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Abstract

In this thesis we first give an introduction to knots, knot diagrams, and
algebraic structures defined on them accessible to anyone with knowledge
of very basic abstract algebra and topology. Of particular interest in this
thesis is the concept of the quandlewhich “colors” knot diagrams. Usually,
quandles are only used to color knot diagrams in the plane or on a sphere,
so this thesis extends quandles to knot diagrams on any surface and begins
to classify the fundamental quandles of knot diagrams on the torus.

This thesis also breifly looks into Niebrzydowski tribrackets which are
a different algebraic structure which, in future work, may have interesting
behavior on knot diagrams in arbitrary surfaces.
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Chapter 1

Introduction

In this work we ask the following question: suppose we have a loop (or many
loops) of wire tangled up in space. For instance, consider the thickened
loops in figure 1.1.

Figure 1.1 The Trefoil Knot (le�), the Unknot (middle), and a bent Unknot
(right)

It is a natural question to ask if these are the same or different. On one
hand, they are differently embedded in space, so we might say that they
are different for that reason. However, there’s a natural way in which the
middle and the right loops are the same: the right is simply the middle loop
physically twisted in space (this is why we call both of them the “unknot.”)
If we allow the loop to phase through itself while we bend, then we can
bend the left (and in fact any loop made this way) into the unknot as well.
However, this does not match what happens physically. In particular, wire
does not phase through itself, and if we want to study the properties of these
wires we should disallow such phasing.



2 Introduction

It’s natural to wonder if the left loop, which I’ve labeled “Trefoil” is the
unknot or not. We may get an answer in one of the following to ways. On
one hand, the left loop may be bendable without crossing such that it can be
made to look identical to the unknot. But on the other, if there is no such
bending we are left with a problem: how can we prove that there is no way
to bend the Trefoil into the unknot.

The answer to this question lives in Knot Theory, which is the subject of
this thesis.



Chapter 2

Preliminaries: Knots and Their
Invariants

2.1 Knots

For the remainder of this thesis, we will formalize the notion of knots in the
following way.

Definition 2.1.1 (Nosaka (2017)). A knot  is a smooth one-to-one
embedding of the circle S1 into space ℝ3 (or sometimes the 3-sphere
S3). That is,

 : S1 ↩−→ ℝ3

We say two embeddings  1 ,  2 are ambient isotopic if there is a smooth
map

� : ℝ3 × [0, 1] → ℝ3

such that for each C ∈ [0, 1], the map G ↦→ �(G, C) is a diffeomorphism
(ℝ3 � �(ℝ3 , C) as smooth manifolds), and for all G ∈ ℝ3 and � ∈ S1,

�(G, 0) = G, �( 1(�), 1) =  2(�)

We think of two knots as being the same if and only if they are ambient
isotopic.

Definition 2.1.1 agrees with our intuition in the following way. First,
it defines a knot as a smooth one-to-one embedding of a circle, which
represents our wire. We use a circle because we want the loop to be closed.
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We choose a smooth embedding because we want to avoid any kinks or other
odd non-differentiable elements in our wire, which would only confuse the
underlying questions we have.

Secondly, this definition encodes the bending as a smooth family of
diffeomorphisms �. Let  1 and  2 be embeddings of the circle into space
and let � be an ambient isotopy between them as in the definition. Since
differential geometry is not the focus of this thesis, we leave out some detail
here, but the intuition behind this definition is as follows. The function � at
each time C represents a smooth transformation of space into itself. Since �
is smooth as a function of C as well, we can think of� as smoothly deforming
ℝ3 as C goes from 0 to 1.

Now consider �( 1(�), C) as C goes from 0 to 1. Since the composition
of smooth maps is smooth and the composition of injections is injective,
we have that for each C ∈ [0, 1], � ↦→ �( 1(�), C) is a smooth, injective
embedding of the circle into ℝ3. In other words, each C ∈ [0, 1] gives us a
knotted loop in space, such that at C = 0, we have  1 and at C = 1 we have  2.
Since � is smooth in all variables, we have that �( 1(�), C) literally traces
out the bending of  1 into  2 as C goes from 0 to 1!

While this definition matches our physical intuition very well, it does not
help us determine if two knots are the same or different. This is because, in
general, it is a non-trivial problem to write down an ambient isotopy given
two embeddings of the same knot. Further, we do not have any tools with
which to prove that two embeddings are definitely not isotopic. We develop
the tools formulated by Knot Theorists previously in the remainder of this
section.

2.2 Reidemeister Moves

In the 1930’s, Kurt Reidemeister significantly simplified the issue by giving
a small set of intermediate moves that completely categorize all ambient
isotopies of knots (the history is described by Colberg (2017)).

We build up the details to give the theorem.

First we will want to give a lower dimensional representation of our
knots. In particular, consider a projection a knot  into ℝ2. In general, this
projection fails to be injective. But, we can do some small ambient isotopies
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as well as rotations of the projection plane to guarantee that there are only
finitely many non-injectivities and that each represents a crossing of only
two strands. In order, to recover an ambient isotopic copy of our original
knot it turns out we just need to know which arc of the knot is “closer” to
the viewer. Rigorously, this can be computed by a selection of a normal on
the plane. A more general and complete analysis of this kind of process is
given in 4.1. For now, here is a formal definition of the type of object we just
produced:

Definition 2.2.1. A knot diagram in the plane is a smooth directed closed
curve in ℝ2 with finitely many self-intersections, each of which “looks”
like an -, and for each self intersection data about which arc is “over”
the other.

More formally we may say that a knot diagram is a smooth function

5 : S1 → ℝ2

with the following properties

• There are only finitely many pairs �1 ≠ �2 ∈ S1 for which 5 (�1) =
5 (�2). (Finitely many self intersections).

• ∀�1 , �2 , �3 ∈ S1 if 5 (�1) = 5 (�2) = 5 (�3) then two of �1 , �2 , and
�3 are the same. (No points of triple intersection).

• If �1 ≠ �2 ∈ S1 with 5 (�1) = 5 (�2) then the tangent vectors are
unequal: 5 ′(�1) ≠ 5 ′(�2). (No intersections with tangency).

along with information at each intersection �1 ≠ �2 ∈ S1 with 5 (�1) =
5 (�2) about which of �1 or �2 is “over” the other.

Now we can draw our knots as knot diagrams in the plane as in figure 2.1
by representing the “under” arc by having a gap in it.

In figure 2.1, we have also included a direction of the knot. If we choose
a direction of the circle S1, this induces an orientation in our knots, which
is preserved by ambient isotopy. In particular, if two knots have the same
image but opposite directions, they need not be ambient isotopic. This
follows from the fact that ℝ3 is orientable.
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Figure 2.1 Two copies of the Trefoil knot

Proposition 2.2.2. A knot (as defined in Definition 2.1.1) is determined
uniquely, up to ambient isotopy, by it’s projection in the plane along with
crossing information and direction.

Remark. We can use the same ambient isotopy as before in the plane. It is
fairly reasonable that an ambient isotopies in the plane will induce ambient
isotopies of corresponding knots back in ℝ3; that is if the projections of
two knots are ambient isotopic in ℝ2 then the knots themselves are ambient
isotopic in ℝ3.

However, doing a littlemental gymnastics reveals that the two projections
in figure 2.1 come from ambient isotopic knots in ℝ3! However, an ambient
isotopy of the planewill never change the number of crossings in a projection.
In particular, ambient isotopy in the plane is not a complete picture of ambient
isotopy back in ℝ3.

Luckily, the following theorem closes the gap.

Definition 2.2.3 (Reidemeister Moves, Nelson (2018)). Consider the
following set of diagrams.
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We interpret each as a transition of a local piece of a projection of a knot.
We say that two projections of knots %1 and %2 are related by a Reidemeister
move if there is some simply connected open set of the plane such that %1
is ambient isotopic to one of these diagrams in that region, and making
a substitution along one of the arrows in %1 gives a projection that is
ambient isotopic to %2.

Example 2.2.4. To make this clear, consider the set of knot diagrams related
by Reidemeister moves in figure 2.2.

Figure 2.2 Knot diagrams related by Reidemeister moves
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Remark. Note that in this last step we have applied an ambient isotopy. In
the plane, it is fairly easy to tell if two knots are ambient isotopic because
the crossings are unaffected (up to sliding around) by ambient isotopy. We
will still say that ambient isotopic knots are related by (the empty set of)
Reidemeister moves, but it is important to note that ambient isotopy in the
plane does not give us much trouble (unlike in space).

Theorem 2.2.5 (Reidemeister). Let  1 ,  2 be knots as usual and let %1 and
%2 be projections of  1 and  2 into (potentially different) planes. Then  1 and
 2 are ambient isotopic if and only if %1 and %2 are related by a finite set of
Reidemeister moves.

Because of this theorem, we may refer to a knot by its projection in
some plane without losing any information. Thus, for the remainder of
this chapter (before we start delving into different projections in 4), we will
refer to the knots by their embeddings in space and projections in the plane
interchangibly.

2.3 Invariants

Consider the following situation.
Suppose we have two knots in space and we want to know if they are

ambient isotopic. We pick a arbitrary plane and project the knots onto said
plane in the way described above. There are two things that can happen.

• If the knots truly are the same, then we should be able to find a finite
set of Reidemeister moves that relate the two projections, and this will
suffice as a proof that the knots are the same.

• Otherwise, if the knots are truly different, then we will not be able to
find a finite set of Reidemeister moves to relate the two knots.

The issue is this: how will we be able to distinguish the case where the
knots are the same and we aren’t good at using the Reidemeister moves,
and the case where the knots are different and the knots are not related by
Reidemeister moves?

Thus, we would benefit from tools that help us in this second case, which
leads us to the study of knot Invariants. We use the tools of Category Theory.
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Definition 2.3.1 (Category, Hatcher (2002)). A category C consists of the
following three things:

• A collection Ob(C) of objects.

• Set Hom(-,.) ofmorphisms for each pair -,. ∈ Ob(C), including
a distinguished ‘identity’ morphism 1- ∈ Hom(-, -) for each
- ∈ Ob(C).

• A ‘composition’ map ◦ : Hom(-,.) ×Hom(., /) → Hom(-, /)
for each triple-,., / ∈ Ob(C), satisfying for each 5 ∈ Hom(-,.),
6 ∈ Hom(., /) and ℎ ∈ Hom(-, /),

5 ◦ 1- = 5 , 1. ◦ 5 = 5 , ( 5 ◦ 6) ◦ ℎ = 5 ◦ (6 ◦ ℎ)

We call -,. ∈ Ob(C) isomorphic if there exists 5 ∈ Hom(-,.) and
6 ∈ Hom(., -) such that 6 ◦ 5 = 1- and 5 ◦ 6 = 1. . In this situation
we write 6 = 5 −1 or 5 = 6−1 and call 5 and 6 inverse morphisms.

Some familiar examples of categories are

• Groups with group homomorphisms as morphisms.

• Rings with ring homomorphisms as morphisms.

• Topological spaces with continuous functions as morphisms.

Example 2.3.2. We will consider the collection of knot diagrams, K to be
category in the following way.

• Let Ob(K) be the collection of all knot diagrams in the plane.

• For each pair of knot diagrams :1 , :2 ∈ Ob(K), let Hom(:1 , :2) be the
set of all finite lists of Reidemeister moves that send :1 to :2 up to
redundancies in the list. That is we identify a list of Reidemeister
moves with the same list but with all redundant Reidemeister moves
(a move immediately followed by its inverse) removed.
Note that Hom(:1 , :2) is empty if :1 and :2 are not equivalent knot
diagrams. Further set 1: to be the empty list of Reidemeister moves
applied to the knot diagram :.
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• Let ◦ : Hom(:1 , :2) × Hom(:2 , :3) → Hom(:1 , :3) be defined by ap-
pending lists in the order they appear, again up to redundancies. We
see that this is associative because appending lists is associative, and
respects the identity since appending the empty list does not change a
list.

Note that every morphism in K has an inverse generated by spelling
the list of Reidemeister moves backwards and inverting each. In particular,
two knot diagrams are isomorphic in P if and only if they are related by
Reidemeister moves! By Theorem 2.2.5, two knot diagrams are isomorphic
in K if and only if the knots they represent are ambient isotopic in space.
Thus, in this language, our problem becomes determining if knot diagrams
are isomorphic.

Definition 2.3.3 ((Covariant) Functor Hatcher (2002)). A (covariant)
functor � from a category C to D assigns to each object - ∈ Ob(C) an
object �(-) ∈ Ob(D) and assigns to eachmorphism 5 ∈ Hom(-,.) in C
amorphism �( 5 ) ∈ Hom(�(-), �(.)) inD such that for each- ∈ Ob(C),
�(1-) = 1�(-) and for each 5 ∈ Hom(-,.) and 6 ∈ Hom(., /) in C

�( 5 ◦ 6) = �( 5 ) ◦ �(6).

Remark. Note that we could also consider the collection of knots in space a
category with ambient isotopy as morphism. Then projecting onto the plane
is a covariant functor from knots to knot diagrams.

What is important to us about functors is the following result:

Proposition 2.3.4. Let � be a (covariant) functor between categories C and
D and let -,. ∈ Ob(C). If - is isomorphic to ., then �(-) is isomorphic to
�(.).

Usually, we use the contrapositive of this statement: If �(-) is not
isomorphic to �(.) then - is not isomorphic to ..

Proof. Suppose - and . are isomorphic. Then there exists morphisms
5 ∈ Hom(-,.) and 6 ∈ Hom(., -) with 6 ◦ 5 = 1- and 5 ◦ 6 = 1. . Note
that since � is a functor we have morphisms �( 5 ) ∈ Hom(�(-), �(.)) and
�(6) ∈ Hom(�(.), �(-)). Futher, since � is a covariant functor we have

�( 5 ) ◦ �(6) = �( 5 ◦ 6) = �(1.) = 1�(.)
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and similarly
�(6) ◦ �( 5 ) = �(6 ◦ 5 ) = �(1-) = 1�(-).

In particular, �(-) and �(.) are isomorphic. �

Remark. We use this to help us distinguish non-isomorphic knots in the
following way. Suppose :1 and :2 are arbitrary knot diagrams, and we have
some functor � from the category of knot diagrams, to another category
C where isomophism is easy to compute. If �(:1) is not isomorphic to
�(:2), then we know that :1 and :2 are non-isomorphic knot diagrams!
In particular, this gives us an easier way to compute when two knots are
different.

However, it is important to know that if �(:1) and �(:2) are isomorphic
in whichever category they live in, this does not tell us that :1 and :2 are the
same!

We call functors from the category of knot diagrams to another cate-
gory knot invariants because the output of the functor does not vary over
isomorphic knot diagrams.

In the next sections we discuss two particular invariants.

2.4 The Knot Quandle

In this section we give a definition for the algebraic structure of quandles,
which we will see form a category, and which we can easily create a functor
to from the category of knot diagrams. Quandles were first introduced in
Joyce (1982) for studying knots in exactly the way we will here.

The axiomatic definition is given in Definition 2.4.1. However, the
quandle can be thought of as coming from the Reidemeister moves in the
following way.

Saywe have a knot presented in the plane. Wewish to generate a category,
which we will call the category of Quandles, and a (hopefully simple) functor
from the category of knot diagrams to the category of quandles. That is,
to each knot diagram, we want to associate a quandle, such that any knot
diagram morphism induces a quandle morphism.

In particular, since all knot diagram morphisms are finite lists of Reide-
meister moves and are all invertible, we want each Reidemeister move on an
arbitrary knot to induce an isomophism on the category of quandles.
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If we take a quandle to be a set -, with some binary operation B :
- × - → - (as is a usual playground for categories), we can think of the
elements of - as coloring the diagram of a knot in the plane, such that at
each crossing we apply the operation according to figure 2.3. That is, when
an arc of the diagram goes under another arc oriented down, we apply the
operation on the under strand’s left color to get the under strand’s right
color.

Figure 2.3 The quandle rule.

Now, given this set up, the Reidemeister moves induce rules on our
quandle operation in the following way. Suppose we have a quandle that
colors a given knot in the plane according to the rule given in figure 2.3.
Now, suppose there is an open disk of the plane that contains arcs where
we can apply a Reidemeister move. Since applying the Reidemeister move
will give us an isomorphic knot, then the new knot should be colorable by
an isomorphic quandle (and in particular, given our morphisms, the same
quandle).

We can color the part of the knot not involved in the move the same and
everything there will work the same way as it did before the move. But in
the region of the move, we need a unique element of the quandle to color
each arc such that our rule is satisfied. It needs to be unique, or else the
Reidemeister moves will not induce well defined isomophisms on quandles.
How this applies to each Reidemeister move is given in the following figures.

We see that the first Reidemeister move, in figure 2.4, induces the rule:
for all G ∈ -, G B G = G. This is because the outside of the region must still be
labeled G since it hasn’t changed. Further, we see that this must apply to all
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G, because any arc may be labeled G and each arc can have the Reidemeister
1 applied to it.

Figure 2.4 Reidemeister 1 Rule

We see that the second Reidemeister move, in figure 2.5 induces the
rule: for all H ∈ -, the function G ↦→ G B H is a bĳection. This is because we
required uniqueness. So the two ways of doing Reidemeister 2 must each
give unique results, and since they give inverse applications of B, we see
that Bmust be bĳective on the left.

Figure 2.5 Reidemeister 2 Rule

Finally, the third Reidemeister move in figure 2.6 gives us: for all
G, H, I ∈ -,

(G B H) B I = (G B I) B (H B I)

since the ends must agree. This is again because the remainder of the knot
we intend to be colored the same as before the move.

Figure 2.6 Reidemeister 3 Rule
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We collect these rules into the following definition.

Definition 2.4.1 (Quandle, Nosaka (2017)). A quandle is a set - with
a binary operation B : - × - → - satisfying the following three
conditions:

• For all 0 ∈ -, 0 B 0 = 0,

• For all 1 in - the map 0 ↦→ 0 B 1 is a bĳection.

• For all 0, 1, 2 ∈ -, (0 B 1) B 2 = (0 B 2) B (1 B 2).

Further, for quandles -,. with operations B- and B. respectively,
a map 5 : - → . is called a quandle homomorphism if for all 0, 1 ∈ -,

5 (0 B- 1) = 5 (0) B. 5 (1)

Here are some familiar examples of quandles.

Example 2.4.2. (Trivial Quandles) A set - with G B H = G for all G, H ∈ -.
This immediately gives us that there is a quandle of every cardinality.

Note that in this thesis we call the trivial quandle with one element the
singleton quandle.

Example 2.4.3. (Group Conjugation) A group � with G B H = HGH−1.

Example 2.4.4. (Alexander Quandles) A ring ' with unit D and G B H =
H + D(G − H)

Setting ' = ℤ/=ℤ and D = −1, we have G B H = 2H − G which gives a
non-trivial quandle on each = ≥ 3 elements.
Remark. Currently, there is no definitive classification of all finite quandles.

Proposition 2.4.5. Quandles form a category with quandle homomorphisms
as morphisms.

To continue, we need a way to assign a specific quandle to each knot
diagram. We get this through the following definitions.
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Definition 2.4.6. We say a quandle - colors a diagram of a knot  if
there is a map from the set of arcs of  (that is, the set of unbroken
lines in  ), to - such that at each crossing of  , the relation in figure 2.3
holds.

Now we may give the functor from the category of knots to the category
of quandles.

Definition 2.4.7. For a knot  presented in the plane, label each arc of
 with a unique arbitrary symbol, and at each crossing note the relation
given by the quandle rule in figure 2.3. Then, the quandle associated
to this knot is the free quandle generated by these symbols mod the
given relations. That is, the quandle associated to  is the set of formal
strings of arc labels separated byB andB−1 using parentheses to indicate
association. with the relations given by the crossings of  according to
the quandle rule in figure 2.3. For instance

(F B (G B−1 H)) B I

Further, to each isomorphism of knots we assign the unique isomor-
phism of quandles induced by the Reidemeister moves in the preceding
discussion.

In this thesis we call this pairing the fundamental quandle of a knot,
but in the literature you may also see knot quandle.

Finally, note that the fundamental quandle of  colors  by construc-
tion and is in fact the “most free” coloring of  .

Remark. We include the symbol B−1 to indicate the inverse guaranteed by
the bĳectivity of 0 ↦→ 0 B 1. In particular, if 2 = 0 B 1 then 0 = 2 B−1 1. Note
that homomorphisms between quandles that respect B will also respect B−1

so that respecting B is all we need to worry about.

Example 2.4.8. We can best see this in figure 2.7.
We write the fundamental quandle using the same generator notation

for groups. That is something of the form〈
01 , . . . , 0= | 08 = 0 9 B 0: . . .

〉
.

where the 08 before the bar are the list of generators and the equalities on the
right tell us how we can simplify formal words and come from the relations
at the crossings given by the quandle rule in figure 2.3.
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Figure 2.7 The Fundamental Quandle associated to the Overhand knot

The fundamental quandle of the knot in figure 2.7 is

〈0, 1, 2 | 0 = 1 B 2, 1 = 2 B 0, 2 = 0 B 1〉 .

Proposition 2.4.9 (Theorem 15.1, Joyce (1982)). The assignment given by
Definition 2.4.7 is a covariant functor from the category of knot diagrams to
the category of quandles.

Proof. This follows by the assigment of Reidemeister moves to quandle
isomorphism in the discussion above. This is the same argument Joyce used
originally. �

It follows that the fundamental quandle is an invariant of knots. It turns
out that the situation is better which is given in the next theorem.

Theorem 2.4.10 (Corollary 16.3, Joyce (1982)). Let  and  ′ be two oriented
knots in the 3-sphere, S3, and let : and :′ be their associated knot diagrams.

Then  ′ is ambient isotopic to either  or the mirror image of  with
direction reversed if and only if the fundamental quandles of  and  ′ are
isomorphic.

Now, we build up some intuition about quandles to better decide when
two quandles are isomorphic or not.
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Example 2.4.11. First, consider the free quandle on one element 〈0 |〉 which
is the fundamental quandle of a the unknot (which has one arc and no
crossings). By the first property of quandles (coming from Reidemeister 1),
we have 0 B 0 = 0. Thus, every formal string using B collapses down to 0. In
particular,

〈0 |〉 = {0}.
There is clearly only one quandle on 1 element, and it is the trivial quandle
on 1 element. We call this quandle the singleton quandle.

WARNING: This notion of “freeness” for quandles does not match up
with the usual definition of free for modules. In particular, the rules of
quandles induced by the Reidemeister moves prevent us from having a
notion of basis or anything like this.

Example 2.4.12. Now let’s consider the free quandle on two elements 〈0, 1 |〉,
which doesn’t correspond to a single knot, but a pair of disjoint, unconnected
unknots (groups of knots are called links). It turns out that the quandle
axiomsmake no assertion about what 0B 1 should be. In particular, 0B 1 ≠ 0
and 0 B 1 ≠ 1. This continues to give unique elements of the form

0 B (1 B (0 B (· · · ))).

The reason that this does not collapse down is because the first and third
rules don’t apply (we have no G B G or situation to right distribute), and
the second Reidemeister move doesn’t give us any ground to collapse the
situation. Thus, the free quandle on 2 generators is infinite.

Example 2.4.12 hints at the following issue: Most fundamental quandles are
infinite. This is a problem since it is in general a non-trivial task to distinguish
infinite quandles from their presentation (much like how distinguishing
group presentations is undecidable), and we chose this approach to make
things easier!

The solution comes from an application of the following proposition:

Proposition 2.4.13. Let  be a knot presented in the plane and let - be its
fundamental quandle. Then for any quandle ., . colors  if and only if there
is a quandle homomorphism from - to ..

Proof. ( =⇒ )We construct the quandle homomorphism in the following
way. Since both - and. color  , there are maps !,# from the arcs of  to -
and . respectively. In the case of the fundamental quandle -, we know that
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each arc of  is mapped to a unique generator of -. That is ! is invertible
on the set of generators for -. Let 5 : - → . be defined on the generators
of - by

5 = !−1 ◦ #

and extend “linearly.” That is, for any formal string of operations in -

written in terms of the generators of -, we simply take 5 of each generator.
For example,

5 ((0 B 1) B ((2 B 1) B 0)) = ( 5 (0) B 5 (1)) B (( 5 (2) B 5 (1)) B 5 (0)).

Unlike in the case of vector spaces or free modules, this is not trivially well
defined. However, we have that both - and . obey the same relations at the
crossings.

With some work, it follows that 5 is well defined by induction.
( ⇐= ) If there is a homomorphism 5 : - → ., then since we know  is

colored by -, we have a map ! from the arcs of  to - and thus we have a
map ! ◦ 5 from the arcs of  to .. Now, at each crossing we have to satisfy a
relation in . of the form 5 (0) B 5 (1) = 5 (2). But since - satisfies the relation
at the crossing we have 0 B 1 = 2 and so

5 (2) = 5 (0 B 1) = 5 (0) B 5 (1).

�

It follows from this proposition that in fact any quandle is an invariant
of knots. In particular, say we pick two isomorphic knots  1 and  2 with
fundamental quandles -1 and -2. Then for any quandle ., we have a
quandle homomorphism from -1 to . if and only if we have a quandle
homomorphism from -2 to . (since -1 and -2 are isomorphic), and thus .
colors  1 if and only if . colors  2 as well.

But in fact, the relationship is stronger. Since each coloring induces a
unique homomorphism and each homomorphism induces a unique coloring,
the set of colorings of . onto  is also an invariant of knots.

That is we can fix any quandle . we want, and the set of ways it colors  
is fixed over all isomorphs of  .
Remark. Thus, we may freely look for finite quandles when trying to distin-
guish knots. However, it should be noted that it is an open problem whether
every pair of knots is distinguished by a finite quandle.
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Figure 2.8 Trefoil (le�) and unknot (right) with arc labels and relations.

Example 2.4.14. We can distinguish the unknot and the trefoil knot using
the Alexander Quandle & = ℤ/3ℤ with unit −1.

We see that the fundamental quandles are

! = 〈0, 1, 2 | 0 = 1 B 2, 1 = 2 B 0, 2 = 0 B 1〉

for the trefoil and ' = 〈G | 〉 for the unknot. We look for homomorphisms
from these into & = ℤ/3ℤ.

First we consider the Trefoil. Let 5 : !→ & = ℤ/3ℤ be a homomorphism.
Every homomorphism is determined exactly by its action on the generators,
so if we know 5 (0), 5 (1), 5 (2) ∈ &, then we know 5 exactly. However, these
are not free! We must have (using the ring structure of ℤ/3ℤ)

5 (0) = 5 (1 B! 2) = 5 (1) B& 5 (2) = 2 5 (2) − 5 (1)

5 (1) = 5 (2 B! 0) = 5 (2) B& 5 (0) = 2 5 (0) − 5 (2)

5 (2) = 5 (0 B! 1) = 5 (0) B& 5 (1) = 2 5 (1) − 5 (0)

We can solve this system using Linear Algebra (which is what makes
Alexander Quandles so nice), and we get that 5 (1) and 5 (2) are free and that

5 (0) = 2 5 (1) + 2 5 (2).

Since 5 (1) and 5 (2) can be anything in ℤ/3ℤ we see that there are exactly
nine unique homomorphisms 5 : !→ ℤ/3ℤ.

On the other hand, the fundamental quandle of the unknot has no
relations and one generator. Thus, we have three homomorphisms 5 (G) = 0,
5 (G) = 1 and 5 (G) = 2.

Since nine is not the same number as three, we see that these two knots
are not isomorphic.
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We also see that not every finite quandle distinguishes different knots.
For example the number of colorings of the Alexander quandle ℤ/3ℤ on
the square and granny knots in figure 2.9 are both 27 (this is calculated
using similar linear algebra as in example 2.4.14), even though they can be
distinguished by a larger quandle (of size 24).

Figure 2.9 Square and Granny Knots

Thus, in the next section we strengthen the finite quandle coloring
invariant by introducing the notion of a state sum.

2.5 Quandle Cocycle State-Sums

We can strengthen the quandle coloring invariant in the following way.
Suppose, we already have a quandle that colors a presentation of a knot in
the plane. We are motivated by the fact that since one quandle can color a
knot in different ways, then maybe knowing how a quandle colors a knot
will help us further distinguish different knots.

In particular, we may look at what happens at the crossings, and assign
to each crossing a member of an abelian group �, such that the sum over the
crossings of a knot is an invariant of the particular coloring. Similarly to the
construction of the quandle, we give a rule and appeal to the Reidemeister
moves.

WARNING: Here we use additive notation for the abelian group � so
that the commutativity is clear, but Carter et al. (2008) uses multiplicative
notation!

Let  be a knot, - a quandle which colors  , and � an abelian group.
To start we decide on a rule, which is given in figure 2.10. That is, we choose
functions ),# : - × - → � with the intent of summing up the values )
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and # for each crossing of the knot diagram of  .

Figure 2.10 State Sum Rule

We want to make sure that this sum is the same for isomorphic knots
with the coloring by - induced by the isomophism. Thus, we make sure
that each Reidemeister move preserves our sum. Note that if there are no
crossings, then the sum should be 0, the identity of �. The work of this is
given in figures 2.11, 2.12, and 2.13.

Figure 2.11 State Sum Rule induced by Reidemeister 1

Note that we left out the Reidemeister moves that do not give us any new
information. Also note that the second Reidemeister move asserts that )
and # are inverses, so we really only need to consider one function. Thus
our coloring rule can be reduced to that of figure 2.14.

It turns out that these condition are identical to the condition for a
function ) to be a 2-cocycle in a certain cohomology theory on Quandles.
Thus, we call such a ) a 2-cocycle. We leave out the details because
cohomology theory is quite vast. Although, for the sake of completeness
note that the boundary map of this homology theory is given on a basis for
�[-=]/{(. . . , G8 , G8+1 , . . .) : G8 = G8+1} by

%=(G1 , . . . , G=) =
=∑
:=2

[
(−1):(G1 , . . . , Ĝ: , . . . , G=) − (G1 B G: , G2 B G: , . . . , ˆG: B G: , G:+1 , . . . , G=)

]
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Figure 2.12 State Sum Rule induced by Reidemeister 2

Figure 2.13 State Sum Rule induced by Reidemeister 3

Definition 2.5.1. Let - be a quandle and � an abelian group. Then a
function ) : - × - → � is a 2 cocycle if and only if

• for all G ∈ -, )(G, G) = 0 and

• for all G, H, I ∈ -,

)(G, H) + )(G B H, I) = )(G, I) + )(G B I, H B I).

One issue of using the state sum is that we are only guaranteed the
same sum for the same way of coloring a knot by a quandle. In particular,
if we have isomorphic knots  1 and  2 and a quandle that colors each 2
ways, we may get two distinct sums, one from each coloring, but this is still
invariant because the multiset of sums are identical. In particular, we have
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Figure 2.14 State Sum Rule

the following proposition.

Proposition 2.5.2. Let 1 and 2 be isomorphic knots,- an arbitrary quandle,
� an arbitrary abelian group and ) : -×- → � satisfying. Then the multiset
of state sums for each coloring of  1 by - is the same as the multiset of state
sums for each coloring of  2 by -.

In particular, the multiset of state sums is an invariant of knots.

Finally, if we go back to cohomology theory, it turns out that if two
co-cycles differ by a coboundary, then they give the same multiset of state
sums.

Proposition 2.5.3 (Prop 4.5 Carter et al. (2008)). Let  be a knot, - be a
quandle, and � be an abelian group. Let ), )′ be 2-cocycles. If Φ) and Φ)′

denote the multisets of state sums and ) = )′ + �# = )′ + # ◦ %2 (where
# : - → �), then Φ) = Φ)′. In particular, for any # : - → �, Φ#◦%2 has
only the element 0, with multiplicity of the number of colorings of - on  .

2.6 Niebrzydowski Tribrackets

Now, we switch gears and discuss another category which we can use to
distinguish knots.

The intuition for this category comes from coloring the regions of the
plane that the knot cuts out instead of coloring the arcs of the knot itself.
We give this category the same treatment as quandles. Since there are four
regions next to each crossing (as opposed to three arcs) we want our category
to be composed of a set - alongwith a ternary operation 〈〉 : -3 → -. Again
we generate rules by appealing to the Reidemeister moves.



24 Preliminaries: Knots and Their Invariants

First we start of we an arbitrary rule relating one of the regions to
the other three in figure 2.15. We choose what is now called the vertical
Niebrzydowski tribracket Nelson et al. (2019). We only fix one crossing in our
initial rule, because the rule at the other crossing falls out of Reidemeister 2.
Further, it turns out that Reidemeister 1 does not put any further restriction
on the rules of the tribracket, which is odd and potentially means that we
aren’t capturing a full set of information.

Figure 2.15 The vertical Niebrzydowski tribracket rule.

Figure 2.16 Tribracket Rule induced from parallel Reidemeister 2

Figure 2.16 shows two things. First on the left we see we have a positive
crossing on top and have labeled it according to our rule. However, since
doing Reidemeister 2 connects the top and bottom middle regions, we see
they must be the same (in order to preserve isomophism of knots). Thus,
the lower left crossing gives us our rule for the other type of crossing shown
in figure 2.19. Second, we have invertibility in the middle position coming
from uniqueness on the right side.

The antiparallel versions of Reidemeister 2 are given in figure 2.17.
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Figure 2.17 Tribracket Rule induced from antiparallel Reidemeister 2

Similarly give us invertibility at the first and third positions. Putting all this
together gives that for fixed G, H ∈ - the maps

0 ↦→
〈
0, G, H

〉
, 0 ↦→

〈
G, 0, H

〉
, 0 ↦→

〈
G, H, 0

〉
are all bĳective.

Figure 2.18 Tribracket Rule induced from Reidemeister 3

Finally, figure 2.18 gives some rather complicated relationships induced
from Reidemeister 3. They are for all G, H, I, F ∈ - we have〈

G, H,
〈
H, I, F

〉〉
=

〈
G,

〈
G, H, I

〉
,
〈〈
G, H, I

〉
, I, F

〉〉
and 〈〈

G, H, I
〉
, I, F

〉
=

〈〈
G, H,

〈
H, I, F

〉〉
,
〈
H, I, F

〉
, F

〉
We collect all these rules in a definition.

Definition 2.6.1. A vertical Niebrzydowski tribracket (or tribracket for short
in this work) is a set - along with a ternary operation 〈〉 : -3 → -

satisfying
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Figure 2.19 The Full Vertical Niebrzydowski tribracket rule.

• Invertibility at all positions. That is the maps

0 ↦→
〈
0, G, H

〉
, 0 ↦→

〈
G, 0, H

〉
, 0 ↦→

〈
G, H, 0

〉
are all bĳective.

• For all G, H, I, F ∈ - we have〈
G, H,

〈
H, I, F

〉〉
=

〈
G,

〈
G, H, I

〉
,
〈〈
G, H, I

〉
, I, F

〉〉
and 〈〈

G, H, I
〉
, I, F

〉
=

〈〈
G, H,

〈
H, I, F

〉〉
,
〈
H, I, F

〉
, F

〉
Further, a tribracket homomorphism between tribrackets - and .
is a function 5 : - → . with

5 (
〈
G, H, I

〉
) =

〈
5 (G), 5 (H), 5 (I)

〉
Proposition 2.6.2. Tribrackets form a categorywith tribracket homomorphisms
as morphisms.

Now everything falls into place just as in the quandle case. We may
speak of the “free tribracket” for a given knot diagram, but these are again
infinite and rather hard to work with.
Remark. In fact, even less is known about the classification of Niebrzydowski
tribrackets than of quandles.

Thus, we can resort to colorings by finite tribrackets.
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Definition 2.6.3. We say a tribracket - colors a knot diagram if there is
a map from the regions of the knot’s complement to -.

Proposition 2.6.4. Let  1 and  2 be knots, and - a tribracket. Then - colors
 1 if and only if - colors  2.

Proof. This follows in exactly the sameway as in the quandle case: a tribracket
will color a knot diagram if and only if there is a morphism from the “free
tribracket” to the given tribracket. �

Remark. Thus, colorings by tribrackets are an invariant of knots! This gives
us another way to distinguish knots, which may give different results than
using quandles. There is some work to unify the ideas in Nelson et al. (2019).

2.7 Tribracket Cocycle State-Sums

Niebrzydowski (2017) gives a homology theory for tribrackets which is quite
messy. We give it here for completeness but it is quite hard to manage.

Definition 2.7.1 (Niebrzydowski (2017)). Fix an abelian group � and
a tribracket -, and set �= = �[-=+2] the free module generated by
elements of - over �. We define functions %= : �= → �=−1 by

%= = %!= − %'=

These functions are given by

%!=(G0 , . . . , G=+1) =
=∑
8=0
(−1)83=,!

8
(G0 , . . . , G=+1)

where
3=,!0 (G0 , . . . , G=+1) = (G1 , . . . , G=+1)

3=,!
8
(G0 , . . . , G=+1) = 3=,!8−1(G0 , . . . G8−1 , 〈G8−1 , G8 , G8+1〉 , G8+1 , . . . , G=+1)
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and

%'= (G0 , . . . , G=+1) =
=∑
8=0
(−1)83=,!

8
(G0 , . . . , G=+1)

where
3=,'0 (G0 , . . . , G=+1) = (I0 , I1 , . . . , I=)

where I0 = G0 , I8 = 〈I8−1 , G8 , G8+1〉 and

3=,'
8
(G0 , . . . , G=+1) = 3=,'8−1 (G0 , . . . , G=+1)[〈G8−1 , G8 , G8+1〉 ↦→ G8]

That ism the formula for 3=,'
8

is obtained from 3=,'
8−1 by replacing

〈G8−1 , G8 , G8+1〉 with G8 .

Example 2.7.2. In low dimensions Niebrzydowski (2017) gives

%1(0, 1, 2) = (1, 2) − (0, 〈0, 1, 2〉)
− (〈0, 1, 2〉 , 2) + (0, 1)

%2(0, 1, 2, 3) = (1, 2, 3) − (0, 〈0, 1, 2〉 , 〈〈0, 1, 2〉 , 2, 3〉)
− (〈0, 1, 2〉 , 2, 3) + (0, 1, 〈1, 2, 3〉)
+ (〈0, 1, 〈1, 2, 3〉〉 , 〈1, 2, 3〉 , 3) − (0, 1, 2)

Niebrzydowski (2017) further claims that 2-cocycles in this homology
form a state sum invariant for knots, still summing up over the crossings.
That is, any function ) : -3 → � for some abelian group � which satisfies
) ◦ %2 = 0 (which comes from Reidemeister 3) as well as a non-degeneracy
condition (which comes from Reidemeister 1):

The function )must be zero on any (0, 1, 2) ∈ -3 with 1 = 〈0, 1, 2〉. Note
that, by invertibility at each position, we have that, for fixed 0, 1 there is a
unique 2 that satisfies the above condition, and similarly for fixed 1, 2 there
is a unique 0 that satisfies the above condition. However, for fixed 0, 2 there
need not be a 1 that has 〈0, 1, 2〉 = 1! In particular we can only guarantee a
unique 3 with 〈0, 3, 2〉 = 1.

One odd thing about this homology theory is that it is off by one. In
particular, what are usually the =-tuples in a homology theory, here have 1
more entry!

This is because, we need one more piece of information to nail a crossing
down than in the quandle case: there are four regions near a crossing but
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only 3 arcs. Thus, the homology theories are naturally one off from each
other.





Chapter 3

State Sums of Lower
Dimension

Since state sums can strengthen coloring invariants for both quandles and
tribrackets, we want them to be easy to calculate. However, constructing a
function that satisfies the cocycle condition can be challenging. In general,
the conditions for cocycles of one lower dimension are easier to satisfy,
however, we don’t know if one cocycles will even be an invariant for knots.
Thus, we look for the conditions a function of one fewer input (2 in the
tribracket case and 1 in the Quandle case) needs to be an invariant.

3.1 1 Cochains of Tribrackets

Let- be a tribracket,� an abelian group, and consider a function) : -2 → �.
The most natural way to apply a function of two region colors to a knot
diagram is to apply it whenever we have adjacent regions. That is for each
arc in the knot diagram we have the rule in figure 3.1.

We ask what conditions on ) make ) an invariant under Reidemeister
moves.

Reidemeister 1 gives us the equality in figure 3.2, which is similar to the
non-degeneracy rule from Niebrzydowski (2017). Stated formally, for all
0, 1, 2 ∈ - with 1 = 〈0, 1, 2〉 we have

)(0, 1) + )(1, 2) = 0.

It turns out this immediately presents us with the following problem.
Since the arcs are global in the diagram, but the Reidemeister moves are
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Figure 3.1 1 Cochain coloring rule for tribrackets

Figure 3.2 1 Cochain Rule induced by Reidemeister 1

local to the crossings we have disagreements. For example, consider figure
3.3

Since any tribracket with two elements colors the circle, we have that
for all 1, 2 ∈ - )(1, 2) = 0. The reason we are unconstrained is because
every tribracket will also have a unique 0 with 1 = 〈0, 1, 2〉. That is, the only
invariant attainable this way is the constant 0 invariant, which clearly is not
very useful.
Remark. There are two ways to address this issue. The first is to move to
knotoids which we can think of as knots with a cut in them. (They become
useful in section 4.4, but not enough to warrant a deep explanation). Because
they have a cut they are curves with endpoints instead of closed curves and
lose their global arc structure. This would solve the problem by adding in
a double count, but this is no longer a knot invariant as it is particular to
knotoids.
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Figure 3.3 ) is 0

There may be a way to resolve this while remaining in the space of knots.
We can make the summing local to the crossings (and thus more compatible
with the Reidemeister moves) by letting the arcs contribute at each crossing
rather than globally. (This is very similar to the work of Nelson et al. (2019).)

Going to knotoids (see Turaev (2010)) simply removes this problem.
Briefly, knotoids are knot diagrams with a cut in them, so that instead of
closed loops, knot diagrams are open arcs. In order to prevent ourselves
from being able to simply untie knotoids by pushing the endpoints, we
restrict ourselves to manipulations away from the endpoints which are just
the normal Reidemeister moves.

We can consider the effect of the other two Reidemeister moves on
knotoids:

Figure 3.4 1 Cochain Rule induced by Reidemeister 2
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Figure 3.5 1 Cochain Rule induced by Reidemeister 3

We see that these rules will create an invariant of knotoids.

Proposition 3.1.1. Let - be Niebrzydowski tribracket. Any ) : -2 → �

that satisfies the following is an invariant of knotoids when applied in the way
discussed above.

• For all 0, 1, 2 ∈ - with 1 = 〈0, 1, 2〉,

)(0, 1) + )(1, 2) = 0

• For all 0, 1, 2 ∈ -

)(0, 1) + )(1, 2) + )(0, 〈0, 1, 2〉) + )(〈0, 1, 2〉 , 2) = 0

• For all 0, 1, 2, 3 ∈ -

)(2, 3) + )(〈0, 1, 2〉 , 〈〈0, 1, 2〉 , 2, 3〉)
= )(0, 1) + )(〈0, 1, 〈1, 2, 3〉〉 , 〈1, 2, 3〉).

We see that the second condition is a couple negatives away from being the
1 cocycle condition. But it’s not yet clear to me what this means.

Further, it’s not clear if there are any non-trivial functions that satisfy
these axioms.



Chapter 4

Projections and Realizations

4.1 Definitions

At this point we will switch gears a bit to generalize the process that we used
in 2.2 to project a knot in space into a knot diagram in the plane.

The intuition behind this generalization is that at the end of the day
we ended up with a curve in the plane with equivalence between curves
given by Reidemeister moves. However, the Reidemeister moves are local
moves. That is, each Reidemeister move only operates on a small section of
the diagram. Thus, the Reidemeister moves will work perfectly well on knot
diagrams on other surfaces which locally look like a section of the plane.

This type of object is called a 2-dimensional (smooth) real Manifold
which you can read more about in Hatcher (2002) (we may want smooth so
that we don’t have weird kinks in our surfaces). For our purposes, we just
want to think of surfaces or sheets living inside of ℝ3. Finally, we will need
our surfaces to have an orientation (or smooth choice of non-zero normal
vector) everywhere, we will see why when we define realizations below.

Definition 4.1.1 (Knot Diagram). Let Σ be an orientable surface with
choice of orientation. A knot diagram in Σ is a smooth directed closed
curve in Σwith finitely many self-intersections, each of which “looks”
like an -, and for each self intersection data about which arc is “over”
the other.

More formally we may say that a knot diagram is a smooth function

5 : S1 → Σ



36 Projections and Realizations

with the following properties

• There are only finitely many pairs �1 ≠ �2 ∈ S1 for which 5 (�1) =
5 (�2). (Finitely many self intersections).

• ∀�1 , �2 , �3 ∈ S1 if 5 (�1) = 5 (�2) = 5 (�3) ∈ Σ then two of �1 , �2 ,

and �3 are the same. (No points of triple intersection).

• If �1 ≠ �2 ∈ S1 with 5 (�1) = 5 (�2) then the tangent vectors are
linearly independent: 0 5 ′(�1) + 1 5 ′(�2) = 0 =⇒ 0 = 1 = 0. (No
intersections with tangency or only order 1 intersections).

along with information at each intersection �1 ≠ �2 ∈ S1 with 5 (�1) =
5 (�2) about which of �1 or �2 is “over” the other.

By the discussion above the Reidemeister moves in 2.2 work on knot
diagrams. If :1 and :2 are knot diagrams in Σwith choice of orientation that
are related by Reidemeister moves we say :1 and :2 are the “same” knot
diagram (or related by Reidemeister moves).

Figure 4.1 Examples of knot diagrams on a subsurface of the plane (le�) and
on the torus (right)

Wenext can describe in thismore general setting the relationship between
knots in space and knot diagrams. We will use the following terminology to
be very clear about whether we are considering a knot or knot diagram.

Definition 4.1.2 (Realizations). Let : be a knot diagram in a surface Σ
with a choice of orientation. Choose an embedding (or smooth injective



Definitions 37

map) ) : Σ→ ℝ3. We construct a knot  from the knot diagram : in the
following way. Following ) embeds the knot diagram : into ℝ3 with
finitely many self intersections. For each self intersection we perturb
the curve by nudging the “over” strand in the direction of Σ’s normal at
the self-intersection. The resulting smooth embedding of S1 intoℝ3 is a
knot which we call the realization of : with respect to ).

More formally, let : : S1 → Σ be a knot diagram function and let

 ′ = ) ◦ : : S1 → ℝ3.

Since  ′ has well behaved self-intersections, we may resolve each
smoothly by nudging the “over” strand with a small smooth bump
function pointing in the direction of the normal of Σ to generate a
smooth injective function  : S1 → ℝ3. In other words  is a knot.

The intuition here is given by figure 4.2. Note that switching the
orientation on Σ switches the direction that the nudging happens which
mirrors the knot.

Figure 4.2 The realization of a knot diagram on the sphere with outward
oriented normal

We have the following partial analog of Reidemeister’s Theorem which
gives tells us realizations are well defined up to Reidemeister moves of knot
diagrams and ambient isotopy of knots. (We do not attempt to prove this
here).

Theorem 4.1.3 (Reidemeister). Let :1 and :2 be knot diagrams in an oriented
surface Σ. Choose an embedding of Σ into ℝ3. If :1 and :2 are related by
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Reidemeister moves then their respective realizations are ambient isotopic.

We also have the following proposition concerning different embeddings
of the same surface.

Proposition 4.1.4. Let : be a knot diagram in an oriented surface Σ and let
),# : Σ→ ℝ3 be embeddings of Σ into space. If ) and # are ambient isotopic
then the realizations of : with respect to ) and # are ambient isotopic as well.

Proof. The ambient isotopy between ) and # is an ambient isotopy between
the realizations of :. This follows from the fact that, before nudging, the
ambient isotopy between ) and # moves the curve )(:) exactly into the
curve #(:). Since ambient isotopy are orientation preserving, it follows that
the nudges will be in the same direction and thus accounting for how the
nudging happens we get an ambient isotopy. �

Most surfaces have embeddings which are not ambient isotopic. In this
case we may have non-isotopic realizations of the same knot diagram (by
using these non-isotopic embeddings). Because of this ambiguity of which
embedding we use, we will refer to realizations (plural) of a knot diagram
: in an oriented surface Σ. That is even though for each embedding of Σ
we have a unique realization, over the set of all embeddings we may have
multiple distinct realizations.

We also give ourselves the terminology to describe the inverse process.

Definition 4.1.5 (Projections). Let : be a knot diagram in an oriented
surface Σ and let  be a realization of : for some embedding of Σ. Then
we call : a projection of the knot  .

We see that every knot  has at least one projection onto Σ using the
following process: First choose an embedding of Σ in space and use ambient
isotopy to shrink  to an equivalent smaller knot that is small enough so
that Σ looks “flat” on the scale of  . Next project  ’s shadow onto Σ and
record “over” information.

This process is identical to the process used to in 2.2 to make knot
diagrams on the plane.

When Σ is the plane (or the sphere) two very special things happen.
First, up to ambient isotopy there is only one embedding of Σ since every
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embedding of the plane (or sphere) is related by a rotation and translation.
In this setting realizations truly are unique since there is no ambiguity about
which embedding we should be using!

Second, the full power of the Reidemeister moves kicks in 2.2.5, and
gives us that projections are unique as well!

However, when Σ is not the plane or sphere, in general we have different
embeddings and projections. We can see examples of this when Σ is the
torus, T2. In figure 4.3 we have in the upper left a knot diagram on the
abstract torus which is defined as a square whose top edge is glued to its
bottom edge and left edge is glued to its right edge. The torus has many
distinct embeddings into space but the two easiest depend on which order
you choose to fold the square to glue the two sides together. Gluing the left
and first right follows the right path in figure 4.3 whereas gluing the top and
bottom first follows the bottom path. The bottom path realizes the trefoil
knot whereas the right path realizes the unknot.

Figure 4.3 The same knot diagramon the abstract torus (upper le�) is realized
as 2 non-isotopic knots for di�erent torus embeddings

Conversely we do not in general have a unique projection for a given
knot. Figure 4.4 shows the unknot in space projected onto the Torus 3 unique
ways. We can prove that these are not the “same” (that is not related by
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Reidemeister moves) because the Reidemeister moves are local moves, but
these unknots differ globally. In particular, none of the Reidemeister moves
(nor ambient isotopy) will be able to move an arc across the hole of the
torus. In particular, as closed curves they are not homotopic (see Hatcher
(2002)) and neither the Reidemeister moves nor ambient isotopy can change
homotopy classes.

Figure 4.4 The unknot projected onto the Torus 3 distinct ways

In this more general setting things are much less well behaved because
neither realizations nor projections are unique. However, if we can under-
stand the ways in which these realizations and projections fail to be unique
it may give us a deeper understanding of knot diagrams and the surfaces
they live on.

4.2 Quandles On Surfaces

In section 2.4 we built up quandles as the category which respects the
Reidemeistermoves andwe saw howquandles naturally color knot diagrams
in the plane. Since Reidemeister moves are defined locally, it follows exactly
the same way as before that the fundamental quandle 2.4.7 of a knot is a
covariant functor from the category of knots in space (with ambient isotopy
as isomophism) to the category of knot diagrams in a fixed oriented surface
Σ. In particular, we know that the fundamental quandle (and also its
morphisms into other quandles) will be an invariant of knot diagrams in
any fixed oriented surface Σ.
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However, we lose theorem 2.4.10 which told us that two knot diagrams
were related by Reidemeister moves (up to a mirror and a reversal) if and
only if their fundamental quandles were isomorphic. In fact we have a
counterexample for a knot diagram on the torus.

Proposition 4.2.1. For a general oriented surface Σ, the fundamental quandle
is not a complete invariant up to mirror reversal. In particular, let Σ be the
torus. Then there exist two knot diagrams :1 and :2 which are not related
by Reidemeister moves and mirror reversals whose fundamental quandles are
isomorphic.

Proof. One proof strategy is to choose two distinctly embedded unknots
from figure 4.4. We already argued that they were unrelated by Reidemeister
moves in the discussion following the figure, but this required some abstract
argument with local and global structures. So we give a more concrete
argument which will also help remind us how to work with quandles.
Consider figure 4.5 which depicts two knot diagrams in the abstract torus.

Figure 4.5 Generators and relations for the fundamental quandle of the knot
diagram in 4.3 (le�) and for an unknot diagram (right).

We see that the fundamental quandle of the left knot diagram is

! = 〈0, 1 | 0 B 0 = 1, 1 B 0 = 0〉 .

By the first quandle rule (from Reidemeister 1) we have that

1 = 0 B 0 = 0

and we may rewrite

! = 〈0 | 0 B 0 = 0〉 = 〈0 | 〉 = {0}.
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This is the fundamental quandle we saw in example 2.4.11.
We can also see that the fundamental quandle of the right knot diagram

is
' = 〈2 | 〉 = {2}.

These quandles are isomorphic using the morphism 5 : !→ 'with 5 (0) = 2.
Thus, we have two knot diagrams on the Torus with the same fundamental
quandle. We wish to show that these knot diagrams are not related by
Reidemeister moves and mirror reversals. First, note that the right diagram
is related by Reidemeister moves to its mirror (since it has no crossings) and
to its reversal by applying Reidemeister 1 twice as in figure 4.6.

Figure 4.6 The unknot diagram is related to its reversal by Reidemeister 1
moves.

Thus, if the left knot diagram is not related by Reidemeister moves to
the right knot diagram it is also not related to its mirror reversal. Finally,
suppose for the sake of contradiction that our knot diagrams are related
by Reidemeister moves. Then, by Theorem 4.1.3 we have that for any fixed
embedding of the torus into space, the realizations of our knots will be
ambient isotopic. However, consider the embedding of the torus created by
folding the top to bottom first (as in the bottom path of figure 4.3). Then the
left knot diagram is realized as the Trefoil knot but the right knot is realized
as the unknot. We saw in 2.4.14 that these knots are not ambient isotopic.
This gives us our contradiction. �

The previous proposition leads us to ask the following question:

Question 4.2.2. Fix an abstract surface Σ with orientation. Can we describe
the extent to which the fundamental quandle fails to distinguish different knot
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diagrams on Σ?

Perhaps a simpler question:

Question 4.2.3. Fix an abstract surface Σ with orientation. Which knot
diagrams have fundamental quandle isomorphic to the fundamental quandle of
the unknot diagram: 〈G | 〉 .

These questions will be the focus of the remainder of the chapter.

4.3 Canonical Projections

If all of a knot diagram in surface Σ is inside of an open disk * ⊆ Σ (for
instance the unknot diagram in figure 4.5) then any embedding of Σ will
embed* only one way up to ambient isotopy (since* is a disk). Since there
is only one way to embed* , and the knot diagram we are considering lives
in* , there is exactly one realization.

Further, this defines a unique projection for simply connected surfaces,
since all disks are ambient isotopic to each other in such surfaces.

This is the first type of projection we will see. Let’s give it a name.

Definition 4.3.1 (Trivial Projection). Let Σ be an oriented simply con-
nected surface and let  be a knot in space. Any projection of  onto Σ
which lives strictly in a disk of Σ will be related by Reidemeister moves.
Thus, it makes sense to name this projection the trivial projection of  
onto Σ.

Remark. We won’t prove it rigorously here, but it is worth noting that the
fundamental quandle of the Trivial Projection of a knot  onto any surface Σ
is isomorphic to the fundamental quandle of the unique projection of  onto
the plane (or sphere). The intuition behind this is that the knot diagram
in Σ has the same arc and crossing information as the knot diagram in the
plane. Since the fundamental quandle is determined exactly by the arcs and
crossings of a diagram, both diagrams will result in isomorphic fundamental
quandles.

This gives us another piece of intuition as towhy the case of the plane (and
sphere) gives an exact correspondence between knots and knot diagrams:
every smooth curve in the plane or sphere lives in an open disk.
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To get some more intuition on what kinds of other projections a surface
may have, we construct a specific type of projection onto the torus.

Definition 4.3.2 (Canonical Projections). Let  be a knot in space. First
project  onto the sphere (trivially) and fix a particular knot diagram :

which is equivalent to this projection which has at least = crossings. A
canonical projection of  onto the =-holed torus is given by “removing”
the crossings of : by extruding toruses out of the sphere as in figure 4.7.
We know that the toruses can be made small enough so that none of
the extrusions interfere with each other. Further the resulting surface is
indeed an embedding of the =-holed torus.

To get a smooth surface we may smooth out the intersections.

Figure 4.7 Removing a crossing by extruding a torus.

Remark. Note that this process is not unique! In particular, wemay get distinct
knot diagrams by choosing different crossings to remove. Even worse, if
we add crossings to the knot diagram in the sphere using Reidemeister 1
and Reidemeister 2 moves, then removing these may result in canonical
projections that we could not get otherwise. In particular, the set of canonical
projections of a knot is not an invariant.
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Example 4.3.3. When we remove exactly one crossing to get a canonical
projection onto the torus, there is a convenient way of drawing the resulting
knot diagram on the abstract torus. First, draw the diagram of the knot we
want to project and isolate one of the crossings and surround the rest of the
knot with a disk. Since crossings involve four semi-arcs, exactly 4 arcs will
leave the disk. Gluing together opposing arcs on the abstract torus gives the
canonical projection. This process is shown in figure 4.8.

Figure 4.8 A canonical projection of the Trefoil

Example 4.3.4. Consider the above example but with the isolated crossing
mirrored as in figure 4.9.

Figure 4.9 A canonical projection of the unknot

Notice that this knot is related by Reidemeister moves to the unknot in
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the plane. But its canonical projection is identical in the abstract torus to the
canonical projection in 4.3.3!

In fact this was the example (figure 4.3) we used to demonstrate that
realizations are not unique (the different embeddings of the torus give
different realizations!)

This points to a certain indistinguishability that wewill point to in section
4.4.

Before that though we consider the fundamental quandles of canonical
projections.

Proposition 4.3.5. Let : be a knot diagram in the sphere of some knot. Fix
some crossings of : to take the canonical projection of. Let - = {08} be the
set of arcs of :, '1 = {08 = 0 9 B 0:} be the set of relations generated by the
crossings of : we will not remove, and let '2 = {08 = 0 9 B 0:} be the set
of relations generated by the crossings of : which we will remove. With this
partition of the relations, the fundamental quandle of : is

& = 〈- | '1 , '2〉 .

Then the fundamental quandle of the canonical projection of : with respect to
the crossings '2 is

&′ =
〈
- | '1 , {08 = 0 9 : (08 = 0 9 B 0:) ∈ '2}

〉
.

Proof. We prove this for a single crossing removal since removing many
crossings amounts to removing one crossing many times. Consider the
region near the single crossing we will remove in the projection and label
the arcs near the crossing as in figure 4.10.

Separate the arc labels - into two sets - = . ∪ {0, 1, 2}. Since we only
remove one crossing, we have that '2 = {2 = 0 B 1} and

& = 〈- | '1 , '2〉 = 〈., 0, 1, 2 | '1 , 2 = 0 B 1〉 .

Now consider the fundamental quandle of the canonical projection. By
construction, the arc and crossing information is identical except at this one
crossing. In particular, there is one fewer arc since 2 = 0 and we no longer
have the relation 2 = 0 B 1. Since 2 = 0, this amounts to replacing every 2 in
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Figure 4.10 Quandle Relations near a removed crossing

'1 by 0. However, it is equivalent to keep 2 as an arc and introduce a new
relation 0 = 2. This is exactly what we need:

&′ = 〈., 0, 1, 2 | '1 , 2 = 0〉 .

�

Remark. This relationship is not very strong in general as we will see in a
moment.

Example 4.3.6. Consider the canonical projection of the Trefoil onto the torus
in example 4.3.3. We saw in example 2.4.8 that the fundamental quandle of
the Trefoil is

〈0, 1, 2 | 0 = 2 B 0, 1 = 0 B 1, 2 = 1 B 0〉 .
Notice that the canonical projection in exmaple 4.3.3 is exactly the knot
diagram in the proof of 4.2.1 whose fundamental quandle turned out to be
the singleton quandle

〈G | 〉 .
Finally, we saw in example 2.4.14 that the fundamental quandle of the Trefoil
is distinct from the singleton quandle.

In particular, the fundamental quandle of a canonical projection need
not be the same as the original fundamental quandle.

4.4 Canonical Projections of Unknotted Diagrams

The canonical projection of single crossings onto the torus gives a partial
answer on the torus to our motivating question for this chapter: which knot
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diagrams on the single holed torus have the singleton fundamental quandle?

Theorem 4.4.1. Any single crossing canonical projection of the unknot has
singleton fundamental quandle.

Before we get to the proof let’s discuss this. First, recall that a canonical
projection of a knot  first projects  (uniquely) onto the sphere giving us
a diagram which is related by Reidemeister moves to the unknot on the
sphere. However, our diagram may have crossings. Choosing one of them
to remove gives us a single crossing canonical projection.

Even though we started with the unknot, we may not have an unknot as
our canonical projection as in example 4.3.4. What the theorem is stating is
that even if we don’t necessarily end up with an unknot, we do necessarily
end up with a diagram which has singleton fundamental quandle (in other
words there’s a relationship to the unknot - who’s fundamental quandle in
the plane is the singleton quandle).

Proof. We (surprisingly) can use the theory of knotoids (see Turaev (2010)) to
prove this. Basically, a knotoid is like a knot diagram in a surface, except that
instead of being a loop, the curve is a projection of a line segment. In order
to prevent ourselves from being able to simply untie knotoids by pushing
the endpoints, we restrict ourselves to just the usual Reidemeister moves for
equivalence. We should think of knotoids as knots but with a cut in them.
Ok, now we can get to the proof!

Let : be a knot diagram on the sphere which is related by Reidemeister
moves to the unknot. Fix the crossing � of : to be the crossing we will
remove in the canonical projection.

First, we construct the fundamental quandle for : by labelling each arc
of :. Since the symbols don’t matter let us specially label the crossing � as
in figure 4.11.

Now if we let the set of all labels away from 0, 1, 2 be the set - and the
relations generated by the crossings of the diagram : that are not � be the
set ' then we may write the fundamental quandle of : as in proposition
4.3.5:

&: = 〈0, 1, 2, - | ', 2 = 0 B 1〉
Note that since : is related by Reidemeister moves in the plane to the unknot
and since the fundamental quandle of a knot is invariant under Reidemeister
moves we have

&: = 〈G | 〉 = {G}
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Figure 4.11 Assigning a labeling to the crossing �.

the singleton quandle. In particular, any two formal strings of generators
and B’s in &: are “equal” as quandle elements.

Now, let ? be the canonical projection (on the torus)we get from removing
the crossing � from the diagram :. By proposition 4.3.5 we can write the
fundamental quandle of ? as

&? = 〈0, 1, 2, - | ', 0 = 2〉 .

Our goal is to show that this quandle is also the singleton quandle. We do
this by considering the following knotoid (defined in Turaev (2010)) in the
plane. Take the diagram : and construct the knotoid C by leaving : the same
except near the crossing � make a cut on the 2 arc as in figure 4.12.

Examining figure 4.12, we see that there is a new arc which we have
labeled 3. Before we utilize the fundamental quandle of a knotoid let us
discuss why this concept is an invariant for knotoids. Put simply: the
Reidemeister moves act locally, and never interact with the cut, so the
fundamental quandle will still respect the equivalence classes induced by
the Reidemeister moves! In particular, the argument wemade back in section
2.4 still holds: the map from knotoids to their fundamental quandles is still
a functor!

Ok! Let the fundamental quandle of this knotoid be

&C = 〈0, 1, 2, 3, - | ', 3 = 0 B 1〉 .

Note that 3 does not appear in any relations in ' since it only exists near
the crossing �. In particular, the only relation involving 3 is 3 = 0 B 1. We
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Figure 4.12 The crossing � in the knotoid C cut near the crossing.

may remove the symbol 3 by replacing all of its appearences with 0 B 1
and have the same quandle. Since 3 appears no where in ', making this
substitution does not change any relation in '! In particular we have

&C = 〈0, 1, 2, - | '〉 .

Now, Turaev (2010) proves that for knot diagram�, � related by Reidemeister
moves and knotoids 0, 1 created from � and � by small cuts (as we have
done above), that 0 and 1 are related by Reidemeister moves if we consider
them to be embedded on the sphere S2. Since our knot diagram : is given to
be related to the unknot on the sphere, we have that the knotoid C is related
by Reidemeister moves to the unknotted knotoid in figure 4.13.

Figure 4.13 The unknotted knotoid.
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We see immediately that the fundamental quandle of this knotoid is

〈G | 〉 .

But C and this “unknotoid” are related by Reidemeister moves, which the
fundamental quandle is an invariant of (knotoids related by Reidemeister
moves must have isomorphic fundamental quandles). Thus we have that in
fact

&C = 〈0, 1, 2, - | '〉 � 〈G | 〉 .

Now, it follows that &C has one element. In particular, the generators 0 and
2 are equal by the relations of '. So we may freely add the relation 0 = 2

(since it is already implied by the others) so that

&C = 〈0, 1, 2, - | ', 0 = 2〉 = 〈G | 〉 .

But wait! This is exactly the presentation of the fundamental quandle of the
canonical projection of :, ?! It follows that

&? = 〈0, 1, 2, - | ', 0 = 2〉 = &C = {G}.

And so the fundamental quandle of ? is the singleton as desired!
�

Remark (Indistinguishability). This theorem gives us a reasonwhy the the left
knot diagram : in figure 4.5 has singleton fundamental quandle. In example
4.3.4 we saw that this diagram was the canonical projection of an unknotted
diagram! What is really important here is that the diagram : in the abstract
torus is both the canonical projection of an unknotted diagram and the
trefoil! So even though the trefoil is not the unknot, since the diagram : is
also a canonical projection of an unknot it will have singleton fundamental
quandle!

We formalize this notion in the following corollary.

Corollary 4.4.2. Let : be a knot diagram on the sphere with a crossing �
such that mirroring just � results in an unknotted diagram (that is related by
Reidemeister moves to the unknot).

Then the canonical projection of : removing the crossing � will have
singleton fundamental quandle.
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Proof. Let : be as above and let < be the knot diagram identical to : except
with the crossing � mirrored. Since < is unknotted by supposition, the
canonical projection of < removing � will have singleton fundamental
quandle by theorem 4.4.1.

Now, consider the canonical projection of : removing the crossing �.
The knot diagram will have identical crossing and arc information as :
except with � removed and opposite arcs of � set equal. But this description
also perfectly describes <! Intuitively, by removing the crossing � the knot
diagram “forgets” which direction � was in! Thus the canonical projections
of : and < are identical. Since the fundamental quandle is an invariant of
knot diagrams, the fundamental quandle of : is also trival. �

Remark. Knot diagrams with the property that switching a single crossing
unknots them are called “knots with unknotting number 1.” It turns out
that the unknotting number is an invariant and that all unknotting number
1 knots are prime (that is, cannot be realized as two nontrivial knots glued
together) Scharlemann (1985).

4.5 Bridge Projections

We can extend the notion of the canonical projection removing one crossing
to removing an entire bridge.

Definition 4.5.1 (Bridge). An over bridge in a knot diagram is a length of
curve of the diagram such that the curve is “over” in every crossing it is
involved in.

Conversely an under bridge in a knot diagram is a length of curve
of the diagram such that the curve is “under” in every crossing it is
involved in.

We can extend canonical projections by removing entire bridges instead
of simply crossings.

Definition 4.5.2 (Bridge Projections). Let  be a knot in space. First
project  onto the sphere (trivially) and fix a particular knot diagram :

which is equivalent to this projection which has at least = bridges. A
bridge projection of  onto the =-holed torus is given by “removing” the
bridges of : by extruding toruses out of the sphere. This process looks
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Figure 4.14 An over bridge (le�) and under bridge (right).

like figure 4.15.

We get an analogous theorem for single bridge projections as for single
canonical projections also using knotoids.

Theorem 4.5.3. Any single bridge projection of the unknot has singlton
fundamental quandle.

Proof. The proof follows in much the sameway as in the canonical projection.
First it will be easier to work with under bridges. So if we have an over
bridge, look at the knot from the other side before projecting it onto the
sphere. Since the fundamental quandle is an invariant of knot diagrams on
the sphere (which correspond exactly to knots in space) projecting the knot
onto the sphere from the other side does not change anything except that we
get to work with an under bridge.

Now we follow a similar argument. Let : be a knot diagram related
to the unknot in the sphere with a chosen under bridge. First, we make a
labelling of the arcs of the under bridge in figure 4.16.

Notice that since we do not know the orientation of the 18 arcs we cannot
definitively write down the exact relations at the crossings. We know that
the first = are each either

08 = 08−1 B 18−1 or 08 = 08+1 B 18

and the last is similarly either

2 = 0= B 1= or 0= = 2 B 1=

We use the fact that the quandle operation must be a bĳection (that is for
each · B 1 we have an inverse · B−1 1) to write the dependencies going one
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Figure 4.15 Removing an over bridge (top) and under bridge (bottom) by
extruding a torus.

way:
08+1 = 08 B 18 or 08+1 = 08 B

−1 18

2 = 0= B 1= or 2 = 0= B
−1 1=

Regardless, let us name the equality of 08+1 (for 1 ≤ 8 ≤ = − 1) crossing A8
and note that A8 is of the form 08 = . . ., whatever it is. Let � be the relation
of the last crossing of the form 2 = . . . Just as last time we group all the other
arcs - and the other relations ' so that the fundamental quandle is

&: = 〈-, {08}, {18}, 2 | ', {A8}, �〉 � {G}.

Now, we make a cut to get a knotoid which separates 2 from the relations A8
in figure 4.17.
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Figure 4.16 Labelling the arcs of an under bridge.

Figure 4.17 The knotoid generated by cutting near an underbridge

Let � be the new relation between 3 and 0= , either 3 = 0= B 1= or
3 = 0= B−1 1= Just as before, the fundamental quandle for this knotoid is

&C = 〈-, {08}, {18}, 2, 3 | ', {A8}, �〉 � {G}.

Because of how we set up our relations (using the fact that · B 18 has an
inverse) we can remove 3 by using its relation 3 = 0= B±1 1= . But we know
that 3 appears nowhere so this change does not affect the fundamental
quandle. Similarly each 08+1 can be removed this way until we are left with
only 01. Then our fundamental quandle becomes

&C = 〈-, 01 , {18}, 2 | '〉 � {G}.
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The intuition here is that all of the 08 are determined exactly by 18 and 01, so
we don’t need to know about them to determine the fundamental quandle.

Finally, since there is only one element in &C we may add in the relation
01 = 2 to get

&? = &C = 〈-, 01 , {18}, 2 | ', 01 = 2〉 = {G}

which is the fundamental quandle of the bridge projection. �



Chapter 5

Future Work

5.1 Mesh Projection

In chapter 4 we defined canonical projections and extended them to bridge
projections both of which had this property that projections of unknotted
diagrams have singlton fundamental quandle. There is a further generaliza-
tion which I’ll call a mesh projection since the crossings we remove look like
a mesh. The picture looks like figure 5.1.

Figure 5.1 Removing a “mesh” by extruding a torus.

Interestingly every knot diagram on the torus is the mesh projection of a
knot. The way we can see this is by considering an arbitrary diagram on the
abstract torus, and move all of its crossings into an open disk (which can be
done since there are finitely many crossings). Now, the remaining strands
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look like figure 5.2. Either standard embedding of the torus in space gives
the knot whose mesh projection is this diagram.

Figure 5.2 Removing a “mesh” by extruding a torus.

I was unable to prove an analog for the triviality of projections of the
unknot in this case but it seems possible. Since every projection of a knot
onto the torus is a mesh projection, we have the following conjecture:

Conjecture 5.1.1. Every projection of the unknot onto the torus has singlton
fundamental quandle.

5.2 Complete the Trivial Quandle Classification for
the Torus

In chapter 4 we found a class of knots on the torus which had singlton
fundamental quandle. In particular, these were canonical projections (and
more generally bridge projections) of unknotted diagrams on the sphere
(which need not be unknotted on the torus, as we saw).

However, these are not all the diagrams in the torus which have singlton
fundamental quandle. In particular, there is a whole class of knots called
torus knots which are knots that can be projected onto the torus with no
crossings! These have singlton fundamental quandle because they have one
arc and no crossings which gives them fundamental quandle

& = 〈G | 〉 = {G}.

An example of a torus knot is the trefoil shown in figure 5.3 Are these the
only knots with singlton fundamental on the torus? Is there some way
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Figure 5.3 A projection of the trefoil onto the torus with no crossings.

in which both torus knots and these projections are in some larger class
together?

We might expect that mesh projections of the unknot and these torus
knots to be the only ways in which the fundamental quandle of a diagram
can be the singleton quandle, although this is very far from being proven.
Since every knot diagram on the torus which is the mesh projection of the
unknot has an unknot for a realization, we can rearrange this claim into the
following powerful conjecture:

Conjecture 5.2.1. If the fundamental quandle of a knot diagram on the torus is the
singleton quandle then one of its realizations (for some embedding of the torus into
space) is ambient isotopic to a torus knot.

The converse is not true because the trefoil is a torus knot and its trivial
projection onto the torus has quandle distinct from the singleton quandle.
Despite the lack of a converse, this conjecture would give us the following
intuition: every knot diagram on the torus with singleton fundamental
quandle is a projection of a knot realizable with a diagram with no crossings
on the torus. In this way, every knot diagram with singleton fundamental
quandle is “basically” unknotted.

5.3 Tribrackets on Surfaces

We discussed tribrackets in 2.6 and looked at extending cocycle invariants
of tribrackets, but I could not come up with non-trivial examples. Maybe a
place to extend tribrackets is to surfaces as we did for quandles. This could
be really fruitful because in general surfaces are not cut into two pieces by
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any curve (a usual curve cuts the torus into one open disk). Thus, since
tribrackets color these regions, they might have the power to say something
about exactly how diagrams are projection on their surface (whereas the
quandle is more of an intrinsic structure). For instance, the most free
tribracket that colors the unknot may be wildly different depending on
projection as in figure 5.4.

Figure 5.4 The unknot projected onto the abstract torus two ways with di�er-
ent tribracket colorings

5.4 Virtual Knots

There is a connection between virtual knots and work of this thesis.

Definition 5.4.1 (Kauffman (1998)). A virtual knot diagram is the same
as in 4.1.1, except that we allow an addition crossing called a “virtual
crossing,” which we label as in figure 5.5. We say two virtual knots are
“the same” or isomorphic if they are related by a finite set of normal
Reidemeister moves and/or the virtual Reidemeister moves in figure 5.6

In particular, virtual knots can be thought of as knot diagrams on surfaces
along with the ability to add and remove handles to the surface (called
stabilization), which is what the “virtual crossings” represent Chrisman and
Todd (2017). Thus, the stabilization is the difference between the knot and
virtual knot situations, and the work of this thesis is a kind of middle ground
between the two. In particular, quandles turn into so called virtual quandles
or virtual bi-quandles (bi-quandles are a generalization of quandles in the
normal case) Kauffman and Manturov (2004). These objects have an extra
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Figure 5.5 The symbol for a virtual crossing

Figure 5.6 Virtual Reidemeister moves (Kau�man (1998))

one-input operation to keep track of “virtual crossings.” Since this thesis
does not use stabilization, it doesn’t make sense to talk about the virtual
crossings since they don’t move around on a fixed surface. What is the
relationship here? Can virtual quandles give us some intuition about what
kinds of quandles we should expect on diagrams, or do quandles already
capture the case of virtual quandles without stabilization?
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