Claremont Colleges [Scholarship @ Claremont](http://scholarship.claremont.edu)

[All HMC Faculty Publications and Research](http://scholarship.claremont.edu/hmc_fac_pub) [HMC Faculty Scholarship](http://scholarship.claremont.edu/hmc_faculty)

1-1-1982

Some Properties of Positive Derivations on f-Rings

Melvin Henriksen *Harvey Mudd College*

Frank A. Smith *Kent State University*

Recommended Citation

Henriksen, Melvin, and F. A. Smith. "Some properties of positive derivations on f-rings." Proceedings of the Special Session on Ordered Field and Real Algebraic Geometry, 87th Annual Meeting of the American Mathematical Society (San Francisco, CA, 7-11 January 1981). Ed. D. W. Dubois and T. Recio. Contemporary Mathematics 8 (1982): 175–184.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [scholarship@cuc.claremont.edu.](mailto:scholarship@cuc.claremont.edu)

SOME PROPERTIES OF POSITIVE OERIVATIONS ON f-RINGS

والمحاملتين

Melvin Henriksen and F. A. Smith

l. INTRODUCTION

Throughout A denotes an *f-ring;* that is, a lattice-ordered ring that is a subdirect union of totally ordered rings. We let $p(A)$ denote the set of derivations $D: A \longrightarrow A$ such that $a \ge 0$ implies $Da \ge 0$, and we call such derivations *positive.* In [COK], P. Coleville, G. Davis, and K. Keimel initiated a study of positive derivations on f-rings. Their main results are (i) $D \in \mathcal{D}(A)$ and A archimedean imply $D = 0$, and (ii) if A has an identity element 1 and a is the supremum of a set of integral multiples of 1 , then $Da = 0$. Their proof of (i) relies heavily on the theory of positive orthomorphisms on archimedean f-rings and gives no insight into the general case. Below, in Theorem 4 and its corollary, we give a direct proof of (i), and in Theorem 10, we generalize (ii). Throughout, we improve on results in [COK], and we study a variety of topics not considered therein.

2. THE RESULTS

 \sim

In the sequel, A will always denote an f-ring, and $A^+ = \{a \in A : a \ge 0\}$ its positive cone. If $a \in A$, let $a^+ = a \vee 0$, $a^{-} = (-a) \vee 0$, and $|a| = a \vee (-a)$. Then $a = a^{+} - a^{-}$, $|a| = a^{+} + a^{-}$, and $a^{\dagger}a^{\dagger} = a^{\dagger}a^{\dagger} = a^{\dagger} \wedge a^{\dagger} = 0$. A subset I of A that is a ring ideal and such that $|b| \le |a|$, and $a \in I$ imply $b \in I$ is called an *L-ideal*. The *L*-ideals are the kernels of homomorphisms that preserve lattice as well as ring operations [BKW, Chap. 8].

A derivation on A is a linear map $D: A \longrightarrow A$ such that if **called** *positive* **a,b ^E A,** then O(ab) = aOb + (Oa)b. A derivation 0 is if $D(A^+)$ \subset A^+ . The family of all positive derivations on $\,$ A $\,$ will be denoted by $D(A)$.

1980 Mathematics Subject Classification. 13N05, 06F25, 12J15, 13J25.

Copyright © 1982, American Mathematical Society 0271-4132/81/0000-0681/\$03.50

In any f-ring *rad* A, the set of all nilpotent elements of A, coincides with the intersection of all the prime ℓ -ideals of A , and hence is an ℓ -ideal [BKW, 9.2.6]. If rad $A = \{0\}$, then A is said to be *reduced*. In [CDK], it is shown that if A is commutative and $a^{n} = 0$, then $[Da]^{2n-1} = 0$. We improve this result next. We begin by observing that if $a, b, \epsilon A^+$ then

(1)
$$
ab = 0
$$
 implies $aDb = (Da)b = 0$.

1. PROPOSITION. *Suppose* $a \in A$ *and* $D \in \mathcal{D}(A)$. *Then* $a^n = 0$ *implies* $(Da)^n = 0$. *In particular*. DIrad AI ϵ rad A.

PROOF. Since $a^n = 0$ if and only if $|a|^n = 0$, we may assume $a \in A^+$ and $n > 1$. By (1), a^{n-1} Da = 0. So a^{n-2} (aDa) = 0. Using (1) again yields $0 = a^{n-2}D(aDa) = a^{n-1}D^2a + a^{n-2}(Da)^2$. Since $a \in A^+$, a^{n-2} (Da)² = 0. Continuing this process yields (Da)ⁿ = 0 and hence that $D[rad A] \subset rad A$.

The next example will show that the index of nilpotency of Da need not be less than that of a. We note first that if $D \in \mathcal{D}(A)$ and is an ℓ -ideal of A such that $D(I)$ \subset I, then D_I \in $\mathcal{D}(A/I)$, where

$$
D_{\tau}(a+I) = Da+I,
$$

2. EXAMPLE. Let R denote all rational functions with real coefficients of negative degree. If $r(x) = \frac{p(x)}{q(x)} \in R$, we may assume that $q(x) = x^{\overline{m}} + a_1 x^{\overline{m-1}} + ...$ has leading coefficient 1, and we let $r(x)$ be positive if the leading coefficient of $p(x)$ is positive. With this **order,** R **is** a **totally ordered ring.** If $r(x) \in R$, let Dr(x) = -r'(x) be the negative of the usual derivative. Then $D \in \mathcal{D}(R)$, as is $(xD): R \longrightarrow R$, where $(xD)r(x) = xDr(x) = -xr'(x)$. If *n* is a positive integer, let I_n denote the set of all $r(x)$ in R of degree \le -n. Clearly I_n is an ℓ -ideal of R, and (xD) (I_n) \subset I_n. If $R_n = R/I_n$, and $(xD)_n(r(x)+I_n) = xDr(x) + I_n$, then $(xD)_n \in \mathcal{D}(R_n)$. and $(xD)_n(\frac{1}{x} + I_n) = \frac{1}{x} + I_n$ is nilpotent of index n.

If **G** is an abelian *L*-group, and **T:** G \longrightarrow is an order preserving endomorphism of G such that $x \wedge y = 0$ implies $x \wedge Ty = 0$ for **x,y in G+, then T is called a** *positive orthomorphism* **of G. If** A is reduced, then $x \wedge y = 0$ if and only if $xy = 0$ [BKW, 9.3.1].

So each positive derivation on an f-ring is an orthomorphism by (1). The next result appears implicitly in [COK]. We include a proof for the sake of completeness.

3. PROPOSITION. *If* **P** *is a minimal prime t-ideaZ of* **A,** $D \in \mathcal{D}(A)$, *then* $D(P) \subset P$. *In particular*, $D_p \in D(A/P)$. *and*

PROOF. As is noted in [BKW, 9.3.2 and 12.1.1], if A is reduced, then each positive orthomorphism of $A(+)$ maps a minimal prime subgroup into itself, and P is a minimal prime ℓ -ideal of A if and only if it is a minimal prime subgroup. So $D(P) \subset P$ if A is reduced. In the general case, if we let $I = rad A$ in (2), we obtain $D(P) \subset P$.

We do not know if $D(P) \subset P$ for any prime ℓ -ideal of P.

Recall that A is said to be *archimedean* if $a \in A^+$ and ${n=1,2,...}$ bounded above imply $a = 0$. The next theorem is the key to an alternate proof of the fact that a reduced archimedean f-ring admits no nontrivial derivations [CDK].

4. THEOREM. Suppose A *is* reduced, $D \in \mathcal{D}(A)$, $a \in A^+$, and n *is a positive integer. Then*

(a) $n(a \wedge a^2)$ Da \leq (a v a^2)Da, (b) $nDa(a \wedge a^2) \leq Da(a \vee a^2)$, and (c) $nD(a^2) \le (a^2Da + (Da)a^2)$ **v** Da .

PROOF. Since A is reduced, {0} is an intersection of minimal prime ideals and A is a subdirect sum of totally ordered rings A/P such that P is a minimal prime ℓ -ideal. Thus, by Proposition 3, it suffices to verify these identities in case A is totally ordered and has no proper divisors of 0 [BKW, 9.2.5].

We consider two cases: $Da = 0$ or $na \le a^2$. In either Let $x = (na-a^2)^+ Da$. Then $x \in A^+$. (i) Suppose $x = 0$. Then **case we obtain**

(3) $nab_a \leq a^2Da$ and $n(Da)a \leq (Da)a^2$.

Then Da > 0 and (ii) Suppose x > O. **a ² < na. Hence** aDa + (Da)a ≤ nDa. Since A is totally ordered, aDa ≤ (Da)a or $(Da)a \le a(Da)$.

Suppose the former holds. Then

 $2aDa \le nDa$ and hence $(na-2a^2)Da \ge 0$.

But Da > 0, so $2a^2 \le na$. By induction, we get $2^ka^2 \le na$ for $k = 0, 1, 2, \ldots$ If we choose k so large that $n^2 \leq 2^k$, we get

$$
(4) \t\t na2 \le a.
$$

If, instead, (Da) a \le aDa, an obvious modification of this latter argument also yields (4). Pre or post multiplying by Da yields

(5)
$$
na^2Da \leq aDa
$$
 and $n(Da)a^2 \leq (Da)a$.

Since either (3) or (5) must hold in *AlP* for any minimal prime ideal P, the conclusions of (a) and (b) hold.

By (4), if $x > 0$, then $nD(a^2) \le D(a)$. If $x = 0$, then adding the inequalities in (3) yields $nD(a^2) \leq (a^2Da + (Da)a^2)$. Hence (c) holds as well.

5. COROLLARY. [CDKJ *If* ^A *is CU'chimedean and* o ^E V(A), *then* $D(A)$ *c* rad A *and* $D(A^2) = 0$.

PROOF. By (c) of the last theorem and Proposition 3, if $a \in A$, then $D(a^2) \in rad$ A. Since $aDa \le D(a^2)$, $(Da)^2 \le D(aDa) \le D^2(a^2) \in D(rad$ A) ^c **rad A** by Proposition 1. Since each element of rad A is nilpotent, **so is** Da.

If $a, b \in A$, then $D(ab) = aDb + (Da)b = 0$, since $(rad A)A = A(rad A) = 0$ in an archimedean f-ring [BKW, 12.3.11]. Hence $D(A^2) = 0$.

6. PROPOSITION. *Suppose* $e^2 = e \in A$ *and* $D \in \mathcal{D}(A)$. (a) $(De)^2 = e(De)e = (De)e(De) = 0$.

(b) *If* A *is reduced* or *has an identity element OT'* e *is in the oenter of* A, *then* De = O.

PROOF. Since $e^2 = e$, we have

$$
(6) \t\t\t eDe + (De)e = De
$$

Multiplying (6) on the left by e yields

$$
e(De) = 0.
$$

Applying D to (7), we obtain

eD[(De)eJ + (De)2e = 0 = e(De)2 + D(eDe)e.

Hence

(8)

 $\mathcal{A}=\mathcal{A}(\mathcal{A})$

$$
e(\text{De})^2 = (\text{De})^2 e = 0.
$$

Multiplying both sides of (6) on the left by (Oe) and using (8) yields

$$
(9) \t\t\t (De)e(De) = (De)^2.
$$

By (7) , (8) , and (9) , we obtain

$$
LeDe - (De)eJ2 + (De)e(De) = 0.
$$

Hence $(De)^2 = (De)e(De) = 0$, which together with (7) , completes the proof of (a).

Clearly De = 0 if rad $A = \{0\}$. If eDe = $(De)e$, then by (6) and (7) , De = 2eDe = 0. If A has an identity element, then each of its idempotents is in the center of A by [BKW, 9.4.20J. This completes the proof of (b).

The next example shows that the hypotheses of (b) above cannot be omitted.

e *and a positive* 7. EXAMPLE. *A totally ordered ring with an idempotent derivation* D *such that* **De o.**

and field JR (with Let S denote the algebra over the real the usual order) with basis $\{e, z\}$, where $e^2 = e$, $ez = z^2 = 0$, α **b** α = α **c** + β **z** ϵ **S**, let $x > 0$ if $\alpha > 0$ or $\alpha = 0$ then $D \in \mathcal{D}(\mathsf{S})$, and α β > 0. If we let $Dx = zx - xz = \alpha z$, De = $z \neq 0$.

If $D \in \mathcal{D}(A)$, let ker $D = \{a \in A : Da = 0\}$. If G is an abelian *L*-group and $H \subset G$, let $H^{\perp} = \{g \in G : |g| \wedge |h| = 0 \text{ for all }$ $h \in H$, and let $H^{\perp \perp} = (H^{\perp})^{\perp}$. Note that H^{\perp} is an ℓ -subgroup of G (that is, H is a subgroup and $|a| \le |b|$, and $b \in H^{\perp}$ implies $a \in H$). A *band* in G is an ℓ -subgroup H of G such that if $K \subset H$ and sup $K \in G$, then sup $K \in H$. If H is a subset of G, the intersection 8(H) of all the bands in G containing H is also a band. Moreover, $B(H) \subset H^{\perp\perp}$. See ELZ, Theorem 19.2J. An element e of G such that ${e}^{t} = 0$ is called a *weak order unit* of G. An element e of an f-ring A such that ex = 0 or $xe = 0$ implies $x = 0$ is called $regular$. Note that if e ^E **A is regular, then e is a weak order unit, and the converse holds** if A is reduced.

The following lemma will be useful in what follows.

8. LEMMA. *Suppose* A *is an f-ring and* $D \in \mathcal{D}(A)$.

(a) $xDx \wedge (Dx)x \ge 0$ *for every* $x \in A$.

(b) *If* ^A *is pedueed, then* ⁰ *is an t-endomopphism.*

(c) *If* ^A *has an identity eZement* 1, *and* ⁿ *is ^a* $positive$ *integer, then* $nDx \leq xDx \land (Dx)x$ *for every* $x \in A^+$ and $D(I) \subset I$ *for every l*-*ideal* **I** *of* A.

PROOF. ordered. (a) holds since this inequality holds whenever A is totally

(b) holds since if A is reduced, then 0 is a positive orthomorphism and hence an ℓ -endomorphism [BKW, 12.1].

(c) by Proposition 6(b), $l \in \text{ker } D$, and by (a) $(x-nl)D(x-nl) \ge 0$. Hence nDx $\leq x$ Dx. Similarly, nDx $\leq (Dx)x$. Hence $x \in I$ implies $Dx \in I$ since I is an ℓ -ideal.

Next, we provide some examples to show that the hypotheses of (b) and (c) above cannot be omitted.

9. EXAMPLES. (i) Let E denote the direct sum of two copies of the real line $\hbox{I\!R}$ with trivial multiplication, and let $\hbox{I\,r,s)} \geq 0$ mean $r \ge s \ge 0$. As is noted in [GJ, 5B], the map $0:E \longrightarrow E$ such that $D(r,s) = (r,0)$ is a positive endomorphism that is not an ℓ -homomorphism. To see the latter, note that $(1,2)^+ = (2,2)$. So DE $(1,2)^+$] $=(2,0) \neq (1,0) = \text{LD}(1,21^{+}).$

(ii) Let R and (xD) be as in Example 2, and let $y = \frac{1}{y}$. Then $n(xD)y = \frac{n}{y}$, while $y(xD)y = x^{-2}$, so the conclusion of (c) fails.

The next theorem summarizes most of what we know about kernels of positive derivations.

10. THEOREM. *Suppose* $D \in \mathcal{D}(A)$, $x \in A$, and n *is a positive integer.*

> (a) *If* e *is regular, and* ex ϵ ker D , $then$ $x \in \ker D$. (b) *If* ^A *is reduced then:* (i) $x \in \text{ker } D$ *implies* $\{x\}^{\perp \perp} \in \text{ker } D$, (iii) $x^n \in \text{ker } D$ *implies* $x \in \text{ker } D$,

(iii) ker D *is a band*,

POSITIVE DERIVATIONS ON f-RINGS 181

(iv) $D^n = 0$ *implies* $D = 0$, and (v) $e^2 = e \in A$ *implies* $e \in \text{ker } D$.

(c) *If* ^A *has an identity element and* U(A) *is the smaUest band containing the units of* A , *then* $U(A)$ \subset **ker** D . *In particular*. rad $A \subset \text{ker } D$. *Also,* if $x^2 \le x$, *then* $x \in \text{ker } D$.

PROOF. (a) By (1), $D(ex) = 0$ implies eDx = 0, which, in turn implies Ox ⁼ O.

(b) (i) By Lemma 8(b), and EBKW, 3.2.2J, $D({x})^{\perp\perp}$ c $D({x})^{\perp}$ ¹ \subset {(Dx)}¹¹ = {0} since $x \in \text{ker } D$ and A is reduced.

(ii) follows from (i) and the fact that $\{x\}^{\perp\perp}$ is the intersection of all the minimal prime ℓ -ideals that contains x EBKW, 3.4.12J.

(iii) As was noted above, the smallest band containing ker D is contained in $\{(ker D)\}^{\perp\perp}$ and the latter is contained in ker D by (i).

(iv) Since x is a difference of positive elements, it suffices to show that $Dx = 0$ whenever $x \in A^+$. The proof will proceed by induction on n. It is obvious when $n = 1$. Assume that $D^{n}(A) = 0$ implies $D(A) = 0$ whenever A is a reduced f-ring and $n \ge 1$ is an integer. If $0 = D^{n+1}(A) = D^{n}(D(A))$, then $D^{n}(D(A)^{\perp}) = 0$ by (i). So $D(D(A)^{1}$ = 0 by the induction hypothesis. In particular, $D^2(x^2) = 0$. Since $xDx \le D(x^2)$, $0 = D(xDx) = xD^2x + (Dx)^2$. So $(Dx)^2 = 0 = Dx$ since A is reduced.

(v) is a restatement of Proposition 16(b).

(c) That $U(A)$ c ker D follows directly from (a) and (b) (iii) above. If $x^n = 0$, then $(1-x)(1+x+\cdots+x^{n-1}) = 1$, so I-x is a unit and $x = 1 - (1-x) \in U(A) \subset \ker D$. Finally, if $x^2 \le x$, then $D(x^2) = xDx + (Dx)x \le Dx \le xDx \land (Dx)x$ by Lemma 8(c). Hence $xDx = (Dx)x = 0$. Thus $Dx = 0$. This completes the proof of Theorem 10.

11. EXAMPLES AND REMARKS. The assumption that A is reduced in Theorem $10(b)$ cannot be dropped. For example, if $A = C[0,1]$, the ℓ -group of continuous real-valued functions on $[0,1]$, with trivial multiplication for all f ϵ CEO, il, we let Df = $f(\frac{1}{2})$, then $D \in \mathcal{D}(A)$, and ker D fails to be a band EDV, p. 121. Also, the plane E^2 with the usual coordinatewise addition and trivial multiplication admits positive endomorphisms that are nilpotent. (For example, let $T(a,b) = (0,a)$ for all['] (a,b) $\in E^2$).

Theorem 10(c) generalizes ECOK, Theorem 7J where it is shown that ker 0 contains the supremum of any set of elements bounded above by some integral multiple of the identity element.

As in [P], we let $I_{\Omega}(A) = \{a \in A : n|a| \le x \text{ for some } x \in A^+ \}$ and n = 1,2,...}. Clearly $I_0(A)$ is an ℓ -ideal and $I_0(A) = \{0\}$ if and only if A is archimedian.

12. THEOREM. Suppose $D \in \mathcal{D}(A)$.

(a) *If* A *is reduced, then* $D(A^2) \subset I_{\alpha}(A)$.

(b) *If* A *has an identity element, then* $D(A) \subset I_{0}(A)$. *If,* $moreover$, A *is reduced and* $I_0(A) \subset U(A)$, *then* $D = 0$.

PROOF. (a) follows immediately from Theorem 4 and the fact that ab \le (a v b)² whenever a,b \in A⁺. (b) That $D(A) \subset I_{\alpha}(A)$ is a restatement of Lemma 10(c). If

 $I_{0}(A) \subset U(A)$, then by Theorem 10(c), $D^{2}(A) \subset D(U(A)) = \{0\}$. Hence if A is reduced, then $D = 0$ by Theorem 10(b).

13. EXAMPLES AND REMARKS.

(a) The reader may easily verify for the f-ring R of Example 2, $I_0(R) = I_2$, while $(xD)(R) = R$. So the hypothesis in Theorem 12(b) that ^A has an identity element may not be dropped if we wish to have D(A) $\subset I_{0}(A)$.

(b) Let *S* denote the ring of all functions of the form

 $\sum_{i=0}^{n} a_i x^{r_i}$

where ^aⁱ is an integer and ^r ⁱ is ^a nonnegative rational number, ordered lexicographically, with the coefficient of the largest power of x dominating. Then $I_0(S) = S$, and $U(A)$ is the set of constant polynomials. So, the condition of Theorem 12(b) fails. Despite this, $D \in \mathcal{D}(S)$ implies $D = 0$.

For if $D \in \mathcal{D}(S)$, then $D(x) = D((x^{1/2})^2 = 2x^{1/2}D((x^{1/4})^2))$ = $4x^{3/4}D((x^{1/8})^2)$ = \cdots = $2^n x^{1-1/2n} D(x^{1/2n})$. Hence $2^n |D(x)|$ for n ⁼ 0,1,2,.... Since the coefficients of any element of *S* are integers, it follows that $D(x) = 0$. A similar argument will show that $x^r \in \mathbb{R}$ er D whenever r is a nonnegative rational number. It follows that $D = 0$.

We do not, however, know of any such example that is an algebraa over an ordered field. If *S** is the result of allowing the coefficients of the elements of *S* to be arbitrary rational numbers, and we let $D(x^{r}) = rx^{r}$ for any positive rational number r, then D is a positive derivation. To see why, map x^r to e^{rx} and note that s^* is isomorphic as an ordered ring to a subring of the ring of exponential polyno· mials, and the usual derivative on the latter maps the image of *S** into itself.

Our last result applies more general theorems and techniques of Herstein [H_]] [H₂] to the context of positive derivations.

14. THEOREM. *Suppose* A *is reduced and* $D \in \mathcal{D}(A)$.

(a) *If* $D \neq 0$, *then the ring S generated by* {Da: a \in A} *contains a nonzero ideal of* **A.**

(b) *If* S *is* commutative~ *then* S *is contained in the center of* A.

(c) *If* Z E ^A *commutes with every element* of $(az-za) \in \text{ker } D$ *for every* $a \in A$. *dered and* D ⁷ 0, *then* z *is in the center of* **A.** *If. in addition*, A S, *is totally* or-

PROOF. (a) It is shown in CH_7 ^J that the conclusion holds for any deriva**tion** on any ring if $D^3 \neq 0$. Since A is reduced, $D^3 \neq 0$ *³* 'I 0 implies $D \neq 0$ by Theorem 10(b).

(b) Suppose $a \in S$ and $x \in A$. Then

 $0 = (Da)D(ax) - D(ax)(Da) = DaLabx + (Da)x - LaDx + (Da)xDa = DaL(Da)x - x(Da)$].

By EH_3 , Lemma 1.1.41, Da is in the center of A.
(c) The second statement is shown in EH_3]

(c) The second statement is shown in [H₂], and the first follows immediately from the second and Theorem 10(b).

BIBLIOGRAPHY

- [BKW] A. Bigard, K. Keimel and S. Wolfenstein, *Groupes et Anneaux* Reticulês, Lecture Notes in Mathematics 608, Springer-Verlag, New York, 1977.
- **[COK] P. Colville, G. Davis and K. Keimel,** *Positive derivations on f.rings,* J. Austral Math. Soc. ²³ (1977), 371-375.
- **[OVJ E. De Jonge and A. Van Rooij,** *Introduction to Riesz Spaces..* Mathematical Center Tracts 78, Amsterdam, 1977.
- **[GJ] L. Gillman and M. Jerison,** *Rings of Continuous Functions..* O. Van Nostrand Co., Princeton, New Jersey, 1960.
- [HlJ I. Herstein, *A note on derivations,* Canad. Math. Bull. ²¹ (1978), 369·370.
- [H2] , *A note on derivations II,* ibid., 22 (1979), 509-511.

 $\bar{\gamma}$.

- **[H3J ,** *Rings* ~ith *Involution..* **University of Chicago Press,** Chicago, Illinois, 1976.
- [LZ] W. Luxemburg and A. Zaanen, *Riess Spaoes I,* North Holland Publ. Co., Amsterdam, 1971.

 \sim

 \sim

[P] J. Pair6, *Yosida-Fukamiya's theorem for f-rings,* pre-print.

HARVEY MUDD COLLEGE CLAREMONT, CALIFORNIA 91711

KENT STATE UNIVERSITY KENT, OHIO 44242

PITZER COLLEGE CLAREMONT, CALIFORNIA 91711

 \mathcal{L}