Claremont Colleges [Scholarship @ Claremont](http://scholarship.claremont.edu)

[All HMC Faculty Publications and Research](http://scholarship.claremont.edu/hmc_fac_pub) [HMC Faculty Scholarship](http://scholarship.claremont.edu/hmc_faculty)

1-1-1965

Minimal Projective Extensions of Compact Spaces

Melvin Henriksen *Harvey Mudd College*

Meyer Jerison *Purdue University*

Recommended Citation

Henriksen, M., and M. Jerison. "Minimal projective extensions of compact spaces." Duke Mathematical Journal 32.2 (1965): 291–295. DOI:10.1215/S0012-7094-65-03229-1

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [scholarship@cuc.claremont.edu.](mailto:scholarship@cuc.claremont.edu)

MINIMAL PROJECTIVE EXTENSIONS OF COMPACT SPACES

By M. HENRIKSEN AND M. JERISON

A compact space E is called *projective* if for each mapping ψ of E into a compact space *X*, and each continuous mapping τ of a compact space *Y onto X*, there is a continuous mapping ϕ of *E* into *Y* such that $\psi = \tau \circ \phi$. Gleason proved in [1] that a compact space *E* is projective if and only if it is extremally disconnected. (A topological space *E* is *extremally disconnected* if the closure of each of its open sets is open. It is well known that *E* is extremally disconnected if and only if the Boolean algebra of open and closed subsets of *E* is complete.) **Gleason showed, moreover, that for each compact space** *X,* **there is a unique** compact extremally disconnected space $\mathfrak{R}(X)$, and a continuous mapping π_x of $\mathfrak{R}(X)$ onto X such that no proper closed subspace of $\mathfrak{R}(X)$ is mapped by π_x onto X. (An alternate development of Gleason's results is given by Rainwater in [2].) We call $\mathfrak{g}(X)$ the *minimal projective extension* of X; it can be described as follows.

Let *R(X)* denote the family of regular closed subsets of *X.* (A closed subset of X is called *regular* if it is the closure of its interior.) Then $R(X)$ is a complete Boolean algebra if we define for α , β in $R(X)$

$$
\alpha \vee \beta = \alpha \cup \beta; \alpha \wedge \beta = \text{cl int }(\alpha \cap \beta).
$$

Note that the Boolean complement α^* of α is given by

$$
\alpha^* = \mathrm{cl}(X \sim \alpha).
$$

The space $\mathfrak{K}(X)$ is the Stone space of $R(X)$. That is, the points of $\mathfrak{K}(X)$ are the prime ideals of $R(X)$, and a base for the topology of $R(X)$ is the family of sets $\{P \in \mathfrak{R}(X) : \alpha \neq P\}$, $\alpha \in R(X)$.

The mapping π_x is defined by letting $\pi_x(P) = \bigcap \{ \alpha \in R(X) : \alpha \notin P \}$ for each $P \in \mathfrak{R}(X)$.

1. LEMMA. *The mapping* $\alpha \to \pi_X^{-1}(\alpha)$ *is an isomorphism of* $R(X)$ *onto the Boolean algebra of open and closed subsets of* $\mathbb{R}(X)$.

From Gleason's theorems we deduce quickly the following induced mapping theorem which motivates this paper.

2. THEOREM. Let τ be a continuous mapping of a compact space Y onto X. *Then there exists* a *continuous* mapping $\bar{\tau}$ of $\Re(Y)$ *onto* $\Re(X)$ *such that* $\tau \circ \pi_Y =$ $\pi_X \circ \bar{\tau}$. Thus the following diagram is commutative.

Received December 18, 1963. The authors were supported (in part) by the National Science Foundation.

Proof. Since $\tau \circ \pi_Y$ maps $\mathfrak{R}(Y)$ into X, and π_X maps $\mathfrak{R}(X)$ onto X, the fact that $\mathfrak{R}(Y)$ is projective implies the existence of a continuous mapping $\bar{\tau}$ of $\mathfrak{R}(Y)$ into $\mathfrak{R}(X)$ such that $\tau \circ \pi_Y = \pi_X \circ \bar{\tau}$. Moreover, $\bar{\tau}[R(Y)] = \tau[Y] = X$. But no proper closed subspace of $\mathfrak{R}(X)$ is mapping by π_X onto all of X, so $\tilde{\tau}$ maps $\mathfrak{R}(Y)$ onto $\mathfrak{R}(X)$.

This paper is devoted to answering the question: When is the mapping **T unique?**

In order to so do, we will make use of the well-known duality between Boolean algebras and their Stone spaces. In particular, we will use the following well **known lemma.**

3. LEMMA. *There is a one-one correspondence between the continuous mappingsof* $\mathfrak{R}(Y)$ *onto* $\mathfrak{R}(X)$ *and the isomorphisms of* $R(X)$ *into* $R(Y)$ *as follows: If* ϕ *is such* a *continuous mapping*, *the corresponding isomorphism* f_{ϕ} *is given by*

$$
f_{\phi}(\alpha) = \pi_Y \phi^{-1} \pi_X^{-1}(\alpha) \quad \text{for all} \quad \alpha \in R(X).
$$

This lemma enables us to replace the quest for a condition for uniqueness of $\bar{\tau}$ with one for uniqueness of the corresponding isomorphism. To accomplish **this** latter **task**, we must **translate** the condition that $\tau \circ \pi_Y = \pi_X \circ \bar{\tau}$ into one **about the corresponding isomorphism. An immediate consequence of this. commutativity condition and Lemma 3 is that**

(1)
$$
\tau[f_{\tau}(\alpha)] = \alpha \quad \text{for all} \quad \alpha \in R(X),
$$

so we examine those regular closed subsets of Y mapped onto α by τ .

First, we introduce some notation. For each $\alpha \in R(X)$, let $A(\alpha) = cl(\tau^{-1} \text{ int } \alpha)$, and $B(\alpha) = cl(\text{int } \tau^{-1} \alpha)$. Clearly $A(\alpha) \subset B(\alpha)$ for all $\alpha \in R(X)$.

4. LEMMA. For each $\alpha \in R(X)$, $\tau[A(\alpha)] = \tau[B(\alpha)] = \alpha$ and $B(\alpha)$ is the largest *regular closed subset* of Y *mapped* onto α *by* τ .

 $\ddot{}$

By (1) and the lemma, any candidate for $f(\alpha)$ must be a subset of $B(\alpha)$. Unfortunately, there need be no smallest regular closed subset of *Y* that is mapped by τ onto α . Indeed, if τ denotes the projection mapping of the unit square *Y* onto the unit interval *X*, then unless the regular closed subset α of X is empty, there is *never* a smallest regular closed subset of X that is mapped by τ onto α .

Our next lemma will relate the sets $A(\alpha)$ and $B(\alpha)$ via the Boolean structure of *R(Y).*

5. LEMMA. *For any* $\alpha \in R(X)$, we have $(B(\alpha))^* = A(\alpha^*)$.

Proof. Recall that $\alpha^* = cl(X \sim \alpha) = X \sim \text{int } \alpha$. So, $\text{int } \alpha^* = \text{int } (X \sim \text{int } \alpha) =$

 $X \sim d$ **int** α . Since α **is** a regular closed set, we have

$$
(2) \quad \text{int } \alpha^* = X \sim \alpha,
$$

and the analogous relation is also valid for members of $R(Y)$.

Now,

$$
A(\alpha^*) = cl(\tau^{-1} \text{ int } \alpha^*) = cl(\tau^{-1}(X \sim \alpha)) = cl(Y \sim \tau^{-1}\alpha) = Y \sim \text{ int } \tau^{-1}\alpha.
$$

And

$$
(B(\alpha))^* = cl(Y \sim B(\alpha)) = cl(Y \sim cl \text{ int } \tau^{-1}\alpha) = cl \text{ int } (Y \sim \text{ int } \tau^{-1}\alpha)
$$

= cl \text{ int } A(\alpha^*) = A(\alpha^*).

We can now translate our commutativity conditon on the mapping into a **condition on the corresponding isomorphism.**

6. LEMMA. Let ϕ be a continuous mapping of $\Re(Y)$ onto $\Re(X)$, and let $f = f_{\phi}$ be the corresponding isomorphism of $R(X)$ into $R(Y)$. Then, the following are equivalent.

- (i) $\tau \circ \pi_Y = \pi_X \circ \phi.$
- (ii) $f(\alpha) \subset B(\alpha)$ for all $\alpha \in R(X)$.
- (iii) $A(\alpha) \subset f(\alpha) \subset B(\alpha)$ for all $\alpha \in R(X)$.

Proof. From (i), we have $\tau[f(\alpha)] = \alpha$, which implies (ii) by Lemma 4. Suppose that (ii) holds. Then $f(\alpha) = f(\alpha^{**}) = f(\alpha^*)^* \supset B(\alpha^*)^* = A(\alpha^{**}) =$ $A(\alpha)$ by Lemma 5, so (iii) holds.

Obviously, (iii) implies (ii).

If (i) does not hold, there is $p \in \mathcal{R}(Y)$ such that $x = (\pi_X \circ \phi)(p) \neq (\tau \circ \pi_Y)(p) =$ x'. Let $\alpha \in R(X)$ contain x but not x'. Since $p \in \phi^{-1} \pi_X^{-1}(\alpha)$, we have $\pi_Y(p) \in f(\alpha)$ by Lemma 3. Then $\tau[f(\alpha)]$ contains $\tau[\pi_Y(p)] = x'$, which does not belong to α . Thus, $f(\alpha)$ is not contained in $B(\alpha)$. Thus (ii) implies (i).

7. THEOREM. Given a continuous mapping τ of a compact space Y onto a compact space X, there is a unique continuous mapping $\bar{\tau}$ of $\mathfrak{R}(Y)$ onto $\mathfrak{R}(X)$ satisfying $\tau \circ \pi_Y = \pi_X \circ \bar{\tau}$ if and only if $A(\alpha) = B(\alpha)$ for all $\alpha \in R(X)$.

Proof. Sufficiency follows immediately from Lemma 6. Suppose, conversely, that there is $\alpha \in R(X)$ such that $A(\alpha) \neq B(\alpha)$. We will use this to construct distinct mappings $\bar{\tau}'$ and $\bar{\tau}''$ satisfying the condition of the theorem. Since $A(\alpha)$ and $B(\alpha)$ are in $R(Y)$, by Lemma 1, the sets $\pi_Y^{-1}[A(\alpha)]$ and $\pi_Y^{-1}[B(\alpha)]$ are open and closed sets, and the first is properly contained in the second. Let $G = \pi_Y^{-1}[B(\alpha)] \sim \pi_Y^{-1}[A(\alpha)]$ and note that this is a nonempty open and closed subset of $\mathfrak{R}(Y)$. Moreover, by (2) ,

(3)
$$
\tau[B(\alpha) \sim A(\alpha)] \subset \tau[\tau^{-1}\alpha \sim \tau^{-1}(\text{int }\alpha)]
$$

$$
= \alpha \sim \text{int }\alpha \subset \alpha \sim (X \sim \alpha^*) = \alpha \cap \alpha^* .
$$

So,

$$
(\tau \circ \pi_Y)[G] = [B(\alpha) \sim A(\alpha)] \subset \alpha \cap \alpha^*.
$$

Consider the mapping $\sigma': G \to \alpha$ defined by letting $\sigma'(p) = (\tau \circ \pi_Y)(p)$ for all p ϵ G, and the mapping $\pi_X \mid (\pi_X^{-1}\alpha)$. Since the latter maps $\pi_X^{-1}\alpha$ onto α and **since** *G* **is extremally disconnected, there exists, by Gleason's theorem, a continuous** mapping $\bar{\sigma}'$: $G \to \pi_X^{-1} \alpha$ such that $\pi_X \circ \bar{\sigma}' = \sigma'$. Likewise, the mappings $\sigma'': G \to \alpha$ defined by $\sigma''(p) = (\tau \circ \pi_Y)(p)$ and $\pi_X \mid (\pi_X^{-1} \alpha^*)$ yield a mapping σ'' **·** $G \rightarrow \pi_X^{-1} \alpha$ such that $\pi_X \circ \sigma'' = \sigma''$. Now by Theorem 2, there exists a mapping $\bar{\tau}$ that satisfies the commutativity condition. We define mappings $\tilde{\tau}'$ and $\tilde{\tau}''$ of $\mathfrak{R}(Y)$ onto $\mathfrak{R}(X)$ to agree with $\tilde{\tau}$ on $\mathfrak{R}(Y) \sim G$ and to agree with $\bar{\sigma}'$ and $\bar{\sigma}''$, respectively, on G.

It is routine to check that $\pi_X \circ \tilde{\tau}' = \tau \circ \pi_Y = \pi_X \circ \tilde{\tau}''$. Moreover $\tilde{\tau}'$ and $\tilde{\tau}''$ **are** distinct. For, $\bar{\tau}'[G] \subset \pi_X^{-1} \alpha$ while $\bar{\tau}''[G] \subset \pi_X^{-1} \alpha^*$ and, since $\alpha \wedge \alpha^* = \phi$, $(\pi_X^{-1} \alpha) \cap (\pi_X^{-1} \alpha^*) = \phi.$

It seems natural to seek conditions on the mapping which insure that $A(\alpha) =$ $B(\alpha)$ for all $\alpha \in R(X)$. One such is given by

8. PROPOSITION. If, for every nonempty open subset U of Y, int $\tau[U]$ is nonempty, then $A(\alpha) = B(\alpha)$ for all $\alpha \in R(X)$.

Proof. If $A(\alpha)$ is properly contained in $B(\alpha)$ for some $\alpha \in R(X)$, then, by (3) above, $B(\alpha) \sim A(\alpha)$ is a nonempty open set whose image has empty interior.

It follows that $\tilde{\tau}$ is unique in case τ is open or τ maps no proper closed subspace of Y onto X . For, as is noted in [3], this latter condition is equivalent to the **condition** that every nonempty open subset of Y contains the inverse image of a nonempty open subset of *X.* Indeed, *r* is then a homeomorphism. For the commutativity condition implies that *r* maps no proper closed subspace of $\mathfrak{R}(Y)$ onto $\mathfrak{R}(X)$, and any such mapping onto an extremally disconnected space is a homeomorphism [1].

The condition $A(\alpha) = B(\alpha)$ can hold independently of τ . In particular, **if** α is open and closed, $A(\alpha) = cl$ int $\tau^{-1}\alpha = cl\tau^{-1}\alpha = \tau^{-1}\alpha = B(\alpha)$, irrespective of the mapping τ . Thus, if every member of $R(X)$ is open as well as closed, precisely, if X is extremally disconnected, then $A(\alpha) = B(\alpha)$ for all $\alpha \in R(X)$. The statement of Theorem 7 that the mapping $\bar{\tau}$ is uniquely determined by τ in this case is hardly surprising, since π_x is then a homeomorphism.

This remark enables us to show that the converse of Proposition 8 is false. Let X be any compact extremally disconnected space (e.g., $X = \beta N$, the Stone-Cech compactification of the countable discrete space) and let *Y* be the topological sum of X and any compact space T. Let τ map X identically onto itself, and let τ map T onto any nonisolated point of X . The image of the open set T has empty interior, but $A(\alpha) = B(\alpha)$ for all $\alpha \in R(X)$ since X is extremally disconnected.

As we noted above, $A(\alpha) = B(\alpha)$ for any open and closed set α . Indeed $\{\alpha \in R(X) : A(\alpha) = B(\alpha)\}\$ is a subalgebra of $R(X)$, which will be substantial

in size in case X is totally disconnected. But, for any compact space X , it is possible to find a space Y and a mapping r of Y onto X such that $A(\alpha) \neq B(\alpha)$ unless α is open. (In particular, if X is connected, $A(\alpha) = B(\alpha)$ will imply that $\alpha = \phi$ or $\alpha = X$.) Simply let D denote the discrete space whose points are those of X, let $Y = \beta D$, and let τ denote the Stone extension of the identity map of D onto X. Then, if $x \in (\alpha \sim \text{int } \alpha)$, the point *x*, regarded as a point of D, is isolated in βD and belongs to $B(\alpha) \sim A(\alpha)$.

In case the conditions of Theorem 7 are satisfied, the isomorphism $f_{\overline{r}}$ is given by the formula $f_{\bar{r}}(\alpha) = B(\alpha) = A(\alpha)$ for all $\alpha \in R(X)$. If \bar{r} is not unique, however, neither the mapping $\alpha \to A(\alpha)$ nor the mapping $\alpha \to B(\alpha)$ is an **isomorphism.**

REFERENCES

- **1. A. M. Gleason,** *Projective topological spaces,* **Illinois Journal, vol. 2(1958), pp. 482-489.**
- **2. J. RAINWATER,** *A note on projective resolutions,* **Proceedings of the American l\1athematical** Society, vol. 10(1959), pp. 734-735.
- **3. E. WEINBERG,** *Higher degrees of distributivity in lattices of continuous functions,* **thesis, Purdue University, 1961, unpublished.**

PURDUE UNIVERSITY