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SOME PROPERTIES QOF POSITIVE DERIVATIONS ON f-RINGS
MeTvin Henriksen and F. A. Smith

1. INTRODUCTION

Throughout A  denotes an f-ring; that is, a lattice-ordered ring
that is a subdirect union of totally ordered rings. We let p(A) denote
the set of derivations D:A— A such that a =0 impliies Da =z 0,
and we call such derivations pogizive. In £CDK1, P. Coleviltle, G. Davis,
and K. Keimel initiated a study of positive derivations on f-rings. Their
main results are (i) D e P{A) and A archimedean impiy 0D =0,
and {ii) if A has an identity element 1 and a is the supremum of
a set of integral multiples of 1, then Da = 0. Their proof of
{i) relies heavily on the theory of positive orthomorphisms on archimedean
f-rings and gives no insight into the general case. Below, in Theorem 4
and its corollary, we give a direct proof of {i}, and in Theorem 10, we
generalize (ii). Throughout, we improve on results in [CDKI, and we study
a variety of topics not considered therein.

2. THE RESULTS

In the sequel, A will always denote an f-ring, and
{a e Ara =0} its positive cone. If a e A, let at=avo,
a =(-a)vO0, and Jal=av(-a). Then a=a -a", Jal=a" +a,
and aa  =aat=a"na =0 Asubset I of A that is a ring
ideal and such that Ib| < jal, and a < I dmply b eI Ts called an

£-ideal. The £-ideals are the kernels of homomorphisms that preserve lattice

A+

as well as ring operations [BKW, Chap. 81.

A derivation on A s a linear map D:A — A  such that if
a,b ¢ A, then D{ab) = aDb + (Da)b. A derivation D 1is called positive
if D(A+) c A+. The family of all positive derivations on A  will be
denoted by  D{A}.
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In any f-ring rad A, the set of all nilpotent elements of A,
coincides with the intersection of all the prime £-ideals of A, and
hence is an £-ideal [BKW, 9.2.62. If vrad A= {0}, then A is said to

be reducad. In [CBK3, it is shown that if A s commutative and a" =0,

then 021" 1= 0. we improve this result next. We begin by observing

that if a,b, € AT then
(1 ab =0 implies aDb = {(Da)b = 0.

T, PROPOSITION. Suppose a ¢ A and D e B(A). Then a =0 implies
(0a)" = 0.  In particular, DCrad Al c rad A.

PROOF. Since a' =0 if and only if la

achA” and no> . By {1}, " Tpa =0, so an"z{aDa) = 0. Using
(1) again yields 0 = an'ZD(aDa) = an"]Dza + an"Z(Da}z. Since @ e A+,
an'z(Da}2 = 0. Continuing this process yields (Da)" = 0 ard hence
that Dlrad AT < rad A.

The next example will show that the index of nilpotency of Da
need not be less than that of a. We note first that if D e P(A) and
1 is an £-ideal of A such that D(I) < I, then Dy « P(A/I), where

in = (0, we may assume

(2} DI(a+I) = Da+l,

2. EXAMPLE. Let R denote all rational functions with real coefficients

of negative degree. If  r(x) = gTﬁ%-e R, we may assume that

m-1 + . has leading coefficient 1, and we let r(x)

g(x) = «™ + ayx
be positive if the leading coefficient of p{x} is positive. With this
order, R is a totally ordered ring. If r(x) ¢ R, let

Dr(x) = -r'{x) be the negative of the usual derivative. Then D e D(R),
as is  (xD):R— R, where (xD)r{x) = xDr(x) = -xr'(x). If n isa
positive integer, let In denote the set of all  r{x) 1in R of degree
< -n, Llearly In is an £-ideal of R, and (x0) {In) o In. If

R, =R/, and (xD)n(r(x)+In) = xDy(x) + I, then (xﬁ}n € D(Rn),

and {xD)n(%+-In) = %—+ In is nilpotent of index n.

If G is an abelian £-group, and T:6G —= is an order preserving
endomorphism of G such that x ay =0 dimplies x A Ty=0 for
X,y in G+, then T is called a positive orthomorphism of G. If
A is reduced, then x ay =0 if and only if xy =0 [BKW, 9.3.11.
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S0 each positive derivation on an f-ring is an orthemorphism by (1). The
next result appears implicitly in [CDKI. We include a proof for the sake
of completeness.

3. PROPOSITION. If P <s a minimal prime L-ideal of A, and
D« D(A), then D(P) ¢ P. In particular, DP e D(A/P).

PROOF. As is noted in [BKW, 9.3.2 and 12.1.13, if A  is reduced, then
each positive orthomorphism of A{+) maps a minimal prime subgroup into
itself, and P s a minimal prime £-ideal of A if and onrly if it is
a minimal prime subgroup. So 0{P) < P if A is reduced. In the
general case, ifwe let I =vad A in (2), we obtain D(P) < P.

We do not know if D(P) « P for any prime £-ideal of P.

Recall that A is said to be archimedean if a ¢ A" and
{na :n=1,2,...} bounded above imply a = 0. The next theorem is the key
to an alternate proof of the fact that a reduced archimedean f-ring admits
no nontrivial derivations [CDKI.

4. THEOREM. Suppose A  is veduced, D < D(A), a e A+, and n  ia
a posgitive integer, Then

{a) nfa s aZ)Da < (a v a“)Da,

{b) nDala a2) < Dafa v az}, and

{c) nD{az) < (aZDa + {Da)az) v Da.

2

PROGF, Since A 1is reduced, {0} is an intersection of minimal prime
ideals and A  is a subdirect sum of totally ordered vings A/P  such
that P is a minimal prime £-ideal. Thus, by Proposition 3, it suffices
to verify these identities in case A is totally ordered and has no
proper divisors of 0 [BKW, 9.2.51.

let x = (na-az)*'ga. Then x e A+. We consider twe cases:

{i}) Suppose x=0. Then Da=0 or nac< a2. In either

case we obtain

(3) naba < azna and n{Da)a < (Da)az.

(i1) Suppose x > 0. Then Da >0 ard a2 < na. Hence
<

aDa + (Da)a < nDa. Since A 1is totally ordered, aDa < (Daja or
(Da)a < a(Da).
Suppose the former holds.  Then

2ala < nDa and hence (na~2a2}Da > 0.
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2 . . k.2
But Da >0, so 2a <mna. By induction, we get 27a =< na for
k=0,1,2,.... If we choose k  so large that n2 < Zk, we get

(4) na® < a.

If, instead, {Da)a < aDa, an obvious modification of this latter
argument also yields (4). Pre or post multiplying by Da yields

{5) naZDa < aba and n(Da)a2 < {ba)a.

Since either {3) or (5) must held in A/P  for any minimal prime
ideal P, the conclusions of (a) and (b} hold.

By (4), if x>0, then nD(az) <z Dp{a). If x=0, then
adding the inequalities in (3) yields nD(az) < (aZDa + (Da)az). Hence
{c) holds as well.

5. COROLLARY. [ECDKI IFf A iz archimedean and D e D{A), then
DAY c rad A and D(A®) = 0.

PROOF. By (c¢) of the last theorem and Proposition 3, if a ¢ A, then
D(az) e rad A. Since aba = D(az), (Da)2 = D{aba)} < Dz(aa) e D{rad A)
c rad A by Proposition 1. Since each element of vrad A 1is nilpotent,
so is  Da.-

If a,b e A, then D{(ab) = aDb + (Da)b =0, since
(rag MA = Alrad A) = 0  in an archimedean f-ring [BKW, 12.3.111.  Hence
D(A®) = 0,

6. PROPOSITION. Suppose e°=ec A and D e D(A).

(a) (De)2 = g(Dele = (De)e(De) = 0.

{(b) If A is reduced or has an identity element or e is in
the center of A, then De = 0.

PROOF.  Since e2 = e, we have

De

(6) ebe + (De)e
MuTtiplying (6) on the left hy e yields

(7} _ e(De)e = 0.
Applying D to (7), we obtain

)2

eDL(De)ed + (De)ze = 0 = e{De)* + D{ede)e.
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Hence
(8) e(pe)? = (De)?e = 0.
Multiplying both sides of (6) on the left by {De) and using {8)
yields
(9) (De)e(te) = (De)?.

By (7)., (8), and (9), we obtain
[eDe - (De)e]2 + (De)e(De) = 0.

Hence (De)2 = (Dede(De) = 0, which together with {7), completes
the proof of {a).

Clearly De=0 if vrad A= {0}, If ebe = (De)e, then
by (6) and {7), De =2ele=0, If A has an identity element, then
each of its idempotents is in the center of A by EBKW, 9.4.201. This
completes the proof of (b).

The next example shows that the hypotheses of (b} above cannot be
omitted.

7. EXAMPLE. 4 totally ordered ring with an idempotent e and g positive
derivation D sueh that De = 0.

Let S denote the algebra over the real field R {with
the usual order) with basis {e,z}, whare e2 = e, ez = 22 =0, and
7e = Z. If x=oae + Bz 8§, let x>0 if a>0 or a=20
and B8 >0. Ifwelet Dx=zx~-xz=az, then D e P(S), and
De =z = 0.

If DeD(A). let kerD=4{achA:Da=20} If G is an

abelian f-group and H<eG, let H'={geG:|g| A |n| =0 forall
heHb, and Tet H'"= (H)'. Note that H" s an Z-subgroup
of G (that is, H s a subgroup and {a| < ib|, and b e H'
implies a e H). A bond in G is an £-subgroup K of & such
that if KeH and sup KeG, then supKeH. If H dsa
subset of G, the intersection B(H) of all the bands in G con-
taining H is also a band. Moreover, B{(H) ¢ H''. See [LZ,
Theorem 19,21, An element e of G such that {e}' =0 1is called
a weak ovder unit of G, An element e of an f-ring A  such that
ex=0 or xe=0 implies x=0 is called regular. MNote that if
e ¢ A is regular, then e {is a weak order unit, and the converse holds
if A is reduced.
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The following Temma will be useful in what follows.

8. LEMMA. Suppose A is an f-ring and D e D(A).

{a) xDx A {Dx)x 20 for every X ¢ A.

{b} If A e redueed, then D is an L-endomorphism.

{c) If A s an identity element 1, and n isa
positive integer, them nDx < xDx a (Dx)x  for every X « At and
D{I) = I  for every £-ideal 1 of A,

PROOF.  (a) holds since this fnequality holds whenever A s totally
ordered.

(b} holds since if A 1is reduced, then D is a positive
orthomorphism and hence an £-endomorphism [BKW, 12.11.

{c¢) by Proposition 6(b}, 1 ¢ ker D, and by (a) (x-n1)D(x-n1} = 0.
Hence nDx < xDx.  Similarly, nDx < (Dx)x. Hence x e« I implies
Dx e T  since I s an £-ideal.

Next, we provide some examples to show that the hypotheses of {b)
and {c) above cannot be omitted.

9, EXAMPLES. (i) Let E denote the direct sum of two copies of the
real lipe R with trivial muTtiplication, and let (r,s) =0 mean
r=s20, As is poted in L[GJ, 5B1, the map D:E — E such that
D(r,s) = {r,0) dis a positive endomorphism that is not an 2-homomorphism.
To see the latter, note that (1,2}+ = (2,2}, So D[(1,2)+]
= (2,0) = (1,0) = [p(1,21".

{ii} Let ® and (xD) be as in Example 2, and let

y = %u Then n{xD)y = 23 while y(xD)y = x“z, so the conclusion of (c)

fails.
The next theorem summarizes most of what we know about kernels of
pesitive derivations.

10. THEOREM. Suppose D e D(A), x e B, and n is a positive

integer.

(a) If e is rvegular, and ex e ker D, then x e ker D.
(b) If A is reduced then:

(1) x eker D dmplies {x}''cker D,
(i1) x e ker D implies % e ker D,
{iii1) ker D fs a band,
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0 dimplies D=0, and
{v)} e? = e e A implies e e ker D.

{c) IFr A hos an identity element and U{A) 1o the smallesi
band containing the wnits of A, then U(A) c ker D.  In particular,
rad A < ker D.  4lso, if xzsx, then X ¢ ker D.

PROOF, {(a) By (1), D(ex) =0 dmplies elx =10, which, in turn
implies Dx = 0.
{b) (i) By Lemma 8(b), and L[BXKW, 3.2.21, D{{x}*%) < D{{x31)*
< {{Dx)}* = {0} since x e kerD and A s reduced.

{71} follows from {i) and the fact that 1t s the
intersection of ali the minimal prime £-ideals that contains x  [BKW,
3.4.121.

{i11)  As was noted above, the smallest band containing
ker D 15 contained in {{ker D)}li and the latter is contained in ker D
by {1).

(iv) Since x 1s a difference of positive elements, it
suffices to show that Dx = 0 whenever x e A. The proof will proceed
by induction on n. It is obvious when n = 1. Assume that D"(A) = 0
implies D{A) = 0 whenever A i3 a reduced f-ringand n =1 is an
integer. If 0 =D"1(A) = D"(D{A)), then DV(D(A)YY) = 0 by (i).

So D(D(A)il) = 0 by the induction hypothesis. In particular, D2(x2)z 0.
Since xDx = D(xz), 0 = D(xDx) = xsz + (Dx)z. So (Dx)2 =0 = Dx
since A is reduced.

(v) is a restatement of Proposition T6{h).

{c) That U(A) <« ker D follaows directly from {a) and (b) (ii{)
above. If x" =0, then (1-x)(I +va°--4-xn']) =1, so T-x 1isa
unit and  x =1 - (1-x} ¢ U(A) < ker D.  Finally, if x2 £ X, then
D(xz) = xDx + (Dx)x < Dx < xDx » (Dx)x by lLemma 8(c). Hence
xDx = (Dx)x = 0. Thus Dx = 0. This completes the proof of Theorem 10.

17. EXAMPLES AND REMARKS.  The assumption that A  is reduced in
Theorem 10(b) cannot be dropped. For example, if A = CL[0,11, the
£-group of continuous real-valued functions on  E0,11, with trivial
multiplication for all f ¢ CEQ,11, we let Df = f(%ﬂ, then
De»{A), and ker D fails to be a band LBV, p. 12]. Also, the plane
E2 with the usual coordinatewise addition and trivial muitiplication admits
pasitive endomorphisms that are nilpotent. (For example, let
T{a,b) = (0,a) for all’ (a,b} ¢ E2).

Theorem 10{c) generalizes L[CDK, Theorem 71 where it is shown that
ker D contains the supremum of any set of elements bounded above by some
integral muTtiple of the identity element.
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As in [P1, we let IO(A) ={a e A:nja] £x for some xc¢ At
and n=1,2,...}. Clearly Io(A) is an £-ideal and IO(A) = {0}
if and only if A is archimedian.

12. THEQREM. Suppoee D < D{A).

(a} 17 A is reduced, then D(Az) c IO(A).

{b) If A has an identity element, then D(A) c IO(A). If,
moreover, A {is reduced and IO(A) c U(A), themn D= 0.

PROOF.  {a) follows immediately from Theovem 4 and the fact that
ab < (a v b)2 whenever a,b « At

(b) That D(A) « IO(A) is a restatement of Lemma 10(c). If
IO(A) c U{A), then by Theorem 10{c), DZ(A) < D(U{A)) = {0}. Hence

if A is reduced, then D =0 by Theaorem 10(b).

13. EXAMPLES AND REMARKS.
(a} The reader may easily verify for the f-ring R of Example 2,
IO(R) = 12’ while (xD)(R) = R.  So the hypothesis in Theorem 12(b)
that A has an Tdentity element may not be dropped if we wish to have
D(A) « IO(A).
(b) Let S8 denote the ring of all functions of the form

r.
n i
Ty 2

where  a. is an integer and r. is a nonnegative rational number,
ordered Texicographically, with the coefficient of the largest power of x
dominating. Then Io(s) =8, and u{A} is the set of constant poly-
nomials. So, the condition of Theorem 12{b)} fails. Despite this,

DeD(8) implies D= 0.

For if D e D(8), then D{x) = D((x]/z)2 = 2X]/ZD((X1/4)2}
= 4x3/4D({x1/8) Y= oo = 2N x1'1/2n D(x1/2n). Hence 2"|D(x) for
n=40,1,2,.... Since the coefficients of any element of S are integers,
it follows that D(x} = 0. A similar argument will show that x" ¢ ker D
whenever r  is a nonnegative rational number. It follows that D = 0.

We do not, however, know of any such example that is an algebraa
over an ordered field. If S§* ds the result of allowing the coefficients
of the elements of S8  to be arbitrary rational numbers, and we let
D(xr) =" for any positive rational number r, then D 15 a posi-
tive derivation. To see why, map x"  to e and note that S* is
isomorphic as an ordered ring to a subring of the ring of exponential polyno-
mials, and. the-usual derivative on the latter maps the image of S* dnto
itself.
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Our Tast result applies more general theorems and techniques of
Herstein EH]] [HZJ to the context of positive derivations.

14, THEOREM.  Suppose A is reduced and D e D{A).

{a) If D=0, then the ring S gemerated by {Da:a ¢ A}
containg a nonsero ideal of A.

{b) If S iz commutative, then S is contained in the center
of A.

{c) If z ¢ A comutes with every element of S,
(az-za) e ker D for every a ¢ A. If, in addition, A ie totally or-
dered and D =20, t#hen 2 is in the center of A.

PROCF.  (a) It is shown in EH1J that the conclusion holds for any deriva-
tion on any ring if D3 20, Since A is reduced, D3 # 0 implies
B =0 by Theerem 10{b)}.

{b) Suppose a e S and x ¢ A.  Then

0 = (DajD{ax) - D{ax){Pa) = DalaDx+ {Da}x1 - [aDx + {Da)}xIDa = Dal(pa)x - x{Na)l.

By [HS’ Lemma 1.1.41, Da is in the center of A.
() The second statement is shown in EHZJ, and the first follows
immediately from the second and Theorem 1G{b).
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