

3-2. THEOREM. Suppose Gand Hare densely ordered subgroups of (R( +) . Then GxH
admits an order < topologically compatible with the orders on G and H if and only if
G*H 4= U. When < is such an order, (GxH, <) is archimedean.

Proof. Suppose first that there is an aeM\G * H, and let P = P(G x H) — {(g, h) e
Gx H: ah <Rg}. We will show that P defines a group order on GxH by verifying
that (a), (/?), (y) and (S) (rewritten in additive notation) of Section 1 hold.

Suppose (g,h) and (g',h') are in P; then 0 <R(g — ah) + (g'— ah') = a(g + g') —
a(h + h'). So (a) holds. If (g, h) e P f] (-P),thenah <Rg anda( — h) < R ( —</)• Since this
cannot hold, (/?) follows. The commutativity of R( + ) implies (y). If g = ah, then
g = h = 0 or aeG*H by (11). Hence g <Rah or ah <Rg and (S) holds. So P(GxH)
defines a group order.

Suppose (0,0) < n(g,h) < (x,y) for some g,xeG, h,yeH, and n = 1,2, Then
0 >R(ah — g) and (x — ng) >Ra(y — nh) or 0 > n(ah — g) >uay — x whenever n is
positive. Since 1R( + ) is archimedean, this cannot hold, so < is an archimedean order
on GxH.

We will show that < is topologically compatible with the orders of G and H by
verifying the conditions of Theorem 2-4(6). If (0,0) < (g, h), then r = g — aheP(U).
I t is routine to verify that (0,0) < (r/2,0) < (g,h) and (0,0) < (0, -r/2a) < (g,h).

Suppose, conversely, that the order < on GxH is topologically compatible with
the orders on each of its factors. By Theorem 2-8 and Proposition 3 1 , <j> is a
continuous monomorphism onto a subgroup of °U(H). Thus 0:6r-»[R( + ) =
aM(H)\{0,H) (by the density of H). (j> is order-preserving by 2-6 (vii), so by ([1],
12-2-1), there isanaeIR such that <j>(g) = ag for each g e G. If a = g'/h' for some g' e G
andO 4= h'eH, then<f>(g') = {heH: (g',h) > (0,0)} = {heH.ah <Rg'}, and clearly h' $
<j)(g') U </>(—g'), contrary to Lemma 2-6(a). Hence G*H 4= IR, and the proof of the
Theorem is complete.

The next theorem, which is due to Fred Galvin, provides an ample supply of pairs
G, H of subgroups of R( + ) such that G*H=U.
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Let Z, respectively Q, denote the additive groups of integers, respectively rational
numbers. If aeR, let Ga = {ag/n:0 =t= neZ, geG). Clearly Ga is a subgroup of U( + )
which will contain Q if ag = 1 for some g e G.

33. LEMMA. / / G, H are subgroups of IR( +), and a, b are non-zero real numbers such
that Ga*Hb = U, then G*H=U.

Proof. If xe IR, then by assumption there are non-zero n,meZ,geG, and 0 4= heH
such that

xa _ {ggln) _mg a
b (bh/m) nh b'

Hence x = mg/nheG*H, so U c. G*H ^ R, and the lemma holds.
3-4. THEOREM (Galvin). There is a proper subgroup G of U( + ) such that whenever

His a non-zero subgroup ofU.( + ),G*H=G*G=U.

Proof. If t is irrational, there is by Zorn's lemma a subgroup G of IR( +) containing
Q and maximal with respect to avoiding t. We now show that G * Q = U. Note first
that G £ G*Q since Q £ G. For any x e R/G, there is by definition of Ga non-zero
neZ and a, geG such that /j\ nx + g = i

If 2nxeG, then xeG*Q. Otherwise, the definition of G yields an m 4= 0 in Z and
an h e G such that

(n) m(2nx) + h = t.

Subtracting (ii) from (i) yields

n(l-2m) + (g-h) = t, so x = .(f~^ .eO*Q.
72.(1 — 2 m

Thus G*Q = R.
Let H denote any non-zero subgroup of IR( +), and choose k =# 0 in G. For a = 1/k

and b = 1, we have Q c ^ a n d G c Gb, so U = G*Q^ Gb*Ha. Then by Lemma
3-3, G*H= U = G*G.

4. Topologically compatible pairs: the general case

For the balance of this paper, G and H will denote infinite densely ordered groups
unless the contrary is stated explicitly.

Recall that a subset K of G is called convex if x1 < g ̂  x2, where gsG and
x^ZjjeiiL, implies geK. If T £ G, let cn(T) denote the intersection of all of the
convex normal subgroups of G that contain T. It is not difficult to verify that
cn(T) = {geG: for some teT, aeG, and positive integer n,\g\ < \tn\a}. By the set
ni{T) of normal infinitesimals relative to T, we mean the union of all the convex
normal subgroups of G disjoint from T. It is an exercise to verify that
ni(T) = {geG: ii aeG, n is a positive integer, and teT, then \gn\a < \t\}. By the
cardinal index of archimedeanness cia(G), we mean the least cardinal number of a
subset S of G such that ni(8) = {e}. We call 0{cn(g): e 4= g e G} the order
kernel S(G) of G. Clearly S(G) is a convex normal subgroup of G. If F ^ P(G) is finite,
then ni(F) = ni(f), where / is the smallest element of F, and it follows easily
that S(G) = {e} if and only if cia{G) > 1. It is clear, also, that if cia(G) = 1, then
S(G) = cn(g) for any e 4= g in S(G). We summarize the above in the following
proposition.

jO P S P 102
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4-1. PROPOSITION. If (G, < ) is a densely ordered group and S(G) is the order kernel,
then:

(a) cia(G) > 1 if and only if cia(G) is infinite;
(b) S(G) = {e} unless cia(G) = 1.

For any geG, let c(G) denote the smallest convex subgroup of G containing g. Note
that G is archimedean if and only if G = c(g) whenever e + geG.

The proof of the following lemma was simplified as a result of discussion with
A. Rhemtulla.

4-2. LEMMA. If a and b are distinct positive elements of the order kernel S(G) of a densely
ordered group, and S(G) is not archimedean, then there are y,zinG such that av < b < az.

Proof. Suppose
(*) there is an xeS(G) (] P(G) such that for each geG, there is a positive integer

n such that x9 < xn.
Then c(x) = cn(x) = S(G). If, for some yeS(G)(]P(G), x$c(y), then ym < x for

every positive integer m; for each geG, choose n such that xg<xn. Thus
(ynm)ff < x9 < xn, so (ym)9 < x, contrary to the fact that xecn(y). This contradiction
shows that c(y) = c(x) = S(G) for each x, yeP(G) 0S(G), and hence that S(G) is
archimedean. Thus (*) fails.

Assume without loss of generality that a <b. Since becn(a), for some positive
integer m and heG, b < (am)h < (ag)h = agh, where g is the element of G whose
existence is guaranteed by the failure of (*). Taking y = e and z = gh, the conclusion
of the lemma follows.

Most of the remainder of this paper is devoted to establishing:

4-3. THEOREM. / / G and H are densely ordered groups with order kernels S(G) and
S{H), then there is an order < onGxHtopologically compatible with the orders of Gand
H if and only if both of the following hold:

(a) cia(G) = cia(H), and
(b) S(G) and S(H) are central, (thus archimedean) and we may identify them with

subgroups of U( +) in such a way that S(G) * S(H) =# R.
As in [6], pp. 266-271 and 274-275, we identify each ordinal a with its well-ordered

set of predecessors, and we identify each cardinal m with the ordinal minimal with
respect to being in one-one correspondence with a set of cardinality m.

To prove that if G x H admits an order topologically compatible with the orders
of G and H, then cia(G) = cia(H), we begin by showing:

4-4. If both cia(G) and cia(H) exceed 1, then cia(G) = cia(H).
To verify this, begin by letting T = {ga: a < cia(G)} £ P(G) be a set such that

ni(T) = {e}. By Theorem 2-4(6), for each a < cia(G), there is an haeH such that
(e, e) < (e,ha) < (ga,e). Suppose cia(G) < cia(H). Then there is an heP(H) such that
h < ha for each a. < cia(G) since ni({ha: a < cia(G)}) + {e}. Thus (e, e) < (e,h) <
(e,ha) < (ga,e) for each a < cia(G). By Theorem 2-4(6), there is a geG such that
(e, e) < (g, e) < (e, h), so e < G g < G ga for each a < cia(G). Since cia(G) > 1, ni(g) + {e},
so for some/eP(C?), ( /")" < g for each positive integer n and aeG. Thus (/")" < ga

for each a, whence feni(T) contrary to the definition of T. We conclude that
cia(G) ^ cia(H) if cia(G) > 1. Similarly cia(H) ^ cia(G) if cia(H) > 1, so 4-4 holds.
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4-5. S(G) is archimedean.
We may assume that cia(G) = 1. Let <f>: G^-%{H) denote the hiding map deter-

mined by < as in Lemma 2-6 (and Theorem 2-8). By this latter theorem <j> is continu-
ous. Suppose h < H e, in which case h $ <j>(e). By the continuity of (j>, there is a g eP(G)
such that h$<j>{g). Since cia(G) = 1, there is an aeS(G) ft P(G) such that a ^Gg and
h$<j)(a). HS(G) fails to be archimedean, and 6 e£(6?) f)P{G), there are, by Lemma 4-2,
y, z in G such tha t av <b < az. By Lemma 2-6, <fi(ay) £ <j)(b) £ <j>(az) = <j>(a), so
<j>(a) = <p(b). I t follows tha t if h <He, then h$<f>(b) for any bsS(G) (] P(G). Using
Lemma 2-6 again, e <Gb implies <f>(e) c 0(5); s o P(H) c 0(b). Also since < extends
the order of G, e€<f>(b). Thus <j>(b) = P(H) U {e} fails to be open, contrary to the
density of the order of H. This contradiction establishes 4-5.

Next, we show
4-6. / / (e, e) < (e,h) < (g,e) and geS(G), then heS(H); thus if cia(G) = 1, then

cia(H) = 1.

To see this, assume on the contrary that there is a ceni(h) 0 P(H). Then
(e, e) < (e, c), so by Theorem 2-4(6), there is a A;e 6? such that (e,e) < (k, e) < (e,c). It
follows from the definition of ni(h) that for any (x, y)eGx.H,

(e,e) < ((&,e)")<^> < fee)*)*" < (e,h) < (g,e).
So if xeG, then (kn)x < g, and hence keni(g) n P(G), contrary to the assumption that
geS(G). Thus heS(H).

From this note that if cia(G) = 1 and geP(G) is such that ni(g) = {e}, then as in
the above (e, e) < (e, h) < (g, e) for some heH. Thus ni(h) = {e} and hence cia(H) = 1.

Clearly if < is topologically compatible with the orders of G and H, then <
restricted to S(G) x S(H) is topologically compatible with the orders of the (archi-
medean) subgroups S(G) and S(H). So (b) will follow from Theorem 3-2 if we can
show that each of S(G) and S(H) is central.

Denote by xjr the hiding map of S(G) into S(H). By Lemma 2-6(iv) and the
definitions of <f> and f, f{g) = <f>(g) (] S(H) = <f>(gx) 0 S(H) = ifr{gx) for each geS(G)
and xeG. Since S(G) is a normal subgroup of G, it follows from the last paragraph that
the hypothesis of Proposition 3-1 is satisfied by i/r: S(G)->S(H). Thus \jr is a monomor-
phism and hence g = gx, and we may conclude that S(G) is central. A similar argument
applied to the hiding map of S(H) into S(G) shows that S(H) is also central. This
completes the proof that (b) holds.

We turn now to establishing the sufficiency of conditions (a) and (b). Choose any
subset S of P(G) or cardinality da(G) such that ni(S) = {e}. First we assume cia(G) > 1
and establish the existence of a 'valuation'. Write S = {sa: a. < cia(G)}, let
N(g) = {a < cia(G): geni(s^: /? < a)}, and define v = vG: G->cia(G) U {oo} by letting

oo if g = e
We establish first

4-7. IfgeG,thengeni(sa:a,<v(g)).
For, if ft < v(g), then fS < sup {a: geni(sfi: ft < a)}, so geni(sy: y < S) for some

P < S. Thus, for each aeG, integer n, and y < S, (gn)a < sy; in particular, for each
such a and n, (gn)a < s^. Since ft < v(g) is arbitrary, 47 holds.

4-8. LEMMA. For any g,h in G:
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(i) v(gh) ^ min(v(g),v(h));
(ii) v(gh)=v(g);

(iii) v(g) = v(g~1);
(iv) v(g) = oo if and only if g = e;
(v) Ifv(g) < v(h), then v(gh) = % ) ;

(vi) If g ^ h > e, then v(g) ^ v(h);
(vii) If g > e and gh < e (or hg < e), then v(h) ^ v(g);

(viii) If g> e and h > e, then v(gh) = minv(g),v(h)).

Proof. If S = min (v(g), v(h)), then both g and A are in the group ni(sa: a < S) as is
their product. So min(v(g), v(h)) ^ sup {a: gheni(s^: ft < a)} = v(^A). So (i) holds.

To see (ii) and (iii), note first that both g'1 and gh are in the normal subgroup ni(sa:
ct ̂  v(g)), so each of v(g~x) and v(gh) is ^ v(g). So v(<7) = f ((g"1)"1) ^ "(9F~1) and
v(g,) = «((grft)A"1) ^ % f t ) . Thus ^p"1) = v(g) = v(gh), and (ii) and (iii) hold.

By definition, v(e) = oo. If v{g) = oo, then by 4-7, geni(sa: a < v(g)) = ni(S), so
<7 = e and (iv) holds.

Suppose v(g) < v(h) and v(gr) < v(gh). Then, by (i) and (iii),
v(g) = v((gh)h~l) ^ min(v(gh),vih'1)) = min(v(gh),v(h)) > v(g). Hence v(g) < v(h)
implies v(gh) ^ v(g), whence v(gh) = v(g) by (i). Thus (v) holds.

That (vi) holds is immediate from the definition of v. If g > e > gh, then
h~x = hr^g^g > g > e. By (iii) and (vi), v(h) = v{h~l) ^ v(g) and (vii) holds.

If g and h are in P(G), then g < gh and A < grA. So by (vi), v(gh) ^ v(gr) and
v(gh) ^ w(A). Thus by (i) v(gh) = min(v(g),v(h)) and (viii) holds. This completes the
proof of the lemma.

Suppose cia(G) = cia(H) > 1 and consider the maps vG: G^-cia(G) U{oo} and
vH: H^-cia(H) U {oo} as defined above. We define an order < on G x H as follows:

(e,e)<(g,h) if vG(g) < vH(h) and 0eP(G)
or vH(A)^wG(^) and heP(H). (13)

To show that (GxH, <} is & totally ordered group, we will verify that (a), (/?), (y)
and (8) of Section 1 hold.

Suppose (g,h) # (e,e). By Lemma4-8(iv), min(vG(g),vH(h)) < oo. IfvG((7) < vH(h),
then vG(^) = mm(vG(g),vH(h)), so p =f= e. If geP(G), then (0,A)>(e,e), while if
g'1 e P(G), then (g, h)'1 = (gr1, A"1) > (e, e). We proceed similarly if vH(h) < uG(gi) and
conclude that P(G xH)[j P(G x H)~l U {(e, e)} = G x H, so (S) holds.

If both (g, h) and (g, h)-1 = (gr1, A"1) are in P(6r x / / ) , and vG(g) < vH(h), then both
^ and g'1 are in P(G). Similarly, if vH(h) ^ ^c^), then both h and A"1 would be in
P(H). Hence (/?) holds.

That (y) holds is an exercise.
To verify (a), we must consider several cases under the assumption that (g, h) and

(g', h') are elements of P(G x H). Suppose first that vG(g) < vH(h) and vG(g') < vH(h');
then both g and g' are in P(G), and by Lemma 4-8 (viii) and (i)

vG{gg') = mm(vG{g),vG(g')) < min(vH(h),vH(h')) < vH(hh').

Hence (gg',hh')eP(GxH).
A similar argument yields the same conclusion if both vH(h) < vG(g) and

Suppose next that vG(g) < vH(h) and vH(h') < vG(g'), in which case geP(G) and
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h' eP(H). (The remaining case, in which these inequalities are reversed, follows from
this one and (y).)

(i) Suppose also that vG(gg') < vH(hh'). If gg' ^ G e , then by Lemma 4-8(iii), (vii),
vG{g') < vG(g), so vH(h') < vG(g') < vG(g) < vH(h). By Lemma 4-8(v), vH(hh') =
vH(h') ^ mm(vG(g),vG(g')) ^ vG(gg'). This contradiction shows that gg'> e; thus
(gg',hh')eP(GxH).

A similar argument applies if, instead of (i), we have

(ii) vH(hh') < vG(gg').

So (a) holds and we conclude that (G x H, <) is a (densely) ordered group.
To show that < is topologically compatible with the orders of G and H, we must

by Theorem 2-4(6), when given (g,h)eP(GxH), find g*eG and h*eH such that
(e,e) < (g*,e) < (g,h) and (e,e) < (e,h*) < (g,h). Either

(i) vG(g)<vH(h) and geP(G), or

(ii) vH(h)^vG(g) and AeP(#).

If (i) holds, then since cia(G) is infinite, there is a g* e P((?) such that vG(g) < vG(g*),
whence g* < g by Lemma 4-8(vi). By parts (iii) and (v) of this lemma,
vdgg*-1) = vG(g) < vH(h). Thus gg*-leP{G), so (g, h) (g*, e)~l = (gg*-\h) > (e,e),
and (e,e)<(g*,e)<(g,h). Also, let h*eP(H), vH(h) «S vH(h*). Then vH(h) =
vH(h*~^), so Vfjihh*'1) > min (vH(h), vH(h*)) = «#(A) > vG(<7). From the last sentence,
we conclude (e, e) < (e,A.*) < (g,h).

In case (ii) holds, the argument is similar, reversing the roles of g and h, and of
G and H. Thus the order < defined in (13) is topologically compatible with the orders
of G and H in case cia(G) = cia(H) > 1.

To complete the proof of Theorem 4-3, assume that cia(G) = cia(H) = 1 and define
an order on G x H as follows:

By Theorem 3-2, there is a group order < of 5(6?) x S(H) topologically compatible
with the orders induced on S(G) and S(H) by the ordering of (R( + ). We let

(g,h)eP(GxH) if:
geS(G),heS(H) and (g,h)>(e,e), or

(14)
g$S(G) and geP(G), or
geS(G),h$S(H), and heP(H).

Since this order on GxH extends the order < on S(G) x S(H) given above, we will
denote it by < as well. To show that it is a group order, we will verify (a), (/?), (y)
and (8) of Section 1.

Suppose (g,h) 4= (e,e). If g$S(G), then g > e and (g,h) > (e, e), or g'1 > e and
(tg,^)'1 = {g~1,hr1)> (e,e). If geS(G) and h$S{H), a similar proof shows that
(<7, h) > (e, e) or (g, h)~x > (e, e). The same conclusion holds if g e S(G) and h e S(H) since
< is a group order on S(G) x S(H). Hence (8) holds.

Suppose both (g, h) and (g, h)'1 are in P(G x H). Then g 4 S(G) or h $ S(H).Ifg$ S(G),
then both g and g~l are in P((?) by the definition of P(G x H). Hence ge S(G), whence
h$S(H) and the definition of P(GxH) would yield both h and h'1 in S(H). This
contradiction shows that (ft) holds.

Since S(G) and S(H) are central subgroups of G and H respectively, it follows easily
that (y) holds.
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The proof that (a) holds may be carried through by cases in a straightforward way.
We omit the details since they are similar to those given for the order of (13).

Once more, we apply Theorem 2-4(6) to show that < is topologically compatible
with the orders of G and H. Suppose (g,h)eP(GxH). If geS(G) and heS(H), there
isa£*eGsuch that (e,e) < (g*,e) <(g,h) by Theorem 3-2. If g$S(G), then geP(G).
Since cia(G) = 1, there is a g* e S(G) 0 P(G) by Proposition 4-1, and
(e,e) <(g*,e) <(g,h) since g$cn(g*) c S(G). In case geS(G) and h$S(H),
clearly (e, e) < (g, e) < (g,h). A similar argument by cases will produce an element
h*eH such that (e,e) < (e,h*) < (g,h). This completes the proof of Theorem 4-3.

We conclude with some remarks, examples and open problems (which we confine
to the case when G and H are densely ordered).

By Theorems 4-3 and 3-2, given two archimedean densely ordered groups G, H,
there is an order on G * H topologically compatible with the orders of G and H if and
only if there are embeddings <j) of G into IR and ifr of H into IR such that
<j>{G) * xjr(H) 4= IR. Moreover, by ([1], 12-2-1), if this latter holds and $', xjr' are
embeddings of G, respectively H into IR( 4-), then there are nonzero real numbers a, b
such that <f>{G) = a<f>'(G) and ijr(G) = bi/r'(G). So, as in the argument given in the proof
of Lemma 3-3, <j>'(G) *i/r'(G) = IR. This comment inspires the following:

PROBLEM. Find internal characterizations of densely ordered archimedean groups G,
H, for which there is an embedding (f> of G into IR( +) and l/r of H into IR( + ) such that
<1>(G) * f{H) 4= IR. Do the same in case <j>(G) * <f>(G) 4= R.

In [7] an ordered group is called 0-simple if it has no proper normal convex
subgroups other than {e}. Clearly, any infinite archimedean ordered group is 0-simple.
In ([7], chapter 1, section 2, example 8), an example is given of an 0-simple non-abelian
ordered group, and in ([8], corollary 2-6-9), it is shown that every solvable 0-simple
group is archimedean.

Clearly if G is 0-simple, then cia(G) = 1 and G = S(G). So by Theorem 4-3, if G is
0-simple, but not archimedean, there cannot be a densely ordered group H and an
order < onGxH that is topologically compatible with the orders of G and H. It seems
natural to ask: If cia(G) = 1 then must S(G) be 0-simple ?

A negative answer to this question follows.

4-9. Example. Let B denote the direct sum of countably many copies of Q( + )
indexed by Z, that is B = {/: Z->Q:f(k) = 0 for all but finitely many keZ). Order
B lexicographically with left-most non-zero coordinate dominating. Let 0 denote the
zero-function, and for any ieZ, let fteB be defined by letting fi(k) = f(k — i) for each
keZ. Let 6?= {(k,f): keZJeB}, and let (k,f)(k',f') = (k + k' ,fk+f). It is routine
to verify that G is a group (with identity element (0,0) and where (&,/)"1 = (— k, -fk);
indeed G is the wreath product of Q( +) and Z( + ); see [4]). Order G lexicographically
with first coordinate dominating. It is routine to verify that (0,0) and {(0,f):feB)
are the only proper convex normal subgroups of G, so G is not 0-simple but cia(G) = 1.

Finally, we give an example of a totally ordered group G such that S(G) is
archimedean but not central.

4-10. Example. Let T denote a subfield of IR and let

] •>

:r,aeT and r > 0 | .
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If we let
a\eP(G) if r > l or r = l and a > 0,

then under the operation of matrix multiplication, G is a totally ordered group as
is noted in [7], p. 4. The following facts are easily verified.

(ii) The map ->a is an isomorphism of S(G) into [R( -I-), so S{G) is archi-

medean.
(iii) For any r,a,beT,

\r b~\ [1 a] \r ra + b] . [l a] \r b] \r a + b]

[o iJlo ij = [o i J and |o i][o 1 H 0 i J'
so is not in the centre of G unless a = 0. Thus 8(G) is not central.

By Theorem 4-3, for any totally ordered group H, there cannot be an order on G x H
topologically compatible with the orders of G and H.

We close with reference to two papers related to our work, but without any obvious
relationship with the above; namely [2] and [5]. In fact, hearing a lecture by
E. Hewitt inspired this work.
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