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AVERAGES OF CONTINUOUS FUNCTIONS 
ON COUNTABLE SPACES1 

BY MELVIN HENRIKSEN AND J. R. ISBELL 

Communicated by Walter Rudin, November 18, 1963 

Introduction. Let X = j } be a countably infinite topo
logical space; then the space C*(X) of all bounded real-valued con
tinuous functions ƒ may be regarded as a space of sequences 
(ƒ(#1)i ƒ(#2), • • • ). I t is well known [7, p. 54] that no regular (Toep-
litz) matrix can sum all bounded sequences. On the other hand, if 
(xi, #2, • • • ) converges in X (to xm), then every regular matrix sums 
all ƒ in C*(X) (to ƒ(**)). 

The main result of this paper is that if a regular matrix sums all ƒ 
in C*(X) then it sums ƒ to X/*nƒ(#»), ^or s o m e absolutely convergent 
series J^an. We use this to show that no regular matrix can sum all 
of C*(X) if X is extremally disconnected (the closure of every open 
set is open). This extends a theorem of W. Rudin [ó], which has an 
equivalent hypothesis (X is embeddable in the Stone-Cech compac-
tification fiN of a discrete space) and concludes that not all ƒ in 
C*(X) are Cesàro summable. 

For any continuous linear functional 4> on C*(X) one has a ("Riesz") 
representation <ƒ>(ƒ) =ffdfi, where /x is a Radon measure on jSX. Our 
main result is just that X supports /*; /x is forced to be atomic since 
X is countable. We show further that X has a subset T, the set of 
heavy points, such that the functionals we are concerned with corre
spond exactly to measures /x supported by T with JJL(T) = 1. Our 
knowledge of T is limited ; it will be summarized elsewhere. 

1. Representation. It is well known [7, p. 57] that a matrix 
A = (a»y) defines a regular summability method if and only if it satis
fies the conditions (1) ^ya*-y= l + o ( l ) , (2) ]C; |a»j | *s uniformly 
bounded, and (3) for each j , #4y-—>0. 

For all the present results on real-valued functions, we may assume 
without loss of generality that our topological spaces are completely 
regular. Then each countable space X has a base of open-and-closed 
sets, and each / £ C * ( X ) is a uniform limit of linear combinations of 
characteristic functions of these basic sets. 

Suppose that A is a regular matrix such that 4>A(J) 
= Hm».*» y^i anf(xi) exists for each / £ C * ( X ) . For each open-and-
closed subset U of X, let cu denote its characteristic function, and let 
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(I(U)=<I>A(CU). Also, let b(U) = sup ^\a(Vi)\, where {Vi} ranges 
over all finite disjoint families of open-and-closed subsets of U. A 
bound for ]T)y | a»y| is a bound for b(U) ; also a and b are finitely addi
tive. 

For each point x £ I , let a(x) be the limit of a(U) over the filter 
base 'Mx of open-and-closed neighborhoods of x. It exists since the 
monotone function b(U) converges, which implies that 

lim{b(U ~ U')\ U, Uf G m,, U' QU} = 0, 

so |a(C7) —a(Z70| = | a ( I 7 ~ U ' ) \ ^b(U~U'). 

LEMMA. The series X / * 0 O is absolutely convergent with sum 1. 

PROOF. For any e>0 , there exist î / f l £ \ , for n = l, 2, • • • , such 
that for any VnÇ.c\lXn satisfying VnC.Un, ^b(Un~Vn) <e. Thus 
| lL,a(Un)— y^afan) | ^ e , and with a further error of e, we can re
place the sets Un by a disjoint family {Wn) covering X. Then ab
solute convergence is evident; and if X / * f e ) ^ l > we may choose 
€>0 so small that ^a{Wn) = 1 -d with d^O. 

Let a*j= ^[diki Xk&Wj]; note that \\vciia% = a(Wj). Let 

_ a# - a(Wj) 
dj — -

a 

Then (c,-y) is regular since (1) and (3) hold, and 22i |c^-| is bounded 
by 2 / 1 ^ | times the bound for 2 3 J | ^ V | - Since no regular matrix 
can sum all sequences of zeros and ones [7, p. 54], there is a subset 
Z of N such that ^jez Cij does not converge, so W=U { Wn: nÇEZ} 
is an open-and-closed set for which a(W) does not exist. This contra
diction establishes the lemma. 

COROLLARY. For any open-and-closed set U, 22 [«(#) • #G U] = a{ U). 

PROOF. Passing to (X~U) if necessary, we may assume that 
#(£7)^0. The matrix (bij) obtained by letting bij = aa/a(U) if xyG U, 
and by letting 6^ = 0 otherwise, is a regular matrix that sums each 
element of C*(Z7), so the lemma applies. 

THEOREM 1. If a regular matrix summability method <j> sums all 
bounded continuous functions on a countably infinite topological space 
X = {xi, X2, - - - }, then there is an absolutely convergent series y^an 

with sum 1 such that f or each f(E.C*(X), <£(ƒ) = 2Ü/*» ƒ (*»»). 

PROOF. The corollary shows this for characteristic functions and 
the rest follows from linearity and continuity. 
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2. Reduction to points. As indicated in the introduction, we can re
duce the problem of which functionals f-^^2anf(xn) are given by 
regular matrices to the problem for single points, ƒ—*jf(x). There is a 
further reduction to the case that x is the only nonisolated point. 
(Obviously x must be nonisolated.) We define a heavy point x of a 
countable space {xi, X2, • • • } as one such that there exists a regular 
matrix A such that for every bounded function ƒ continuous at x, 

THEOREM 2. A functional <fi(f) = Ylanf(xn) on C*(X) is représenta-
ble as <PA for some regular matrix A if and only if ^2an = 1 and an = 0 
whenever xn is not a heavy point. 

The proof will be published elsewhere, together with the results 
abstracted in [4], which tell a little about heavy points. It is easy to 
see that the limit of a convergent (nonconstant) sequence is a heavy 
point; another heavy point that is not the limit of a sequence is ex
hibited, essentially, in [3, Example 3.3]. 

3. Removable points. A point x for which every function 
f G C * ( Z ^ { « } ) has an extension in C*(X) cannot be a heavy point; 
for the matrix A summing C*(X) (0A (ƒ)=ƒ(#)) would, with one col
umn deleted, sum all of C*(.X^{x}) (0A violating Theorem 1). As 
the omitted proof of Theorem 2 is long, we note that this argument 
works as well with 0 A ( / ) ~ ^2&nf(xn)}iix = xr has a nonzero coefficient 
ar] that is, Theorem 1 suffices. Moreover, there is a trifle of extra 
information; if A sums every ƒ in C*{X) to X/K» ƒ(#»»)> a n d am^0t 

then there is a bounded function discontinuous only at xm that A 
fails to sum. 

A subspace F of a completely regular space X is said to be C*-
embedded if e v e r y / £ C * ( F ) has an extension in C*(X). It is well 
known [2, p. 23] that a space X is extremally disconnected if and 
only if each of its dense subspaces is C*-embedded. Thus, from 
Theorem 1 and the above, we have 

THEOREM 3. If the complement of each point of a countably infinite 
space X is C*-embedded, in particular, if X is extremally disconnected, 
then no regular matrix can sum every element of C*(X). 

The complement of every point of X may be C*-embedded without 
X being extremally disconnected. For example, identify two copies 
of a countable extremally disconnected space along a closed dense in 
itself subspace. 

In [ó], W. Rudin proved that if X is a countable subspace of f3N, 
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there is an fÇ.C*(X) that is not G-summable. Any such X is ex
tremally disconnected; indeed every subspace of a countable sub-
space of jSiV is C*-embedded [2, p. 97]. Every countable extremally 
disconnected space takes this form ; in fact 

Every extremally disconnected space X having a dense subspace of 
power m can be embedded in (3D, where D is a discrete space of power m. 

PROOF. There is a mapping r of D onto a dense subspace Y of X 
which has a continuous extension over (3D onto (3X [2, p. 86]. Let E 
be a closed subspace of (3D minimal with respect to the property of 
being mapped onto (3X by r. Gleason shows in [l ] that the restriction 
of r to E is a homeomorphism since fiX is extremally disconnected 
[2, p. 96]. 

This easy application of Gleason's theorem answers a question of 
Katëtov, who asked if every extremally disconnected space, every 
subspace of which is normal, can be embedded in (3D for some dis
crete space D [5]. 
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