Claremont Colleges [Scholarship @ Claremont](http://scholarship.claremont.edu)

[All HMC Faculty Publications and Research](http://scholarship.claremont.edu/hmc_fac_pub) [HMC Faculty Scholarship](http://scholarship.claremont.edu/hmc_faculty)

1-1-1975

Sums of kth Powers in the Ring of Polynomials With Integer Coefficients

Ted Chinburg *University of Pennsylvania*

Melvin Henriksen *Harvey Mudd College*

Recommended Citation

Chinburg, Ted, and Melvin Henriksen. "Sums of kth powers in the ring of polynomials with integer coefficients." Bulletin of the American Mathematical Society 81 (1975): 107–110. DOI: 10.1090/S0002-9904-1975-13657-3

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [scholarship@cuc.claremont.edu.](mailto:scholarship@cuc.claremont.edu)

SUMS OF *kTH* **POWERS IN THE RING OF POLYNOMIALS WITH INTEGER COEFFICIENTS**

BY TED CHINBURG AND MELVIN HENRIKSEN¹

Communicated by Robert Fossum, August 1, 1974

Suppose R is a ring with identity element and k is a positive integer. Let $J(k, R)$ denote the subring of R generated by its kth powers. If Z denotes the ring of integers, then $G(k, R) = {a \in \mathbb{Z} : aR \subset J(k, R)}$ is an **ideal of Z.**

Let $Z[x]$ denote the ring of polynomials over Z and suppose $a \in R$. Since the map $p(x) \rightarrow p(a)$ is a homomorphism of $Z[x]$ into R, the well**known identity (see [3, p. 325])**

(1)
$$
k!x = \sum_{i=0}^{k-1} (-1)^{k-1-i} {k-1 \choose i} {(x+i)^{k} - i^{k}}.
$$

in $Z[x]$ tells us that $k! \in G(k, Z[x]) \subseteq G(k, R)$. Since Z is a cyclic group under addition, this shows that $G(k, R)$ is generated by its minimal positive element, which we denote by $m(k, R)$. Abbreviating $m(k, Z[x])$ by $m(k)$, we then have $m(k, R)|m(k)$ and $m(k)|k!$.

Thus $m(k)$ is the smallest positive integer *a* for which there is an **identity of the form**

(2)
$$
ax = \sum_{i=1}^{n} a_i [g_i(x)]^k
$$

where $a_1, \dots, a_n \in \mathbb{Z}$ and $g_1(x), \dots, g_n(x) \in \mathbb{Z}[x]$.

On differentiating (2) with respect to *x* we have $k|m(k)$. Thus if R **is any ring with identity,**

(3)
$$
k|m(k), m(k, R)|m(k), \text{ and } m(k)|k!.
$$

For any $k \ge 1$ in Z, let $P_1(k)$ denote the set of primes less than k **that divide** k, and let $P_2(k)$ denote the set of primes less than k that fail to divide *k*. If *p* is a prime and $r \ge 1$, $m > 1$ are integers, then a number *ÂMS (MOS) subject classifications* **(1970). Primary 10M05, 10B25, 12C15; Sec-**

We are indebted to H. Edgar and W. LeVeque for valuable references.

Copyright © 1975, American Mathematical Society

ondary 13F20.

of the form $(p^{mr} - 1)/(p^r - 1)$ is called a *p-power sum*. We adopt the con**vention that the product of an empty set of integers is 1. The main theorem of this paper is the following.**

THEOREM 1. *If k is a positive integer then*

$$
m(k) = k \prod \{ p^{\alpha_k(p)} : p \in P_1(k) \} \prod \{ p^{\beta_k(p)} : p \in P_2(k) \}
$$

where

(a)
$$
\alpha_k(p) = 1
$$
 if p is odd.

(b)
$$
\alpha_k(2) = \begin{cases} 2 & \text{if } (2^j - 1) \mid k \text{ for some } j \geq 2, \\ 1 & \text{otherwise.} \end{cases}
$$

(c)
$$
\beta_k(p) = \begin{cases} 1 & \text{if some } p\text{-power-sum divides } k, \\ 0 & \text{otherwise.} \end{cases}
$$

A proof of this theorem will appear in [2]. Appropriate identities are developed in various homomorphic images of *Z[x]* **and lifted. Except for (b), these homomorphic images are Galois fields. A constructive but impractical algorithm is developed for obtaining identities of the form (2) with** $a =$ $m(k)$. The reader may easily verify the entries in the following table of **values of** $m(k)/k$ for $1 \le k \le 20$.

k	1	2	3	4	5	6	7
$m(k)/k$	1	1	2	2 \cdot 3 = 6	2	4 \cdot 3 \cdot 5 = 60	2
$m(k)/k$	2 \cdot 3 \cdot 7 = 42	2 \cdot 3 = 6	2 \cdot 3 \cdot 5 = 30	11	4 \cdot 3 \cdot 5 \cdot 11 = 660		
k	13	14	15	16	17	18	
$m(k)/k$	3	4 \cdot 7 \cdot 13 = 364	2 \cdot 3 \cdot 5 = 30	2 \cdot 3 \cdot 7 = 42	2	4 \cdot 3 \cdot 5 \cdot 17 = 1,020	
k	19	20	20				
$m(k)/k$	1	2 \cdot 3 \cdot 5 \cdot 19 = 570					

A table of values for $m(k)/k$ for $1 \le k \le 150$ is supplied in [2] to**gether with an algorithm for computing values of** $m(k)/k$ **efficiently.**

If Γ is any set of primes, let $S(\Gamma)$ denote the multiplicative semigroup generated by Γ . Let $T(\Gamma)$ denote the set of $a > 1$ in Z for which **there is a** $d > 1$ in Z such that $(a^d - 1)/(a - 1) \in S(\Gamma)$.

The next theorem yields some information about the distribution of values of $m(k)/k$. Recall that a prime is called a *Mersenne* (resp. *Fermat*) prime **if** $p = 2^n - 1$ (resp. $p = 3$ or $p = 2^n + 1$) for some integer $n > 1$.

THEOREM 2. *Suppose T is a finite set of primes.*

(a) $T(\Gamma)$ is the union of a finite set and $\{a \in \mathbb{Z} : a > 1 \text{ and } (a + 1) \in \mathbb{Z} \}$ *S*(**T**)}.

(b) If $S(\Gamma)$ contains no even integer, then $\{a \in T(\Gamma): a \text{ is odd}\}\$ is *finite.*

(c) If $2 \notin \Gamma$, then ${m(k)/k: k \in S(\Gamma)}$ is bounded. In particular, if $k > 1$ *is an odd integer, then* ${m(k^n)/k^n}$ *is a bounded sequence.*

(d) If $n > 1$ is an integer, then $m(2^n)/2^n$ is the product of all the *Mersenne primes less than 2ⁿ*

(e) If p is a Fermat prime, then $m(p^n)/p^n = 2p$ for every integer $n > 1$.

A proof of Theorem 2 is given in [2].

We conclude with some remarks and unsolved problems.

(A) P. Bateman and R. M. Stemmler show in [1, p. 152] that if $\{p_n\}$ is the sequence of primes such that p_n is a q-power sum for some prime q , where p_n is repeated if it is a q-power sum for more than one prime q, then $\sum_{n=1}^{\infty} p_n^{-\frac{1}{2}} < \infty$. Hence such primes are sparsely distributed. Indeed, they state that there are only 814 such primes less than 1.25×10^{10} , and they **exhibit the first 240 of them.** In this range $31 = (2^6 - 1)/(2 - 1) =$ $(5³ - 1)/(5 - 1)$ is the only prime that is a *q*-power sum for more than one **prime** *q*. For any prime *p*, $m(p)/p$ is the product of all primes *q* such that p is a q -power sum. It does not seem to be known if there is a positive **integer** N such that $m(p)/p$ has no more than N prime factors for every **prime** *p.*

(B) Can the sequence $\{m(k^n)/k^n\}$ be bounded if *k* is even? By Theorem 2 (d), $\{m(2^n)/2^n\}$ is bounded if and only if there are only finitely many Mersenne primes. What if k is even and composite?

(C) By Theorem 2 (c), if T is a finite set of odd primes, then there is a smallest positive integer $M(\Gamma)$ such that $m(s)/s \leq M(\Gamma)$ for every $s \in S(\Gamma)$. By Theorem 2 (e), $M(\Gamma) = 2p$ if $\Gamma = \{p\}$ and p is a Fermat **prime, and since** $(11)^2 = (3^5 - 1)/(3 - 1)$, $M(11) \ge 33$. Is there a general **method for computing** $M(\Gamma)$? What if $|\Gamma| = 1$?

(D) It is not difficult to prove that if *R* **is a ring with identity for** which there is a homomorphism of *R* onto $Z[x]$, then $m(k, R) = m(k)$. In particular, if $\{x_{\alpha}\}\$ is any collection of indeterminates, then $m(k, Z[\{x_{\alpha}\}])$ **=** *m(k).*

110 TED CHINBURG AND MELVIN HENRIKSEN

REFERENCES

1. P. T. Bateman and R. M. Stemmler, *Waring's problem for algebraic number fields and primes of the form* $(p^{r} - 1)/(p^{d} - 1)$, Illinois J. Math. 6 (1962), 142–156. **MR 25 #2059.**

2. T. Chinburg and M. Henriksen, *Sums of kth powers in the ring of polynomials with integer coefficients,* **Acta Arith. (submitted).**

3. G. H. Hardy and E. M. Wright, *The theory of numbers,* **Oxford Univ. Press, London, 1946.**

DEPARTMENT OF MATHEMATICS, HARVEY MUDD COLLEGE, CLAREMONT, CALIFORNIA 91711