Claremont Colleges

Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

3-1-1958

Some Properties of Compactifications

Melvin Henriksen
Harvey Mudd College

John R. Isbell
University at Buffalo

Recommended Citation

Henriksen, Melvin, and J.R. Isbell. "Some properties of compactifications.” Duke Mathematical Journal 25.1 (1958): 83-105. DOL:
10.1215/S0012-7094-58-02509-2

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact

scholarship@cuc.claremont.edu.


http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

SOME PROPERTIES OF COMPACTIFICATIONS

By MeLvin Hexriksen anp J, R. IsprLn

Introduction. A compactification of a topological space X is a compact
(Hausdorfi) space containing 2 dense subspace homeomorphic with X. Since
only completely regular spaces have compactifications, all spaces mentioned
here will be completely regular unless the contrary is assumed explicitly. This
paper is a study of properties of the sets of points which may be added to a
space in compactifying it. We find several properties @ such that for all spaces X

(*} #f the complement of X in one of ifs compactificotions has properiy

®, then the ecomplement of X in any of s compactifications has property .
A list of such properties is provided in Theorem 2.2. It includes compactness,
local compactness, o-compactness, the Lindeléf property, and paracompactness.

Recall Cech’s result [3] that any compactification AX of X is a continuous
image of the Stone-Cech compactification 8X of X under a mapping which
takes 8X — X onto AX — X. The essence of the reason that (*) holds for the
listed properties is that the restriction of this mapping to 83X — X preserves
these properties in the strong sense that the domain has the property if and
only if the range does. Indeed, this latter mapping is an example of what
we call a meshing map; namely a mapping f of a space X onto a space ¥ which
has an extension f over some compactification 4X of X onto some compact-
" ification BY of ¥, which maps 4X — X homeomorphically onto BY — Y.
We call a property ® a meshing property if whenever f; X — ¥ is a meshing
map, thed X has property @ if and only if ¥ has property ®. Then a necessary
and sufficient condition for (*) to hold for a property ® is that ® be a meshing
property (Theorem 2.6).

All of the properties listed in our first paragraph are actually preserved by a
wider class of mappings, namely those mappings f: X — ¥ such that f maps X
continuously onto ¥, f is closed, and for each y = ¥, the set f'(3) is compact.
We call these fitling maps, and the properties they preserve (in the strong sense
given above), filling properties. Every meshing map is fitting (and hence every

fitbing property is a meshing property); the converse is true for locally compact
~ spaces, where these mappings coincide with those proper mappings in the sense
of Leray [12] that are onto. Many fitting maps that are not meshing are pro-
vided by the fact that the projection map of the product of a non-loeally compact
space ¥ and a compact space containing at least two points onto ¥ fails to be
meshing (Corollary 1.7). However, meshing properties that are not fitting are
harder to find. We have identified one such (Example 2.1), but we have not
found any among the more familiar topological properties,
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84 MELVIN HENRIKSEN AND J. R. ISBELI,

In general, we have a necessary and sufficient condition for a fitting map f:
X — Y to be meshing (Theorem 1.8), which reduces in case ¥ is normal to the
following: any two distinet points z; , z, of X have neighborhoods U/, , Uz such
that f[I7,] N f{U,] is compact {Corollary 1.9). Examples show that the class
. of meshing maps is not closed under functional composition, though fitting
maps obviously are (1.11).

For any property @, we say that X has property @ af infinéty if $X — X has
property ®. If @ is a meshing property, then so is ® at infinity (Theorem 2.8).
Moreover, ® is a fitting property if and only if @ at infinity is (Theorem 2.7).

Note that compactness at infinity is just local compactness. X is locally
compact at infinity if and only if the set R{X) of all points at which X fails
to be locally compact is ecompact (Theorem 3.1); and in general, for any meshing
property @, X has property @ at infinity at infinity if and only if R(X) has
property @ (Theorem 2.9). X is Lindel®f at infinity if and only if every compact
subset of X is contained in a compact set of eountable character (Theorem 3.6).
In particular, every metrizable space is Lindelsf at infinity.

In §1, fitting maps and meshing maps are studied, while §2 is devoted to
fitting properties and meshing properties. Section 3 is concerned with some
speelal properties at infinity. Finally, in an appendix (§4), we show that among
alt Hausdorif spaces, regularity is a fitting property, while complete regularity
is not.

1. Fitting and meshing mappings. We are concerned almost exclusively with
subspaces of compact (Hausdorff) spaces, that is, with completely regular -
(Hausdorff) spaces. Indeed, throughout the sequel, except in the appendiz (§4),
the word “space” will be used to abbreviate “completely regular space”. If a space
X is (homeomorphic with) a dense subspace of a compact space BX, then BX
is called a compactification of X.

For any space X, let C(X) denote the set of continuous real-valued functions
on X, and let C*(X) denote the subset of all bounded ¢ ¢ C(X). Among the
compactifications of X, we will be concerned particularly with the Stone-Ceeh
compactification 8X. Tt is characterized among the compactifications of X (to
within & homeomorphism keeping X pointwise fixed) by the fact that every
¢ ¢ C*(X) has a {unique) continuous extension over 8X. In addition, we shall
depend heavily on the following result of Cech [3; 831].

1.1 Lemma (Cech). Any compactification BX of a space X is the image of 3X
under a (unique) continuous mapping | that keeps X pointwise fixed; furthermore
fisX — X] = BX — X.

Note that both f and its restriction to 83X — X are closed continuous mappings
such that the inverse image of a point is compact. More generally we define:

DermrrioN, A closed continuous mapping f of a space X onto a space ¥ such
that for each y & Y, the sel {~"(y) is compact, ts called o fitting map.
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Remark. It scems best to emphasize at this point that (except in the appendix)
the domain space X, and the range space Y, of a fitting map, are by fiol completely
regulor spaces (as per the convention introduced above). We observe that
although this does involve a loss of generality, it will not affect our main appli-
cations of the concept of a fitting map, since we are concerned mainly with spaces
that have compactifications. In an appendix (§4), we will discuss the precige
extent of the loss of generality; but otherwise we will restrict our discussion to
completely regular spaces.

The following simple lemma will be needed frecuently below.

1.2 LemMMa. A conltinuous mapping | of a space X onto a space ¥ is a fitling
map if and only if both

(1) foreachy e Y, and each neighborhood U of (i) in X, there is a neighborhood
Vof yin ¥ such that {7'[V] C U, and

(ii} for each compact subset K of ¥, the set f '[{K] is compact.

Proof. Tt is well known {and not difficult to verify directly) that (i) holds
if and only if f is closed [11; 97]. Hence (i) and (ii} together imply that fis a
fitting map. .

Suppose conversely that f is a fitting map, let K be a compact subset of Y,
and let U be any open covering of f '[K]. By hypothesis, for each k ¢ K, there
is a finite subset U, of U that covers f™'(k). Let U, denote the union of the
elements of at, . By (i), for each k ¢ I, there is an open neighborhood V¥, of &
in ¥ such that f[V,] C U, . Since K is compact, there is a finite subset
{ke, -+, k) of K such that \J_,V,, D K. Clearly U, U, is a finite sub-
family of U that covers f7[K], so (i) holds, and the lemma is proved.

A continuous mapping of a locally compact space into a locally compact
space satisfying condition (i) of Lemma 1.2 is ealled a proper mapping by
Leray and Bourbaki, who showed that every such mapping is closed [12, no. 22]
[2; 103]. More generally, any mapping f of a space X onto a k-space Y satisfying
(ii) 4s closed. (Reeall that ¥ is a k-space provided every subset of ¥ infersecting
every compact subset of ¥ in a closed set is itselfl closed. Every locally compact
space, and every space satisfying the first axiom of countability iz a k-space
[11; 231].)

For, let S be any closed subset of X, and let K be any compact subset of V.
Note that by (ii), § M f'[K] is eompact, so f[S] N K = f[S N 7 1{K]] is closed. .
Since X is a k-space, f[8] is closed. ' ,

It will be shown next that if ¥ is not a k-space, then f need not be a closed
mapping.

We first infroduce some notation that will be used throughout the sequel.
If @ is any ordinal, let W(a) denote the space of ordinal numbers less than «
in the interval topology. As usual w, and @, denote respectively the first infinite
and the first uncountable ordinal numbers.

1.3 ExamrLe.  Let H denote the subspace of W(w, - 1) obtained by deleting
all countable limit ordinals. Observe that every compact subset of H is finite,
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50 H is not a k-space. Let X denote the set H with the discrete topology. Then
the identity map of X onto H satisfies (if) but is not closed.

In particular, every proper map of a locally compact space onto a locally
compact space is a fitting map. It is also true that a continuous mapping
f of locally compact space X onto a locally compact space ¥ is proper if and only
if f has a continuous extension over the one point compactification aX of X
onto the one point compactification o¥ of ¥ {12], [2]. Observe that this ex-
tension sends the point at infinity of «X onto the point at infinity of &Y.

We next introduce another generalization of the concept of proper mapping
based on this latter property. For any mapping f on a set X, the restrietion of
f to a subset S of X will be designated by #| S

DerFivtrion. A continuous mapping | of a space X onto a space Y such that
there exist compactifications AX of X and BY of ¥, and a eontinuous extension
T of f over AX onto BY such that§ | (AX — X) isa homeomorphism onto BY — Y,
28 called a meshing map of X onio Y.

It is obvious that every eontinuous mapping of a compact space onto a compaet
space is fitting, so every meshing map s @ fitling map. Moreover, if we choose
the compactifieations in the definition above to be «X and &Y, it becomes clear
that any proper map, and hence any fitting map, of a locally compact space X
onto a locally compact space ¥ is a meshing map. In general, however, the
assumption that a map is meshing is much more restrietive than the assumption
that it is fifting, as will be seen below (Corollary 1.7).

If § is a subset of a space X, then we use 8™ to denote the closure of S in X.

1.4 Lemma.  (a) If f 4s a filling map of a space X onfo a space Y, and #f S s
a subset of X, then [ | S is a filting map (onto {[S)) if and only if 8 = FASH N S

(b) If f is a meshing map of a space X onto & space ¥, and if S is a closed
subset of X, then | 8 43 a meshing map (onto {[S]).

Proof. (a) Assume first that S is a dense subset of X. Then F'[f[S]] M

T =8N I 8§ = f[fASII, then for each y ¢ 18], the compact set f(y)
is contained in 8, and for any relatively closed subset 7' in S, the image of T
under 7 | 8 is the relatively closed set f[T] M f[S]. Conversely, suppose that
f| S is fitting, and consider any 2 e X — 8, and y ¢ flS]. By hypothesis, the set
1) M S is compact and henee has an open neighborhood U in § whose closure
in X does not contain z. Then f[§ — Ul is a closed subset of {{,8] not containing
y. But f(x) is a lmit point in ¥ of f[S — U], so y = f(x). Hence 8§ = F[{[S]],
and we have (a) in case S is dense.

If 8 is a closed subset of X, then obviously f | 8 is fitting, and

= IS N ST

Fmally let S be any subset of X, and assume first that § = Ff8]] M S~
As noted above, f | 8~ = f, is fitting. But S is dense in 87, and 7 '[f,[S]] =
IS M 87 = 8, so by the above, f, | § = f{ 8 is a fitting map. Conversely
if | 8 is'a fitting map, then regarding it as the restriction to S of the fitting
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map f | 87, we obtain easily that 8 = f"'[f[S]] ™ 8~. Hence we have proved (a).

{b) By hypothesis, there exist compactifications AX of X and BY of ¥V
and an extension f of f over AX onto BY such that f | (4X — X) = f,is a
homeomorphism onto BY — Y. Let S be a closed subset of X, and let T denote
its closure in AX. Then f| 7 is an extension of f, over 7' whose restriction to
the subset T — 8 of AX — X is a homeomorphism onto f{7] — f[S], so IS is
a meshing map.

Our next lemma is concerned with the Stone-Cech compactification. For
any space X, we abbreviate 83X — X by X*. If 4 is a subset of 53X, we designate
its closure in X by 4%

If f is any continuous mapping of space X onto a space ¥, and if BY is any
compactification of ¥, then by a theorem of Stone [15, Theorem 88], f has a
(unique) continuous extension fs over 83X onto BY. Clearly fz]X*] contains
BY — ¥, but these two sets will not coincide in general. However, since any
continuous mapping of a compact space onto a compact space. is fitting, and
immediate consequence of Lemma 1.4 ig

1.5 Lenmaa.  If f 4s o continuous map of a space X onto a space Y, then the
following statements are equivalent.

(a) There exists a compactification BY of ¥ such that fo[X*] = BY — V..

(b If BY is any compactification of ¥, then f[X*] = BY — V.

(© flX7] =T~

(d) {isa fitting map.

I'n particular, the restriction of fg 1o X* 43 a fitling map onte Y™ if and only zf
f is a fitting map.

Tor any space X, let B{X) denote the set of points of X at which X is not
locally compact, Since its complement, is open, B{X) is closed. Furthermore,
n any compactification BX of X, the closure of BX — X consists precisely of
BX — X and B(X).

Observe also that ¢f f 4s a fitting map-of ¢ space X onto a space Y, then f{[R(X)] =

"R(Y). For, by Lemma 1.2 (ii), {{R(X)] C B(Y). Ify e B(Y) — f[R(X)], then
the compact set f'(y) has a compact neighborhood U disjoint from R(X), so
by Lemma 1.2 (i), there is a neighborhood V of y in ¥ such that f'[V] C U.
Hence V™ is a compact ne1ghborhood of 4. This contradiction yields R(Y)
C fIR(X)], so we are done.

Recall that if  is a continuous mapping of a space X onto a space ¥, then a
cross section of f is a continuous mapping g of ¥ into X such that (the composite
funetion) f o g is the identity map of ¥ onto itself.

1.6 TuroREM. If 0 meshing map | of a space X onto a space ¥ has a crosé
section, then | | B(X)} is a one-one mapping (and hence o homeomorphism) onto
R(Y).

Proof. Since f is a meshing map, there exist compactifications AX of X and
BY of Y, and an extension f over AX onto BY such that | (AX — X) isa
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homeomorphism onto BY — ¥. By hypothesis, f has a cross section g mapping
Y into X, and by the theorem of Stone cited above, g has a continuous extension
g' over 8Y into AX. Now f ogisthe identity map of ¥ onto itself, so f o ¢’ maps
BY onto BY. But f| (AX — X) is a one-one mapping onto BY — ¥, and
flg"lBY1] D BY — Y, s0 ¢'[8Y] D AX — X. Since ¢'[8Y] is compact, ¢'[3Y]
contains the closure of AX — X in AX, which in turn contains B(X). We
conelude that R{(X) C ¢'[8¥]1 M X.

We will show next that § = ¢’[8Y] ™ X C ¢g[¥]. To do so we note first that
since f g coincides with the identity on ¥, and maps 8Y onto BY, by Lemma
1.1, f o ¢’ sends ¥ — Y onto BY — ¥. Hence ¢/[8Y — Y] = AX — X, so
S C ¢'[Y] = ¢lY]. .

Finally, since g is a cross section of f, f is a one-one mapping on ¢[¥], and
hence on B(X). : :
~ If K is a compact space, ¥ is any space, and X = K X ¥, it is apparent that

RB(X) = K X R(Y). Moreover, the projection map f of X onto ¥ obviously
has a cross section; choose any & ¢ K and map ¥ onto {k} X ¥ in the natural
way. Hence if we observe that the projection map § is obviously a fitting map,
we have immediately from Theorem 1.6:

1.7 Cororrary. If K s any compact space conloining at least two points,
and Y is any space that is not locally compact, then the projeciion map of K X Y
onte Y is a fitting map that is not a meshing map.

1.8 TurorEM. A filling map f of o space X onto a space ¥ is meshing if and
only if for any pair x, , &, of distinet potnts of R(X) such that f(z,) = f(z.), there
exist neighborhoods U, of x, and U, of 2, én BX such that f[U.] M £{U,] 45 compact
and is contained in Y. In particular, if f | R(X) 4s a one-one mapping, then |
i8 @ meshing map.

Proof. Note first that for any continuous map f of X onto ¥, the condition
given above for z, and 2, holds automatically unless both x; and 2, are in B(X).
For, if z, has a compact neighborhood U in X, then f,{U,] is already a compact
subset of Y. Iff(x;) # f(x,), then f(2;) and f{z,) have disjoint compact neighbor-
hoods V', Vo in BY. 8o, if U, = f; "[V.] ¢ = 1, 2,) then f,[U,] and {,[U,] are
disjoint.

Now suppose that f is a meshing map, so that there exist compactifications
AX of X and BY of ¥, and an extension f over AX onto BY mapping AX — X
homeomorphically onto BY — Y. By Lemma 1.1, there exist mappings 4, of
BX onto AX and ¢y of BY onto BY keeping X (respectively ¥) pointwise fixed
and sending X* (respectively ¥*} onto AX — X (respectively BY — ¥). Observe
that foi, = ¢z 0fs, since they both send 8X onto BY, and coincide with f on X.
Let V, , V; be disjoint closed neighborhoods of the distinet points z, , z, of
RX)imAX,andlet U, = i7" [V.] (= 1,2). Theset (foi JU. )M Foi U] =
FIVINFIV,] is compact, and since fis a one-one mapping on AX — X, flV, — X]
and f[V, — X] are disjoint. Therefore (f o 2,[U.]) M (F o 4,[U,)) is a compact
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subset of Y. But this latter set coincides with (i; o f5[U:]) M @y o f5[T.]). So,
since ¢ maps ¥* onto BY — Y, it follows that fi[U,] M £[U.] is a compact
subset of ¥, as required.
Suppose conversely that f is fitting and that our condition on pairs of distinet
points of B(X) holds. We define AX as the quotient space of 83X by the de-
composition whose elements are the single points of X and the sets 5'(p),
p e Y* We will show next that the quotient mapping % of 83X onto 4.X is closed
by applying Lemuma 1.2 (i). Observe first that X — R(X) is an open subset
of BX, every open subset of which is the inverse image of an open set in AX.
Next observe from the definition of AX that for each ¢ ¢ AX — X, there is a
p e Y*such that 2 '(¢) = f5"(p), so any neighborhood of 7*(¢) in 8X contains
the inverse image under f; of a neighborhood in AX of ¢. Finally, we consider
any point » ¢ B(X), any open subset U of 8X containing z, and the compact
set 8X — U, TFor each point p of BX — U in X, there exists by hypothesis a
compact neighborhood V, of p in 8X and a compact neighborhood V7 of  such
that fa[V,]- M f5IV!]1is a compact subset of ¥. (Recall the remarks made in the
first paragraph of the proof.) If p e (83X — U) M X*, then by Lemma 1.5,
fs(p) # fs(z), so we may repeat the same construction, and even conclude that
folVol and f5[V}] are disjoint. Then X — U is covered by finitely many of the
sets V, ; let V denote the union of the elements of such a finite family and let
V' denote the intersection of the corresponding sets V) . Then f5[V] M f[V']
is a compact subset of ¥; so since V and V' are disjoint, and k sends X* onto
AX — X, the sets h{V] and A[ V'] are disjoint. But then AX — A[V]isa neighbor-
hood of h{z) whose inverse image is contained in U/. Thus, by Lerama 1.2 (i),
h is a closed mapping, so AX is a compactification of X [11; 148].

From the construetion of 4X, it is apparent that the mapping 7 of AX onto
BY defined to coincide with f on X, and to map each point ¢ = &if7*(p)] in
AX — X topin ¥*, is a continuous extension of f such that f| (4X — X) iz a
one-one mapping onto Y*. Since f is a fitting map, we may conclude from
Lemma 1.4 (a), that f| (AX — X) is a homeomorphism onto ¥*.

1.9 Cororrary. A fitting map § of a space X onto a normal space Y is a
meshing map if and only #f for each pair of distinet poinis z, , z, of R(X) there
exist neighborhoods V', of %, and V, of . in X such that fIV.1 M f[V,] 7s compact.

Proof. We need only show that if ¥ is normal, then for any pair of distinet
points z; , x, of X and closed neighborhoods (in X) V,, V, of 2, , @, , the set
S = fIVi] M\ f[V.] is compact if and only if 7' = f[VE] M £:[Vi] is a compact
subset of ¥. Since f; is continuous, f{Vi] C (f[V.D? (¢ = 1,2). Thus [V N
fslV3] is a compaet subset of (f[V.])° M (V. = (V.] N fIV.DP, sinee V]
and f[V;] are closed subsets of the normal space ¥ [10, Lemma 7], [17]. Now
if S is compact, then §° = §, so 7' is a compact subset of ¥. If 7" is a compact

_subset of Y, then since § is closed in ¥, the set 8 is compact.

A simple generalization of the fact that every fitting map of a locally compact

space onto a locally compact space is a meshing map follows immediately from
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Theorem 1.8; if X s any space such that R(X) has at most one point, then a
Jitting map of X onfo a space Y is o meshing map.

Note also that the simpler criterion given in Corollary 1.9 can be applied if
X is known to be normal; for in this case it follows that ¥ is normal [18]. We
obtain also from the construetion in the proof of Theorem 1.8:

1.10 CoroLrary. If f is a meshing map of a space X onlo a space Y, then
fs | X* is @ meshing map onfo Y*.

Proof. Consider the compactification AX of X constructed in the proof of
Theorem 1.8, recall that the extension f of f over AX maps AX onto ¥, and
that g = 7| (AX X)isa homeomorphlsm onto ¥*. Let T denote the closure
of AX — X in AX. Then g7'is a homeomorphism of ¥* onto the dense subset
AX — X of T, 0 T is a compactification of ¥*. Then, if ¢, denotes the mapping
of BX onto AX given by Lemma 1.1, then ¢, | (X*)® is a continuous extension of
fa | X* that sends (X*)® — X* homeomorphically onto 7 — (AX — X). Hence
fs | X* is a meshing map. -

It is obvious that fitting maps are closed under composition. That is, if f
is a fitting map of X onto ¥, and g is a fitting map of ¥ onto a space Z, then
g ©f1isa fitting map of X onto Z. We conclude this seetion with an example to
show that this need not be the case for meshing maps.

1.11 Exampre. Let Z denote any normal non-loeally compact space such
that R(Z) is compact. (The space I of Example 1.3 has this property.) Let
X denote the sum of two disjoint copies Z, , Z, of Z, let ¥ denote the quotient
space obtained by identifying corresponding points of R(Z.) and R(Z,). The
quotient mapping f of X onto ¥ is obviously a fitting map, so by Corollary 1.9,
it is 2 meshing map. Finally, ¥ admits a quotient mapping g onto Z obtained
by identifying those pairs of corresponding points of Z, and Z, not already
identified in passing from X to Y. Again, ¢ is obviously a fitting map, and is a
one-one mapping on B(Y), so by Theorem 1.8, it is a meshing map. Bub g o f
is the projection map of the produet of Z and a compact space consisting of
two points onto Z, so by Corollary 1.7, ¢ o f i3 not a meshing map.

2. Fitting and meshing properties.

Derinrrion. A property @ of iopoloéical spaces 18 called a fitting (respectively
meshing) property if whenever [ is a fitling (respectively meshing) map of a space
X onto a space Y, then X has property @ ¢f and only if ¥ has property @.

Since every meshing map is a fitting map, every fitting property is a meshing
property. After introducing some notation, we will exhibit a meshing property
that is not fitting.

For any cardinal number m, let exp m = 2" and forn = 1 2, , let exp™™*
m = exp (exp'm). Wealsoletm®* = 2} 7, exp” N,. Forany set A, we designate
the cardinal number of A by | 4 |.
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For any space X, let RY(X) = R(X), and forn = 1, 2, -+, let B*"'(X) =
R(R"(X)). '

2.1 ExampLe. For any space X, let X have property @, if there exists a
positive integer n such that | B*(X) | < m*. We observe first that @, is not a
fitting property, for if X is the product of a compact space of power 4t least
m* and the space ¢ of rational numbers, then the projection mapping of X
onto Q is fitting, but for all n, R*(X) = X; thus| R"(X) | > m*, while | R(Q) | =
No . We show next that @, is a meshing property.

Let f be a meshing map of space X onto a space Y. Reecall that if f is any
fitting map, then f[R(X)] = R(Y). Since by Lemma 1.4, f | R(X) is a fitting
map, we obtain that forn = 1, 2, --- , f[R"(X)] = R"(Y), so ¥ has property
@, if X has ® . Assume next that ¥ has property @, . Since f is a meshing
map, there exist compaetifications AX of X, and BY of ¥ such that AX — X
and BY — Y are homeomorphiec. Tecall also that RB(X) iz contained in the
closure 7 of AX — X in AX, and the well known fact that if a space U/ is dense
inaspace V,then| V| < exp®| U|. Then | R(X)|<|7T| < exp” | AX — X |
=exp’| BY — ¥ | <exp’ | BY | < exp*| ¥ |. By Lemma 1.4, f|R(X)isa
meshing map, so applying this latter argument successively to the spaces E"(X),
we obtain | R™MX) | < exp* | R*(Y) |,n = 1,2, -+ . Hence X has property
®; , 80 @, is a meshing property. :

Any of the properties more usually encountered in general topology that we
have examined turn out to be fitting whenever they are meshing. Our next
theorem gives a list of such properties. First we recall some definitions for the
gake of completeness. . '

A space is g-compact if it is the union of countably many compact subspaces;
countably compact if every countable open covering of it has a finite subcover.
A space has the Lindeléf property, provided every open covering of it has a
countable subcover. A collection of subsets of a space is lecally findte if every
point has a neighborhood meeting only finitely many elements of the collection.
A refinement of a covering U of a space is a covering U such that every element
of U is a subset of some element of U. A space is paracompact {(respectively
countably paracompact) if every open (respectively countable open) covering
has a locally finite open refinement.

2.2. TueoreM. The following properties are fitling properties: (a) compaciness,
{b) e-compactness, (¢) the Lindelof property, (&) countable compaciness, (&) local
compactness, (f) paracompactness, and (g) couniable paracompaciness.

Proof. Let f denote a fitting map of a space X onto a space ¥. Let (A,),
«+ -, (G,) denote respectively the assertion that if X has property (a), --- , (g),
then Y has, and let (A,), --- , (G.) denote the assertion obtained from these
by interchanging X and V.

‘Tt is clear from the definitions involved (using only the continuity of f) that
(Ay), (By), (C)), and (D,) hold. We next prove

(E,). For any y ¢ ¥, it is clear, since {'(y) is compaet, and X is locally
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compact, that {7 (y) has a compact neighborhood U. By Lemma 1.2, there is
a neighborhood V of y in ¥ such that {7 [V] C U7. Then ¥ is 2 closed subset
of the compact set f{U/], and hence is the desired compact neighborhood of .

(F,). E. Michael has shown in [13] that any closed continuous image of a
paracompact space is paracompacs.

{G.). We use the following characterization of countable paracompactness
due to Ishikawa [9]. A space is countably paracompaet if and only if for every
countable descending chain of closed subsets {F,} with empty intersection,
there is a countable descending chain {U,} of open sets whose closures have
empty intersection such that ', C U, fori = 1,2, ... |

Let {F.} be any countable descending chain of closed subsets of ¥ with empty
intersection. "Then, since f is continuous, {f'[F;]} is a countable descending
chain of closed subsets of X with empty intersection, Since X is countably
paracompact, there is a countable descending chain {U,} of open sets such
that U; D f'{F.)for¢ = 1,2, -+, and such that N, U is empty. For
t=1,2,---,let G, =YV — f{X — U,). Since {is closed, each @, is an open
set contaming #; and G, . It suffices to prove that M7, G is empty. Suppose,
on the contrary, that there is a y e N7 ;. Now for each ¢, 'y} C U, , 80
F' MUY is a descending chain of compact sets with empty intersection.
Hence there is an ¢, such that U} and f'(y) are disjoint. That is, f(y) is
contained in the interior of X — U,, . So, by Lemma 1.2, there is a neighbor-
hood V of y such that f[VI C X — U,,. Butthen V C f[X — U,,], 50y is
not in &, . Hence M7, G is empty, whence V is countably paracompact,

(A,) follows immediately from Lemma 1.4, and (B,) follows immediately
from (A;). We next prove _ . '

(DD,). Suppose that X is not countably compact, and let D denote an infinite
closed discrete subset of X. Now f is a closed mapping, so since every subset
of D is closed, every subset of f{D] is closed. Thus f[D] is closed and discrete.
Moreover, since for each y £ ¥, the set f '(y) is compact, and hence has only
finitely many elements in common with D, the set f[D] must be infinite. Hence
Y is not countably compact.

(E;). IfzeX, and V is a compact neighborhood of f(x), then by the conti-
nuity of f and Lemma 1.2, f7'[V] is a compact neighborhood of z. Hence if
Y is locally compact, then X is locally compact. , '

It remains to prove (C,), (F.), and (G,). Let U denote an arbitrary open
covering of X. Tor each y & ¥, there is a finite subfamily a, of U that covers
the compact set f~'(y), and by Lemma 1.2 there is a neighborhood V, of y in
Y such that f7[V,] is contained in the union I/, of the elements of U, . 1Y
is a Lindeldf space, there is a countable subcover {V,, , --+ , V,., ---} of the
open covering {V,} of ¥, so \UZ, 4., is elearly a countable subcover of L.
Hence we have (C;). If ¥ is paracompact, the open covering {¥,} has a locally
finite open refinement {W,}. Since {W,} is a refinement of {V,}, for each e,
there is a y(a} ¢ ¥ such that f'[W,] C U, . It is easy to verify that the
open covering {f [W.] M U: U e} is a locally finite refinement of a, so
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(Fy) holds. Finally, if ¥ is countably paracompact, we may assume that U
is countable. For each y ¢ ¥, let V] denote the union of all the open subsets of
¥, whose inverse images are contained in U, . Since a countable set has only
countably many finite subsets, there are only countably many distinet elements
in the open covering {V;}. The remainder of the proof that X is countably
paracompact proceeds as in the paracompact case, so we have (G,). This
completes the proof of the theorem.

The list of properties given in Theorem 2.2 does not exhaust the class of
fitting properties. For example, it is clear that the negation of a fitting (or a
meshing) property is filling - (respeclively meshing). Some additional fitting
properties may be deduced from work of Hanai {7], who, in addition, has proved
some parts of our Theorem 2.2 {with essentially the same argument) under
- the additional assumption that both X and ¥ are normal.

It seems appropriate to mention some properties that are not fitting, although
they are related to some of those given in Theorem 2.2.

As noted in [18], a closed continuous image of a normal space is normal. Tt
has also been noted in [13] that the joint property of being normal and countably
paracompact is carried forward by closed continuous mappings. It is not true,
however, that either of these two properties Is even a meshing property.

2.3 ExampLe. Let X = W(w,) X W{w, -+ 1), and let ¥ = W(w,), and let
f be the projection map of X onto ¥. As we know, f is 4 fitting map, and since
X and ¥ are locally compact, it is also a meshing map. But, as is well known,
Y is normal and countably compact (hence countably paracompact), while X
is nonnormal [11; 163-164]. '

This example depends on the fact that if K is compact, and ¥ is any space,
the projection map of K X ¥ onto Y is a fitting map. Hence, if ® s a fitting
property, and if a space X has property @, then the product of X with any compact
space has properly ®.

We cannot, however, replace “fitting”’ by “meshing” in this last assertlon
as can be seen by examining the property @, of Example 2.1.

Recall that a space X is ealled pseudo-compact if C(X) = C*(X), ie., if
every ¢ £ C(X) is bounded, and that a normal pseudo-cormpact space is countably
compact [8, Theorem 30]. If { is a continuous map (in particular, if f is a fitting
‘map) of a pseudo-compact space X onto a space Y, then ¥ is pseudo-compact.
Forif ¢ ¢ C(Y) is unbounded, then the composite function ¢ o f is an unbounded
element of C(X). On the other hand, pseudo-compactness is not even a meshing
property.

24 Bxampre. Let ¥ = Wiw, + 1) X Wiwy 4+ 1) — {{e; , wo)}, and let
X = W 4+ 2) X Wlwe + 1) — {(w, wo)} — [(en + 1, wy)}. It is well
known that ¥ is pseudo-compact but not countably compact |8; 68]. But X
is the topological sum of ¥ and the closed countable discrete subspace
{(w: + L, n) tn < w) of X, so X is not pseudo-compact. Let f dencie the
mapping of X onto ¥ defined by letting f(y) = y for all ¥ ¢ ¥, and by letting
flo. + 1, 7m) = (w,n)foralln < «,. Clearly fis a fitting map. (Moreover,
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for each y ¢ ¥, the set '(y) has at most two points). Since X and ¥ are locally
compact, f is a meshing map, so pseudo-compactness is not a meshing property.

. 2.5 TaECREM. If @ is o fitting (respectively meshing) property that s inherited
by subspaces of spaces having ® that are both open and closed, then ® 1s inherdied
by closed (respeclively closed locally compact) subspaces.

Proof. Suppose that ¥ is a space satisfying @, and let A be a closed (respect~
Ively closed locally compact) subspace of ¥. Let X denote the sum of disjoint
copies ¥, of ¥ and A, of A, Let f denote the mapping that sends each point of
X onto the point of X from which it was obtained. Then f is clearly a fitting
map. Moreover, if A4 is locally compact, then B(X) C ¥V, ,s0{ | B(X) is 4
one-one mapping, and we may conclude from Theorem 1.8 that f is meshing.
In any case A, is an open and closed subset of X, so from the hypothesis, 4
has property ®.

Theorem 2.5 serves fo clarify Example 2 4, Obviously, any open and closed
subspace of a pseudo-compaet space is pseudo-compact, but a closed locally
compact subspace need not be, so by Theorem 2.5, pseudo-compactness is not
a meshing property.

We observe also that if ® 4s a meshing property inherited by subspaces that
are open and closed, and is possessed by some nonemply spoce, then @ is possessed
by all compact spaces. Tor, if ¥ is any nonempty space satisfying ®, and K is
any compact spaece, then Y is the image of the topological sum X of K and ¥
under the fitling map f that coincides with the identity on Y and sends K to
some fixed point of ¥. Since f is a one-one mapping on R(X) C Y, by Theorem
1.8, { is a meshing map, so X and hence K has property @.

Dervirion. A space X is satd to have property @ af infintty if X* has property
®. .

2.6 Turorem. The following condztwns on a spacé X are equivalent if and
only ¢f ® is a meshing property.

() X hos property ® at tnfingty.

(b) For some compactification AX of X, the space AX — X has property ®.

(e) For any compactification AX of X, the space AX — X has property @,

Proof. Suppose first that @ is a meshing property. For any compactification
AX of X, the restriction to 83X — X of the mapping 7. of 83X onto AX given
by Lemma 1.1 is a meshing map by Corollary 1.10. Hence the equivalence
of (a), (b) and (c¢) follows immediately from the cited lemma.

Suppose next that ® is not a meshing property. Then there exists a meshing
" map f of a space X onto a space ¥ such that one of X, ¥ has property ®, while
the other does not. Also there exist compactifications AX of X and BY of ¥,
and a continuous extension f of f over AX onto BY such that | (AX — X) isa
homeomorphism onto BY — V. Let Z = AX X [0, 1] — (X X {1}). Then
"AZ = AX X [0, 1] is a compactification of Z such that AZ — Z and X are
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homeomorphic. Let Z, denote the quotient space of AZ by the decomposition
whose elements are the single points of Z, and the sets f '(p) X {1}, pe V. Tt
is easily wverified that the quofient mapping is closed, so the quotient space
BZ is a compactification of Z such that BZ — Z and ¥ are homeomorphic.
Hence (b) and (c¢) (applied to the space Z) fail to be equivalent. This completes
the proof of the theorem.

All of the fitting (hence meshing) properties of Theorem 2.2 are inherited
by closed subspaces, but for their negations, this is not true. Under this stronger
hypothesis, the following improvement of Theorem 2.6 is valid. If @ ¢s a meshing
property inhertted by closed subspaces, and if X s a subspace (not necessarily
dense) of a compact space Z such that Z — X has property @, then X has ® ot
nfinity.

2.7 Tamorem.  (2) A property @ is fitting of and only if @ of infinity is a filting
property.

(b) A property ® s inherited by open-closed subsets if and only f (P at tfindty
is inherited by open-closed subsefs.

Proof. Note first that if @ 1z fitting, then @ at infinity is fitting by Lemma
1.5. . Next, suppose that @ is inherited by open-closed subsets, and let 4 be an
open-closed subset of a space X having property @ at infinity. Since every
% & C*(A) has a continuous extension over X, it follows that the closure 47 of
A in 8X is A, Thus A* = A® — A is an open and closed subset of X*, and
hence has property @, i.e., A has ® at infinity.

Before proceeding further, we give a preliminary construction. For any
space X, let w, be an uncountable regular initial ordinal such that | gX | <
| Wlwd) |, Iet Xy = X X W, + 1) — (X X {w.}), and let X, =
BX: X Wi(was: + 1) — (X1 X {wearl). Now for any uncountable regular
itial ordinal o5 , every ¢ & C(W(ws)) i known to be eventually constant,
{cf. e.g. [8]). Hencesince | fX | < | W{w,) |, every ¢ ¢ C*(X,) has a continuous
extension over fX X Wiw, + 1), so 8X, = X X W(w, + 1) Similarly
BX; = X, X W{wa.y + 1). Thus X* is homeomorphic with X, and X% is
homeomorphic with X, . It follows that X#* = gX% — X% and X are homeo-
morphie. _

Now, suppose that ® at infinity is a fitting property, let f denote a fitting
map of a space X onto a space ¥, and let X, and ¥, denote the spaces obtained
by the construction above. We define a mapping % over 8X, onto 87, by letting
150, an, a2) = (fa(0), a2 , ) for all p e 8X, o < w, a0d @ < wor. (As usual,
fs denotes the continuous extension of f over X onto 8Y.) Let f = f%| X, .
Bince f is a fitting map, f” is a fitting map.

Now sinee @ at infinity is a fitting property, @ at infinity at infinity is a
fitting property by the first part of the proof. Hence X#* has @ if and only
if Y#* has @. But by our construction X§* and X, respectively Y¥* and ¥,
are homeomorphic. Hence @ is a fitting property.
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Finally, suppose that ® at infinity is inherited by open-closed subspaces.
Using the first part of our proof, we conclude that @ at infinity at infinity is
inherited by open-closed subspaces. Now let 4 be an open-closed subspace of
a space having property @. Tt is easily seen that 4, is homeomorphie to an
open-closed subspace of X, , and hence that 43* is homeomorphic to an open-
closed subspace of X§*. Noting again that X#* and X, respectively A3* and
A, are homomorphie, we conclude that A has property ®. This completes the’
proof of the theorem.

We conclude this section with two theorems whose proofs we find convenient

to give together,

2.8 TaworeM. If ® is o meshing property, then

(a) @ atf infinily is a meshing property, and

(b} @ at infinity is inherited by closed subspaces if and only if ® is inherited
by closed subspaces.

2.9 TuroreM. Let @ be a meshing property. Then o space X has property
@ of infinity at infinity if and only of R(X) has property ®.

Proof. Part (a) of 2.8 follows immediately from Corollary 1.10. Next, we
prove 2.9,

By definition, X has property ® at infinity at infinity if and only if X* has
property @ at infinity. By 2.8 (a), this latter property is meshing, so by Theorem
2.6, X" has property @ at infinity at infinity if and only if (X*) — X* = R(X)
hag property @. o

It remains to prove 2.8 (b). Suppose first that @ is inherited by closed sub-
spaces, and let 4 be a closed suspace of a space X having @ at infinity. Then
X* has property @, and 4° — 4 is a closed subspace of X*. So by hypothesis
A*® — A has property ®. Thus, by Theorem 2.6, A has ® at infinity.

Suppose conversely that @ at infinity is inherited by closed subspaces, and
let A be a closed subspace of a space satisfying ®. Let I denote the space
defined in Example 1.3, and let M = X X H — {(p, wn): p ¢ X¥}. If D ==
H — {w}, then M = BX X D) \J (X X {&n}). Tt is clear that R(M) =
X X {en}, 50 by 2.9, M has property @ at infinity at infinity. Let N = (4% X D)
(4 X {&}). Then N is a closed subset of M, so by 2.8 (a), and the pazt of
2.8 (b) just proved, N has property @ at infinity at infinity. But R(N) =
A X {w;}, so applying 2.9 again, we conclude that A has property ®. Hence
we have proved Theorems 2.8 and 2.9,

3. Some properties at infinity. In this section, we discuss in varying detail
the fitting properties given in Theorem 2.2, and give some pertinent examples.

Compactness at infinity is equivalent, of course, to Iocal compactness.

A space X is locally compact at infinity if and only if X is compact at infinity
at infinity, so by Theorem 2.9, we have

3.1 TueoreM. A space X s locally compact at infinity if and only if R(X) s
compace.
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Cech has discussed the concept of g-compactness at infinity (using the term
topologically complete) and obtained the equivalences of our Theorem 2.6 for
this special case [3; 837 f.]. We have the following simple result.

3.2 TeroseEM. A space X 15 a-compact ot tnfinity if and only if whenever X
s @ dense subspace of a space ¥, X isa Gsin Y.

Proof. If X is a (s in 8X, then X* is an F, in X, ie., X is o-compact at
infinity. Conversely suppose X is o-compact at infinity, and is dense in a space
Y. By Theorem 2.6, 8Y — X is e-compact, and hence Is an F,-subset of 8Y,
g0 Xisa Gyin 8Y, and thusisa G; in Y.

We recall the well-known result that a metrizable space is a G; in every
{compact) space containing it if and oaly if it is completely metrizable (cf. e.g.,
[3; 838] or [11; 207]). In other words, a metrizable space is o-compact af infinity
if and only if it is complelely metrizable. As we will see later (Corollary 3.7),
every metrizable space is Lindeldf at infinity.

3.3 TereorEM. If a space X is both o-compact, and o-compact at infinity,
then X — R(X) is an (open) dense subset of X.

Proof. Suppose on the contrary that R{(X) contains a nonempty open subset
U of X. Since X is completely regular, U/ contains an open F,-subset V of X.
Since X is s-compact at infinity, X, and hence the open subset V of X, is a G,
in 8X. Recall that every compact space is of the second category in itself
[11; 200]. Now V isalso a G; in V% and V¥ — V is of the first categary in V7,
so V must be of the second category in V*. But, since X is s-compact, V is
the union of countably many compact sets, each of which is nowhere dense
since V (C U. This contradiction yields the theorem.

Examination of the space of rational, respectively irrational numbers (re-
garded as subspaces of the one-point compactifieation of the real line) shows
that the conclusion of Theorem 3.3 need not follow if one assumes merely that
X . ig g-compact, respectively o-compact at infinity. Also, the converse of
Theorem 3.3 is false in the following strong sense; if X = H, the space defined
in Example 1.3; then H — R(H) = H — {w;} is dense, but H is neither o-compact,
nor s-compach at infinity. We also note that one cannot conclude from the
hypothesis of Theorem 3.3 that X must contain a dense locally compact and
s-compaet subspace. For example, let 4 = W(w, + 1), let B denote the sub-
space of W{w? + 1) obtained by deleting all the limit ordinals except w; , and let
X denote the space obtained from the topological sum of 4 and B (regarded
as disjoint point-sets) by identifying w, e 4 with wy'= B. Then X is locally
compact at all but one point of X, so X ~ R(X) is not o-compact. However,
for metrizable spaces, we have:

3.4 CoroLLary. If X is a o-compact completely metrizable space, then X —
R(X) is an {open) dense o-compact subset of X.
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Proof. As remarked above, a completely metrizable space is o-cofmpact at
infinity. So, by Theorem 3.3, X — R(X) is dense, and being an open subset
of a o-compact metric space, is o-compact.

Finally, it follows immediately from Theorem 3.3 that a homogeneous o-compact
space 18 o-compact ot tnfinity ¢f and only if < 2s locally compact.

We recall a few definitions. For a closed subset F of a space X, a basis af
I is a collection {U,} of neighborhoods of # such that every open set containing
F contains some U, . The character of F is the least cardinal number of a basis
at ¥, If X is a subspace of a space ¥, we denote the character of F as a subset
of X, respectively V¥, by Kx(F), K:(F).

3.5 Lumma. If F is a compact subset of a dense subspace X of a space Y, then
Kx(F) = K.(F). :

Proof. If {U.} is a basis at F' as a subset of ¥, then {U, M X} is a basis
at /' as a subset of X, so Kz (F) < Ky(F). Conversely, if {V .} is a basis at F
as a subset of X, and if for each «, U, denotes the closure of V, in ¥, then {U,}
is a basis at ¥ as a subset of Y. Tor, if U is an open subset of ¥ containing F,
then since I is compact, U contains a closed neighborhood U’ of Fin Y. By
hypothesis, U M X containssome V, ,80 U, C U/ C U. Thus {U,} is a basis
at Fin Y. Hence Kx{(F) > Ky(F), and the lemma is proved.

3.6 TueoreEM. A space X is Lindelsf at infinity if and only if every compact
subset of X s coniained in a compact sel of countable character.

Proof. Suppose that X* is Lindelof; and let F be a compact subset of X.
‘Tor each p ¢ X* there is an open F-subset U, of 8X containing p and disjoint
from F. (For, there is a ¢ ¢ C(8X) such that ¢[#] = 0, and é(p) > 0.) The open
covering {U, : p ¢ X*} of X* has a countable subcover. If U/ is the union of
its elements, then U is an open F,-subset of 8X disjoint from F. Then gX — U
is a closed Gy-subset of 8X containing F. It is easily seen that any closed G,
in a eompact space has countable character. So, by Lemma 3.5, 8X ~ U has
countable character as a subset of X, :

Conversely, suppose that every compact subset of X is contained in a compact
set of countable character, and let {V,] he any open covering of X*. For each
a, let U, be an open subset of 83X such that ¥V, = U, M X*. The complement
F of the union of all the elements of {T/,} is a compact subset of X. Tet Z be
a compact set of countable character (as a subset of X) containing F. By
Lemma 3.5, Z has countable character as a subset of 83X, and hence 83X — Z
is a o-compact subset of 8X containing X*. So {U,}, and hence {V,}, has a
countable subeover.

3.7 CoroLLARY. Hwery metrizable space 48 Lindelof al infinity.

" The elass of metrizable spaces, and the class of spaces that are Lindelsf at
infinity share the following property.
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3.8 TuworEM. A countable preduct of spaces each Lindeldf (rr-compo;ct) at
enfinity is Lindelsf (o-compact) at infindty.

Proof. Denote the spaces by X, ,4 = 1,2, --- , and denote the product of
their Stone-Cech compactifications X, by BX I‘or each ¢, let B, denote the
product of X% with all the 8X; with j ¢ 7. Then each R, , being the produet of
a Lindelsf (cr-compact) space and a compact space, is Lindelsf {g-compact).
But BX — X = \JR,, and hence is a Lindeléf (c~-compact) space. Thus,
by Theorem 2.6, the product of the X,’s is Lindelsf (o-compact) at infinity.

- An arbitrary product of spaces Lindeltf at infinity need not be Lindelsf at

infinity; for example consider an uncountable product of countable discrete
spaces.

3.9 Taeorem. If X 4s Lindelsf at infintty, and every subspace of X 28 Lindeldf,
then every subspace of X ¢s Lindeldf at infinity.

Proof. If A is any subspace of X, then A® — 4 is the union of 4% M X* and
A~ — A. The first is a Lindelf space since it is a closed subspace of the Lindelsf
space X*, while the second is a Lindelséf space by hypothesis. ence 4° — 4
is a Lindeldf space, so by Theorem 2.6, 4 is Lindelsf at infinity.

3.10 TaeoreM. Let @ be the property of being compact, o-compact, Lindelsf,
countably compact, peracompact, countably poracompact, or normal. Then an
arbitrary topological sum of spaces having properly & at infinity has property ®
at infintty.

Proof.  Denote the spaces in question by {X,}, their topological sum by X,
the sum of their Stone-Cech ecompactifications by Y, and let Y = ¥ U {p}
denote the one-point compactification of ¥. Note that «¥ — X consists of the
union of all the X¥’s and {p}. For all the properties ® above except s-compact-
ness and normality, the theorem follows easily from the fact that any neighbor-
hood of pin @Y — X contains all by finitely many of the X#’s, the definition of ®,
and Theorem 2.6,

Suppose next that each X* is o-compact, and write X* = U, K., , Where
each K., is compact. Fori = 1,2, ... ,let K; = U, (K., \J {p}). Clearly
oY — X = U7, K, ,and each K, is compact, so by Theorem 2.6, X is g-cormpact
at infinity.

It was noted in Example 2.3, that normality is not a meshing property,
so more care must be taken in this case. Note first that gX = BY, since gY
is a compactification of X, and since every ¢ £ C*(X) has a continuous extension
over 8Y. Then X™* is the union of all the spaces X* and the compact space
Y* = 8Y — Y. If F, G are disjoint closed subsets of X*¥ let Fy = F M Y?,
and G; = G M Y* Let U, be an open neighborhood of 7, in X* whose closure
is disjoint from @, and let 7, be an open neighborhood of @ in X* whose elosure
is disjoint from U7 . Since (F\J ) — (U7\J V7)) is contained in the union of
{initely many of the X¥’s, the remainder of the proof that F and G have disjoint
neighborhoods is routine.
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The only fitting property of Theorem 2.2 not mentioned in Theorem 3.10
is loeal compactness. This is because a countable sum of spaces locally compaet
at infinity need not be locally compact at infinity. For example if 8 is the
subspace of the Euelidean plane consisting of {(z, y3:0 <2 < 1,0 <y < 1} —
{(1,9):y == 0}, then 8is obviously locally compact at infinity. But, by Theorem
3.1, the topological sum of eountably many distinet copies of § is not locally
compact at infinity.

3.11 TuroreM, Let @ be o meshing property nherited by closed subspaces, let
" X be a space having property @, let ¥ be o compactification of X, and let Z be a
compactification of ¥ — X. Then Z has properly ®. In particulor, X** =
BX* — X* has property @.

Proof. In view of Theorem 2.6, it suffices to show that X** has property
®. Now (X*)* — X* = R(X) is a closed subset of X, Since @ is inherited by
closed subspaces, (X*) — X* has property @, so by Theorem 2.6, X* has
property @ at infinity. That is, X** has property ®. _

For any space X, let X'V = X* andlet X*™" = (X"™)* forn =1,2, ---.

3.12 CoroLLaRY. If ® is a meshing property inherited by closed subspaces,
and ©f X has both property ® and property ® at infinity, then X has properly
®forn=1,2, ---.

An interesting hierarchy of Lindeldf space is created if one applies Corollary
3.12 to the space of rational numbers.

‘We have little to say about paracompactness, or countable paracompactness
at Infinity; all positive results in this direction are concerned with linearly
ordered spaces.

It is known that every linearly ordered space is countably paracompact [1]
[5, Theorem 9.5]. Unfortunately, not every subspace of a linearly ordered
gpace is a linearly ordered space; for example the subspace of the real line con-
sisting of —1 and the strietly positive real numbers is not a linearly ordered
space. IHowever, it is easy to conclude that every subspace of a linearly ordered
spaee is countably paracompoct. For as is easily verified, every subspace of a
space is countably paracompact (respectively paracompact) if and only if every
open subspace is. (In the paracompact case, this is shown in [4].) Now every
open subspace U of a linearly ordered space is a sum of maximal disjoint open
intervals, and every open interval is a linearly ordered space in the induced
topology, and hence, by the above, is countably paracompact. Thus U, being
a topological sum of countably paracompact spaces, is countably paracompact.

By way of application of the above, we have: '

3.13 TuroreM. (a) Every linearly ordered space is counlably poracompact
at infinity. :

(b) Every lnearly ordered space salisfying the first axiom of countabilily is
paracompact at infinity.



SOME PROPERTIES OF COMPACTIFICATIONS i 101

Proof. {a) BEvery linearly ordered space X is a dense subspace of the compact
space X* obtained by adding endpoints (if necessary) to its Dedekind comple-
tion. By the above X — X is countably paracompact, so by Theorem 2.6,
X is eountably paracompact at infinity.

(b} Let {V.} denote any open covering of X* — X. Tor each «, choose
an open subset I/, of X such that V, = U, N (X7 — X). The family {U,}
covers an open subset U of X, and U is the sum of a family {7} of maximal
disjoint open intervals. Since X satisfies the first axiom of countability, each
Iy is o~compaet and hence paracompact, so U.is paracompact. Thus {U,}
has a locally finite open refinement {W,}, and {W, M (X™ — X)} is clearly a
locally fintte open refinement of {V..}. ' _

The remainder of this section will be devoted to giving pertinent examples.

From the above one may also easily infer that every subspace of a compact
linearly ordered space satisfying the first oxiom of counfability is paracompact.
{T'or, every open subset of such a space is a sum of o-compact spaces.)

We cannot conclude that every subspace of a compact linearly ordered space
satisfying the first axiom of countability is Lindeldf. For, let L denote the set -
of all real numbers {(z, 1) with 0 < 2 < 1,0 < y < 1, lexicographically ordered,
with the interval topology. Asis well known [11; 164], L is compact and satisfies
the first axiom of countability. But {{z, $): 0 < = < 1} is an uncountable
discrete subset of L.

As we will see below, there exist compact spaces satisfying the first axiom
of countability that contain nonnormal subspaces, and spaces satisfying the
first axiom of countability that are not even normal at infinity (Examples 3.16
and 3.17). ' '

3.14 Examein. A countable (hence a-compact) spoce that is not paracompact
at infinity. Let N denote the countable discrete space, let p be a point of N¥,
and let X denote the subspace N \U [p} of BN. Then X is a countable space,
but X* = N* — {p} is not paracompact. For, if X* were paracompact, then
being locally compact, it would be a sum of locally compact s-compact sub-
spaces 4, [2; 107]. Then p must be a limit point in ¥* of at least two A.'s,
or else p would be a @; in N*, and hence a G; in 3N. DBuf every closed G; of BN
contained in N* has power exp® N, [8, Theorem 49], so this is impossible. Choose
two such A,.'s and call them 4, , 4, . By [6, Theorems 2.6 and 2.7], every
hounded continuous real-valued funection on an open F,-subset of N* has a
continuous extension over N*. But the function ¢ ¢ C*(4, \J 4;) such that
ld,] = 0 and ¢[4.] = 1 has no continucus extension over p. We conclude
from this contradiction that X* is not paracompact.

3.15 ExamprE. A paracompact space that s paracompact at tnfinily, bul not
Lindelof af infinity. 1t suffices to take X*, where X is the product of an un-
countable discrete space and the space of rational numbers.

3.16 ExaMpLE. A nonnormal space salisfying the first axiom of eountability
that is Lindelsf at infinity. Let S denote a linearly ordered space whose order
type is 2-)\, where X is the order type of the real line B. That is, S is obtained
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by R by replacing each r ¢ B with two copies r, , 7, of itself, such that r, is an
immediate successor of 7, . Let S; = {r, ¢ S: 7 ¢ B} in the relative topology
* induced by S. A basic neighborhood of r; in S, is a half-open interval, closed
at r. , and with r, as left end point. In {14], Sorgenfrey constructed an heredi-
tarily Lindeldf space whose product with itself is not normal. It is easily seen
that S, and this latter space are homeomorphic. Let S* denote the compacti-
fication of S obtained by adding a left and a right end point to S. Then 8, is
dense in §, and 87 — S, and 8, are homeomorphie, so by Theorem 2.6, S, is
Lindelsf at infinity. _ _

Let X == 8, X 8;. By Theorem 3.8, X is Lindelsf at infinity, but as noted
above, X is not normal.

We remark also that the space S, is homeomorphic to the subspace {(z, 1):
0 < x < 1} of the space L constructed just after Theorem 3.13.

3.17 Examern, A Lindeldf space salisfying the first axiom of countabality
that is not normal of infinity. Using the notation of Fxample 3.16,let ¥ = §* X
8" — 8, X 8, then as noted above, ¥ is a Lindelsf space satisfying the first
axiom of countability, but since S X §* — ¥ =8, X 8, is not normal, and
since ¥ is dense in 8" X 87, the space ¥* cannot be normal. (For, recall that
a closed continuous image of a normal space is normal [18], and that S, X S,
is the image of ¥™* under a fitting map by Lemma 1.1))

Note also that ¥ is & nonnormal subspace of S* X §*.

4, Appendix. In this section, we examine the significance of our hitherto
standing hypothesis that all spaces are completely regular. It turns out that

4.1.  Neither the property of being Hausdorff, nor the property of being com-
pletely regular i3 preserved by fitting maps. .

4.2. Among Hausdorff spaces, regularity is a filling property, while complete
regularity ts not; in fact, if f is a fitting map of a Hausdorf space X onto a Housdorff
space Y, either X or ¥ may be completely regular without the other being completely
regular. :

A single example will establish 4.1. Consider a space X whose points are the
real numbers in [0, 1), and two additional points, called 1’ and 1*. The subset
[0, 1) is open, and carries its usual topology. A basic neighborhood of 17 consists
of 17 itself together with an open Interval (1 — ¢, 1) for some e > 0, and a hasic
neighborhood of 1* may be obtained by replacing 1/ by 1* in the above. et ¥
denote the space [0, 1] in its usual topology. Then ¥ is a compact (Hausdorff)
space, and hence is completely regular. But the mapping defined by sending
1" and 1* onto 1, and leaving all other points fixed is clearly a fitting map.

It is shown in{11; 148] that if f : X - ¥ Is fitting, and X is regular or Hausdorff,
then sois ¥. Conversely, suppose that f : X — ¥ is fitéing, ¥ is regular, and X
is Hausdorff. For any = & X, and any closed set F not containing z, consider
first the compact set F M 7' (f(x)). Since X is a Hausdorff space, there is an
open set U containing this set whose closure does not contain . Then F — U
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is a closed set disjoint from 7' (f(z)). Hence f[F — U] is a closed set not con-
taining f(z). Sinee ¥ is regular, there is an open ¥~ containing f[F — U] whose
closure does not contain f(z). Then the set U \J f7'[V] is an open subset of X
containing F whose closure does not contain x. Thus X is regular, and we have
the first part of 4.2. '

Essentially Tychonoff’s original construction [16] of a regular space ¥ that
is not completely regular exhibits ¥ as the image under a fitting map of a com-
pletely regular space, as we will see shortiy. ‘ &

Let T denote the compact space W(w, + 1) X W{w, + 1), andlet B = T —
{{w,, w)}. Itis well known, and easily verified by a cofinality argument, that
- BB = T. Inparticular,if B_ = {{q, w)ia < w},and B, = {(w, o) 1o < wi},
* then F_ and E, are not completely separated, i.e., there is no ¢ £ C(B) such

that ¢[E_] = 0, and.¢[E,] = 1, for no such ¢ could have a continuous extension

over T. More generally, every ¢ ¢ C{T) is constant on a neighborhood of

() , w). We will refer to the sets £_ and E, as the edges of B.

For each n > 1, let T" and B" denote respectively distinet copies of the spaces
T and B, and denote the edges of B"by EXand B . Let W denote the topological .
sum of all the spaces T", let «W = W \J {p} denote the one point compactifi-
cation of W, and finallylet X = oW — - {(w,, @).:n =1,2,---}. Itis obvious
that X is completely regular.

Let Y denote the quotient space obtained from the decomposition of X
whose elements are as follows: for each n and «, the pair of points {w, , ), of
B2 and (o, @i)an of B2 for every other point @ of X, the single point . It
is easily checked that the quotient mapping f : X — Y is a fitting map. As
noted above, ¥ must be regular and Hausdorff. Now, each ¢ ¢ C'(Y) must be

- constant on the image under f of a cofinal subset of each of the edges of each

B". Bince W(w:) has no countable cofinal subset, and by dint of the identifi-

cations made, there is an «, < w, ; and a real number r guch that ¢(y) = r for

allyin f{{ (o, 0l e B2t > e}l or f{{{w;, a)ne Bl ta > apl], forn = 1,2, --- .
* Hence f(p) = r as well. Thus p and the closed set B not containing it fail to
be completely separated, so ¥ is not completely regular.

- We next exhibit a fitting map of a noncompletely regular space upon a com-
pletely regular quotient space. First, forn = 1,2, - -+, let §* denote the image
under f of the sum P” of the spaces B, --- , B". Note that each §" iz a com-
pletely regular subspace of the regular space ¥ constructed above. Let £j
denote the image of E* under f {(in 8%, and for ¢ = 1,2, --- , n, let K} denote
the image of £} under §, in 8. Note that if 2 # j, then E} and £7 ate not com-
pletely separated. Now for each n > 1, and ¢ < n, and each k > 1, let V,.(E7)
be the open subset of 8™ which is the image under f of the subset of P" consisting
of all B satisfying — k < j—4 <k -+ 1(@ndl <j<n),less the edges £,
and B7,,., (if they exist). Observe that the closure of V.(¥?7) is contained in
Vi By forallk = 1,2, -+ ,n — 1.

Let X, denote the topolégical sum of all the spaces 8". The desired space
X' will consist of X, and a compact set X, which we will construct next.
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Let F denote the set of all functions ¢ defined on the set N of positive integers
and taking values in the set of nonnegative integers such that 8{n) < n for all
ne N, The set F becomes a partially ordered set if we let 8 < ¢ mean 8(n) < -
#'(n) for all n e N. Let G be a maximal subset of F satisfying (a) @ is totally
ordered, and (b) for any 6, & in ¢ with # > 8, the function ¢ — # assumes no
value infinitely often. ILet X, denote the linearly ordered space obtained by
adding end points to the Dedekind completion of G. As is well known, (cf.,
e.g. [5]) X, is compact and connected.

Let X' = X, U X, , and let X, be open in X’. T remains to define neighbor-
hoods in X of points of X, . For each 2 ¢ X,, we give a neighborhood basis -
congisting of sets U(a, b, n, , ¢), where g, b ¢ X, are such that [¢, b] is a closed
neighborhood of x in X, , n, s a nonnegative integer, and ¢ is a function on ¥
to the set of nonnegative integers such that ¢(n) — = asn — «. The set
Ula, b, ny , ¢) consists of (1) all the points of X, in [a, b], and (2) forall 8 e G M
[a, b], the union of all the sets V.., (Ej.;) for which #n > n, .

It is not difficult to prove that every continuous real-valued function on X'
is constant on X, | so X’ is not completely regular. However, X' is a Hausdorf
space. For, obviously any pair of points of X’ not both in X, have disjoint
neighborhoods. Consider two points @, b of X, and suppose that ¢ < 5. Then
there are 8, 6’ ¢ G which that ¢ < § < ¢ < bin X,. By definition of G, there
is an n, ¢ N such that # > ng implies #(n) > 6#(n) + 4. If ¢(n) is defined as 0
forn < 0y, and #{n) — 0(@n) — 2 for n > n, , and we let I and » denote re-
spectively the left and right-hand end points of X, , then U(, 8, n, , ¢) and
U#, r, ny , ¢) are disjoint neighborhoods of @ and & respectively. So X’ is a
Hausdorff space.

Let ¥’ be the quotient of X by the decomposition of X whose elements are
the compact set X, , and all the single points of X, . Evidently the quotient
mapping is a fitting map, and it remains only to show that ¥” is completely
regular. This will follow once we show that every neighborhood 7 of X, in X
contains all but finitely manry of the completely regular subspaces §".

Since X, is compact, V contains some U = U(I, r, m, ¢). Suppose U fails to
contain S8 for infinitely many % ¢ N. Then there is a sequence o of edges E7
digjoint from U for arbitrarily large n. Let L be the set of all § in @ such that
for infinitely many Z7 in o, we have j > 0(n), and let « denote the least upper
bound in X, of L. Unless «is or r, there are 8, in I and 4, > « in @ such that
8, — ¢, < ¢, so U must contain infinitely many of the E7's. Similar arguments
show that @ = [ or @« = r are likewise impossible. Hence no such sequence
exists, and U contains infinitely many of the spaces S". This completes the
proof of 4.2,
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