Claremont Colleges [Scholarship @ Claremont](http://scholarship.claremont.edu)

[All HMC Faculty Publications and Research](http://scholarship.claremont.edu/hmc_fac_pub) [HMC Faculty Scholarship](http://scholarship.claremont.edu/hmc_faculty)

1-1-1964

Averages of Continuous Functions on Countable Spaces

Melvin Henriksen *Harvey Mudd College*

John R. Isbell *University at Buffalo*

Recommended Citation

Henriksen, Melvin, J.R. Isbell. "Averages of continuous functions on countable spaces." Bulletin of the American Mathematical Society 70.6 (1964): 287–290. DOI: 10.1090/S0002-9904-1964-11127-7

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [scholarship@cuc.claremont.edu.](mailto:scholarship@cuc.claremont.edu)

AVERAGES OF CONTINUOUS FUNCTIONS ON COUNTABLE SPACES¹

BY MELVIN HENRIKSEN AND J. R. ISBELL

Communicated by Walter Rudin, November 18, 1963

Introduction. Let $X = \{x_1, x_2, \cdots\}$ be a countably infinite topological space; then the space $C^*(X)$ of all bounded real-valued continuous functions f may be regarded as a space of sequences $(f(x_1), f(x_2), \cdots)$. It is well known [7, p. 54] that no regular (Toeplitz) matrix can sum all bounded sequences. On the other hand, if (x_1, x_2, \dots) converges in X (to x_m), then every regular matrix sums all f in $C^*(X)$ (to $f(x_m)$).

The main result of this paper is that if a regular matrix sums all f in $C^*(X)$ then it sums f to $\sum_{n} \alpha_n f(x_n)$, for some absolutely convergent series $\sum_{n} \alpha_n$. We use this to show that no regular matrix can sum all of *C*(X)* if *X* is extremally disconnected (the closure of every open set is open). This extends a theorem of W. Rudin [ó], which has an equivalent hypothesis $(X$ is embeddable in the Stone-Cech compactification βN of a discrete space) and concludes that not all f in *C*(X)* are Cesàro summable.

For any continuous linear functional ϕ on $C^*(X)$ one has a ("Riesz") representation $\phi(f) = f f d\mu$, where μ is a Radon measure on βX . Our main result is just that X supports μ ; μ is forced to be atomic since *X* is countable. We show further that *X* has a subset *T,* the set of *heavy points,* such that the functionals we are concerned with correspond exactly to measures μ supported by T with $\mu(T) = 1$. Our knowledge of T is limited; it will be summarized elsewhere.

1. Representation. It is well known [7, p. 57] that a matrix $A = (a_{ij})$ defines a regular summability method if and only if it satisfies the conditions (1) $\sum_{i} a_{ij} = 1+o(1)$, (2) $\sum_{i} |a_{ij}|$ is uniformly bounded, and (3) for each j, $a_{ij}\rightarrow 0$.

For all the present results on real-valued functions, we may assume without loss of generality that *our topological spaces are completely regular.* Then each countable space *X* has a base of open-and-closed sets, and each $f \in C^*(X)$ is a uniform limit of linear combinations of characteristic functions of these basic sets.

Suppose that *A* is a regular matrix such that $\phi_A(f)$ $=\lim_{i\to\infty}\sum_j a_{ij}f(x_j)$ exists for each $f\in C^*(X)$. For each open-andclosed subset *U* of X, let *cu* denote its characteristic function, and let

¹ This research was supported by the National Science Foundation.

 $a(U) = \phi_A(c_U)$. Also, let $b(U) = \sup \sum |a(V_i)|$, where $\{V_i\}$ ranges over all finite disjoint families of open-and-closed subsets of *U.* A bound for $\sum_j |a_{ij}|$ is a bound for $b(U)$; also a and b are finitely additive.

For each point $x \in X$, let $\alpha(x)$ be the limit of $\alpha(U)$ over the filter base *'Mx* of open-and-closed neighborhoods of *x.* It exists since the monotone function $b(U)$ converges, which implies that

$$
\lim \{b(U \sim U') : U, U' \in \mathfrak{u}_x, U' \subset U\} = 0,
$$

so $|a(U) - a(U')| = |a(U \sim U')| \leq b(U \sim U').$

LEMMA. The series $\sum_{\alpha}(x_n)$ is absolutely convergent with sum 1.

PROOF. For any $\epsilon > 0$, there exist $U_n \in \mathfrak{u}_{x_n}$, for $n = 1, 2, \cdots$, such that for any $V_n \in \mathcal{U}_{x_n}$ satisfying $V_n \subset U_n$, $\sum b(U_n \sim V_n) < \epsilon$. Thus $|\sum a(U_n) - \sum a(x_n)| \leq \epsilon$, and with a further error of ϵ , we can replace the sets U_n by a disjoint family $\{W_n\}$ covering X. Then absolute convergence is evident; and if $\sum \alpha(x_n) \neq 1$, we may choose $\epsilon > 0$ so small that $\sum a(W_n) = 1-d$ with $d \neq 0$.

Let $a_{ij}^* = \sum [a_{ik}: x_k \in W_j]$; note that $\lim_i a_{ij}^* = a(W_j)$. Let

$$
c_{ij}=\frac{a_{ij}^*-a(W_j)}{d}.
$$

Then (c_{ij}) is regular since (1) and (3) hold, and $\sum_j |c_{ij}|$ is bounded by $2/|d|$ times the bound for $\sum_i |a_{ij}|$. Since no regular matrix can sum all sequences of zeros and ones [7, p. 54], there is a subset *Z* of *N* such that $\sum_{j\in\mathbb{Z}} c_{ij}$ does not converge, so $W = \bigcup \{W_n : n\in\mathbb{Z}\}\$ is an open-and-closed set for which $a(W)$ does not exist. This contradiction establishes the lemma.

COROLLARY. For any open-and-closed set U, $\sum [\alpha(x):x\in U]=a(U)$.

PROOF. Passing to $(X \sim U)$ if necessary, we may assume that $a(U) \neq 0$. The matrix (b_{ij}) obtained by letting $b_{ij} = a_{ij}/a(U)$ if $x_j \in U$, and by letting $b_{ij} = 0$ otherwise, is a regular matrix that sums each element of $C^*(U)$, so the lemma applies.

THEOREM 1. If a regular matrix summability method ϕ sums all *bounded continuous functions on a countably infinite topological space* $X = \{x_1, x_2, \cdots \}$, then there is an absolutely convergent series $\sum \alpha_n$ *with sum* 1 *such that for each* $f \in C^*(X)$ *,* $\phi(f) = \sum_{n} \alpha_n f(x_n)$.

PROOF. The corollary shows this for characteristic functions and the rest follows from linearity and continuity.

2. **Reduction to points.** As indicated in the introduction, we can reduce the problem of which functionals $f \rightarrow \sum \alpha_n f(x_n)$ are given by regular matrices to the problem for single points, $f \rightarrow f(x)$. There is a further reduction to the case that *x* is the only nonisolated point. (Obviously *x* must be nonisolated.) We define a *heavy point x* of a countable space $\{x_1, x_2, \cdots\}$ as one such that there exists a regular matrix A such that for every bounded function f continuous at x , $\phi_A(f) = f(x).$

THEOREM 2. *A functional* $\phi(f) = \sum_{n} \alpha_n f(x_n)$ on $C^*(X)$ is representa*ble as* ϕ_A for some regular matrix A if and only if $\sum \alpha_i = 1$ and $\alpha_n = 0$ *whenever xn is not a heavy point.*

The proof will be published elsewhere, together with the results abstracted in $[4]$, which tell a little about heavy points. It is easy to see that the limit of a convergent (nonconstant) sequence is a heavy point; another heavy point that is not the limit of a sequence is exhibited, essentially, in [3, Example *3.3].*

3. **Removable points.** A point *x* for which every function $f\in C^{*}(X\sim \{x\})$ has an extension in $C^{*}(X)$ cannot be a heavy point; for the matrix A summing $C^*(X)$ ($\phi_A(f) = f(x)$) would, with one column deleted, sum all of $C^{*}(X\sim \{x\})$ (ϕ_A violating Theorem 1). As the omitted proof of Theorem 2 is long, we note that this argument works as well with $\phi_A(f) = \sum \alpha_n f(x_n)$, if $x = x_r$ has a nonzero coefficient α_r ; that is, Theorem 1 suffices. Moreover, there is a trifle of extra information; if *A* sums every *f* in $C^*(X)$ to $\sum \alpha_n f(x_n)$, and $\alpha_m \neq 0$, then there is a bounded function discontinuous only at *xm* that *A* fails to sum.

A subspace Y of a completely regular space X is said to be C^* embedded if every $f \in C^*(Y)$ has an extension in $C^*(X)$. It is well known [2, p. 23] that a space *X* is extremally disconnected if and only if each of its dense subspaces is C^* -embedded. Thus, from Theorem 1 and the above, we have

THEOREM 3. *If the complement of each point of a countably infinite space X is C*-embedded, in particular, if X is extremally disconnected, then no regular matrix can sum every element of* $C^*(X)$ *.*

The complement of every point of *X* may be C*-embedded without *X* being extremally disconnected. For example, identify two copies of a countable extremally disconnected space along a closed dense in itself subspace.

In $[6]$, W. Rudin proved that if X is a countable subspace of βN ,

there is an $f \in C^*(X)$ that is not C_1 -summable. Any such X is extremally disconnected; indeed every subspace of a countable subspace of βN is C*-embedded [2, p. 97]. Every countable extremally disconnected space takes this form ; in fact

Every extremally disconnected space X having a dense subspace of power m can be embedded in (3D, where D is a discrete space of power m.

PROOF. There is a mapping τ of D onto a dense subspace Y of X which has a continuous extension over βD onto βX [2, p. 86]. Let E be a closed subspace of *(3D* minimal with respect to the property of being mapped onto βX by τ . Gleason shows in [1] that the restriction of τ to E is a homeomorphism since βX is extremally disconnected [2, p. 96].

This easy application of Gleason's theorem answers a question of Katëtov, who asked if every extremally disconnected space, every subspace of which is normal, can be embedded in βD for some discrete space *D* [5].

REFERENCES

1. A. Gleason, *Projective topological spaces,* Illinois J. Math. 2 (1958), 482-489.

2. L. Gillman and M. Jerison, *Rings of continuous functions,* Van Nostrand, New York, 1960.

3. M. Henriksen, *Multiplicative summability methods and the Stone-Cech compactification,* Math. Z. 71 (1959), 427-435.

4. M. Henriksen and J. R. Isbell, *Multiplicative summability methods and the Stone-Cech compactification.* II, Notices Amer. Math. Soc. 11 (1964), 90.

5. M. Katëtov, *On nearly discrete spaces,* Casopis Pest. Mat. Fys. 75 (1950), 69-78.

6. W. Rudin, *Averages of continuous functions,* Duke Math. J. 25 (1958), 197-204.

7. K. Zeiler, *Theorie der Limitierungsverfahren,* Ergebnisse der Mathematik und ihrer Grenzgebeite, Springer, Berlin, 1958.

THE INSTITUTE FOR ADVANCED STUDY,

PURDUE UNIVERSITY AND

THE UNIVERSITY OF WASHINGTON