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MINIMAL PROJECTIVE EXTENSIONS OF COMPACT SPACES

By M. HENRIKSEN AND M. JERISON

A compact space E is called projective if for each mapping'" of E into a compact
space X, and each continuous mapping T of a compact space Y onto X, there
is a continuous mapping </J of E into Y such that", = T 0 </J. Gleason proved
in [1] that a compact space E is projective if and only if it is extremally dis­
connected. (A topological space E is extremally disconnected if the closure of
each of its open sets is open. It is well known that E is extremally disconnected
if and only if the Boolean algebra of open and closed subsets of E is complete.)
Gleason showed, moreover, that for each compact space X, there is a unique
compact extremally disconnected space al(X), and a continuous mapping
"lrx of al(X) onto X such that no proper closed subspace of al(X) is mapped by
"lrx onto X. (An alternate development of Gleason's results is given by Rainwater
in [2J.) We call al(X) the minimal projective ext&nsion of X; it can be described
as follows.

Let R(X) denote the family of regular closed subsets of X. (A closed subset
of X is called regular if it is the closure of its interior.) Then R(X) is a complete
Boolean algebra if we define for a, (3 in R(X)

a V (3 = a U (3; a /\ (3 = cl int (a n (3).

Note that the Boolean complement a' of a is given by

a' = cl (X ~ a).

The space al(X) is the Stone space of R(X). That is, the points of al(X) are
the prime ideals of R(X), and a base for the topology of al(X) is the family
of sets IP £ al(X) : a ¢ Pi, a £ R(X).

The mapping 7rx is defined by letting 7rx(P) = n {a £ R(X) : a ¢ Pl for
each P £ al(X).

1. LEMMA. The mapping a -t 7r:;:' (a) is an isomorphism of R(X) onto the
Boolean algebra of open and closed subsets of al(X).

From Gleason's theorems we deduce quickly the following induced mapping
theorem which motivates this paper.

2. THEOREM. Let T be a continuous mapping of a compact space Y onto X.
Then there exists a continuous mapping 7 of allY) onto al(X) such that T 0 7ry =

7rx 0 7. Thus the following diagram is commutative.
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ell (Y)~ ell (X)

Proof. Since T 0 1I"y maps ell(Y) into X, and 1I"x maps ell(X) onto X, the fact
that ell(Y) is projective implies the existence of a continuous mapping f of ell(Y)
into ell(X) such that T 0 1I"y ~ 1I"x 0 f. Moreover, f[R(Y)] ~ T[Y] ~ X. But no
proper closed subspace of ell(X) is mapping by 1I"x onto all of X, so f maps ell(Y)
onto ell(X).

This paper is devoted to answering the question: When is the mapping
T unique?

In order to so do, we will make use of the well-known duality between Boolean
algebras and their Stone spaces. In particular, we will use the following well
known lemma.

3. LEMMA. There is a one-one correspondence between the continuous mappings­
of ell(Y) onto ell(X) and the isomorphisms of R(X) into R(Y) as follows: If </> is
such a continuous mapping, the corresponding ismnorphism f", is given by

f,(a) = 1I"y</>-'1I":;:'(a) for all a, R(X).

This lemma enables us to replace the quest for a condition for uniqueness
of f with one for uniqueness of the corresponding isomorphism. To accomplish
this latter task) we must translate the condition that T 0 'Try = 1rx 0 T into one
about the corresponding isomorphism. An immediate consequence of this.
commutativity condition and Lemma 3 is that

(1) df,(a)] ~ a for all a, R(X) ,

so we examine those regular closed subsets of Y mapped onto a by To

First, we introduce some notation. For each a E R(X), let A (a) ~ cl(T-, int a),.
and B(a) = cl(int T-' a). Clearly A(a) C B(a) for all a E R(X).

4. LEMMA. For each a E R(X), T[A(a)] ~ T[B(a)] ~ a and B(a) is the largest
regular closed subset of Y mapped onto a by To

By (1) and the lemma, any eandidate for f(a) must be a subset of B(a).
Unfortunately, there need be no smallest regular closed subset of Y that is
mapped by Tonto a. Indeed, if T denotes the projection mapping of the unit
square Y onto the unit interval X, then unless the regular closed subset a of X
is empty, there is never a smallest regular closed subset of X that is mapped
by Tonto a.

Our next lemma will relate the sets A (a) and B(a) via the Boolean structure
of R(Y).

5. LEMMA. For any a E R(X), we have (B(a»' ~ A(a').

Proof. Recall that a' ~ cl(X~ a) = X ~ int a. So, int a' ~ int (X~ int a) ~
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x "......, cl int a. Since a is a regular closed set, we have
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(2) int a* = X"......, a,

and the analogous relation is also valid for members of R(Y).
Now,

A(a') = cl(7-, int ,,*) = ol(7-'(X ~ ,,» = cl(Y ~ 7-'a)

And

(B(a»* = ol(Y ~ B(,,» = ol(Y ~ cl int 7-''') = cl int (Y ~ int 7-'a)

~ cl int A(a-) = A(a').

We can now translate our commutativity conditon on the mapping into a
condition on the corresponding isomorphism.

6. LEMMA. Let q, be a continuous mapping of <R(Y) onto <R(X), and let f = f.
be the corresponding isomorphism of R(X) into R(Y). Then, the following are
equivalent.

(i) 7 0 7ry ~ 7rx 0 q,.

(ii) f(a) C B(a) for all a' R(X).

(iii) A(a) C f(a) C B(,,) for all '" R(X).

Proof. From (i), we have 7[t(a)] = a, which implies (ii) by Lemma 4.
Suppose that (ii) holds. Then f(a) = f(a*-) = f(a*)':::> B(a-)- = A(a*') ~

A (a) by Lemma 5, so (iii) holds.
Obviously, (iii) implies (ii).
If (i) does not hold, there is p e<R(Y) such that x = (7rx oq,) (p) '" (7 0 7ry) (p)

x'. Let a eR(X) contain x but not x'. Since p. q,-'7r-;"(a), we have 7rY(p) • f(a)
by Lemma 3. Then 7[f(a)J contains 7[7ry(p)] ~ x', which does not belong to a.
Thus, f(a) is not contained in B(a). Thus (ii) implies (i).

7. THEOREM. Given a continuous mapping 7 of a compact space Y onto a
compact space X, there is a unique continuous mapping T of <R(Y) onto <R(X)
satisfying 70 7ry = 7rx 0 T if and only if A (a) = B(a) for all a. R(X).

Proof. Sufficiency follows immediately from Lemma 6. Suppose, conversely,
that there is a • R(X) such that A(a) '" B(a). We will use this to construct
distinct mappings T' and T" satisfying the condition of the theorem. Since
A(a) and B(a) are in R(Y), by Lemma 1, the sets 7r;;'[A(a)] and 7r;;'[B(a)]
are open and closed sets, and the first is properly contained in the second.
Let G = 7r;;'[B(,,)] ~ ,,;;'[A (a)] and note that this is a nonempty open and closed
subset of <R(Y). Moreover, by (2),

(3) dB(,,) ~ A(a)] C 7f7-'a ~ 7 -'tint a)]

= a "......, int a C a "......, (X "......, a*) = a n a* ~
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So,
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(7 0 11"y)[G] = [B(a) ~ A(a)] C a!l a* .

Consider the mapping ,,' : G -7 a defined by letting ,,'(p) ~ (70 11"y)(p) for
all p £ G, and the mapping 11"x I (7I":;;'a). Since the latter maps 11":;;'a onto a and
since G is extremally disconnected, there exists, by Gleason's theorem, a contin­
uous mapping ij' : G ~ 1ri1a such that 7rx 0 ii' = u'. Likewise, the mappings
<T" : G -7 g defined by ,,"(p) = (7 0 7I"Y)(p) and 7I"x I (7I":;;'g*) yield a mapping
a" . G ----? 1l"x\~~ such that 1l"x 0 ij" = u". Now by Theorem 2, there exists a
mapping r that satisfies the commutativity condition. We define mappings
r' and r" of m(Y) onto m(X) to agree with r on m(Y) ~ G and to agree with
jj' and 0-", respectively, on G.

It is routine to check that 7rx 0 if = T 0 'lTv = 7rx 0 iff. 1Vloreover :r' and :;"
arc distinct. FOT, .:;-'[G] C 1l";:la while 7"[0] C 1l";:\~* and, since a /\ a* = ¢,
(11":;;'a) !l (7I":;;'a*) ~ <p.

It seems natural to seek conditions on the mapping which insure that A (a)
B(a) for all a £ R(X). One such is given by

8. PROPOSITION. If, for every nonempty open subset U of Y, int 7[U] is
nonempty, then A(a) ~ B(a) for all a £ R(X).

Proof. If A(a) is properly contained in B(a) for some a £ R(X), then, by (3)
above, B(a) ~ A (a) is a nonempty open set whose image has empty interior.

It follows that T is unique in case T is open or T maps no proper closed subspace
Qf Y onto X. For, as is noted in [3], this latter condition is equivalent to the
condition that every l10nempty open subset of Y contains the inverse image of a
nonempty open subset of X. Indeed, r is then a homeomorphism. For the
commutativity condition implies that r maps no proper closed subspace of
(!l(Y) onto m(X), and any such mapping onto an extremally disconnected
space is a homeomorphism [1].

The condition A(a) ~ B(a) can hold independently of 7. In particular,
ifaisopenandclosed,A(a) = clintT- l a = clr- 1a = T-1

0: = B(o:),irrespective
Qf the mapping 7. Thus, if every member of R(X) is open as well as closed,
preciscly, if X is extremally disconnected, then A(a) ~ B(a) for all a £ R(X).
The statement of Theorem 7 that the mapping r is uniquely determined by 7

in this case is hardly surprising, since 7f'x is then a homeomorphism.
This remark enables us to show that the converse of Proposition 8 is false.

Let X be any compact extremally disconnected space (e.g., X ~ (3N, the StoRe­
Cech compactification of the countable discrete space) and let Y be the topo­
logical sum of X and any compact space T. Let 7 map X identically onto itself,
and let 7 map T onto any nonisolated point of X. The image of the open set T
has empty interior, but A(a) ~ B(a) for all " E R(X) since X is extremally
disconnected.

As we noted above, A(a) ~ B(a) for any open and closed set a. Indeed
{a. R(X) : A(a) ~ B(,,)} is a subalgebra of R(X), which will be substantial
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in size in case X is totally disconnected. But, for any compact space X, it is
possible to find a space Y and a mapping 7 of Y onto X sucb that A (a) .= B(a)
unless a is open. (In particular, if X is connected, A(a) = B(a) will imply
that a = </> or a = X.) Simply let D denote the discrete space whose points are
those of X, let Y = (3D, and let 7 denote the Stone extension of the identity
map of D onto X. Then, if x £ ( a ~ int a), the point x, regarded as a point
of D, is isolated in (3D and belongs to B(a) ~ A(a).

In case the conditions of Theorem 7 are satisfied, the isomorphism f. is
given by the formula Ma) = B(a) = A(a) for all a £ R(X). If f is not unique,
however, neither the mapping a -7 A(a) nor the mapping a -7 B(a) is an
isomorphism.
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