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Abstract

In this thesis, we discuss existing ideas and voting systems in social choice
theory. Specifically, we focus on the Kemeny rule and the Borda count. Then,
we begin trying to understand generalizations of these voting systems in a
setting where voters can submit partial rankings on their ballot, instead of
complete rankings.
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Chapter 1

Introduction

1.1 Why Study Voting?

Human beings are social creatures. We often have to make collective
decisions, despite differences in opinion, and decide on one alternative
among many. In other words, we often have to vote.

In everyday discussions surrounding voting, we often take for granted
that putting a decision up to a vote is often "the fair thing to do." We implicitly
assume that "putting it up to a vote" is a method which accurately captures
the collective desire of the group. However, voting is often not so simple. To
illustrate one of the less obvious complexities inherent to voting, let us look
at a specific example.

Imagine a group of 17 people who are voting amongst 3 candidates,
who we will name 0 , 1 , and 2. Suppose that 7 people think that 0 is the best
candidate, 4 people think that 1 is the best candidate, and 6 people think
that 2 is the best candidate. The following table summarizes the results:

Results
a 7 votes
c 6 votes
b 4 votes

Now, take a moment to imagine a slightly different, but still reasonable
voting system. Instead of each person simply voting for their favorite candi-
date, each person submits a full ranking which describes their preferences.
So, in addition to saying their favorite candidate, everyone will also say who
their 2nd and 3rd favorite candidates are.
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In this case, we can represent the opinions of our voters in the following
table:

012 021 102 120 201 210

5 2 1 3 1 5

The above table is read as follows: The 5 in the 012 column means that 5
people put 0 above 1, and 1 above 2. The 2 in the 021 column means that 2
people ranked 0 above 2, and 2 above 1 , etc.

Note that this voting body could be the same as the one we mentioned
before: 7 people still think 0 is the best candidate, 4 people still think 1 is the
best candidate, and 6 people still think 2 is the best candidate.

Now, how do we run an election with this additional information? Well,
one thing to do would be to assign points to candidates as follows:

• Give 2 points to a candidate whenever a voter puts them as their
favorite candidate.

• Give 1 point to a candidate whenever a voter puts them as their middle
candidate.

• Give 0 points to a candidate whenever a voter puts them as their least
favorite candidate.

Now, if we use this voter information, we can run the election with the above
points-based system. We summarize the results below.

Results
b 18 points
c 17 points
a 16 points

Wow! Comparing this to our first election, we got a completely different
result! 1 wins instead of 0!

Let us contemplate what we just observed. We took a group of people,
and we had them vote under two different voting systems which both seemed
fair and reasonable. But we got two completely different results! How do
we make sense of this?

Well, to start, take another look at the table with our voters’ preferences
and notice that candidate 0 gets 7 first place votes, 2 second place votes, and
8 third place votes. In other words, candidate 0 is polarizing. This strategy
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works fine in our first system, but in our second system, having a lot of last
place votes means you lose out on a lot of points.

On the other hand, candidate 1 only has 4 first place votes, but they have
10 second place votes and 3 last place votes. In short, 1 is not as fiercely
loved as 0 , but 1 does have broad approval.

Hopefully, we’ve made some sense of that surprising result. Nevertheless,
this observation—that the same people voting under different systems can
obtain extremely different outcomes—is what motivates much of voting
theory. In what scenarios will two voting systems agree or disagree? What
are the benefits and drawbacks of those different voting systems? Is there a
"best" voting system that we should always use?

1.2 A Brief History of Voting Theory, and Some Termi-
nology

The ideas discussed in the previous section are hardly new. As early as
1770, mathematician Jean-Charles de Borda proposed the second system
we looked at, in which voters submit full-rankings and candidates received
points according to how highly they’re ranked (Borda (1784)). This voting
method has since been named after him, and is called the Borda count.
Despite the Borda count being named after Borda, it’s worth noting that
Nicholas of Cusa came up with this voting system in 1435, and it has been
independently developed several times (Emerson (2016)).

While we’re naming voting systems, the first voting system we looked at,
in which everyone simply votes once for their favorite candidate, is called
plurality voting. Furthermore, we will refer to the set of preferences of a
group of voters as a voter profile, or sometimes just a profile for short. Note
that a table similar to the one we saw previously is one way to represent a
voter profile, but there are other ways to represent this information. Now,
back to some history.

In 1785, mathematician Marie Jean Antoine Nicolas de Caritat, Marquis
de Condorcet (whom we’ll now refer to as simply Condorcet) published a
paper in which he criticized the Borda count for failing to have a certain
"fairness" property (Condorcet (1785)).

Specifically, given a voter profile, there may exist a candidate who wins
in a head-to-head race against all other candidates, but is not selected by
as the winner by the Borda count. To illustrate this, consider the following
profile:
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012 021 102 120 201 210

3 0 0 2 0 0

Notice that, among the 5 voters, 3 of them prefer 0 to 1, and 3 of them
prefer 0 to 2. Thus, if 0 were to run in a two-candidate election against 1,
then 0 would win 3-2. Similarly, if 0 were to run in a two-candidate election
against 2, then 0 would win 3-2. Such a candidate who wins a head-to-head
race against all other candidates is called a Condorcet winner, so 0 is the
Condorcet winner of this election. One could argue that a Condorcet winner
should always win an election. After all, one might ask candidate 0 how
they’re feeling about the election, and 0 might respond "Well, I win against
every other candidate, so I think I should win."

With this in mind, let’s see what the election results are if we run the
Borda count:

Results
b 7 points
a 6 points
c 2 points

This is troubling! The Borda count has failed to elect 0 , the Condorcet
winner, and has instead elected 1 instead! We can make sense of this result
by realizing that, yes, 3 of the 5 voters prefer 0 to 1 , but the other 2 voters
preferred 1 to 0 with greater intensity. Notice that the 3 voters who prefer 0 to
1 have 1 as the middle candidate, while the 2 voters who prefer 1 to 0 have 0
ranked as the last candidate. So, when it comes to the Borda count, it’s not
just about being preferred, but it’s about how much a candidate is preferred.

In this specific example, the Borda count failed to elect the Condorcet
winner, but in other scenarios, the Borda count is totally capable of electing
the Condorcet winner—it’s just not guaranteed.

Furthermore, note that some voter profiles do not have a Condorcet
winner. As an example, consider the following profile:

012 021 102 120 201 210

1 0 0 1 1 0

This profile has 3 voters. Two of them prefer 0 to 1. Two of them prefer
1 to 2. One might expect from the transitive property that the voters also
prefer 0 to 2. But actually, 2 of the 3 voters prefer 2 to 0 , the opposite! It
seems that our voter profile as a collective is saying that 0 > 1 > 2 > 0. For
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this reason, this voter profile is called cyclic. Notice that this occurs in spite
of the fact that no individual preference is cyclic. That is, if a voter prefers G to
H and H to I, that voter also prefers G to I.

This observation that a profile can have cyclic preferences even when no
individual has cyclic preferences is called Condorcet’s paradox, and is one of
the ways that a voter profile may fail to have a Condorcet winner.

Condorcet felt strongly that if a Condorcet winner exists, they should
always win. Thus, he deemed that the Borda count was flawed. However,
Condorcet did not specify an election system that does have this property.
At this point, it is again useful to define a small piece of terminology: We
say that an election system is Condorcet, or satisfies the Condorcet Criterion
if that system always elects the Condorcet winner when such a candidate
exists. With this defined, we turn our attention to a Condorcet voting system.

In 1959, John G. Kemeny published a paper in which he presented voting
as a distance minimization problem, instead of as a point-assigment problem
(Kemeny (1959)). As far as the author knows, Kemeny was among the first
to use this approach.

In Kemeny’s paper, he defines a metric on the set of rankings, giving us a
notion of distance between rankings. Then, loosely speaking, the consensus
ranking in an election is the ranking which is, on average, closest to whichever
rankings have been voted for. Working in this framework, Kemeny identified
two possible procedures for identifying consensus rankings. He did not
specify one procedure as being more desirable than another.

A subtle, but important distinction in Kemeny’s work is that this distance
approach gives a natural way to assign scores to arbitrary permutations
of the candidates, rather than assigning scores to individual candidates
themselves. Contrasting this with the Borda count, it is not immediately
obvious how one would use the Borda count to assign points to arbitrary
permutations of the candidates.

Building off Kemeny’s 1959 work, H.P. Young and A. Levenglick found
that only one of the two voting systems Kemeny put forward was a consistent
method. This system came to be known as the Kemeny-Young rule, (or the
Kemeny rule) and it can be characterized as the unique voting procedure
which is Condorcet, consistent, and neutral (Young and Levenglick (1978)).
We have defined what it means for a voting system to be Condorcet, but not
consistent or neutral, so we define these terms now.

A voting system is said to be consistent if, whenever a group of profiles
all independently elect some candidate - , then combining those profiles
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together into one aggregate profile and running the election on that aggregate
profile also results in - winning the election. Instant-runoff voting does not
obey this property, because there are certain groups of profiles that, when
aggregated together, do not elect the same candidate that each individual
group did. Finally, a voting system is neutral if permuting the labels of the
candidates in an election causes the election results to be permuted in the
same way. We can interpret this as saying that no candidate receives special
treatment. Every voting system we have discussed so far is neutral.

Hopefully, the reader has some appreciation of the result that the Kemeny
rule is the unique voting procedure which is consistent, Condorcet, and
neutral. At this point, one might wonder: Is this proof that the Kemeny rule
is the best voting system?

As nice as the Kemeny-Young rule is, it’s not perfect. One of its short-
comings is that it’s extremely computationally expensive to compute for
elections with many candidates. On a deeper level, it fails to have certain
fundamental properties that we might reasonably expect our voting systems
to have, in a similar way that the Borda count failed to meet the Condorcet
Criterion. However, these flaws are not unique to the Kemeny Rule and
Borda count. In fact, economist Kenneth Arrow proved that a set of three
"fairness" criteria, each similar in flavor to criteria we briefly defined above,
could not coexist in any voting system (Arrow (1950)). This result has come
to be known as Arrow’s Impossibility Theorem, and other similar results
have been proven since.

As fascinating as it is, a deep discussion of these kinds of "fairness"
properties is beyond the purview of this thesis. To learn more, simply type
"Arrow’s Impossibility Theorem" into a search engine.

Now, we turn our attention back to topics that are more directly relevant
to this thesis.

1.3 Voting With Partial Orders

All of the voting systems we’ve considered so far are systems in which voters
submit a complete ranking of the candidates. That is, no voter submits a
ballot with a tie or multiple ties. Submitting a ballot with ties may seem like
an edge case, a niche feature that isn’t necessary, but we argue that allowing
ties enables individuals to express more complex, nuanced opinions on their
ballots.

For example, suppose that you and a group of friends are going to eat at
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a restaurant, and you are trying to choose between restaurants 0, 1, and 2.
You might really like restaurant 0, but you’ve never been to 1 or 2, in which
case you might want your vote to say "I prefer restaurant 0 to both 1 and 2 ,
but 1 and 2 are incomparable." For another example, suppose you’re trying
to pick a movie to watch, and you have 4 movies to choose from—two sci-fi
and two horror. It may be the case that within sci-fi, you prefer movie 0 to 1 ,
and within horror, you prefer movie G to H , but you don’t care whether you
watch sci-fi or horror. For one last example, suppose a pollster is polling
people about a large set of political candidates. People might not know
certain candidates and thus can’t compare them to others. Alternatively,
someone might decide that they want to move on with their day and only
give the pollster an incomplete set of information. In these cases, a ballot
that can represent preferences with many ties is not just a nice feature, but is
essential.

More formally, we’re interested in voting systems where voters submit
some partial ordering on the candidates, rather than a total or complete order.
Luckily for us, in 2014, Cullinan et al. proposed a generalization of the
Borda count to this new setting where voters submit partially ordered ballots
(Cullinan et al. (2014)). We will refer to this generalization as the partial
Borda count for the rest of this thesis. There are a couple reasons that the
partial Borda count can reasonably be thought of as a generalization of the
existing Borda count, rather than an entirely distinct voting system. Firstly,
if every voter decides that their ballot contains no ties, and they end up
submitting a complete ordering on the candidates, then the partial Borda
count always gives the same result as the original Borda count. Furthermore,
the traditional Borda count is characterized as the unique voting procedure
that accepts totally ordered ballots and is consistent, faithful, neutral, and
has the cancellation property. Similarly, Cullinan et al. proved that the
proposed partial order version of the Borda count was the unique voting
procedure that accepts partially ordered ballots and is consistent, faithful,
neutral, and has the cancellation property (Cullinan et al. (2014)).

As far as the author can tell, there is not an analogous poset version of the
Kemeny rule that has been characterized by its "fairness" properties. That
is, while Young and Levenglick showed that the Kemeny rule is the unique
voting procedure which is neutral, consistent, and Condorcet, there is no
analogous result for voting systems in which voters can submit partially
ordered preferences.

However, similar to the origins of the Kemeny rule, authors have proposed
a notion of distance between partial orders (Bogart (1973); Cook et al. (1986)).
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While the work of these authors is closely related to this thesis, there are
subtle differences. Firstly, the metric introduced in Bogart’s 1973 paper does
not explicitly discuss using the metric for voting or social choice purposes.
Cook et al.’s 1986 paper uses a slightly different definition for what a partial
order is—namely, they make a distinction between two candidates being
"tied" versus simply "incomparable" whereas we do not.

1.4 Where We’re Going

At this point, we hope the reader has a reasonable grasp on some foundational
ideas in social choice theory. Now, we’d like to summarize the contents in
the rest of this document. Chapter 2 discusses the Borda count, and the
Kemeny rule in more detail. Chapter 3 defines and briefly discusses partial
orders. Chapter 4 discusses the partial Borda count in more detail, as well
as one possible extension of the Kemeny rule to the partial order setting.
Chapter 4 also discusses some relationships between the partial Borda count
and poset Kemeny rule. Chapter 5 details some computational work that I
have done as part of this thesis, and various avenues for research related to
voting with partial orders.



Chapter 2

The Borda Count and the
Kemeny Rule

2.1 The Borda Count

We introduced the Borda count in the introduction. Here, we will elaborate
on it and briefly discuss some of its properties.

The Borda count is a voting procedure which assigns points to candidates
based on how highly they are ranked by each voter. Specifically, in an election
on = candidates, the Borda count gives = � 1 points to a candidate when
it is a voter’s first choice, = � 2 points when it is a voter’s second choice,
= � 3 points when it is a voter’s third choice, etc. The Borda count is perhaps
the simplest or most natural thing to do that incorporates the entirety of a
voter’s complete ranking.

Note that this distribution of points is somewhat arbitrary—the resulting
ranking would be the same if we instead assigned : points to someone’s last
choice, : + 1 points to the second to last, : + 2 points to the third to last, etc.,
and finally : + = points to the first choice candidate, for any choice of :.

More formally, when we run the Borda count, we get a choice of a weighting
vector, which we will denote ÆF. A weighting vector is simply a vector which
encodes the number of points assigned to each candidate. In the classic
example, our weighting vector ÆF is ÆF = [= � 1, = � 2, . . . , 2, 1, 0]. But we just
observed that, all weighting vectors of the form ÆF = [:+=�1, . . . , :+2, :+1, :]
for some : 2 R will result in the same election outcome.

Similarly, if we instead scale our classic weighting vector by some positive
number, we still don’t change the results. That is to say, a weighting vector
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of the form ÆF = [0(= � 1), 0(= � 2) . . . , 20 , 0 , 0] also defines the same election
system as the classic weighting vector when 0 > 0.

A voting system that can be understood as a point-assignment system
with some weighting vector ÆF is called a positional voting system. So far,
we have only discussed positional voting systems which always give the
same result as the Borda count, but there are weighting vectors that result
in legitimately distinct voting procedures. For example, the island nation
Nauru uses the weighting vector F = [1, 1

2 ,
1
3 , . . .

1
=
]. (Fraenkel and Grofman

(2014)). Furthermore, now that we’ve introduced the weighting vector, we
can notice that plurality voting can be thought of as a positional voting
system with weighting vector ÆF = [1, 0, 0, . . . , 0].

2.1.1 The Borda Count as a Linear Transformation

As the subsection title suggests, we can also encode the Borda count as a
matrix-vector multiplication. Let us see how to do this.

Suppose we want to run an election on three candidates, 0 , 1 , and 2.

Recall the introduction, which featured such an election. Here is a voter
profile we used:

012 021 102 120 201 210

5 2 1 3 1 5

Now, we can encode this information in a vector E 2 R6 as follows:

E =

©≠≠≠≠≠≠≠
´

5
2
1
3
1
5

™ÆÆÆÆÆÆÆ
¨

.

Note that this vector has 6 entries because there are 3! = 6 possible rankings
on three candidates. In general, with an election on = candidates, a profile
vector will have =! entries. Furthermore, note that this is an entirely different
kind of vector than the weighting vectors discussed in the previous section.
The weighting vectors are used to define voting systems, whereas the above
vector encodes information about a particular voter profile.

There exists a 3 ⇥ 6 matrix which, when multiplied against this vector,
will give us the results of our election. Specifically, the columns of this matrix
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will be indexed by the 6 different rankings, and the rows will be indexed by
the candidates. This, in general, this will be a = ⇥ =! matrix. Let’s look at the
3x6 matrix, which we’ll denote ⌫:

⌫ =

012 021 102 120 201 210 !2 2 1 0 1 0 0

1 0 2 2 0 1 1

0 1 0 1 2 2 2

To create this matrix, we first decide on a weighting vector. We will use
ÆF = [2, 1, 0]. Then, we look at a column, which corresponds to a certain
ranking, and a row, which corresponds to a certain candidate, and ask how
many points this candidate will receive for that ranking. For example, we
write a 1 in column 102 , row 0, because candidate 0 gets 1 point when a
voter has 102 on their ballot.

Then, multiplying this matrix against our profile vector E , we have:

⌫E = ©≠
´
2 2 1 0 1 0
1 0 2 2 0 1
0 1 0 1 2 2

™Æ
¨

©≠≠≠≠≠≠≠
´

5
2
1
3
1
5

™ÆÆÆÆÆÆÆ
¨

= ©≠
´
16
18
17

™Æ
¨
.

The rows of our matrix are indexed by candidates, so the rows of this
resulting vector are indexed by candidates as well. So, we can read this
resulting vector as saying candidate 0 scored 16 points, candidate 1 scored
18, and candidate 2 scored 17.

Now that we’ve encoded the Borda count as a linear transformation, we
suddenly can use linear algebra to study it. Immediately, we see that ⌫ is a
function whose domain is R6

, but whose codomain is R3
. Thus, the Borda

count has a 3-dimensional nullspace, i.e, there is a 3-dimensional subspace
of R6 that is mapped to the zero vector.

2.2 The Kemeny Rule

2.2.1 The Kemeny Rule as a Point Distribution System

The Kemeny rule is a voting procedure which uses the same information as
the Borda count, but in a very different way. Namely, it assigns points to
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rankings of candidates rather than the candidates themselves. Specifically, it
looks at how any given ranking of the candidates aligns with the rankings
that its presented with in the ballots. Let us see how to compute it.

Suppose we have the following profile:
012 021 102 120 201 210

2 6 4 5 1 4
Then, to assign points to some ranking, say, 012, we count how many

pairwise comparisons it agrees with in the voting body. The ranking 012
has 0 > 1, 1 > 2, and 0 > 2, so let’s see how these opinions align with the
voting body.

• There are 9 voters who agree that 0 is better than 1 , so 012 gets 9 points
for that.

• There are 11 voters who agree that 1 is better than 2 , so 012 gets 11
points for that.

• Finally, there are 12 voters who agree that 0 is better than 2, so 012 gets
12 points for that.

In total, the ranking 012 gets 9 + 11 + 12 = 32 points.
For another example, let us compute the number of points 210 gets:
• There are 11 voters who agree that 2 is better than 1 , so 210 gets 9

points for that.

• There are 10 voters who agree that 2 is better than 0 , so 210 gets 10
points for that.

• Finally, there are 13 voters who agree that 1 is better than 0, so 210
gets 13 points for that.

In total, ranking 210 gets 11 + 10 + 13 = 34 points.

Doing this process for all 6 rankings, we get:

Ranking Score
012 32
021 32
102 36
120 34
201 30
210 34
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Thus, 102 is the winning ranking. If we wanted to choose a winning candidate
from here, we would choose candidate 1.

It’s worth noting that as the number of candidates increases, the number
of computations required to run the Kemeny rule increases drastically. To
see this, simply note that the Kemeny rule assigns some number of points to
every single ranking of the = candidates—there are =! such rankings, so the
Kemeny rule requires, at minimum, =! operations to compute. We did not
run into the same difficulty with the Borda count.

It’s worth noting that we only run into this =! issue as the number of
candidates increases—if we fix = at a relatively small number of candidates,
the number of voters can grow considerably without incurring these same
runtime problems.

2.2.2 The Kemeny Rule as a Linear Transformation

Similarly to the Borda count, we can encode a voter profile as a vector, and
run an election as a matrix-vector multiplication. Consider the following
voting profile:

012 021 102 120 201 210

2 6 4 5 1 4

Then our vector E is

E =

©≠≠≠≠≠≠≠
´

2
6
4
5
1
4

™ÆÆÆÆÆÆÆ
¨

.

However, constructing a Kemeny matrix  is a little different than con-
structing our Borda matrix. Specifically, the Borda count assigned points to
candidates, so the matrix’s rows were indexed by the candidates. However,
the Kemeny rule assigns points to rankings, so the Kemeny matrix’s rows
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will be indexed by rankings. This matrix is:

 =

012 021 102 120 201 210

©≠≠≠≠≠≠
´

™ÆÆÆÆÆÆ
¨

3 2 2 1 1 0 012

2 3 1 0 2 1 021

2 1 3 2 0 1 102

1 0 2 3 1 2 120

1 2 0 1 3 2 201

0 1 1 2 2 3 210

.

To fill in the entries for this matrix, look at the row ranking and the
column ranking, and ask for the number of pairwise preferences that they
agree on. For example, 012 and 021 both agree that 0 > 1, and 0 > 2, but
they disagree on the placement of 1 and 2. So out of the 3 possible pairwise
opinions to have, they agree on 2. So we put a 2 in the column indexed by 012
and the row indexed by 021. We also put a 2 in the row indexed by 012 and
the column indxed by 021. This explains why the matrix is symmetric—for
each pair of rankings, there are 2 places in the matrix that compare those
rankings, and those places will have the same entry.

Then, computing the matrix-vector multiplication, we get:

 E =

©≠≠≠≠≠≠≠
´

3 2 2 1 1 0
2 3 1 0 2 1
2 1 3 2 0 1
1 0 2 3 1 2
1 2 0 1 3 2
0 1 1 2 2 3

™ÆÆÆÆÆÆÆ
¨

©≠≠≠≠≠≠≠
´

2
6
4
5
1
4

™ÆÆÆÆÆÆÆ
¨

=

©≠≠≠≠≠≠≠
´

32
32
36
34
30
34

™ÆÆÆÆÆÆÆ
¨

.

Finally, 36 is the highest entry in the resulting vector, and that entry
corresponds to the ranking 102, so 102 is our winning ranking with 36 points.
Note that this matches exactly with our computation in the previous section.

2.2.3 The Kemeny Rule as a Distance Minimization Problem

Now, we present another way to think of the the Kemeny rule that has a
very different flavor. Given = candidates, we begin by constructing the
permutohedron. This permutahedron is a specific type of graph, defined as
follows: The vertices are the =! permutations of the = candidates, and two
vertices are adjacent if and only if they differ by one adjacent transposition.
Constructing the permutohedron on 3 elements, we have:
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012 210

201

120

021

102

Then we can assign each vertex a weight, which is equal to the number
of voters who submitted that vertex’s ranking as their ballot. So continuing
with one of our previous voter profiles, we have:

012 021 102 120 201 210

2 6 4 5 1 4

??y

2 4

6

4

1

5

012 210

201

120

021

102

Now that we’ve assigned weights to vertices, we can ask the question:
Which vertex minimizes the "weighted distance" to all the other vertices?

More formally, we can assign each vertex a score as follows: Let ((E)
denote the score given to vertex E. Furthermore, let ?(E) be the weight
assigned to vertex E, i.e., the number of voters who chose the permutation
corresponding to that vertex on their ballot. Finally, given two vertices E ,F
let 3(E ,F) be the distance between them, where 3 is the usual metric on a
graph. Then, ((E) is given by:

((E) =
’

F2+(⌧)
3(E ,F)?(F).
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Then compute ((E) for all vertices E 2 +(⌧). Finally, the vertex with
minimum ((E) is the winner of the Kemeny rule election. For convenience,
we will show ((E) in blue near every vertex:

2 4

6

4

1

5

012 34 21032

201

36

120

32

021

34

102

30

Thus, 102 is our winning ranking, because it has the lowest score.

While this perspective on the Kemeny rule may feel very different from
our previous two perspectives, it actually works quite nicely with our
understanding of the Kemeny rule as a linear transformation. We can think
of constructing the matrix  by looking at pairwise agreement between
rankings, but we can also construct it in a different way using this graph
perspective. Specifically, we can construct a distance matrix ⇡, where the
rows and columns are indexed by rankings, and the (8 , 9) entry is simply the
distance between the ranking 8 and ranking 9. Constructing this distance
matrix, we have:

⇡ =

012 021 102 120 201 210

©≠≠≠≠≠≠
´

™ÆÆÆÆÆÆ
¨

0 1 1 2 2 3 012

1 0 2 3 1 2 021

1 2 0 1 3 2 102

2 3 1 0 2 1 120

2 1 3 2 0 1 201

3 2 2 1 1 0 210

.

Then to get our Kemeny Matrix  , we simply take an entry 089 and replace
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it with 3 � 089 . Thus we have:

3�6 � ⇡ = 3�6 �

©≠≠≠≠≠≠≠
´

0 1 1 2 2 3
1 0 2 3 1 2
1 2 0 1 3 2
2 3 1 0 2 1
2 1 3 2 0 1
3 2 2 1 1 0

™ÆÆÆÆÆÆÆ
¨

=

©≠≠≠≠≠≠≠
´

3 2 2 1 1 0
2 3 1 0 2 1
2 1 3 2 0 1
1 0 2 3 1 2
1 2 0 1 3 2
0 1 1 2 2 3

™ÆÆÆÆÆÆÆ
¨

=  .

(�6 denotes the 6 ⇥ 6 matrix that has a 1 for every entry.)
This may seem surprising, but we can actually make sense of this: we

originally filled in the entries of the  matrix by looking at how much two
rankings agreed with each other. But to fill in the distance matrix ⇡ , we
instead look at how much they disagree with each other.

Furthermore, instead of running an election by computing  E and
looking for the maximum score, we can instead compute ⇡E and look for
the minimum score.

Now that we know how the Kemeny rule works, (in 3 different ways!) we
can discuss the differences between the Kemeny rule and the Borda count.

2.2.4 Comparing the Kemeny Rule and the Borda Count

At this point, one could argue that the Kemeny rule is significantly more
complicated than the Borda count. While the Borda count involves a relatively
straightforward points system that most people will understand relatively
quickly, computing the Kemeny rule involves the somewhat unintuitive idea
of assigning points to rankings instead of candidates. So, why bother with
this more complicated technique? What do we get by doing all this?

Well, for one thing, recall from the introduction that the Kemeny rule is
Condorcet, while the Borda count is not. Recall the following profile from the
introduction:

012 021 102 120 201 210

3 0 0 2 0 0

The Borda count, with weighting vector F = [2, 1, 0] outputs

1 7
0 6
2 2
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Thus, 1 is the winner of this election, even though 0 is the Condorcet winner.
(0 beats 1 3-2, and 0 beats 2 3-2.)

Now, using this same profile in a Kemeny style election instead, we have:

Ranking Score
012 11
021 6
102 10
120 9
201 5
210 4

Thus, 012 is the winning ranking, and if we want to select an individual
candidate, this makes 0 our winner, which does match our expectation that
the Kemeny rule is Condorcet. We do not prove here that the Kemeny rule
always selects the Condorcet winner. For that proof, see Kemeny (1959).

However, this does not necessarily mean that the Kemeny rule is perfect.
Recall that the Kemeny rule is computationally expensive to run. Even more
specifically, the Borda count runs in polynomial time, while the Kemeny
rule does not.

While the Kemeny rule and Borda count are dissimilar in these ways,
there are other ways in which they are quite similar.

One perspective that relates the Borda count and the Kemeny rule is
that both the Borda matrix ⌫ and the Kemeny matrix  can be factored as
follows:

⌫ = &%

 = %)%

where % is defined as

% =

012 021 102 120 201 210

©≠≠≠≠≠≠
´

™ÆÆÆÆÆÆ
¨

0 > 1 1 1 0 0 1 0
1 > 0 0 0 1 1 0 1
0 > 2 1 1 1 0 0 0
2 > 0 0 0 0 1 1 1
1 > 2 1 0 1 1 0 0
2 > 1 0 1 0 0 1 1

.
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This matrix simply records information about the pairwise preferences given
in each ranking (Crisman and Orrison (2017)). So, taking the transpose of
this matrix and multiplying it against itself, we get:

%
)
% =

012 021 102 120 201 210

©≠≠≠≠≠≠
´

™ÆÆÆÆÆÆ
¨

012 3 2 2 1 1 0
021 2 3 1 0 2 1
102 2 1 3 2 0 1
120 1 0 2 3 1 2
201 1 2 0 1 3 2
210 0 1 1 2 2 3

=  .

Now, we can factor the matrix ⌫ in a similar way. Namely, we have
⌫ = &% , where

& =

0 > 1 1 > 0 0 > 2 2 > 0 1 > 2 2 > 1 !
0 1 0 1 0 0 0
1 0 1 0 0 1 0
2 0 0 0 1 0 1

.

To construct & , we have rows indexed by candidates, and columns
indexed by pairwise comparisons of candidates. A candidate gets a 1 in a
certain column if it "wins" that comparison, and a 0 otherwise.

Then, calculating &% , we have:

&% =

012 021 102 120 201 210 !2 2 1 0 1 0 0

1 0 2 2 0 1 1

0 1 0 1 2 2 2

= ⌫.

The fact that we can write &% = ⌫ and %
)
% =  , where % is the same

matrix in both equations, means that the Kemeny rule and the Borda count
are deeply related. Namely, we can think about both the Borda count and
Kemeny rule as compositions of two different linear transformations, but
the first transformation is the same! In other words, they’re both looking
at the pairwise information obtained by multiplying the profile by % , then
they proceed to do different things with that information.





Chapter 3

What’s a Poset?

3.1 Defining a Partial Order

The definitions in this section are from the textbook Mathematics: A Discrete
Introduction by Edward A. Scheinerman (Scheinerman (2012)).

Before giving the formal definition of a partial order, we informally
discuss the idea that the definition tries to encapsulate.

Informally, a partially ordered set (or poset for short) is a set of elements
in which there is some generalized notion of order. Partial orders give us
a precise way to think about what it means to say that some elements of
a set are greater than others. However, partial orders also allow for the
possibility that two elements have incomparable order. For voting purposes,
this gives voters the freedom to rank some candidates as better than others,
or to declare some candidates as tied, or to not making a decision about
some pairs of candidates. Let’s look at the definition.

Definition: A partial order is an ordered pair % = (- , '), where - is a
non-empty set and ' is a relation on - that satisfies the following properties:

• ' is reflexive: 8G 2 - , G'G

• ' is antisymmetric: 8G , H 2 -, if G'H and H'G then G = H

• ' is transitive: 8G , H , I 2 - if G'H and H'I , then we have G'I.

The antisymmetric requirement ensures that we only run into a scenario
where G is ‘greater’ than H and also H is ‘greater’ than G when G = H, which
also seems reasonable. Requiring transitivity means that whenever we
have G greater H , and H greater than I, we also have G greater I. With this
definition in mind, let us turn to some examples.
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3.2 Examples of Partial Orders

• Given the set of real numbers, there exists the familiar "less than or
equal to" relation. This forms a partial order.

• Given the set of positive integers, there exists the "divides" relation.
The "divides" relation is a partial order. Note that we can use the
familiar "less than or equal to" relation as well.

• Starting with a set - , consider it’s power set P(-). One can define a
relation ' on P(-) by stipulating �'⌫ if and only if � ✓ ⌫. Then, ',
the “is a subset of" relation, is a partial order.

For a moment, let us consider the ’divides’ relation on the positive
integers and verify that it is indeed a partial order:

• Every positive integer divides itself, so "divides" is reflexive.

• If a positive integer = divides another positive integer <, it is definitely
not the case that < divides = (unless = = <), so it’s anti-symmetric.

• If = divides < and < divides @, then = divides @ , so it’s transitive.

Great! The "divides" relation on the set of positive integers is indeed a
partial order. Before we continue, we will define a piece of notation: Given
a set - , and a partial order ' on - , if (G , H) 2 ', we will write G � H. If
(G , H) 2 ', and G < H, we will write G � H.

3.3 Hasse Diagrams

Hasse Diagrams are pictures that show how the elements in a partial
order relate to each other. Let us see some examples of posets and their
corresponding Hasse diagrams.

Consider the "divides" relation on the set - = {1, 2, 3, 4, 5, 6}. This
relation consists of the following ordered pairs:

' = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2),
(2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}.

Looking at this large set of ordered pairs does not give immediate insight as
to how exactly the poset is structured. We can instead represent this poset
as a Hasse diagram:
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1

2 3

4

5

6

To read this, notice that 1 is directly below 2, 3, and 5, because 1 divides 2, 3
and 5. Furthermore, we see that 1 is below 3, and 3 is below 6, and partial
orders must have the transitive property, so we may conclude 1 is below 6 as
well. By similar reasoning, we can conclude 1 is below 4. If we wanted to,
we could connect 1 to 6 or connect 1 to 4, but we don’t need to—requiring
transitivity makes such a line redundant.

Furthermore, we could connect every element to itself to indicate that
every number divides itself, but we don’t need to. Also note that 5 does
not divide any of the other elements, so there is no line attaching 5 to some
element above it. Similarly, 2 does not divide 3 and 3 does not divide 2, so
there is no line between them. In situations like this, we say that 2 and 3 are
incomparable.

Finally, a common misunderstanding of Hasse diagrams involves looking
for "paths" between elements. For instance, one can walk from 5, down to 1,
up to 3, up to 6. Thus, one might be tempted to conclude that we have 5 � 6
in this diagram. However, this is not how Hasse digrams are read—if there
is no path between two elements that involves going strictly up or down,
then those two elements are incomparable.

For another example, consider the following Hasse diagram of a partial
order on the elements set {0 , 1 , 2 , 3, 4 , 5 }:

0 1

24 3

5
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Hopefully, these Hasse diagrams give an immediate sense of the structure
of a poset. Furthermore, they give an immediate sense of whether the poset
is particularly wide or tall, which gives a rough idea for what proportion
of the elements are comparable. For example, consider the following two
posets on the letters 0- 5 :

0

1

2

3

4

5

4 120 3

5

One can immediately see that the left poset is tall but not wide. Loosely
speaking, we can see this and expect that if we were to randomly grab a pair
of elements, one will likely be smaller the other. The right poset is wide but
not tall, meaning if we randomly grab a pair of elements, we might expect
them to be incomparable.

3.4 Weak Orders

A weak order on a set- is a partial order in which transitivity of incomparability
holds. That is, for all G , H , I 2 - , if G is incomparable to H , and H is
incomparable to I , then G is incomparable to I.

Informally, we can think of weak orders as posets in which the elements
fall into "buckets", where elements within the bucket are all incomparable,
and certain buckets are better than others. To illustrate what we mean,
consider the following partial order:

0 1

2 3

.
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In this poset, transitivity of incomparability does indeed hold. However,
we can more easily verify this is a weak order by finding "buckets." We can
put 2 and 3 in the "good" bucket, and 0 and 1 in the "bad" bucket, and say
everything in the good bucket is better than everything in the bad bucket.

For another example of a weak order, recall a poset from the previous
section:

0 1

24 3

5

In this poset, we could reasonably say that 0 and 1 are in a "top tier",
then 4 , 2 , and 3 are in a "middle tier" and 5 is by itself in the bottom tier.

It may be tempting to see these examples and come to the conclusion
that all posets can be interpreted as some set of "buckets". However, this is
not the case. For example, recall the poset we got from the "divides" relation
on {1, 2, 3, 4, 5, 6} :

1

2 3

4

5

6

Firstly, notice that in this poset, transitivity of incomparability does not
hold. 4 is incomparable to 3, and 3 is incomparable to 2, but 4 and 2 are
comparable.

Furthermore, this poset is fundamentally different from the previous
two examples, in that there is no way to put the elements into tiers or buckets
that respects the original poset. One might be tempted to say that we can



26 What’s a Poset?

put 4 and 6 in the top tier, 2, 3, and 5 in the middle tier, and 1 by itself in the
bottom tier. However, such a "bucket-ing" does not respect the original poset.
In this "bucket-ing" scheme, having 6 in the top tier, and 5 in the middle tier
would imply that 5 � 6, but the original poset has 5 and 6 incomparable.
Thus, such a "bucket-ing" scheme does not respect the original poset. More
generally, because the original poset is not a weak order, there is no such
bucket-ing scheme that respects the original order.



Chapter 4

Voting With Posets

At this point, we hope you’re eager to see how partial orders and voting
come together. That’s what this chapter (and arguably, this entire thesis) is
dedicated to!

Specifically, what happens when we allow our voters to submit partial
orders as their ballots instead of total orders? By allowing this, we’ve
just opened up an entire new world of voting procedures that begs lots of
questions.

Our previous voting systems, the Borda count and the Kemeny rule, do
not accept partially ordered ballots, so we’ll discuss generalizations of them
that do.

Even once we’ve defined these generalizations of the Borda count and
Kemeny rule, we have all sorts of new questions! What kinds of new,
unexpected behavior can we observe in the poset world that wasn’t previously
possible in the complete ranking world? How can we be sure that these
generalizations are indeed the correct generalizations?

While these questions about the voting systems are exciting and inter-
esting, this first section of this chapter doesn’t begin by addressing these
questions. This first section is dedicated to understanding voting profiles.

Why? Well, when we looked at voting systems for total rankings, we
know exactly what everyone’s ballot looked like—a 1st choice candidate,
a 2nd choice candidate, a 3rd choice candidate, and so on, all the way
down. But with posets, the ballots themselves have structure. This additional
complexity is crucial for informing the way we think about partial voting
systems.
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4.1 Voter Profiles with Posets

To begin, consider an election on 3 candidates: 0 , 1 , and 2. Voters will be
allowed to submit partial orders on their ballots. There are 19 possible
partial orders on that they might submit. It’s not obvious why there are 19
of these—that’s just how it works out. Enumerating all the possible partial
orders on = elements is quite difficult, as discussed in Monteiro et al. (2017).
Here are those 19 posets:

0 1 2

0

1

2

0

1

2 0

1

2

0

1

2 0

1

2

0

1

2

0

12 0

1

2 01

2

0

12 0

1

2 01

2

0

1

2

0

1

2 0

1

2 0

1

2 0

1

2

0

1

2

This may seem a little unwieldy. How do we begin making sense of
the posets above? Well, as a start, notice that each row above contains an
isomorphism class of posets—the actual structure of the partial order is the
same, and we’ve simply relabeled the nodes in order to change between
posets. So there are 19 possible posets, but only 5 distinct posets up to
isomorphism.
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However, this is not the only way to organize our 19 possible ballots.
Instead, we can arrange them into a graph by defining a notion of adjacency
between two partial orders.

Specifically, we will say that two posets are adjacent to each other if and
only if their underlying relations differ by exactly one ordered pair.

For example, consider the following two posets:

0

1

2

0

12
.

The underlying relation for the poset on the left is

' = {(0 , 0), (1 , 1), (2 , 2), (1 , 0)}.

The underlying relation for the poset on the right is

' = {(0 , 0), (1 , 1), (2 , 2), (1 , 0), (2 , 0)}.

These two posets are similar orderings on the candidates. They both place 0
higher than 1 , they both think that 1 and 2 are incomparable, and their only
disagreement is that the left poset considers 0 and 2 incomparable, while the
right poset places 0 is higher than 2. Thus, we can think of moving from the
left poset to the right poset as adding one piece of information, namely adding
that 2 � 0. Similarly, we can think of moving from the right poset to the left
poset as removing one piece of information, namely removing the information
that 2 � 0. So, we can think of these two posets as being adjacent to each
other.

Equipped with a notion of adjacency, we can define a graph which is
analogous to a permutohedron. Specifically, the vertices of this graph will
be posets, and there will be an edge between two posets/vertices if and only
if they are adjacent by the above definition. Doing so, we obtain:
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0 1 2

0

1

2

0

2
1

1

2
0

1

0
2

2

0
1

2

1

0

0

2

1

0

12

0

1

2

2

10

1

0

2

1

02

1

2

0

0

12

2

1

0

2

10

2

0

1

1

02

This graph, to the author’s knowledge, first appeared in a 1973 paper
called Preference Structures I: Distances Between Transitive Preference Relations,
written by Kenneth Bogart (Bogart (1973)).

Now look at this! We’ve created a graph in which all of our posets appear
as vertices. As a sanity check, recall the permutohedron on 3 elements
from Chapter 2. Notice that the distances in the above graph respect the
distances on the original permutohedron. For example, 012 and 210 remain
on opposite sides of the graph, at a maximum distance apart. Similarly, the
complete rankings which are closest to 012 are 021 and 102. This is a nice
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reassurance that this graph, which we will now refer to as the Bogart graph,
is indeed a generalization of the complete-ranking situation that preserves
the structure we’re interested in.

Furthermore, this graph gives us a very natural notion of distance
between posets! Namely, we take the distance between two posets to be the
length of the shortest path between them. Note that there may be multiple
paths with minimal length. Furthermore, we have a nice interpretation of
this graph distance. As an example, consider the following two posets in
the graph:

0

1

2

2

01

The distance between these two posets is 3, but we can interpret this 3
nicely without the graph. Namely, we ask the question: How many pieces of
information do we have to remove or add from the underlying relations to
get from one poset to another? To get from the left poset to the right poset,
we can remove 1 � 2, add 2 � 1 , and remove 0 � 2. This is what that would
look like:

0

1

2
Remove 1 � 2

0

12

Add 2 � 1

0

2

1
Remove 1 � 0

0 1

2

Because it takes 3 steps to get from the far left poset to the far right poset,
they are distance 3 away.

Now that we have established this graph, and this notion of distance
between partial orders, we can discuss a generalization of the Kemeny rule
to the partial order setting.
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4.2 The Partial Kemeny Rule

In this section, we define a generalization of the Kemeny rule. Similarly
to the full-ranking case, we can think of this partial Kemeny rule in three
different ways, namely:

• A distance optimization problem on a graph.

• A system which assigns points to posets, and selects the poset(s) with
the most points as the winner(s).

• A linear transformation.

Throughout the rest of this document, we will find that being able to
view a voting system from multiple perspectives often yields great insight.
So we call attention to these three distinct perspectives.

4.2.1 The Kemeny Rule as a Distance Optimization Problem

In Chapter 2, we saw that the Kemeny rule could be thought of as a
distance minimization problem on a permutohedron. Specifically, we made
a graph in which each vertex was a possible ballot that a voter might submit.
Then, we assigned a weight to each vertex equal to the number of people that
voted for it. Then, for every vertex, we computed the sum of the weighted
distances to all the other vertices. Finally, the Kemeny rule winner was the
vertex with the minimum such weighted sum.

Now that we have an analagous graph for all the partial orders on 3
candidates, we can do the exact same thing here!

So, suppose that we have the following voter profile:
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5

8

6

8

2

0

1

6

5

9

6

6

10

0

6

10

1

10

1

0 1 2

0

1

2

0

2
1

1

2
0

1

0
2

2

0
1

2

1

0

0

2

1

0

12

0

1

2

2

10

1

0

2

1

02

1

2

0

0

12

2

1

0

2

10

2

0

1

1

02

Note that we have colored the above vertices according to their weights.
Higher weights are in darker greens. Then, given this arrangement of
weights on the posets, we can compute, for each poset, a weighted sum. To
do this, we first identify the vertex associated with that poset, which we
will call E. Then, let ?(E) be the weight assigned to vertex E. Furthermore,
given two vertices E ,F let 3(E ,F) be the distance between them. Then, ((E)
is given by:

((E) =
’

F2+(⌧)
3(E ,F)?(F)
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Note that this is the exact same equation that we used for looking at the
Kemeny rule for complete rankings. Now we compute ((E) for each vertex,
and we get the following:

206

228

230

228

228

252

248

294

252

274

252

284

260

306

284

326

294

316

270

0 1 2

0

1

2

0

2
1

1

2
0

1

0
2

2

0
1

2

1

0

0

2

1

0

12

0

1

2

2

10

1

0

2

1

02

1

2

0

0

12

2

1

0

2

10

2

0

1

1

02

We have colored the above graph in blue instead of green to emphasize that
this is the result of an election, and not a profile. Furthermore, note that the
colors here are "inverted" from the last example—we have colored smaller
numbers in darker blue, such that the winning poset is the darkest blue.
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4.2.2 The Kemeny Rule as a Linear Transformation

Similarly to the complete ranking case, we can take a voter profile, encode it
as a vector, then multiply that vector by a matrix to run our Kemeny rule
election.

In the complete ranking case, there were 6 possible rankings on 3
candidates, so our profile was encoded as a vector E 2 R6

. In the poset case,
however, there are 19 possible posets, so now E lives in R19 instead. Similarly,
instead of a 6 ⇥ 6 matrix, we will make a 19 ⇥ 19 matrix.

With the Bogart graph from the previous section, we are equipped to
make a distance matrix ⇡. This matrix will have rows and columns indexed
by posets. Given two posets, ? and @ , then the entry in the row corresponding
to ? and the column corresponding to @ is simply the distance between ?
and @ in the above graph.

Once⇡ is constructed, computing⇡E will result in another vector whose
entries are the weighted sums of distances that we defined in our distance-
minimization interpretation of the Kemeny rule. Finally, we simply find the
minimum entry of ⇡E , and that will determine the winning poset.

4.2.3 The Kemeny Rule as a Point-Assigning System

Generalizing the point-assignment idea is less obvious than generalizing the
distance minimization idea.

To see why, recall that in the full ranking case, a ranking A that features
0 < 1 receives 1 point for every voter who thinks 0 < 1 , and 0 points for
1 < 0. Thus, it seems natural that a poset ? featuring 0 � 1 receives 1 point
for every voter who thinks 0 � 1 and 0 points for every voter who thinks
1 � 0. However, how many points should ? receive when a voter thinks that
0 and 1 are incomparable? 0? 1? some number between them? Furthermore,
if a poset has 0 incomparable to 1 , should it receive points when a voter
thinks 0 � 1 or 1 � 0?

To answer these questions, recall that in the complete ranking case,
the point-assignment system and the graph distance were very closely
related. Specifically, if a ranking A1 was a distance 3 from A2 , then A1 received
3 � 3 points from A2. Thus, we should create a point-assignment system
that satisfies a similar relationship. With this in mind, we now give the
point-assignment system.

Suppose we are given a poset ?. To compute that poset’s score, we
consider every possible pair of candidates, 0 and 1. In the voting body, there
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are a certain number of people who’ve submitted posets in which 0 � 1,
a certain number who’ve submitted posets in which 1 � 0, and a certain
number who’ve submitted posets in which 0 and 1 are incomparable. Then,
our poset ? is given points as follows:

• If 0 � 1 in ?, then ? gets 1 point for every voter who thinks that 0 � 1,
and 1

2 a point for every voter who thinks that 0 is incomparable to 1.

• If 0 is incomparable to 1 in ?, then ? gets 1
2 a point for every voter who

thinks that 0 � 1, 1
2 a point for every voter who thinks that 1 � 0, and

1 point for every voter who thinks that 0 is incomparable to 1.

• If 1 � 0 in ?, then ? gets 1 point for every voter who thinks that 1 � 0,
and 1

2 a point for every voter who thinks that 0 is incomparable to 1.

We do this for every pair of candidates in the partial order, and at the
end, we have given a certain number of points to each of the 19 posets on 3
elements. Then the winning poset is the poset with the highest number of
points.

Note that if every voter submits a poset which is a complete ranking,
and we limit ourselves to looking at the points that complete rankings
receive, this point assignment system simply reverts back to the point as-
signment system we had for the complete ranking version of the Kemeny rule.

4.3 The Partial Borda Count

Now that we’ve defined a generaliztion of the Kemeny rule that accepts
partially ordered ballots, we do the same for the Borda count. Note that this
definition comes from Cullinan et al. (2014).

4.3.1 Defining the Partial Borda Count

Recall that the Borda count for complete rankings was a positional voting
system, a system in which candidates receive points according to their
position on each voter’s ballot. Thus, we’d like to assign points to candidates
according to how highly they’re ranked.

Let � be a set of candidates. Then, given a poset, we can define the down
set of a candidate 0 2 �. The down set is defined as follows:
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down(0) = {1 2 � : 1 � 0}.
Similarly, we can define the incomparable set as

incomparable(0) = {1 2 � : 1 is incomparable to 0}.
Then, the number of points candidate 08 receives is given by

Points Received = 2 · kdown(08)k + kincomp(08)k.
In short, a candidate gets 2 points for every candidate it beats, and 1

point for every candidate it’s incomparable to. Then we tally all the points,
and the candidate with the most points wins. Let’s see some examples:

0

1 2

e

d

f

If someone were to submit this poset, then:

• Candidate 0 receives 0 points.

• Candidate 1 receives 4 points: 2 for being above 0, and 2 for being
incomparable to 2 and 3.

• Candidate 2 receives 5 points: 2 for being above 0, and 3 for being
incomparable to 1 , 3, and 4 .

• Candidate 3 receives 6 points: 2 for being above 0, and 4 for being
incomparable to 1 , 2 , 4 , and 5 .

• Candidate 4 receives 7 points: 4 for being above 0 and 1, then 3 points
for being incomparable to 2 , 3, and 5 .

• Candidate 5 receives 8 points: 6 for being above 0 , 1 , and c, then 2
points for being incomparable to 4 and 3.
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Suppose another voter submitted the following poset on these same
candidates:

0 1

2e d

f

• Candidate 0 receives 9 points: 8 for being above 4 , 2 , 3, and 5 , and 1
for being incomparable to 1.

• Candidate 1 receives 9 points: 8 for being above 4 , 2 , 3, and 5 , and 1
for being incomparable to 0.

• Candidate 2 receives 4 points: 2 for being above 5 , and 2 for being
incomparable to 3 and 4 .

• Candidate 3 receives 4 points: 2 for being above 5 , and 2 for being
incomparable to 2 and 4 .

• Candidate 4 receives 4 points: 2 for being above 5 , and 2 for being
incomparable to 2 and 3.

• Candidate 5 receives 0 points, because it’s not above or incomparable
to any other candidates.

Adding up the totals, we get:

• Candidate 0 finishes with 0 + 9 = 9 points.

• Candidate 1 finishes with 4 + 9 = 13 points.

• Candidate 2 finishes with 5 + 4 = 9 points.

• Candidate 3 finishes with 6 + 4 = 10 points.

• Candidate 4 finishes with 7 + 4 = 11 points.

• Candidate 5 finishes with 8 + 0 = 8 points.
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Now that we’ve assigned points to candidates, we simply rank our
candidates according to how many points they’ve received, and that’s our
election!

4.3.2 The Partial Borda Count as a Linear Transformation

Similarly to the complete-ranking case, and similarly to the Kemeny rule, we
can run a Borda count election via a matrix vector multiplication.

Once again, we construct a vector E with 19 entries, tallying the number
of people who voted for each poset. When we are running an election with
three candidates, there are 19 possible posets that a voter might choose.

Then, to run a Borda election, we can define a matrix ⌫, then compute
⌫E , and we will end up with a 3x1 vector that tells us the number of points
0 , 1 , and 2 each received. Specifically, ⌫ is a matrix with 19 columns and
3 rows. We can think of the columns as being indexed by posets, and we
can think of the rows as being indexed by candidates. Each entry in the
matrix corresponds to one poset and one candidate. In particular, that entry
is given by the number of points that candidate receives in that poset. To
demonstrate, we can fill in some of that matrix:

⌫ =

?1 ?2 ?3 ?4 ?5 . . . ?19 !
0 2 3 3 2 1 . . . 3
1 2 1 2 3 3 . . . 0
2 2 2 1 1 2 . . . 3

Note that in the above matrix, we have assigned indices to the posets.
The index assigned to a particular poset doesn’t matter, as long as one is
consistent with that index throughout.

With the matrix ⌫ defined in this way, we can compute ⌫E. This will give
us a 3x1 vector where the first entry is the number of points that 0 receives,
the second entry is the number of points that 1 receives, and the third entry
is the number of points that 2 receives.
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4.4 The Null Space of the Partial Kemeny Rule and
Graph Symmetry

One approach to understanding the partial Kemeny rule is to understand
voter profiles that can be addded to other voter profiles that don’t change
election outcomes. As an example of such a profile, consider the following:

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

The resulting point distribution is:

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

We can attempt to intuitively rationalize this. First, note that if we were
to limit our attention to the complete ranking case, exactly one vote for



The Null Space of the Partial Kemeny Rule and Graph Symmetry 41

every complete ranking would result in a 6-way tie between all the complete
rankings. This result respects that, which is a nice sanity check, and makes
this result less surprising.

While this profile is interesting by itself, it’s also interesting to combine it
with other profiles. Suppose that we name the above profile E. Furthermore,
suppose we have some other arbitrary profile F. Then, because the Kemeny
rule can be thought of as a linear transformation, we have (E+F) =  E+ F.
Practically speaking, this means that when we add E to a profile then run
the Kemeny rule election, the effect is the same running the Kemeny rule
election, then adding adding  E. But  E consists of a constant function on
the vertices, so  E has no effect.

As an example, consider a different profile:

0

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

With this profile, we can compute the number of points each poset would
receive in a Kemeny rule election. Note that the poset with the highest
number of points will be the winner. The resulting point distribution is:
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10
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12.5

7.5

7.5

7.5

7.5

12.5

15

12.5

10

7.5

5

2.5

5

2.5

5

7.5

10

This is unsurprising—when all our voters vote for the same poset, that
poset wins the resulting election, with other posets scoring fewer points
according to how far away they are.

If we combine the two profiles we’ve looked at in this section, we get:

0

0

0

0

0

0

0

1

5

1

0

1

0

1

0

1

0

1

0

Then, running the Kemeny Rule, we have:
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19

21.5

21.5

16.5

16.5

16.5

16.5

21.5

24

21.5

19

16.5

14

11.5

14

11.5

14

16.5

19

Wow! Notice that this is almost the same as our previous results, except
we’ve increased the score of every poset by 9.

There are other ways to have a profile which doesn’t influence the
outcome of the election. Namely, we can look at profiles in which some
posets receive a negative number of votes. This doesn’t exactly have a clean
real-world interpretation that the author can think of, but this type of profile
is useful for linear algebraic considerations, and is difficult to avoid. Such
profiles allow for the possibility that a vector is contained in the null space
of the linear transformation.

Recall that we can think of the Kemeny Rule as a linear transformation
 : R19 ! R19

. We can encode  as a matrix and use standard linear algebra
software to find the dimension of the kernel of the matrix. Doing so, we get
7. However, if we use standard linear algebra software to find a basis for this
nullspace, we get a sequence of vectors which does form a valid basis, but is
nigh impossible to interpret or understand.

However, over the course of this thesis project, we have found a different
basis that is easier to understand. Specifically, the vectors that make up
this basis can be encoded as voter profiles, and those profiles can then be
encoded as vertex-weighted graphs. The next pages feature pictures of those
graphs.
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The 7 graphs above were found by hand by hunting for symmetry in the
Bogart graph.
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4.5 Numerical Experiments

So far, we haven’t discussed much about what voter profiles might look like.
Now, we (briefly) turn our attention to this issue.

It would be nice if we could simply look at all possible voter profiles
for some number of candidates, and see what every voting system does.
However, this is simply not feasible. Even with the 3 candidate case, and
only 10 voters, there are 1910 ⇡ 6.13 ⇥ 1012 possible profiles.

Instead, we often use some probabilistic model to simulate the behavior
of a voting body, and run many such simulations.

But this begs the question—how do we simulate the behavior of a voting
body? Well, we usually begin by choosing some model of voter behavior,
then using that model to create a probability distribution on the posets.

While these simulations will prove to be insightful and interesting, they
are largely exploratory, and we do not have specific, proven results to share.
An interesting area of future work would be to prove probabilistic results
that can explain the data we are about to see.

4.5.1 Impartial Culture Model

Perhaps the simplest model for voter behavior is the Impartial Culture (IC)
model, in which voters are equally likely to choose any of the options in
front of them. While this model has been criticized for being unrealistic, it
is simple (Lehtinen and Kuorikoski (2007)). In our case, this would mean
that among the 19 possible posets that a voter might submit, a voter has
a 1

19 probability of choosing any of them. This isn’t particularly hard to
visualize, but we will look at more complex profiles shortly, so visualizing
these models on the Bogart graph will be helpful. We have:
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Now, with this model established, we can ask some questions. For
example: If we construct a voter profile at random using the above IC model,
what is the probability that the Kemeny rule returns the center poset, the 3
element antichain, as the winner? How does this probability change as the
number of voters increases?

Immediately, we know that if there’s only one voter, the only way for the
3 element antichain to win is for that voter to select it. Thus, ? = 1

19 when
there’s 1 voter.

However, for larger numbers of voters, the author does not know of a
simple expression for ?. Instead, we can run some simulations to get an idea
of the answer. So, we run 10,000 simulations with a fixed number of voters,
and calculate the proportion in which the 3 element antichain wins.

Number of Voters Percentage in which antichain won
1 5.26%
5 27.97%
15 67.13%
45 97.14%
100 99.96%

Looking at this table, we have very strong evidence that as the number
of voters approaches infinity, the probability that the antichain wins the
election approaches 1. This also matches an intuitive understanding for how
the partial Kemeny rule works. If voters choose vertices on the Bogart graph
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at random, then it makes sense that the vertex that is, on average, closest to
all the others, is the vertex in the center.

How does this behavior compare to that of the Borda count? Does the
Borda count also often select the antichain as the winner? Let us find out:

Number of Voters Percentage in which antichain won
1 5.26%
5 2.07%
15 0.62%
45 .25%
100 .13%

Fascinating! The Borda count also starts at 1
19 , for the exact same reasoning

as the Kemeny rule: there’s a 1
19 chance of choosing the antichain, which

is the only way for the antichain to be the winning poset. However, we see
that the percentage decreases instead of increases. We offer an explanation,
without proof, for why this is. The Borda count assigns points to candidates,
rather than searching for a poset that is closest to all the others. While it’s
likely that the candidates earn a similar number of points in these models, it’s
very unlikely that all three candidates earn the exact same number of points.
Thus, the percentage of simulations in which the antichain wins is very small.

In summary, we have found that, for IC profiles, the Kemeny rule is likely
to choose the antichain, whereas the Borda count is not. It is unclear what
we should make of this observation. On the one hand, we could see this
and argue that the Kemeny rule is extremely indecisive—it almost always
throws its hands up and chooses the antichain. On the other hand, we could
argue that the Borda count is too-willing to "force the issue" and just choose
something even when the societal preference is clearly ambivalent or unclear.

An interesting area of future work would be to explicitly find the prob-
ability of the antichain winning as a function of the number of voters, in
either election system.

4.5.2 Objective Truth Model

Another model for voter behavior is an Objective Truth Model. Such a model
was first introduced by Condorcet in 1785—specifically, he modeled a group
of jurors as independent agents trying to make the correct decision. For our
purposes, we will specify some poset as being objective best partial ordering
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of the candidates. Then,voters learn about the candidates to try and make
an informed decision about how to rank them. However, the real world
has noise, misinformation, and complexity, so not every voter makes the
"correct" choice.

Now, one might reasonably object to the validity of this model by arguing
that real-world elections often don’t have an objective truth, a "best" ranking
of the candidates. This is a very reasonable point. However, it is still an
interesting way to create structured voter profiles. Furthermore, recall that
the Kemeny rule can be used in contexts outside of voting and elections—for
example, consensus rankings of web pages, or artificial intelligence systems
in which there is an objectively correct answer, but different software agents
disagree.

Translating this idea into a probabilistic model, we’d like some number
of voters to choose the objectively correct choice, and then fewer voters to
choose other posets as those posets get farther from the objective truth. So,
we pick some � < 0 and we assign a weight of 4� to the correct choice, a
weight of 42� to posets that are one step away, a weight of 43� to posets
that are two steps away, etc. Then, once we’ve assigned all the weights,
we normalize them such that they sum to 1, and we have our weights.
Visualizing this kid of model on our Bogart graph, we have:
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Note that this is not the only "objective truth model" that we can define
on the Bogart graph—in the above model, we have taken the central poset
as the objective truth, the 3-element antichain. However, we can pick some



50 Voting With Posets

other non-central poset as the "objective truth." For example, pick one of the
posets that’s not a weak order as the objective truth, such as:

0

2
1

Making this poset the "objective truth", we get:
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Notice that � here serves as a metric for how "sharp" our distribution
is. For more negative values of �, the objective truth poset has a higher
probability of being chosen, and every other poset has a lower probability.
As values of � get closer and closer to zero, we get closer and closer to an IC
model.

With this kind of model, we can ask: How far away are the Kemeny
rule and Borda count outcome from each other? Once again, we provide
some experimental evidence that addresses this question, but do not provide
rigorous proof.

In the following tables, we run 10,000 simulations. In each simulation,
we find the winning poset according to the Kemeny rule, the winnning poset
according to the Borda count, and find the distance between them.
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4.5.3 Objective Truth in the Center

Number of Voters � Avg. Distance Between Borda and Kemeny
1 -1/2 0.88
5 -1/2 2.16
15 -1/2 2.74
45 -1/2 2.91
100 -1/2 2.94

To construct this table, we have run simulations in which the center poset
is the objective truth, and has the highest weight. This evidence seems to
suggest that, given a fixed value of �, increasing the number of voters causes
the average distance between the Borda count and Kemeny rule to approach
3. We suspect the following explanation for this: as the number of voters
increases, the Kemeny rule is more and more likely to select the 3 element
antichain as the winning poset. However, the Borda count almost always
selects a complete ranking. Once again, this is because the Borda count adds
up points for each candidate, and is is unlikely that two candidates score the
exact same number of points. Thus, ties and incomparable elements are very
rare.

Instead of varying the number of voters while holding � constant, we
will vary the � while holding the number of voters constant.

Number of Voters � Avg. Distance Between Borda and Kemeny
5 0 1.70
5 -1/2 2.15
5 -1 2.41
5 -2 2.44
5 -4 1.12
5 -8 0.03

We observe some very interesting behavior here! It seems that the average
distance increases, hits some maximum, and then decreases. Why?

We hypothesize the following explanation: � = 0 corresponds to the
IC model. So, as � becomes more negative, we move towards an Objective
Truth model that behaves as the previous examples did. As voters move
closer to the central poset, the Kemeny rule becomes increasingly likely
to select the central poset. Meanwhile, it remains unlikely for the Borda
count to give the same number of points to two different candidates, so the
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Borda count is choosing posets towards the outside of the Bogart graph.
However, as � increases more, our objective truth model features a sharper
and sharper peak at the central poset. By the time we reach � = 8, there is a
99.8% chance that a voter chooses the central poset. So, our model is very
likely to give a profile where all 5 voters choose that same central poset. In
these profiles, the Borda count and the Kemeny rule agree. Thus, we see the
average distance between them decrease again.

4.5.4 Objective Truth on a Weak Order

For this set of simulations, we used models in which the poset

0

2
1

was used for the objective truth. With this in mind, we run the same
numerical experiments that we did in the last section.

Number of Voters � Avg. Distance Between Borda and Kemeny
1 -1/2 0.81
5 -1/2 1.89
15 -1/2 2.40
45 -1/2 2.63
100 -1/2 2.73

This is a very similar result to when the antichain was the objective truth.
Now, we fix the number of voters and let � vary.

Number of Voters � Avg. Distance Between Borda and Kemeny
5 0 1.71
5 1/2 1.89
5 1 1.91
5 2 1.95
5 4 1.99

This is interesting! When we made this same table with the antichain as
our objective truth poset, we got a totally different result. Why are things
different here?
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Well, in this example, as we increase �, we are creating an objective truth
model with a steeper and sharper peak. Thus, for high values of �, many of
our voter profiles are 5 voters who all vote for the poset

0

2
1

.

This is where the key difference comes in. Imagine a voter profile in which
exactly one voter submits this poset as their ballot. Then, 0 receives 3 points,
1 receives 2 points, and 2 receives 1 point. Thus, the Borda count would
say that the poset 0 > 1 > 2 is the best. But the poset 0 > 1 > 2 is a
distance two away from the above poset, which explains why the distances
are approaching 2 in the table above.

We have just observed an interesting property of the Borda count. Because
the Borda count assigns points to candidates, it is forced to return a weak
order. This is even true when it’s given a partial order that’s not a weak order.

At this point, we could continue on and look at objective truth models
in which we feature other posets as the objective truth. However, there is
not much more interesting behavior to glean out of these same experiments
applied to those models. The results are largely the same as those we saw
when the central poset was the objective truth.





Chapter 5

Conclusion and Future Work

In this thesis, we’ve discussed the Borda count and Kemeny rule in situations
where voters submit complete orders or partial orders. Then we briefly looked
at symmetry in the Bogart graph, and used it to find a more "understandable"
basis for the null space of the Kemeny rule. Finally, we ran some simulations
to get a sense of what the partial Borda count and partial Kemeny rule do
with certain kinds of profiles.

At this point, we are equipped to understand many directions for possible
future research. We discuss some here, in no particular order.

5.1 The Partial Borda Count as an SRSF

In an = candidate election, the Borda count looks at how many people
voted for each of the =! rankings, then uses that information to distribute
points to the = candidates. However, there are voting systems which instead
distribute points back to those =! rankings. We call such voting systems, ones
that assign points to rankings rather than individual candidates, Simple
Ranking Scoring Functions, or SRSFs for short. The Kemeny rule is an SRSF.

The Borda count by itself is not an SRSF, but there is a relatively straight-
forward way to make it an SRSF. In fact, a 2009 paper by Conitzer et al.
(Conitzer et al. (2009)) demonstrates a method for taking any positional
voting system and making it into an SRSF. We discuss this method here. It
will require some notation.

Let 0 be a candidate, and let E be a vote, which is a specific permutation
of the candidates. Then, let C be a function such that C(E , 0) is the number of
points that candidate 0 gets for vote E. Now, we’d like to define a function
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B(E , A), which will be the number of points that a ranking A receives for a
vote E. Given A, let A(1) be the 1st ranked candidate in the permutation A , let
A(2) be the 2nd ranked candidate in the permutation A , etc. We can write
A = (A(1), A(2), . . . , A(=)). Now, we are ready to define B(E , A) :

B(E , A) =
=’
8=1

(= � 8)C(E , A(8)).

At this point, notice that B(E , A) tells us how many points a ranking A receives
from a single vote E. To compute how many points a ranking E receives in
the election, we simply sum B(E , A) over all votes. So, letting + be the set of
all votes, the score that a particular ranking A receives is given by

’
E2+

B(E , A) =
’
E2+

=’
8=1

(= � 8)C(E , A(8)).

This is non-trivial to parse, so we will provide an example computation.
Suppose we are looking at an election on 3 candidates, and we’d like to know
the number of points that the ranking 012 receives when 1 person votes for
102 , where C(E , 0) is defined using the Borda count. Computing this, we
have

B(102 , 012) =
3’
8=1

(= � 8)C(E , A(8))

= 2C(102 , 0) + 1C(102 , 1) + 0C(102 , 2)
= 2(1) + 1(2) + 0(0)
= 4.

For another example, let us compute the number of points that ranking 120
receives from vote 021:

B(021 , 120) =
3’
8=1

(= � 8)C(E , A(8))

= 2C(021 , 1) + 1C(021 , 2) + 0C(021 , 0)
= 2(0) + 1(1) + 0(2)
= 1.
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Note that in the second to last line in both this computation and the one
above, the numbers in the parenthesis are permutations of {0, 1, 2}. The way
to maximize this, and thus to maximize the score, is to have 2(2)+ 1(1)+ 0(0).
Thus, a ranking will receive the most points from a vote with that ranking.

Hopefully, the reader feels comfortable computing the number of points
a ranking receives from some other ranking. However, we are not limited to
making this computation with a specific formula. Instead, we can model
this computation as a matrix-vector multiplication as well!

Specifically, given a profile vector E , encoded in the same way we saw
before, we compute (⌫)⌫)E instead of ⌫E. Let us examine this:

⌫
)
⌫ =

©≠≠≠≠≠≠≠
´

2 1 0
2 0 1
1 2 0
0 2 1
1 0 2
0 1 2

™ÆÆÆÆÆÆÆ
¨

©≠
´
2 2 1 0 1 0
1 0 2 2 0 1
0 1 0 1 2 2

™Æ
¨
=

©≠≠≠≠≠≠≠
´

5 4 4 2 2 1
4 5 2 1 4 2
4 2 5 4 1 2
2 1 4 5 2 4
2 4 1 2 5 4
1 2 2 4 4 5

™ÆÆÆÆÆÆÆ
¨

.

The resulting matrix is 6 ⇥ 6. Note that, by keeping track of how these
columns and rows are being multiplied, both the rows and the columns are
indexed by permutations on the 3 candidates now, rather than having rows
indexed by candidates and columns indexed by permutations. Then, recall
our profile vector ÆE from earlier, ÆE = (5, 2, 1, 3, 1, 5). Computing ⌫)⌫ÆE , we
have

⌫
)
⌫ÆE =

©≠≠≠≠≠≠≠
´

50
49
52
53
50
52

™ÆÆÆÆÆÆÆ
¨

.

Recall that the entries in this vector are indexed by permutations of
candidates in a specific order. Thus, we can read this as saying 012 receives
50 points, 021 receives 49, 102 receives 52, etc. Notice that 120 receives 53
points, the most of any permutation. This is good, because this aligns with
the previous times we’ve run this election with the Borda count: we saw
that candidate 1 won, 2 was in 2nd, and 0 was in 3rd. Thus, we expect 120 to
receive the most points, and that expectation is met. Note that this entire ⌫)⌫
construction is simply a nice way to encode the previous page’s technique for
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making an SRSF out of a positional scoring function. Non-Borda positional
voting systems are not the focus of this thesis, but in general, given some
positional scoring matrix �, ⌫)� will be the matrix that computes scores for
rankings, rather than candidates.

By making the Borda count into an SRSF, we now have a matrix ⌫)⌫
which is symmetric and real-valued. Thus, we know that the profile space
has an orthogonal basis of eigenvectors of ⌫)⌫. We will use this later to
compare the Borda count to the Kemeny rule. Now, we turn our attention to
the Kemeny rule.

With all of this established, we ask: Is it possible to do the same for the
partial Borda count? How is this done? Does this technique generalize to
other poset voting systems that assign points to candidates?

We conjecture that if the partial Borda count is encoded as a matrix
⌫, then ⌫

)
⌫ is a matrix that encodes a partial Borda SPSF—Simple Poset

Scoring Function.

5.2 Characterizing the Partial Kemeny Rule

Recall from the introduction that, when voters are restricted to submitting
complete rankings, the Kemeny rule is the unique voting system which is
consistent, Condorcet, and neutral.

Does this characterization remain true when we look at the partial version
of the Kemeny rule that we have focused on in this thesis? That is, when
voters are allowed to submit partial orders, is it the case that the partial
Kemeny rule is the unique voting system which is consistent, Condorcet,
and neutral?

It is not exactly obvious whether this is true. One could argue that the
Kemeny rule is initially defined as a distance minimization procedure on
a permutohedron. Then, we simply take that permutohedron, add more
vertices in the middle of the graph, and run the same procedure. Thus,
it seems reasonable that the Kemeny rule is consistent, Condorcet, and
neutral. However, whether the Kemeny rule remains as the unique social
choice function with this property is less obvious. It seems plausible that,
by introducing the additional complexity of partially ordered ballots, there
suddenly exist other voting systems which are consistent, Condorcet, and
neutral.

Recall that in addition to our distance minimization understanding of the
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Kemeny rule, we also conceived of the Kemeny rule as a voting procedure
that assigns points to posets based on how much they agree with the posets
in the voter profile. Specifically, we wrote:

Suppose we are given a poset ?. To compute that poset’s score, we
consider every possible pair of candidates, 0 and 1. In the voting body, there
are a certain number of people who’ve submitted posets in which 0 � 1,
a certain number who’ve submitted posets in which 1 � 0, and a certain
number who’ve submitted posets in which 0 and 1 are incomparable. Then,
our poset ? is given points as follows:

• If 0 � 1 in ?, then ? gets 1 point for every voter who thinks that 0 � 1,
and 1

2 a point for every voter who thinks that 0 is incomparable to 1.

• If 0 is incomparable to 1 in ?, then ? gets 1
2 a point for every voter who

thinks that 0 � 1, 1
2 a point for every voter who thinks that 1 � 0, and

1 point for every voter who thinks that 0 is incomparable to 1.

• If 1 � 0 in ?, then ? gets 1 point for every voter who thinks that 1 � 0,
and 1

2 a point for every voter who thinks that 0 is incomparable to 1.

Now, we conjecture that by changing the point assignments, we can
achieve an entire spectrum of voting procedures which are consistent,
Condorcet, and neutral. Instead of assigning 1, 1

2 , or 0 points to ? according
to how much ? agrees with a voter’s pairwise preference, we could instead
assign 1, C , or 0 points to ?, where 0  C < 1.

We give a loose justification for why such voting systems would remain
Condorcet, and neutral. Firstly, neutrality holds because no candidate
receives preferential treatment. Then, we might expect the Condorcet
criterion to hold because the Condorcet criterion is concerned with pairwise
head-to-head elections, and these systems seem like they should always
assign more points to a candidate that wins a head-to-head election against
another candidate. Finally, we don’t have a strong justification for why these
systems would remain consistent. This is just a hope that seems plausible.

5.3 Generalizing the Eigenstory

We now present another way to compare the Kemeny rule and Borda count.
Specifically, we ask: How often, and in what situations, do the Kemeny rule
and the Borda count output the same result? When they are different, how
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far apart are those results? What if one wants to use the Kemeny rule, but
settles for the Borda count as an approximation which is faster to compute?

It turns out others have asked these same questions, and have began
addressing them in the complete ranking case. Specifically, Eric Sibony
proved a result which puts an upper bound on the distance between the
Kemeny rule result and the Borda count result (Sibony (2014)).

In Sibony’s 2014 paper, Eric Sibony was able to find an upper bound
on the distance between the result of a Kemeny rule election and a Borda
election.

To do so, Sibony uses tools from linear algebra. Specifically, he analyzes
the general versions of the matrices  and ⌫ that we have defined here—the  
and ⌫ we have defined in this thesis are the matrices for the 3 candidate case,
whereas Sibony considers these matrices used for elections on = candidates,
for arbitrary =.

Sibony uses spectral decomposition to analyze these matrices. Specifically,
he explicitly finds the eigenspaces of  . These eigenspaces can be thought
of as follows: An all-ones space (corresponding to voter profiles where an
equal number of people vote for every choice), a Condorcet space, and a
Borda space. So, the Kemeny rule can be thought of as a procedure which
takes a profile vector, looks at it’s projection into these spaces, scales those
projections, then adds the results back together.

The Borda count can be thought of in a similar manner; it takes a profile
vector, looks at the profile’s projection into those same eigenspaces, scales them,
and adds them back together. However, the Borda count and the Kemeny
rule scale those spaces differently—the Borda count scales the Condorcet
component of the profile down to 0, meaning that there is an entire subspace
of the profile that the Borda count maps to the zero vector.

Finally, Sibony uses this understanding of the Kemeny rule and the Borda
count to prove an upper bound on the distance between the Borda count
result and the Kemeny rule result.

For a more rigorous, thorough treatment of these ideas, see Sibony (2014).
Might we be able to make similar statements in this new setting with

partial orders? Sibony’s result relies on decomposing the profile space into
eigenspaces, and analyzing those eigenspaces. In particular, Sibony’s result
utilizes the fact that, in the complete ranking case, the Kemeny rule and
Borda count both break the profile space into the same subspaces, compute a
profile’s projection into those subspaces, scale those projections by different
amounts, and add them together at the end.

Do the Borda count and the Kemeny rule share this relationship in
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the partial order setting? When we open the door to partial orders, we
suddenly have many, many, many more possible ballots, and so our space of
voter profiles increases drastically in dimension. Perhaps this increase in
dimension complicates matters. Perhaps the generalizations of the Borda
count and Kemeny rule that we’ve defined here are not actually the voting
systems for which this story works out as we’d like.

This seems like a promising direction for future research.

5.4 Final Words

Thank you for reading!
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