
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2023

Long Increasing Subsequences Long Increasing Subsequences

Hannah Friedman

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

 Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the

Harmonic Analysis and Representation Commons

Recommended Citation Recommended Citation
Friedman, Hannah, "Long Increasing Subsequences" (2023). HMC Senior Theses. 276.
https://scholarship.claremont.edu/hmc_theses/276

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/181?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/276?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

Long Increasing Subsequences

Hannah Friedman

Prof. Michael E. Orrison, Advisor

Prof. Peter O. Kagey, Reader

Department of Mathematics

May, 2023

Copyright © 2023 Hannah Friedman.

The author grants Harvey Mudd College and the Claremont Colleges Library the

nonexclusive right to make this work available for noncommercial, educational

purposes, provided that this copyright statement appears on the reproduced

materials and notice is given that the copying is by permission of the author. To

disseminate otherwise or to republish requires written permission from the author.

Abstract

In my thesis, I investigate long increasing subsequences of permutations from

two angles. Motivated by studying interpretations of the longest increasing

subsequence statistic across different representations of permutations, we

investigate the relationship between reduced words for permutations and

their RSK tableaux in Chapter 3. In Chapter 4, we use permutations with

long increasing subsequences to construct a basis for the space of 𝑘-local

functions.

Contents

Abstract iii

Acknowledgments xi

Preface 1

1 Introduction 3
1.1 Permutation Statistics . 4

1.2 The Symmetric Group . 7

1.3 Pattern Avoidance . 10

2 Background 13
2.1 RSK Tableaux . 13

2.2 Reduced Words and Runs . 19

2.3 𝑘-Local Functions: Combinatorially 22

2.4 𝑘-Local Functions: Algebraically 25

2.5 A Change in Perspective . 27

3 Reduced Words and RSK Tableaux 33
3.1 Canonical Reduced Words . 33

3.2 Some New Terminology . 38

3.3 Visualizing Canonical Run Decompositions 39

3.4 From Reduced Words to RSK Tableaux 43

3.5 Future Work . 48

4 A Basis for the 𝑘-Local Space 51
4.1 Utilizing Full Local Modules 51

4.2 Dimension . 55

4.3 1-Local Case . 56

vi Contents

4.4 2-Local Case . 61

4.5 Future Work . 69

Conclusion 71

Bibliography 73

List of Figures

1.1 Support of 1(𝐼 ,𝐽) functions contributing to the excedance func-

tion in 𝔖4. Each box contains the support of an 1(𝐼 ,𝐽) function

which contributes to the excedance function, so the number

of excedances of a permutation is the same as the number of

boxes it is in. The colors correspond to the position of the

excedance, so no permutation can be in two boxes of the same

color. 6

1.2 Summing over all possible images or indices gives the all

ones function. This figure shows the 1-local case for 𝔖3. The

green bubbles represent mappings of the form 1 ↦→ 𝑎 and

the magenta bubbles represent mappings of the form 𝑏 ↦→ 1.

Every permutation is in exactly one green bubble and exactly

one magenta bubble because the supports of the functions

in {1(1,𝑎)} are disjoint and the supports of the functions in

{1(𝑏,1)} are disjoint. 8

1.3 2-local representation of 𝜎 = 4132. There is 1 in the 14 − 21

entry of the matrix, because 𝜎 · (2, 1) = (𝜎(2), 𝜎(1)) = (1, 4).
The 0s are omitted for clarity. 10

2.1 A visualization of the partial permutation (45, 24) embedded

in the permutation 35124. The positions or preimages are

in the first row, and their images under the permutation

and partial permutation are in the second row. The partial

permutation is emphasized with the darker magenta color. 23

2.2 Representation of 4132 acting on ordered pairs, i.e., 𝜌2(4132). 32

viii List of Figures

3.1 Diagram for the reduced word 4321 · 765 · 3456, which is a

reduced word for the permutation 51384627. The lines repre-

senting runs are drawn to intersect every line corresponding

to a number which the run does not fix. The permutation can

be read off of Fig. 3.1b by putting 𝑗 in position 𝑖 if and only if

𝑗 is the same color on the left as 𝑖 is on the right. 40

3.2 Diagrams with and without paths for nested reduced words. 41

3.3 Visualization of how to read insertion tableaux directly from

the diagram for a word with decreasing runs. 44

4.1 Visualization of the proof techniques for showing ℬ1 ,ℬ2

are linearly independent. In the 1-local case, we eliminate

matrices with nonzero entries 𝑖 𝑗 with |𝑖 − 𝑗 | ≥ 2, then those

with |𝑖 − 𝑗 | = 1, and finally the identity. The 2-local case is

almost the same, but the |𝑖 − 𝑗 | ≥ 2 is split into sub-cases:

|𝑖 − 𝑗 | ≥ 3, which is similar to the |𝑖 − 𝑗 | ≥ 2 case in the 1-local

proof, and |𝑖 − 𝑗 | = 2, which is more difficult. This technique

is difficult to generalize to larger 𝑘 because the number of

cases, represented by lines, increases with 𝑘. 62

4.2 Visualization of the order in which permutations containing

mappings with excedance 2 are zeroed out in the proof of

Proposition 4.17. 68

List of Tables

2.1 Insertion tableaux (𝑃) and recording tableaux (𝑄) for permu-

tations in 𝑆3 found using the Robinson-Schensted algorithm.

. 18

2.2 One-line and cycle notation for permutations in 𝔖3 with

factorizations into adjacent transpositions and corresponding

reduced words. 20

Acknowledgments

First, I would like to thank my parents for always supporting my education

and for their enthusiasm for my mathematical career. Thank you to my

friends at Harvey Mudd for sharing their knowledge with me and for helping

me grow as a person. Their kindness and support has been invaluable to me,

particularly in finishing this thesis. A special thank you to Aldrin Feliciano,

Jasper Bown, and Ian Shors for speaking with me about the ideas in my

thesis and for inspiring me mathematically.

Thank you to the Harvey Mudd mathematics department for the many

opportunities I’ve had during my time here. I want to thank in particular

Professors Heather Zinn-Brooks, Haydee Lindo, and Jamie Haddock for

the time and conversations we’ve shared. Their mentorship has greatly

improved my time at Mudd and has made me more confident heading

into the next phase of my life. Thank you to Professor Peter Kagey for his

dedication as a second reader, all of the beautiful and playful math he’s

shared with me, and all the advice he’s given me. Finally, I want to thank

Professor Michael Orrison for his continued support and mentorship over

the past three and a half years. He made me feel connected to Harvey

Mudd and excited about mathematics during the pandemic, helped me find

numerous opportunities, provided insightful feedback on many applications

and various pieces of mathematical writing, cheered me on, and inspired

me. I could not have asked for a better mentor.

Preface

I began studying permutation statistics, harmonic analysis, and the symmet-

ric group in the spring of 2020 with my advisor, Professor Michael Orrison,

and my friend, Aldrin Feliciano. We spent a lot of our time learning the

mathematical background for the project and building a code base we could

use to test conjectures and run experiments. We also spent a lot of time

thinking about different lenses through which one could view these ideas,

and I hope to introduce some of those perspectives in this document as they

have shaped my experience with these ideas.

I continued the project, advised by Professor Orrison, in the summer of

2022, and ultimately ended up focusing on class functions and connections

to symmetric functions. A lot of ideas we discussed that summer did not

tie nicely into the paper we are working on, so some of them appear in this

document.

The work I have actually completed during my thesis is in two parts.

The part I focused on in the fall, Chapter 4, is work on a conjecture I made

last summer. Without getting too technical, I conjectured a basis for a set

of nested spaces depending on a parameter 𝑘. During my thesis, I have

refined the conjecture and proved it for the 𝑘 = 1 and 𝑘 = 2 cases. In the

spring, I wanted to work on something totally different and decided to study

connections between reduced words and RSK tableaux for permutations;

this work is in Chapter 3.

Most of the technical ideas in this document are combinatorial, but there

are parts that involve a bit of representation theory. To the reader wishing to

better understand these parts, I recommend Sagan (2001). If you’re reading

this document because you’re curious about what I’ve been working on, I

recommend browsing Chapter 3 as the ideas in that chapter require less

technical background and, of course, checking out all of the pictures.

With that, I hope you enjoy reading my thesis and I encourage you to

reach out if you’d like to talk :)

Chapter 1

Introduction

If I had to rank the colors of the rainbow from favorite to least favorite,

I would probably put them in the order blue, green, purple, red, yellow,

orange. However, my friend might rank them as yellow, green, blue, purple,

red, orange. Now we might ask how similar our rankings are, and there

are a number of ways to answer this question. One measure of how similar

these are is to look at the biggest subset of colors that we ranked in the same

order. In this case, we both ranked blue before purple before red before

orange. Since we thought four of the colors should be in the same relative

order, maybe our rankings were not so different after all. How different is

your ranking of the colors from mine or my friend’s?

We have really just asked a question about longest increasing subse-

quences. The only that is missing is to give the colors an order. Since my

friend is imaginary and their feelings won’t be hurt if I say they’re wrong,

we’ll say my ordering is the correct one and assign the colors numbers

according to my ordering.

Color Ranking

Red 4

Orange 6

Yellow 5

Green 2

Blue 1

Purple 3

This means that I could encode my ranking as 123456 and my friend’s

ranking as 521346. These orderings are examples of permutations and the

4 Introduction

answer to how similar our rankings are is simply the length of the longest

increasing subsequence in my friend’s ranking, which is 1346.

Long increasing subsequences have a surprising number of connections

to other ideas related to permutations. In this thesis, we explore long

increasing subsequences from two perspectives. First, how do long increasing

subsequences show up in other representations of permutations? Second,

how can long increasing subsequences help us better understand other

functions on permutations?

1.1 Permutation Statistics

Permutations are ubiquitous, not only in mathematics, but in computer

science, biology, physics, and everyday life. One way to study permutations

is to ask questions about them. For example, we might ask, “How close is

a permutation to being sorted?” Intuition suggests that the permutation

1234567 should be the most sorted list of the numbers from 1 to 7, but beyond

that, how do we compare two permutations? Is 2134567 more sorted than

3214567? We can formulate an answer to these questions using a permutation

statistic. In general, we define a permutation statistic as a function from the set

of permutations on [𝑛] = {1, 2, . . . , 𝑛} toC. One measure of “sortedness” has

already been introduced: the length of the longest increasing subsequence.

Another useful statistic for evaluating the “sortedness” of a permutation is

the number of inversions, which measures disorder by counting how often

a larger number appears before a smaller number. For example, 1234567

has zero inversions: every number is followed only by larger numbers. On

the other hand, 2134567 has one inversion, 21, and 3214567 has 3 inversions

32, 31, and 21. Thus, using inversions as our measure of sortedness, we

would conclude that the permutation 2134567 is more sorted than 3214567.

In the last few decades, permutation statistics have become a popular topic

in the combinatorics community. If you are interested in connecting with the

community, check out the International Conference on Permutation Patterns:

https://permutationpatterns.com. There are a lot of beautiful connections

between permutations statistics and other branches of mathematics, as well

as applications to statistical mechanics and computational biology. See Kitaev

(2011) for both a detailed account of these connections and a large collection

of further resources. Among classically studied statistics are inversions,

excedances, descents, major index, longest increasing subsequence, and

number of cycles; see Claesson and Kitaev (2008).

https://permutationpatterns.com

Permutation Statistics 5

Almost all of these well-known statistics exhibit a property called local-

ness, which was recently introduced in Hamaker and Rhoades (2022). In

particular, a function is 𝑘-local if it can be evaluated at a permutation by

looking only at where that permutation maps 𝑘-tuples. More concretely, we

can define an action of a permutation a 𝑘-tuple of letters in [𝑛] by

𝜎 · (ℓ1 , ℓ2 , . . . , ℓ𝑘) = (𝜎(ℓ1), 𝜎(ℓ2), . . . , 𝜎(ℓ𝑘))

where 𝜎(ℓ𝑖) is the number in the ℓ𝑖 position when we write 𝜎 as a list. If

we can determine the value a function takes on a permutation given only

information about how it acts on 𝑘-tuples, then the function is 𝑘-local. For

example, suppose we know that a permutation in 𝔖4 maps 2-tuples in the

following way:

(1, 2) ↦→ (2, 3)
(1, 3) ↦→ (2, 4)
(1, 4) ↦→ (2, 1)
(2, 3) ↦→ (3, 4)
(2, 4) ↦→ (3, 1)
(3, 4) ↦→ (4, 1).

We can count the number of times a smaller number occurs after a bigger

number from this information by simply counting the pairs on the right

with a larger number first. Those pairs are (2, 1), (3, 1), and (4, 1), so the

permutation has 3 inversions. Since we are able to evaluate the inversion

statistic by only looking at this information about ordered pairs, the inversion

function is 2-local.

We can formalize this using indicator functions. A function is 𝑘-local if

it can be written as a linear combination of indicator functions 1(𝐼 ,𝐽) where

𝐼 , 𝐽 are lists of length 𝑘 without repetition and 1(𝐼 ,𝐽) is 1 on permutations

which map every entry of 𝐼 to the corresponding entry in 𝐽 and 0 on all other

permutations. For example, 1(1,3)(3421) = 1 because 3 is in the first position,

but 1(12,32)(3412) = 0 because, while 3 is still in the first position, 2 is not in

the second position.

Example 1.1. The excedance function is defined as the number of numbers

which are greater than their positions in the permutation. For example,

3412 has two excedances, because 3 > 1 and 4 > 2, but 1 < 3 and 2 < 4.

The excedance function is 1-local, as we can evaluate it by counting specific

6 Introduction

excedances it contains. For example, 3412 contains the excedances 1 ↦→ 3

and 2 ↦→ 4. We can write the excedance function as the sum of indicator

functions of specific occurrences of excedances:

Exc =

𝑛∑
𝑖=1

∑
𝑗>𝑖

1(𝑖 , 𝑗).

In 𝔖4, the possible excedances are 1 ↦→ 2, 1 ↦→ 3, 1 ↦→ 4, 2 ↦→ 3, 2 ↦→ 4, and

3 ↦→ 4, so

Exc = 1(1,2) + 1(1,3) + 1(1,4) + 1(2,3) + 1(2,4) + 1(3,4).

See Figure 1.1 for an illustration of this idea.

Figure 1.1 Support of 1(𝐼 ,𝐽) functions contributing to the excedance function
in 𝔖4. Each box contains the support of an 1(𝐼 ,𝐽) function which contributes to
the excedance function, so the number of excedances of a permutation is the
same as the number of boxes it is in. The colors correspond to the position of
the excedance, so no permutation can be in two boxes of the same color.

Descents, inversions, and major index are all 2-local because they rely on

information about pairs. The length of the longest increasing subsequence

and the number of cycles in the cycle decomposition of a permutation are

not local statistics because they rely on information that cannot be found just

from looking at 𝑘-tuples. However, these functions do have interesting local

The Symmetric Group 7

analogs such as the number of increasing subsequences of length 𝑘 or the

number of 𝑘-cycles in the cycle decomposition. It would be interesting to

further explore the relationships between global functions and their 𝑘-local

analogs.

Permutation statistics have, for the most part, been studied from a

combinatorial perspective. However, algebraic techniques are useful for

studying permutation statistics because the permutations on 𝑛 objects form

a group called the symmetric group, which we denote by 𝔖𝑛 . For example,

recent work such as Gaetz and Ryba (2021) and Gaetz and Pierson (2022)

has made use of the representation theory of the symmetric group to study

the distributions of these functions.

1.2 The Symmetric Group

Because a permutation statistic is a function 𝑓 : 𝔖𝑛 → C, it can be viewed as

an element of the group algebra C𝔖𝑛 as∑
𝜎∈𝔖𝑛

𝑓 (𝜎)𝜎.

This connection allows us to use a large variety of well-studied tools associ-

ated with the symmetric group. We focus in particular on the representation

theory of the symmetric group, an introduction to which can be found in

Sagan (2001).

Viewing permutation statistics, and particularly local statistics, through

an algebraic lens has a number of advantages. The building blocks for the

𝑘-local space, the 1(𝐼 ,𝐽) functions, are simply indicator functions on two-

sided cosets of 𝔖𝑛−𝑘 . These indicator functions are quite benign and easy

to understand, so they can help us understand more complicated 𝑘-local

functions as well.

Since a function is 𝑘-local if and only if it can be written as a linear

combination of 1(𝐼 ,𝐽)-functions, the 1(𝐼 ,𝐽) functions form a spanning set for

the 𝑘-local subring of C𝔖𝑛 . However, it turns out that they are not linearly

independent, so they do not form a basis. To see that the indicator functions

are linearly dependent, observe that by summing over all possible values

or positions, we get the all-ones function on the symmetric group. This is

because, in every permutation, a given position has exactly one value and a

8 Introduction

given value appears in exactly one position. Thus, fixing 𝑎, 𝑏 ∈ [𝑛],
𝑛∑
𝑖=1

1(𝑖 ,𝑏) −
𝑛∑
𝑗=1

1(𝑎,𝑗) = 0,

so there exists a nontrivial linear combination of our indicator functions

which is zero; see Figure 1.2. While these functions do not form a basis, they

are still useful because of how easy they are to describe and understand.

Figure 1.2 Summing over all possible images or indices gives the all ones
function. This figure shows the 1-local case for𝔖3. The green bubbles represent
mappings of the form 1 ↦→ 𝑎 and the magenta bubbles represent mappings
of the form 𝑏 ↦→ 1. Every permutation is in exactly one green bubble and
exactly one magenta bubble because the supports of the functions in {1(1,𝑎)}
are disjoint and the supports of the functions in {1(𝑏,1)} are disjoint.

1.2.1 Permutation Representations

So far, we have considered the properties of permutations using their one-

line notations. We can also view permutations as functions. That is, if 𝜎 is a

permutation, then it is a function 𝜎 : [𝑛] → [𝑛] such that 𝜎(𝑖) is simply the

number in the 𝑖th spot of 𝜎 when 𝜎 is written in one-line notation. With this

perspective, a natural representation 𝜌(𝑛−1,1)
: 𝔖𝑛 → 𝑀𝑛×𝑛

of permutations

as 𝑛 × 𝑛 matrices arises such that 𝜌(𝑛−1,1)(𝜎) has a 1 in the 𝑗𝑖-entry whenever

The Symmetric Group 9

𝜎(𝑖) = 𝑗 and all other entries are zero. For example,

𝜌(𝑛−1,1)(4132) =

1 2 3 4©­­«
ª®®¬

1 1

2 1

3 1

4 1

where the zeros are omitted for clarity. We can extend this map linearly to a

map 𝐷(𝑛−1,1)
: C𝔖𝑛 → 𝑀𝑛×𝑛

so that

𝐷(𝑛−1,1)(𝑓) =
∑
𝜎∈𝔖𝑛

𝑓 (𝜎)𝜌(𝑛−1,1)(𝜎).

We call this the 1-local discrete Fourier transform (DFT) of a function. While

𝜌(𝑛−1,1)
is a group isomorphism,𝐷(𝑛−1,1)

is not a ring isomorphism. However,

this map becomes a ring isomorphism if we restrict the domain to the 1-local

subring of C𝔖𝑛 . We will show this in Chapter 4. Consider, for instance, the

1-local DFT of the excedance function in 𝔖4:

𝐷(𝑛−1,1)(Exc) =

1 2 3 4©­­«
ª®®¬

1 6 8 10 12

2 12 6 8 10

3 10 12 6 8

4 8 10 12 6

.

The excedance function is the unique 1-local preimage of this matrix, but

there are other non-local preimages of the same matrix. For instance, the

function 𝑓 : 𝔖𝑛 → C is defined by

𝑓 (𝜎) =
{
(𝑛 − 2)!

(
𝑛(𝑛−1)

2
− 𝑝

)
𝜎 = (123 · · · 𝑛)𝑝

0 else

has the same 1-local DFT, but is not 1-local.

These matrix representations are useful because we only need a poly-

nomial number of coefficients to describe local functions, and the entries

of the matrices often have nice patterns. For instance, the permutation

representation of the excedance function is always a circulant. This can be

seen by examining the structure of 𝐷(𝑛−1,1)(1(𝐼 ,𝐽)).

10 Introduction

12 13 14 21 23 24 31 32 34 41 42 43

©­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®¬

12 1

13 1

14 1

21 1

23 1

24 1

31 1

32 1

34 1

41 1

42 1

43 1

Figure 1.3 2-local representation of 𝜎 = 4132. There is 1 in the 14 − 21 entry
of the matrix, because 𝜎 · (2, 1) = (𝜎(2), 𝜎(1)) = (1, 4). The 0s are omitted for
clarity.

Viewing 𝜎 as a function from [𝑛] to [𝑛] gives rise to an action of 𝜎 on

lists of length 2 with entries from [𝑛]. For the most part, we will not allow

repetition in our lists. We can define this map so that 𝜎((𝑎, 𝑏)) = (𝜎(𝑎), 𝜎(𝑏)).
Generating a matrix in the same way as we did previously, but indexing using

ordered pairs instead of single numbers gives rise to the 2-local representation
and DFT. For example, the 2-local representation of 4132 is shown in Fig. 1.3.

1.3 Pattern Avoidance

Pattern avoidance is a field complementary to the study of permutation

statistics. The question is, given a permutation in 𝔖𝑛 and a permutation

in 𝔖𝑘 , is it possible to find a subsequence of the permutation in 𝔖𝑛 which

has the same relative order as the permutation in 𝔖𝑘? For example, the

permutation 13425 contains two occurrences of the pattern 132, given by the

subsequences 132 and 142, whereas the permutation 54123 avoids the pattern

132 because there is no subsequence 𝑎𝑏𝑐 with the property that 𝑎 < 𝑐 < 𝑏.

The most famous instance of a pattern avoidance problem is Exercise 5 in

Knuth (1968), which shows that a list is stack sortable if and only if it avoids

Pattern Avoidance 11

the pattern 231. Since this problem appeared, enumerating permutations

which avoid a certain pattern has become a popular problem in this field.

For example, the Stanley-Wilf conjecture, proposed in the 1980s and proved

in 2004, shows that for every pattern 𝜎 there exists a number 𝐶 such that for

all 𝑛, no more than 𝐶𝑛 permutations in 𝔖𝑛 avoid 𝜎; see Marcus and Tardos

(2004).

Searching for avoidance has also recently been generalized to searching

for containment, that is, a permutation statistic which counts the number

of instances of a pattern in a permutation. The function counting instances

of a pattern is 𝑘-local if the pattern has length 𝑘, which has been used to

study the distributions of these functions in Gaetz and Ryba (2021), Gaetz

and Pierson (2022), and Hamaker and Rhoades (2022).

1.3.1 Longest Increasing Subsequences

Long increasing subsequences are really just a special permutation pattern.

The length of the longest increasing subsequence of a permutation is the

largest 𝑘 such that 123 . . . 𝑘 is contained in the permutation. Longest increas-

ing subsequences were studied even before Knuth popularized the study

of pattern avoidance. Perhaps the best known result is the Erdős-Szekeres

Theorem, which says that if a permutation is in 𝔖(𝑟−1)(𝑠−1)+1
, then it contains

either an increasing subsequence of length 𝑟 or a decreasing subsequence of

length 𝑠. The study of the distribution of the longest increasing subsequence

function has an interesting history and has connections to a number of other

ideas in physics and mathematics; see Romik (2015).

There is a remarkable connection between the longest increasing sub-

sequence of a permutation and the Robinson-Schensted correspondence.

The Robinson-Schensted correspondence, described in more detail in Sec-

tion 2.1, is a bĳection between permutations in 𝔖𝑛 and pairs of standard

tableaux of the same shape which has a number of convenient properties.

A notable property of this correspondence is that the length of the longest

increasing subsequence in a permutation 𝜎 is the same as the length of the

first row of the tableaux associated with 𝜎 under the Robinson-Schensted

correspondence; see Schensted (1961). An important consequence is that the

dimension of the 𝑘-local subring is equal to the number of permutations with

an increasing subsequence of length 𝑛 − 𝑘, which is useful for constructing a

basis for the 𝑘-local space.

Long increasing subsequences and their connection to RSK tableaux are

the threads connecting all of the ideas in my thesis. To better understand

12 Introduction

long increasing subsequences, we study how they show up across different

representations of permutations. Furthermore, we can use permutations

with long increasing subsequences to form a basis for the 𝑘-local space.

Chapter 2

Background

In this chapter, we provide some background which will be helpful for

understanding the remainder of the thesis. Sections 2.1 and 2.2 comprise

the background for Chapter 3. Sections 2.1, 2.3, 2.4, and 2.5 comprise the

background for Chapter 4.

2.1 RSK Tableaux

Robinson-Schensted-Knuth correspondence is a relationship between pairs

of standard Young tableaux and permutations which plays nicely with

longest increasing subsequences. Before understanding this relationship,

we first need to understand the combinatorial objects known as standard

tableaux.

Given an integer 𝑛 we say 𝜆 is a partition of 𝑛, denoted 𝜆 ⊢ 𝑛, if 𝜆 is a

weakly decreasing list of positive integers which sum to 𝑛.

Example 2.1. (4, 2, 1, 1) is a partition of 8. We sometimes write partitions

based on how many times each number appears. For example, we could

write (4, 2, 1, 1) as (41 , 21 , 12).

We can use Young diagrams to visualize partitions. To construct a Young

diagram for a partition 𝜆 = (𝜆1 ,𝜆2 , . . . ,𝜆𝑘), arrange 𝑛 boxes in 𝑘 left-justified

rows so that row 𝑖 has 𝜆𝑖 boxes.

14 Background

Example 2.2. The Young diagram for (4, 2, 2, 1) is

.

Remark. We draw our diagrams using the English convention. The French

convention has the longer rows on the bottom and shorter rows on the top.

The Russian convention places the squares on a diagonal by rotating the

French version forty-five degrees counterclockwise.

Once we have Young diagrams, we can define Young tableaux. Young

tableaux of shape 𝜆 ⊢ 𝑛 are Young diagrams of shape 𝜆 with the integers in

[𝑛] = {1, . . . , 𝑛} filled into the diagram.

Example 2.3. Here is an example of a tableau of shape (4, 2, 1):

1 7 4 2

3 5

6

.

Usually, we are interested in a specific kind of Young tableau called

standard Young tableaux.

Definition 2.1. A Young tableau is standard if its rows and columns are

strictly increasing, sreading left to right and top to bottom.

Example 2.4. The Young tableau

1 7 4 2

3 5

6

is not standard because the first row and second column are not strictly

increasing, but the Young tableau

1 2 4 7

3 5

6

is standard.

RSK Tableaux 15

We can now introduce the Robinson-Schensted algorithm, which takes in

a permutation in 𝔖𝑛 and outputs two standard Young tableaux of the same

shape. The algorithm works by inserting the images of the permutation

into an insertion tableau while simultaneously inserting the corresponding

indices into a recording tableau so that the tableaux are always standard and

always have the same shape. The insertion procedure follows the steps in

Algorithm 1 and is applied first to 1, 𝜎(1) and two empty tableaux and then

iteratively applied to 2 and 𝜎(2), 3 and 𝜎(3), all the way up to 𝑛 and 𝜎(𝑛),
always using the updated tableaux from the previous run.

Notation. We typically denote the RSK tableaux of a permutation by (𝑃, 𝑄),
where 𝑃 is the insertion tableau and 𝑄 is the recording tableau. Let RSK(𝜎)
be the partition of 𝑛 that is the shape of both 𝑃 and 𝑄.

Example 2.5. Given the permutation 51342, we will find two standard Young

tableaux 𝑃 and 𝑄 using the Robinson-Schensted algorithm. We can find 𝑃

and 𝑄 by inserting the permutation into 𝑃. We first insert 5, which leads to

the following two partial tableaux for 𝑃 and 𝑄:

𝑃 =
5 𝑄 =

1 .

The 5 comes from inserting the first letter into 𝑃. The 1 comes from the fact

that 5 is in the first position. Next, we insert 1. Because 1 < 5, it will “bump”

5 into the next row. We then insert 5 into the next row, which happens to be

empty, and we insert 2 in 𝑄 into the same position in which we inserted 5 in

𝑃:

𝑃 =
1

5

𝑄 =
1

2

.

Next, we insert 3. Because 1 < 3, we do not insert 3 in the for loop, and so

we simply insert 3 into the same row as 1:

𝑃 =
1 3

5

𝑄 =
1 3

2

.

Because 4 > 3, we insert 4 in the same way:

𝑃 =
1 3 4

5

𝑄 =
1 3 4

2

.

16 Background

Because 3 is the first number in the first row which is greater than 2, 2 will

bump 3 into the second row when we insert it. Because 3 is less than 5, 3 will

bump 5 into the next row. This results in the final RSK tableaux for 51342:

𝑃 =
1 2 4

3

5

𝑄 =
1 3 4

2

5

.

Algorithm 1 Insertion Procedure for Robinson-Schensted Algorithm

Require: 𝑖 ∈ [𝑛]
Require: 𝜎(𝑖) ∈ [𝑛]
Require: Insertion tableau 𝑃

Require: Recording tableau 𝑄

if 𝑃 is empty then

𝑃 =
𝜎(𝑖)

𝑄 =
𝑖

return (𝑃, 𝑄)
end if
for 𝑗 in the first row of 𝑃 do

if 𝜎(𝑖) < 𝑗 then
Replace 𝑗 with 𝜎(𝑖)
Let 𝑃̃ be 𝑃 with the first row removed

Let 𝑄̃ be 𝑄 with the first row removed

Set 𝑃̃′ and 𝑄̃′ to be the output of recursing on 𝑖 , 𝑗 , 𝑃̃ , 𝑄̃

Replace all but the first row of 𝑃 with 𝑃̃′

Replace all but the first row of 𝑄 with 𝑄̃′

return (𝑃, 𝑄)
end if

end for
Append 𝜎(𝑖) to the end of the first row of 𝑃

Append 𝑖 to the end of the first row of 𝑄

return (𝑃, 𝑄)

We can now state the result that the algorithm described above gives a

bĳection between permutations and pairs of standard Young tableaux.

Theorem 2.1 (Schensted (1961)). The Robinson-Schensted Algorithm gives a

RSK Tableaux 17

bĳection between permutations and pairs of standard Young tableau of the same
shape.

Example 2.6. There are 6 permutations in 𝔖3. The standard young tableaux

of size 3 are

1 2 3 1 2

3

1 3

2

1

2

3

.

There is one pair of standard tableaux of shape (3),(
1 2 3 , 1 2 3

)
,

there are four pairs of shape (2, 1):

©­« 1 2

3

, 1 2

3

ª®¬ , ©­« 1 2

3

, 1 3

2

ª®¬ ,©­« 1 3

2

, 1 2

3

ª®¬ , ©­« 1 3

2

, 1 3

2

ª®¬
and one pair of shape (13):

©­­«
1

2

3

,

1

2

3

ª®®¬ .
The pairs of standard Young tableau are listed again below with their

corresponding permutations in Table 2.1.

RSK tableaux have some useful properties which will rely on later.

Theorem 2.2 (Schützenberger (1963)). If 𝜎 has RSK tableaux 𝑃 and𝑄, then 𝜎−1

has RSK tableaux 𝑄 and 𝑃.

This result is useful because it often allows us to prove something in only

one case and automatically deduce the other case.

Now you might be wondering, what does any of this have to do with

long increasing subsequences? The connection between longest increasing

subsequences and RSK tableaux was made when this algorithm was first

introduced.

18 Background

𝜎 RSK(𝜎) 𝑃 𝑄

123 (3) 1 2 3 1 2 3

132 (2, 1) 1 2

3

1 2

3

312 (2, 1) 1 2

3

1 3

2

231 (2, 1) 1 3

2

1 2

3

213 (2, 1) 1 3

2

1 3

2

321 (13) 1

2

3

1

2

3

Table 2.1 Insertion tableaux (𝑃) and recording tableaux (𝑄) for permutations
in 𝑆3 found using the Robinson-Schensted algorithm.

Theorem 2.3 (Schensted (1961)). The length of the longest increasing subsequence
of 𝜎 is equal to the first component of RSK(𝜎).

Example 2.7. See Table 2.1. 123 has a longest increasing subsequence of

length 3. 321 has a longest increasing subsequence of length 1. All other

permutations in 𝔖3 have a longest increasing subsequence of length 2.

Example 2.8. In Example 2.5, we showed that RSK(51342) = (3, 1, 1). The

permutation 51342 has an increasing subsequence of length 3, for example

134, but no increasing subsequence of length 4. So 3 is the length of the

longest increasing subsequence and the first part of RSK(51342).

If the length of the first row is the same as the length of the longest

increasing subsequence in a permutation, can else can the shape of the RSK

tableaux tell us? More work has been done to investigate this relationship;

see, for example, work by the authors of Gunawan et al. (2022).

Reduced Words and Runs 19

Since the RSK algorithm gives a bĳection, we can think of RSK tableaux

as another representation of permutations. In the next section, we introduce

another way to represent permutations called reduced words. In Chapter 3,

we study the relationship between RSK tableaux and reduced words.

2.2 Reduced Words and Runs

In this section, we introduce a new way of representing permutations

called a reduced word. As we will see, the length of the longest increasing

subsequence of a permutation is intimately connected with a statistic on the

reduced words of the permutation.

The set of permutations, 𝔖𝑛 , has a group structure, which means that

there are rules for composing permutations in 𝔖𝑛 to get new permutations.

A set of generators for 𝔖𝑛 is a set of permutations from which we can form

the whole group by taking compositions of the elements of the set. Adjacent

transpositions are a particularly natural generating set for 𝔖𝑛 .

Definition 2.2. The adjacent transposition at 𝑖, denoted 𝑠𝑖 , is the permutation

satisfying

𝑠𝑖(𝑗) =


𝑖 + 1 if 𝑗 = 𝑖

𝑖 if 𝑗 = 𝑖 + 1

𝑗 else.

In cycle notation, 𝑠𝑖 is written as (𝑖 𝑖 + 1).

Theorem 2.4 (Sagan (2001)). The adjacent transpositions 𝑠1 , 𝑠2 , . . . , 𝑠𝑛−1 gener-
ate 𝔖𝑛 .

In other words, any permutation in 𝔖𝑛 can be written as a product of

adjacent transpositions. See Table 2.2.

When we write the factorization using the 𝑠𝑖 , or simply 𝑖, notation

rather than the adjacent transposition cycle notation, we obtain a word

for the permutation. If the factorization is minimal, i.e. there does not

exist a factorization with fewer letters than the given factorization, then the

corresponding word is called a reduced word.

Definition 2.3. A word 𝑤 = 𝑤1𝑤2 . . . 𝑤ℓ made from letters in [𝑛 − 1] is a

reduced word for a permutation 𝜎 if and only if

1. 𝜎 = 𝑠𝑤1
◦ 𝑠𝑤2

◦ · · · ◦ 𝑠𝑤ℓ .

20 Background

One-line notation Cycle notation Factorizations Reduced Words

123 1 ∅ []
132 (2 3) 𝑠2 2

213 (1 2) 𝑠1 1

231 (1 2 3) 𝑠1𝑠2 12

312 (1 3 2) 𝑠2𝑠1 21

321 (1 3) 𝑠1𝑠2𝑠1 , 𝑠2𝑠1𝑠2 121, 212

Table 2.2 One-line and cycle notation for permutations in 𝔖3 with factoriza-
tions into adjacent transpositions and corresponding reduced words.

2. if another word 𝑤′ = 𝑤′
1
𝑤′

2
. . . 𝑤′

𝑘
satisfies the above condition, then

𝑘 ≥ ℓ .

See Table 2.2 for a list of reduced words for all permutations in 𝔖3. As

we can see in the table, reduced words are not unique, but they are unique

up to the following relations:

1. (Commutativity Relation) 𝑠𝑖𝑠 𝑗 = 𝑠 𝑗𝑠𝑖 if |𝑖 − 𝑗 | > 1.

2. (Braid Relation) 𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1.

Notice that the second condition only becomes relevant if some 𝑠𝑖 appears

more than once. Following the convention in Gunawan et al. (2022), we

call permutations boolean when every letter 𝑖 appears at most once in every

reduced word for the permutation. The fact that reduced words are not

unique can make them difficult to work with. Gunawan et al. define

a canonical reduced word for boolean permutations in Gunawan et al.

(2022). In Chapter 3, we recall this definition and attempt to extend it to all

permutations.

In working with reduced words, it is helpful to note that the letters we are

working with will always be the same. In other words, if supp(𝜎) denotes

the letters in a reduced word for 𝜎, then supp(𝜎) is well-defined, i.e. it is

independent of the reduced word chosen. This is because the braid and

commutativity relations do not change the letters in the permutation, only

Reduced Words and Runs 21

their order and how many times they appear. We also use supp(𝑤) to denote

the letters which appear in a reduced word 𝑤.

There is one more idea we need to introduce, which relates reduced

words back to longest increasing subsequences in permutations.

Definition 2.4. A run in a reduced word is a consecutive subword which

is monotone and has all adjacent letters. An increasing run is a consecutive

subword of the form 𝑎(𝑎 + 1)(𝑎 + 2) · · · (𝑎 + 𝑘) and a decreasing run is a

consecutive subword of the form (𝑎+ 𝑘) · · · (𝑎+2)(𝑎+1)𝑎. A run decomposition
of a word partitions the word into the longest possible runs.

Example 2.9. The reduced word 12365437 has three runs: 123, 6543, and 7

and run decomposition 123 · 6543 · 7.

Definition 2.5. A reduced word for a permutation is called a minimal run
word if there are no reduced words for the same permutation which can be

decomposed into fewer disjoint runs. Let Run(𝜎) denote the number of runs

in a minimal run word for 𝜎.

Example 2.10. The reduced word 615432 has three runs: 6, 1, and 5432. We

can use the commutativity relation to rewrite it as 654312 which has two

runs: 6543 and 12. Since it is impossible to find an equivalent reduced word

with only one run, 615432 is not a minimal run word, but 654312 is.

We are now ready to state the result which relates to longest increasing

subsequences of 𝔖𝑛 .

Theorem 2.5 (Gunawan et al. (2022)). If 𝜎 ∈ 𝔖𝑛 and 𝜆1 is the first part of
RSK(𝜎), then

Run(𝜎) + 𝜆1 = 𝑛.

Example 2.11. The word 654312 is a minimal run word for the permutation

2713456. One longest increasing subsequence in 2713456 is 13456, which has

length 5, which is what we expect since Run(2713456) = 2 and 2713456 ∈ 𝔖7.

This result is somewhat remarkable. The conclusion is that the minimum

number of runs needed to write a reduced word for a permutation added to

the length of the longest increasing subsequence is always 𝑛, so one way to

better understand the longest increasing subsequence function is to study

Run. Our focus will be to extend the canonical reduced word defined in

Gunawan et al. (2022) to general permutations and make some progress

towards showing that it is a minimal run word. In doing so, we introduce

a new kind of diagram for canonical reduced words and give a method of

reading RSK tableaux directly off of the reduced words in certain cases.

22 Background

2.3 𝑘-Local Functions: Combinatorially

Long increasing subsequences also have connections to special kinds of

complex-valued functions on the symmetric group. One motivation for

studying functions on the symmetric group is to study voting, as permuta-

tions can be thought of as total rankings of a set of candidates. In this case,

the function of interest might be, for a given permutation, how many people

ranked the options in that relative order. However, given the significance of

the symmetric group in combinatorics and algebra, functions which depend

on properties of the permutations are interesting to study in their own right

as well. Generally, we call complex-valued functions on 𝔖𝑛 which depend

on some structural property of the permutation permutation statistics. We can

think of permutations as orderings of any objects, but we typically think of

ordering elements of the set [𝑛] = {1, . . . , 𝑛}. One of the nice properties of

this set is that it has a total ordering, which allows us to ask questions about

the relative sizes of the objects being ordered. Some examples of functions

like this are the number of inversions (Inv), descents (Des), and excedances

(Exc). Inv and Exc will serve as useful examples through this work.

Definition 2.6. A permutation 𝜎 has an excedance at 𝑖 ∈ [𝑛] if 𝑖 < 𝜎(𝑖). The

statistic Exc is the number of excedances in a permutation, i.e.,

Exc(𝜎) = #{𝑖 ∈ [𝑛] | 𝑖 < 𝜎(𝑖)}.

Definition 2.7. A permutation 𝜎 has an inversion at 𝑖 , 𝑗 ∈ [𝑛] if 𝑖 < 𝑗 and

𝜎(𝑖) > 𝜎(𝑗). The statistic Inv is the number of inversions in a permutation,

i.e.,

Inv(𝜎) = #{(𝑖 , 𝑗) ∈ [𝑛] × [𝑛] | 𝑖 < 𝑗 , 𝜎(𝑖) > 𝜎(𝑗)}.

We observe from both of these definitions that the functions are simply

counts of occurrences of a phenomenon in the permutation. Looking a little

more closely, we can see there is a difference in the amount of information

needed to determine whether there is an occurrence of the phenomenon. For

example, if I hand you a number 𝑖 ∈ [𝑛], you could easily tell me whether

a permutation 𝜎 has an excedance at 𝑖 by comparing 𝑖 and 𝜎(𝑖). However,

if I just hand you 𝑖 ∈ [𝑛], you would have to check all the numbers in [𝑛]
to see if 𝑖 contributed to the inversion count at all. On the other hand, if

I hand you 𝑖 , 𝑗 ∈ [𝑛], you can easily tell me whether 𝜎 has an inversion at

(𝑖 , 𝑗) by evaluating the permutation at 𝑖 and 𝑗 and comparing the values. In

other words, while the excedance function encodes information about single

𝑘-Local Functions: Combinatorially 23

entries, the inversion function somehow needs information about ordered

pairs.

One challenge that arises when studying functions on permutations is

that the symmetric group grows very quickly with 𝑛, since its size is 𝑛!. The

idea that the function depends on information given by single numbers or

pairs can be used to represent the function in a new way which is much

more efficient space-wise. To do so, we define some notation which is used

in Hamaker and Rhoades (2022).

Definition 2.8. Let 𝐼 = (𝑖1 , . . . , 𝑖𝑘) and 𝐽 = (𝑗1 , . . . , 𝑗𝑘) be length-𝑘 lists

without repetition whose entries are in [𝑛]. Then we call the pair (𝐼 , 𝐽)
a partial permutation of length 𝑘. Let 𝔖𝑛,𝑘 denote the set of all partial

permutations of length 𝑘 with entries in [𝑛].
Example 2.12. ((4, 5), (2, 4)) ∈ 𝔖5,2 is a length 2 partial permutation with

entries drawn from [5]. ((5, 5), (2, 4)) is not a partial permutation because

the first tuple has repetition.

Notation. The ordered-pair-of-lists notation is a bit clunky, so we omit the

inner parentheses and commas, writing (45, 24) instead of ((4, 5), (2, 4)).
The name partial permutation is suggestive. It is helpful to think of 𝑖ℓ

mapping to 𝑗ℓ for all ℓ ∈ [𝑘], so the partial permutation defines a bĳection

between two size 𝑘 subsets of [𝑛]; see Figure 2.1.

Figure 2.1 A visualization of the partial permutation (45, 24) embedded in
the permutation 35124. The positions or preimages are in the first row, and
their images under the permutation and partial permutation are in the second
row. The partial permutation is emphasized with the darker magenta color.

Partial permutations can help us formalize the idea of looking at single

elements or pairs of elements to evaluate functions on the symmetric group.

24 Background

Consider, for example, the partial permutation (1, 2). If a permutation

contains this partial permutation, then we know it has an excedance at 1.

Similarly, if a permutation contains the partial permutation (14, 32), then the

permutation has an inversion at (1, 4). On the other hand, if a permutation

contains (45, 24), then it does not have an inversion at (4, 5). We can evaluate

Exc and Inv by asking questions about which elements of 𝔖𝑛,1 and 𝔖𝑛,2,

respectively, are contained in a given permutation. We do so using indicator

functions.

Definition 2.9. Given a partial permutation (𝐼 , 𝐽) ∈ 𝔖𝑛,𝑘 , define the indicator

function 1(𝐼 ,𝐽) : 𝔖𝑛 → C to be 1 on all permutations containing (𝐼 , 𝐽) and zero

on all other permutations, i.e.,

1(𝐼 ,𝐽)(𝜎) :=

{
1 𝜎(𝑖ℓ) = 𝑗ℓ for all ℓ ∈ [𝑘]
0 else.

Example 2.13. From Figure 2.1, we can see that 1(45,24)(35124) = 1. On the

other hand, 1(35,34)(35124) = 0 because 35124 does not map 3 to 3.

Many functions of interest are linear combinations of these indicator

functions. For example,

Exc =
∑
𝑖< 𝑗

1(𝑖 , 𝑗) and Inv =
∑
𝑖< 𝑗
ℓ>𝑚

1(𝑖 𝑗 ,ℓ𝑚).

To get the excedance function, we sum over all partial permutations (𝑖 , 𝑗) that

represent an excedance, i.e. 𝑖 < 𝑗. Similarly, to get the inversion function, we

sum over all partial permutations (𝑖 𝑗 , ℓ𝑚) that represent inversions, i.e. 𝑖 < 𝑗

and ℓ > 𝑚.

When a permutation statistic can be written as a linear combination of

indicator functions on partial permutations in 𝔖𝑛,𝑘 , we call the permutation

statistic 𝑘-local.

Definition 2.10. A complex-valued function on 𝔖𝑛 is 𝑘-local if it is in

span{1(𝐼 ,𝐽) | (𝐼 , 𝐽) ∈ 𝔖𝑛,𝑘}.
Example 2.14. Exc is 1-local and Inv is 2-local.

This definition can help us prove that functions are 𝑘-local without too

much difficulty, and can help us build intuition for the 𝑘-local space. What

makes the idea of a local function so powerful is that it has a second definition

which leans heavily on the representation theory of the symmetric group.

𝑘-Local Functions: Algebraically 25

Remark. Why do so many well-studied statistics happen to be local? Are

they fundamentally easier to study or understand intuitively because they’re

local? The FindStat database is a great computing resource for studying

functions on the symmetric group; see Rubey et al. (2022). How many

permutation statistics in the FindStat database are 𝑘-local and for which 𝑘?

2.4 𝑘-Local Functions: Algebraically

The representation theory of the symmetric group is both well-studied and

currently an active area of research. I recommend as a good starting point

Sagan (2001). We introduce some notation here, but assume some familiarity

with the representation theory of the symmetric group.

Definition 2.11 (Sagan (2001)). The irreducible modules of 𝔖𝑛 , called Specht
modules, are indexed by partitions of 𝑛 and denoted by 𝑆𝜆 where 𝜆 ⊢ 𝑛.

The symmetric group is very playful and fun to work with. The represen-

tation theory of the symmetric group has deep relationships to combinatorial

objects; see, for example, Stanley and Fomin (1999) and Sagan (2001). The

following result is an example of this playful interaction.

Theorem 2.6 (Sagan (2001)). The dimension of 𝑆𝜆 is the number of standard
tableaux of shape 𝜆.

To make use of representation theory of the symmetric group, we observe

that there is a natural identification of complex-valued functions on 𝔖𝑛 with

elements of the group ring C𝔖𝑛 via

𝑓 : 𝔖𝑛 → C←→
∑
𝜎∈𝔖𝑛

𝑓 (𝜎)𝜎.

Now recall that the group ring C𝔖𝑛 is a C-algebra and by the Artin-

Wedderburn Theorem there is a C-algebra isomorphism

Ψ : C𝔖𝑛 →
⊕
𝜆⊢𝑛

𝑀 𝑓 𝜆× 𝑓 𝜆
defined by 𝑓 ↦→

⊕
𝜆⊢𝑛

∑
𝜎∈𝔖𝑛

𝑓 (𝜎)𝜌𝜆(𝜎)

where 𝜌𝜆 is a representation for the Specht module associated with 𝜆 and 𝑓 𝜆

is the dimension of 𝜌𝜆. The following theorem has been proved in a number

of different ways, and we omit the proof here for brevity. The proof that

uses the language closest to that of this document can be found in Hamaker

and Rhoades (2022), along with references to other papers containing proofs

of the statement.

26 Background

Theorem 2.7 (Hamaker and Rhoades (2022)). A function 𝑓 with

Ψ(𝑓) =
⊕
𝜆⊢𝑛

∑
𝜎∈𝔖𝑛

𝑓 (𝜎)𝜌𝜆(𝜎)

is 𝑘-local if and only if the components with 𝜆1 < 𝑛 − 𝑘 are zero.

Example 2.15. We give a detailed example of how this plays out when 𝑛 = 3.

In this case,

C𝔖3 � 𝑀
1×1 ⊕ 𝑀2×2 ⊕ 𝑀1×1.

Consider three irreducible representations for 𝔖3 defined by

𝜌(3)(213) =
(
1

)
𝜌(3)(132) =

(
1

)
𝜌(2,1)(213) =

(
−1 0

−1 1

)
𝜌(2,1)(132) =

(
0 1

1 0

)
𝜌(1,1,1)(213)) =

(
−1

)
𝜌(1,1,1)(132) =

(
−1

)
.

Now consider the excedance function on 𝔖3. We can identify this function

with the group algebra element

Exc = 0 · 123 + 1 · 132 + 1 · 213 + 2 · 231 + 1 · 312 + 1 · 321.

Since Exc is a 1-local function, we expect that the 𝜌(1,1,1)-component of

Ψ(Exc)will be zero. Indeed, we can verify that

Ψ(Exc)(1,1,1) = 0 · 𝜌(1,1,1)(123) + 1 · 𝜌(1,1,1)(132) + 1 · 𝜌(1,1,1)(213)
+ 2 · 𝜌(1,1,1)(231) + 1 · 𝜌(1,1,1)(312) + 1 · 𝜌(1,1,1)(321)
= 0 ·

(
1

)
+ 1 ·

(
−1

)
+ 1 ·

(
−1

)
+ 2 ·

(
1

)
+ 1 ·

(
1

)
+ 1 ·

(
−1

)
=
(
0

)
.

Localness is not particularly interesting when 𝑛 = 3 since there are only

three irreducible representations up to isomorphism. In general, the number

of nonzero matrices in the image of a 1-local function is 2 and does not grow

with 𝑛. This is remarkable as it means that the number of coefficients needed

to describe a 1-local function grows with 𝑛2
rather than 𝑛!.

We have defined 𝑘-localness for functions on 𝔖𝑛 by defining 𝑘-localness

for elements of C𝔖𝑛 . This definition extends to elements of C𝔖𝑛-modules

as well. Understanding local modules can help us understand the entire

𝑘-local space.

A Change in Perspective 27

Definition 2.12. Let 𝑁 be a C𝔖𝑛 module with

𝑁 �
⊕
𝜆⊢𝑛

𝑎𝜆𝑆
𝜆

where the 𝑎𝜆 are nonnegative integers. We say that 𝑁 is a 𝑘-local module if

𝑎𝜆 = 0 for 𝜆 with 𝜆1 < 𝑛 − 𝑘. We say that 𝑁 is a full 𝑘-local module if 𝑎𝜆 = 0

if and only if 𝜆1 < 𝑛 − 𝑘. Furthermore, 𝑓 ∈ 𝑁 is 𝑘-local if and only if the

projection of 𝑓 into the isotypic subspace of 𝑁 associated with 𝜆 is zero

when 𝜆1 < 𝑛 − 𝑘.
Example 2.16. The modules 𝑆(𝑛) ⊕ 𝑆(𝑛−1,1) ⊕ 𝑆(𝑛−2,2) ⊕ 𝑆(𝑛−2,1,1)

and 3𝑆(𝑛) ⊕
2𝑆(𝑛−1,1) ⊕ 𝑆(𝑛−2,2) ⊕ 𝑆(𝑛−2,1,1)

are both full 2-local modules, but 3𝑆(𝑛) ⊕
2𝑆(𝑛−1,1) ⊕ 𝑆(𝑛−2,2)

is not because it does not contain any copies of 𝑆(𝑛−2,1,1)
.

Remark. Why don’t we care about the multiplicities of the irreducible

modules in a full 𝑘-local module 𝑁? The answer lies in the guarantee

of a symmetry adapted basis; see Fässler and Stiefel (1992). For a group

𝐺, any C𝐺-module can be decomposed as a direct sum of irreducible

submodules. We can form a basis for the original module by taking the

union of bases for the irreducible submodules. Such a basis is symmetry

adapted when a representation with respect to the basis can be written as a

block diagonal matrix so that every block is an irreducibleC𝐺-representation

and representations corresponding to isomorphic irreducible submodules

are exactly the same. Thus we only care about whether a block appears at

all, rather than how many times it appears.

Our goal will be to find a basis for the 𝑘-local space. The 𝑘-local space,

defined as the set of 𝑘-local functions on 𝔖𝑛 , may not be as easy to work with

as we would hope. To get around this, we can use an injective homomorphism

from the 𝑘-local space to the endomorphism ring of a full 𝑘-local module.

As a consequence, the image of this map will then be isomorphic to the

𝑘-local space and so we can work with it instead or working directly with

the 𝑘-local space.

2.5 A Change in Perspective

How can we bridge the combinatorial and algebraic definitions of 𝑘-localness?

There is a happy medium which makes use of algebraic tools but has easier

combinatorics than the irreducible representations of 𝔖𝑛 . To accomplish this,

we will look at the action of 𝔖𝑛 on two combinatorial structures: tabloids

and tuples.

28 Background

2.5.1 Action on Tabloids

If we let 𝔖𝑛 act on the combinatorial objects called tabloids, we get a full

𝑘-local module. First, let us understand what tabloids are.

Definition 2.13. Define an equivalence relation on tableaux such that two

tableaux are equivalent if and only if their row contents is the same. A tabloid
is an equivalence class under this relation.

Example 2.17. The tableaux

1 2

5 4

3

, 2 1

5 4

3

, 1 2

4 5

3

, 2 1

4 5

3

are all equivalent under our relation. The equivalence class of these tableaux

is the tabloid

1 2

4 5

3

.

The notation indicates that we can write the row elements in any order, but

if we moved elements between rows, then we would have a different tabloid.

LetT(𝜆) denote the set of all tabloids of shape 𝜆. We can define an action

of 𝔖𝑛 on T(𝜆) given by replacing all of the entries 𝑖 in a tabloid with 𝜎(𝑖).
For example,

(1 2 3 4) · 3 1 5 7

2 6

4

=
4 2 5 7

3 6

1

because (1 2 3 4) · 1 = 2, (1 2 3 4) · 2 = 3, (1 2 3 4) · 3 = 4, (1 2 3 4) · 4 = 1 and

the other elements are fixed.

Notation. We are using a different notation for permutations here. Until

now, we have been using one-line notation to write our permutations, where

the position of each number is its preimage. Sometimes, we will also use

cycle notation, in which each number appears directly before its image. We

typically omit one-cycles, which are fixed points of the permutation. For

instance, (1 2 3 4) is the cycle notation for the permutation 2341567.

A Change in Perspective 29

Example 2.18. Suppose 𝜆 = (𝑛 − 1, 1). Since almost all of the numbers are in

the same row, when 𝜎 acts on 𝑡 ∈ T((𝑛 − 1, 1)), the only thing we need to

track is how the element in the second row is moved. This means that we

can think of the action of 𝔖𝑛 on T((𝑛 − 1, 1)) as the action of 𝔖𝑛 on [𝑛] via

𝜎 · 𝑖 = 𝜎(𝑖).

Example 2.19. The action of 𝔖𝑛 on tabloids generalizes the action of 𝔖𝑛

on 𝑘-tuples without repetition. If we focus on the action of 𝔖𝑛 on tabloids

of shape (𝑛 − 𝑘, 1𝑘), then we recover the action of 𝔖𝑛 on 𝑘-tuples without

repetition by focusing on the entries not in the first row.

Given this group action of 𝔖𝑛 on the setT(𝜆), we can linearize to create a

C𝔖𝑛-permutation module 𝑀𝜆
with basisT(𝜆). Associated with this module

is a representation with rows and columns indexed by the set T(𝜆).

Example 2.20. Consider the action of 𝔖3 on T((2, 1)). The three tabloids of

shape (2, 1) are

2 3

1

, 1 3

2

, 1 2

3

.

When 𝜎 = (1 2) acts on T((2, 1)), it swaps the first two tabloids above and

fixes the third one. We can encode this with the matrix

[(1 2)]T((2,1)) =
©­«
0 1 0

1 0 0

0 0 1

ª®¬ .
The first column means that

(1 2) · 2 3

1

=
1 3

2

,

the second column means that

(1 2) · 1 3

2

=
2 3

1

,

and the third column means that the action of (1 2) fixes

1 2

3

.

30 Background

Notation. Call the permutation representation associated with 𝑀𝜆
with

tabloids as basis vectors and the action as described above 𝜌𝜆. Call the linear

extension of this map to a DFT 𝐷𝜆
.

The module 𝑀𝜆
is well-studied, and its decomposition into Specht

modules is governed by a combinatorial rule dealing with semistandard

tableaux. A semistandard tableau is a tableau whose contents are strictly

increasing along columns and weakly increasing along rows.

Definition 2.14. The Kostka number 𝐾𝜆𝜇 counts semistandard tableaux of

shape 𝜆 and content 𝜇.

Example 2.21. Say 𝜇 = (3, 2, 1, 1, 1) and 𝜆 = (4, 2, 2). Then the content we

need to fill into the semistandard tableau is (1, 1, 1, 2, 2, 3, 4, 5). There are

three 1s because 𝜇1 = 3, two 2s because 𝜇2 = 2, and one each of 3, 4, 5 because

𝜇3 = 𝜇4 = 𝜇5 = 1. Then we have the following semistandard tableaux of

content 𝜇 and shape 𝜆:

1 1 1 2

2 3

4 5

, 1 1 1 2

2 4

3 5

, 1 1 1 3

2 2

4 5

, 1 1 1 4

2 2

3 5

, 1 1 1 5

2 2

3 4

and so 𝐾𝜆𝜇 = 5.

Theorem 2.8 (Young’s Rule). The multiplicity of 𝑆𝜆 in 𝑀𝜇 is 𝐾𝜆𝜇, i.e.,

𝑀𝜇 �
⊕
𝜆⊢𝑛

𝐾𝜆𝜇𝑆
𝜆.

How does this help us? The big idea is that the information we care

about is contained in the modules 𝑆𝜆 with 𝜆1 ≥ 𝑛 − 𝑘. However, 𝑀𝜇
is an

easier module to work with than 𝑆𝜆, so we want to show that there is a

choice of 𝜇 for which 𝑀𝜇
contains all of the information we need, i.e., that it

is a full 𝑘-local module.

Proposition 2.9. 𝑀(𝑛−𝑘,1𝑘) is a full 𝑘-local module.

Proof. We first show that if 𝜆1 ≥ 𝑛 − 𝑘, then 𝐾𝜆(𝑛−𝑘,1𝑘) is at least 1. To do

so, we need to construct a semistandard tableau of shape 𝜆 and content

(𝑛 − 𝑘, 1𝑘). Since 𝜆1 ≥ 𝑛 − 𝑘, we can fill all of the 𝑛 − 𝑘 1s into the first row.

We can then fill in the remaining entries starting in the first row, moving

left to right and then down the rows. Because we are filling in the numbers

A Change in Perspective 31

in order from left to right and top to bottom, all of the columns will be

strictly increasing and all rows, but the first will be strictly increasing as

well. The first row will still be weakly increasing, so we have constructed a

semistandard tableau of shape 𝜆 and content (𝑛 − 𝑘, 1𝑘).
Next we show that if 𝜆1 < 𝑛 − 𝑘, then 𝐾𝜆(𝑛−𝑘,1𝑘) = 0. Since the columns

of a semistandard tableau must be strictly increasing, all of the ones must

be placed in the first row. Creating a semistandard tableau of shape 𝜆
and content (𝑛 − 𝑘, 1𝑘)would therefore require us to place 𝑛 − 𝑘 ones into

𝜆1 < 𝑛 − 𝑘 boxes, which is impossible. Thus 𝐾𝜆(𝑛−𝑘,1𝑘) = 0. □

Now that we know that 𝑀(𝑛−𝑘,1
𝑘)

is a full 𝑘-local module, we can work

with 𝑀(𝑛−𝑘,1
𝑘)

which gives us the benefit of an algebraic toolbox with the

interpretability of its combinatorial definition.

2.5.2 Action on Tuples

Another approach we can take is to work with 𝑘-tuples instead of tabloids.

Let𝑋𝑘,𝑛 denote the 𝑘-tuples with letters in [𝑛] and repetition allowed. Define

the action of 𝔖𝑛 on 𝑋𝑘,𝑛

𝜎 · (ℓ1 , ℓ2 , . . . , ℓ𝑘) ↦→ (𝜎(ℓ1), 𝜎(ℓ2), . . . , 𝜎(ℓ𝑘)).

When we linearly extend this action to C𝔖𝑛 and C𝑋𝑘,𝑛 we get a module 𝑀𝑘
.

Denote the permutation representation induced by this action by 𝜌𝑘 and

denote the associated DFT by 𝐷𝑘
. See, for example, Fig. 2.2.

Remark. The module 𝑀𝑘
is actually isomorphic to the module 𝑀(𝑛−1,1)

tensored with itself 𝑘 times. See Doty (2021) for more on this perspective.

To make use of this module, we must show that it is a full 𝑘-local module.

Proposition 2.10. 𝑀𝑘 is a full 𝑘-local module.

Proof. 𝑀𝑘
is 𝑘-local by a result in Hamaker and Rhoades (2022) which

implies that tensoring a 1-local module with itself 𝑘 times gives a 𝑘-local

module. Furthermore, notice that 𝑀𝑘
contains a copy of 𝑀(𝑛−𝑘,1

𝑘)
if we

examine only the tuples without repetition. Since 𝑀𝑘
is 𝑘-local and contains

a full 𝑘-local module, 𝑀𝑘
is a full 𝑘-local module. □

In Chapter 4, we will finish showing that the 𝑘-local space is isomorphic

to the images of 𝐷(𝑛−𝑘,1
𝑘)

and 𝐷𝑘
and use these images to find a basis for the

𝑘-local space.

32 Background

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

11 1

12 1

13 1

14 1

21 1

22 1

23 1

24 1

31 1

32 1

33 1

34 1

41 1

42 1

43 1

44 1

Figure 2.2 Representation of 4132 acting on ordered pairs, i.e., 𝜌2(4132).

Chapter 3

Reduced Words and RSK
Tableaux

There are lots of ways to represent permutations. In this section, we focus

on two of these representations: reduced words and RSK tableaux. The

motivation for this work is to better understand how longest increasing subse-

quences appear across different representations of permutations. Schensted

showed that the length of the first row of the RSK tableaux of a permuta-

tion is the same as the length of the longest increasing subsequence of the

permutation; see Schensted (1961). More recently, Gunawan et al. showed

that the minimum number of runs over all reduced words for a permutation

plus the length of the longest increasing subsequence in the permutation

is always equal to 𝑛; see Gunawan et al. (2022). For boolean permutations,

Gunawan et al. also give an algorithm for constructing a minimal run word,

a reduced word which achieves this minimum. The word produced by this

algorithm is called a canonical reduced word. Our goal in this section is to

extend this algorithm to all permutations and show that the resulting word

is a minimal run word. The technique for showing the word is a minimal

run word is to relate it to the RSK tableaux. The approach is to show that

the runs in the canonical reduced word for a permutation are in bĳection

with boxes not in the first row of the RSK tableaux of the permutation.

3.1 Canonical Reduced Words

As previously discussed, reduced words are not unique. Gunawan et

al. define a canonical reduced word for boolean permutations which is a

34 Reduced Words and RSK Tableaux

minimal run word; see Gunawan et al. (2022). This word is the one produced

by Algorithm 2. Our goal is to extend this algorithm to all permutations.

Recall that we can move between reduced words for a single permutation

using the commutativity and braid relations, i.e., we can swap two letters 𝑖

and 𝑗 as long as |𝑖 − 𝑗 | > 1 and that 𝑖(𝑖 + 1)𝑖 = (𝑖 + 1)𝑖(𝑖 + 1). For example, we

can move from 234321 to 432123 via

243421

24=42−−−−→ 423241

41=14−−−−→ 423214

232=323−−−−−−→ 432314

31=13−−−−→ 432134.

Algorithm 2 Algorithm for Finding a Canonical Reduced Word for a Boolean

Permutation

Require: 𝑤, a reduced word with each letter appearing at most once

if 𝑤 = [] then return 𝑤
end if
Let 𝑎 := min(supp(𝑤))
if 𝑎 + 1 ∉ supp(𝑤) then

Use the commutativity relation to push 𝑎 to the left of 𝑤 and recurse

on the remaining word

else if 𝑎 + 1 appears to the left of 𝑎 in 𝑤 then
Let 𝑏 be the largest number such that if 𝑏 > 𝑐 ≥ 𝑎, then 𝑐 + 1 appears

to the left of 𝑐 in 𝑤

Use the commutativity relation to push the run 𝑏 · · · (𝑎 + 1)𝑎 to the left

of 𝑤 and recurse on the remaining word

else if 𝑎 + 1 appears to the right of 𝑎 in 𝑤 then
Let 𝑏 be the largest number such that if 𝑏 > 𝑐 ≥ 𝑎, then 𝑐 + 1 appears

to the right of 𝑐 in 𝑤

Use the commutativity relation to push the run 𝑎(𝑎 + 1) · · · 𝑏 to the

right of 𝑤 and recurse on the remaining word

end if

Boolean permutations are permutations whose reduced words consist of

all distinct letters. The idea behind Algorithm 2 is to consolidate runs in a

permutation by pushing decreasing runs to the left and increasing runs to

the right. For example, the word 142 has three runs, but we can consolidate

the 1 and 2 into a run by pushing 1 to the right, giving the word 412. Similarly,

if we started with the word 241, we could create the decreasing run 21 by

pushing 1 to the left to get 214.

Canonical Reduced Words 35

Notation. Given an increasing run 𝑟 = 𝑎(𝑎+1)(𝑎+2) · · · (𝑎+𝑘) or a decreasing

run 𝑟 = (𝑎 + 𝑘) · · · (𝑎 + 2)(𝑎 + 1)𝑎, define min(𝑟) = 𝑎 and max(𝑟) = 𝑎 + 𝑘 + 1.

We define the maximum so that it is the biggest number which is not fixed

by 𝑟.

Example 3.1. We give an example of applying Algorithm 2 to a boolean

permutation. Suppose we start with the word 𝑤 = 67154983. The minimum

letter in the word is 1. Since the word does not contain 2, we simply push

1 to the left to get 1 · 6754983. We can do this because 1 commutes with 6

and 7. We now recurse on 6754983. The new minimum letter is 3. Since 4

appears to the left of 3, we will push a run to the left. In this case 𝑏 = 6, so

we decompose 6754983 into 6543 · 798 and the full word is 1 · 6543 · 798. We

now recurse on 798. Since 7 is the minimum letter and 8 appears to the right

of 7, we will push a run to the right. In this case, 𝑏 = 8, so we decompose

798 as 9 · 78 and recurse on 9. Since 9 is now the minimum letter we push it

to the left and recurse on the empty word, which remains the same. This

leaves us with the final canonical word 1 · 6543 · 9 · 78.

Theorem 3.1 (Gunawan et al. (2022)). The canonical reduced word for a boolean
permutation produced by Algorithm 2 is unique and is a minimal run word.

In extending this algorithm to words in which letters may appear more

than once, one feature we would like to preserve is that, at the end, all of the

runs in the run decomposition of the canonical word have unique minima.

Guaranteeing unique minima is a little trickier in the general case, since the

minimum of the support of the word may appear more than once in our

starting word. The following lemma guarantees the existence of a word in

which the minimum of the support appears exactly once.

Lemma 3.2. Given a permutation 𝜎, there exists a reduced word for 𝜎 in which
min(supp(𝜎)) appears exactly once.

Proof. We use induction on the length of the reduced words for 𝜎. Let 𝑤 be

an arbitrary reduced word for 𝜎. If 𝑤 has length 1, then the minimum letter

in 𝑤 appears exactly once.

Let 𝑎 = min(supp(𝜎)). If 𝑤 = 𝑤0𝑤1 . . . 𝑤𝑛 has length 𝑛, then split 𝑤 into

two words: 𝑤′ = 𝑤0𝑤1 . . . 𝑤𝑖 and 𝑤′′ = 𝑤𝑖+1 . . . 𝑤𝑛 so that 𝑤𝑖 is the leftmost

occurrence of 𝑎. If 𝑤′′ does not contain 𝑎, then we are finished. If it does,

then by the inductive hypothesis there exists an equivalent reduced word

for 𝑤′′ in which 𝑎 appears exactly once. Concatenate this word with 𝑤′ to
obtain a new reduced word for 𝜎, denoted 𝑤∗, in which 𝑎 occurs exactly

twice.

36 Reduced Words and RSK Tableaux

Let 𝑟 be the word we get if we take the letters between the two occurrences

of 𝑎. The word 𝑟 must contain 𝑎 + 1 at least once. If it did not, then 𝑎 would

commute with everything between the two occurrences of 𝑎 and we could

cancel the two 𝑎’s, which would contradict the assumption that we started

with a reduced word. Also, the word 𝑟 cannot contain any letters less than

𝑎 + 1, because this would contradict either 𝑎 being minimal or 𝑤∗ containing

exactly two occurrences of 𝑎. Thus 𝑎 + 1 is the minimum element of 𝑟, which

is a shorter word than 𝑠 and so there exists an equivalent word 𝑟∗ which

contains 𝑎 + 1 exactly once. Replace 𝑟 with 𝑟∗ and call the resulting word

𝑤∗∗. The word 𝑤∗∗ is equivalent to 𝑤. Because 𝑎 commutes with all of the

letters in 𝑤∗∗ which are not 𝑎 + 1, we can use the commutativity relation to

move each occurrence of 𝑎 to either side of 𝑎 + 1. From there, we can use

the braid relation to convert 𝑎(𝑎 + 1)𝑎 into (𝑎 + 1)𝑎(𝑎 + 1). This final word is

equivalent to 𝑤. □

We illustrate the procedure described in the proof with an example.

Example 3.2. Suppose we start with the reduced word 𝑤 = 21234231231.

We first split this word into 𝑤′ = 21 and 𝑤′′ = 234231231. Since 𝑤′′ contains

1 twice, we need to recurse. We can split 𝑤′′ into 𝑝′ = 34321 and 𝑝′′ = 231.

Since 𝑝′′ already contains 1 only once, we can move on to using our relations

to eliminate one of the 1s in 𝑤′′. The word between the two occurrences

of 1 in 𝑤′′ is 23, which only contains 2 once. Thus we can replace 𝑤′′ with

234232123 by first switching the 1 and 3 at the end and using the braid

relation on 121. Then 𝑤∗ = 21234232123 contains 1 exactly twice. The word

between the two occurrences of 1 is 𝑟 = 234232, which contains 2 three times.

Split 𝑟 into 𝑟′ = 2 and 𝑟′′ = 34232. We can replace 𝑟′′ with 34323 to get

𝑟∗ = 234323. The word between the two 2s is 343, which we can replace with

434 to get 243423. Using commutativity, we move the 2s next to the 3 to get

423243 and using another braid relation gives us 432343. Substituting this

into 𝑤∗ for 𝑟 results in 𝑤∗∗ = 21432343123. We can now move the 1s next to

the 2: 24312134323. Finally, we apply the braid relation once more to obtain

24321234323.

Another choice we need to make in generalizing this algorithm is if

𝑎 + 1 appears on both sides of 𝑎, which direction do we push the run? My

intuition is that we always want to produce the longest run possible. Using

this strategy and pushing ties to the left yields Algorithm 3.

Example 3.3. We give an example of applying Algorithm 3. Let 𝑤 =

1234325436. The minimum letter in 𝑤 is 1. Since 𝑤 contains 2, we need to

Canonical Reduced Words 37

Algorithm 3 Algorithm for Finding a Canonical Reduced Word for All

Permutations

Require: 𝑤, a reduced word

if 𝑤 = [] then return 𝑤
end if
Let 𝑎 := min(supp(𝑤))
Let 𝑤 be an equivalent reduced word which contains 𝑎 exactly once

if 𝑎 + 1 ∉ supp(𝑤) then
Use the commutativity relation to push 𝑎 to the left of 𝑤 and recurse

on the remaining word

else
Let 𝑏ℓ be the largest number such that 𝑏ℓ , . . . , 𝑎+1, 𝑎 is a (not necessarily

consecutive) strictly decreasing subsequence of 𝑤

Let 𝑏𝑟 be the largest number such that 𝑎, 𝑎+1, . . . , 𝑏𝑟 is a (not necessarily

consecutive) strictly increasing subsequence of 𝑤

if 𝑏ℓ ≥ 𝑏𝑟 then
Push the run 𝑏 · · · (𝑎 + 1)𝑎 to the left of 𝑤 and recurse on the

remaining word

else if 𝑏𝑟 > 𝑏ℓ then
Push the run 𝑎(𝑎 + 1) · · · 𝑏 to the right of 𝑤 and recurse on the

remaining word

end if
end if

compute 𝑏𝑟 and 𝑏ℓ . Notice that 𝑏ℓ = 1, since there are no numbers to the left

of 1. However, 𝑏𝑟 = 6, since the longest increasing subsequence of the word

starting at 1 is 123456 (highlighted in red), so we will push this run to the

right:

1234325436

343=434−−−−−−→ 1243425436

124=412

42=24−−−−−−→ 4123245436

232=323−−−−−−→

4132345436

13=31−−−−→ 4312345436

454=545−−−−−−→ 4312354536

1235=5123

53=35−−−−−−−→

4351234356

343=434−−−−−−→ 4351243456

124=412−−−−−−→ 4354123456.

We then recurse on the word 4354. The minimum letter is 3. Here, 𝑏𝑟 = 𝑏ℓ = 4.

Since we have a tie, we will push the run to the left: 43 · 54. We recurse on

54, which is already a run, so we are finished. Thus the word produced by

our algorithm is 43 · 54 · 123456.

38 Reduced Words and RSK Tableaux

Notice that if we apply Algorithm 3 to a boolean permutation, the

procedure is exactly the same as in Algorithm 2. Many of the results in this

section could be strengthened if one could prove the following conjecture.

Conjecture 3.3. The canonical reduced word produced by Algorithm 3 is unique
and is a minimal run word.

Using an inductive strategy, the proof comes down to showing that the

maximal increasing or decreasing consecutive subsequence containing the

minimum letter in the word is the same across all equivalent words. This

would involve showing that we cannot extend such a sequence using the

commutativity and braid relations.

3.2 Some New Terminology

To prove that their canonical word is a minimal run word, Gunawan et al.

prove that RSK tableaux can be read directly off of their canonical reduced

words for boolean permutations. We extend this result in special cases

where the shape of the RSK tableaux of a permutation is a hook, i.e., the RSK

tableaux have shape (𝑛 − 𝑘, 1𝑘). Because the tableaux must be standard, we

need only identify which elements are in the first row and which are not.

We focus on a simplified case in which all of the runs are either increas-

ing or decreasing. Our goal for the remainder of this chapter will be to

characterize hook-shaped RSK tableaux and write them down directly from

the reduced words of their permutations. To state our main result, we first

need the following definitions.

Definition 3.1. We say a reduced word is monotone when its run decomposi-

tion has only increasing runs with strictly decreasing minima or has only

decreasing runs with strictly increasing minima.

We can now define what we mean by a nested permutation.

Definition 3.2. Suppose 𝑤 is a monotone word with run decomposition

𝑤 = 𝑟1 · 𝑟2 · · · 𝑟𝑘 . If the 𝑟𝑖 are all decreasing, then 𝑤 is a nested word if 𝑟𝑖 is a

subword of 𝑟𝑖−1 for all 𝑖 > 1; that is max(𝑟𝑖) ≤ max(𝑟𝑖−1) for all 𝑖 > 1. If the

𝑟𝑖 are all increasing, then 𝑤 is a nested word if 𝑟𝑖 is a subword of 𝑟𝑖+1 for all

𝑖 < 𝑘; that is max(𝑟𝑖) ≤ max(𝑟𝑖+1) for all 𝑖 < 𝑘. We call a permutation nested
if it has a nested reduced word.

Visualizing Canonical Run Decompositions 39

Note that the strictness condition on the minima guaranteed by the word

being monotone ensures that the runs will always be proper subwords of

one another.

Section 3.4 will be devoted to proving the following result:

Proposition 3.4. If 𝜎 has a nested reduced word which decomposes into 𝑘 runs,
then RSK(𝜎) = (𝑛 − 𝑘, 1𝑘).

This result also implies that nested words are always minimal run words.

3.3 Visualizing Canonical Run Decompositions

In this section, we introduce a way to visualize reduced words using their

run decompositions. These diagrams are not necessary to an understanding

of the result, but I want to include them because they provide intuition for

how these objects work and offer a visual framework that links permutations

to their reduced words. Additionally, these diagrams eliminate some of the

asymmetry of reduced words because they don’t bias towards the smaller

element in a transposition. Finally, these diagrams are interesting to study in

their own right. See some of the questions at the end of the section for ideas.

We only define these diagrams for particular kinds of reduced words,

namely those that might have been produced by Algorithm 3. These words

will have all of the decreasing runs on the left and all the increasing runs

on the right, the minima of the runs will all be unique, the minima of the

decreasing runs will be increasing and the minima of the increasing runs will

be decreasing. In other words, if the word has run decomposition 𝑟1 · 𝑟2 · · · 𝑟𝑘 ,
there exists an 𝑖 such that 𝑟1 · · · 𝑟𝑖 is monotone decreasing and 𝑟𝑖+1 · · · 𝑟𝑘 is

monotone increasing. While not every word satisfies this property, for any

word there exists an equivalent word which does satisfy this condition. This

is guaranteed by the result that super-Yamanouchi words exist for every

permutation; see Section 3.5.

Given a word that satisfies the conditions in the above paragraph whose

maximum letter is 𝑛−1, we create a grid of horizontal lines labeled 1, 2, . . . , 𝑛

with 1 at the bottom and 𝑛 at the top. Add a diagonal line for each run 𝑟 in

the run decomposition between the lines labeled with min(𝑟) and max(𝑟) so

that the lines have slope 1 if 𝑟 is increasing and −1 if 𝑟 is decreasing. Finally,

place the lines in the grid so that the minima are aligned vertically; see

Fig. 3.1a. See also Fig. 3.2a and Fig. 3.2c for examples of diagrams for nested

decreasing and increasing words, respectively.

40 Reduced Words and RSK Tableaux

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a. Diagram for the reduced word
4321 · 765 · 3456.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

b. Diagram for the reduced word
4321·765·3456 with paths drawn.

Figure 3.1 Diagram for the reduced word 4321 · 765 · 3456, which is a reduced
word for the permutation 51384627. The lines representing runs are drawn to
intersect every line corresponding to a number which the run does not fix. The
permutation can be read off of Fig. 3.1b by putting 𝑗 in position 𝑖 if and only if 𝑗
is the same color on the left as 𝑖 is on the right.

We can read the permutation off of these diagrams as well. When reading

this explanation, it will be helpful to keep Fig. 3.1b, Fig. 3.2b, and Fig. 3.2d

in mind.

To read the permutation off of the diagram, think of the right endpoints

of the grid as the domain of the permutation and the left endpoints as the

codomain of the permutation. To determine where a letter 𝑎 is mapped by

the permutation, begin on the gridline labeled with 𝑎 on the right. Follow

this line until you encounter a run. If the intersection is the right endpoint of

the run, follow the run all the way to the left endpoint and continue on that

gridline. If the intersection not the right endpoint, follow the run one unit

up or down to the right and follow that gridline until the next intersection.

The final line you end up on is the image of the letter you started with under

𝜎.

One way to reason about why this works involves a shift in perspective.

Each run is an adjacent cycle; if it is a decreasing run, then it is a cycle of

the form (𝑎 + 𝑘 + 1 · · · 𝑎 + 1 𝑎). When this cycle is applied to letters in

{𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑘}, then 𝑎 will jump up to 𝑎 + 𝑘 + 1 and everything else

will shift down one unit. This is why we follow the run all the way up if we

intersect its minimum and down one unit otherwise. The same reasoning

can be applied to increasing runs.

Through this process, we have traced a path over our diagram which

Visualizing Canonical Run Decompositions 41

1

2

3

4

5

6

1

2

3

4

5

6

a. Diagram for the reduced word
54321 · 5432 · 4.

1

6

2

5

3

1

4

3

5

2

6

4

b. Diagram for 54321 · 5432 · 4 with
paths drawn.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

c. Diagram for the reduced word 4 ·
34 · 123456.

7

1

6

7

5

6

4

3 3

4

2

5

1

2

d. Diagram for 4 · 34 · 123456 with
paths drawn.

Figure 3.2 Diagrams with and without paths for nested reduced words.

moves from a number on the right to a number on the left following gridlines

and runs. We call the point on the right at which the path begins the right
endpoint of the path, and the point on the left at which the path ends the left
endpoint. If a path intersects the rightmost point of some decreasing run, we

call the path a ladder since it climbs all the way up the run. Analogously, we

define chutes as paths which intersect the rightmost point of some increasing

run. From here on out, we will focus on the monotone case. In this scenario,

we will never have chutes and ladders in the same diagram. Paths in

diagrams for decreasing monotone words which are not ladders are called

non-ladders, and paths in diagrams for increasing monotone words which

are not chutes are called non-chutes.
Now that we have defined these diagrams, we can start to prove things

42 Reduced Words and RSK Tableaux

about them that will help us prove our main result.

Lemma 3.5. Suppose 𝑤 is a nested decreasing word with run decomposition
𝑟1 · 𝑟2 · · · 𝑟𝑘 . If a path intersects 𝑟𝑖 , then it also intersects but does not climb 𝑟 𝑗 for
𝑗 < 𝑖.

Proof. It is sufficient to show that the path intersects but does not climb 𝑟𝑖−1.

Let 𝑔 be the label of the gridline that the path is on after it intersects 𝑟𝑖 . The

highest gridline the path can be on after intersecting 𝑟𝑖 is max(𝑟𝑖) ≤ max(𝑟𝑖−1).
Similarly, the lowest gridline the path can be on after intersecting 𝑟𝑖 is

min(𝑟𝑖) > min(𝑟𝑖−1). Thus

min(𝑟𝑖−1) < min(𝑟𝑖) ≤ 𝑔 ≤ max(𝑟𝑖) ≤ max(𝑟𝑖−1).

Since min(𝑟𝑖−1) < 𝑔 ≤ max(𝑟𝑖−1), the path will intersect 𝑟𝑖−1 at a point which

is not its right endpoint. Thus the path must intersect 𝑟𝑖−1 without climbing

it. □

The following lemma will help us determine the RSK tableaux from the

diagrams by extracting information about increasing subsequences from the

diagrams.

Lemma 3.6. Let 𝜎 be a permutation with a nested decreasing reduced word 𝑤.
Then the left endpoints of ladders form a decreasing subsequence of 𝜎 and the left
endpoints of non-ladders form an increasing subsequence of 𝜎.

Proof. Suppose that 𝑤 is nested with run decomposition 𝑟1 · 𝑟2 · · · 𝑟𝑘 . We

show that if 𝑎 < 𝑏 are the right endpoints of ladders𝐴 and 𝐵 then 𝜎(𝑏) < 𝜎(𝑎).
Let 𝑟𝑖 , 𝑟𝑗 be the runs with min(𝑟𝑖) = 𝑎 and min(𝑟 𝑗) = 𝑏. Since 𝑎 < 𝑏, 𝑖 < 𝑗.

Because 𝑖 < 𝑗 and the runs are nested, max(𝑟𝑖) ≥ max(𝑟 𝑗). By Lemma 3.5,

the left endpoint of 𝐴 is 𝜎(𝑎) = max(𝑟𝑖) − (𝑖 − 1) and the left endpoint of

𝐵 is 𝜎(𝑏) = max(𝑟 𝑗) − (𝑗 − 1), since there are 𝑖 − 1 runs to the left of 𝑟𝑖 and

𝑗 − 1 runs to the left of 𝑟 𝑗 . Combining max(𝑟𝑖) ≥ max(𝑟 𝑗) with 𝑖 < 𝑗 gives

max(𝑟𝑖) − 𝑖 > max(𝑟 𝑗) − 𝑗 which implies that

𝜎(𝑎) = max(𝑟𝑖) − (𝑖 − 1) > max(𝑟 𝑗) − (𝑗 − 1) = 𝜎(𝑏)

as desired.

We also show that if 𝑎 < 𝑏 are right endpoints of non-ladders 𝐴 and

𝐵, then 𝜎(𝑎) < 𝜎(𝑏). Let 𝑟𝑖 be the first run that 𝐴 intersects and 𝑟 𝑗 be the

first run 𝐵 intersects, reading right to left. After 𝐴 intersects 𝑟𝑖 , it will be on

the gridline 𝑎 − 1. After 𝐵 intersects 𝑟 𝑗 , it will be on the gridline 𝑏 − 1. By

From Reduced Words to RSK Tableaux 43

Lemma 3.5, the left endpoint of 𝐴 is 𝜎(𝑎) = 𝑎−1−(𝑖−1) = 𝑎− 𝑖. Similarly, the

left endpoint of 𝐵 is 𝜎(𝑏) = 𝑏 − 𝑗. If 𝑖 ≥ 𝑗, then 𝜎(𝑎) = 𝑎 − 𝑖 < 𝑏 − 𝑗 = 𝜎(𝑏) as

desired. If 𝑖 < 𝑗, the runs which intersect the 𝑏 gridline but not the 𝑎 gridline

(not including 𝑟 𝑗) can have minima between 𝑎 + 1, 𝑎 + 2, . . . , 𝑏 − 1. Thus the

maximum number of runs strictly between 𝑟𝑖 and 𝑟 𝑗 is 𝑗− 𝑖−1 ≤ (𝑏−1)−(𝑎+1).
We can rewrite this as 𝑖 ≥ 𝑎 − 𝑏 + 1 + 𝑗. Thus

𝜎(𝑎) = 𝑎 − 𝑖 ≤ 𝑎 − (𝑎 − 𝑏 + 1 + 𝑗) = 𝑏 − 𝑗 − 1 < 𝑏 − 𝑗 = 𝜎(𝑏).

□

Now all we need to do is relate left endpoints of ladders to left endpoints

of non-ladders.

Lemma 3.7. Suppose 𝑤 is a nested reduced word for 𝜎 ∈ 𝔖𝑛 . If 𝑎 < 𝑏 so that 𝑎
and 𝑏 + 1 are right endpoints of non-ladders and 𝑏 is the right endpoint of a ladder,
then 𝜎(𝑎) < 𝜎(𝑏 + 1) < 𝜎(𝑏).

Proof. Using Lemma 3.6, it is sufficient to show that 𝜎(𝑏) > 𝜎(𝑏 + 1). Let 𝐵

and 𝐵′ be paths in the diagram for 𝑤 such that 𝑏, 𝑏 + 1 are right endpoints

of 𝐵 and 𝐵′, respectively. Let 𝑟 be the run climbed by 𝐵. Since 𝐵′ is a

non-ladder, the first run it intersects must be 𝑟. Since 𝐵 is on the max(𝑟)
gridline after intersecting 𝑟, 𝐵 will be above 𝐵′ both paths have intersected

𝑟. By Lemma 3.5, the left endpoint of 𝐵 will remain greater than the left

endpoint of 𝐵′. Thus 𝜎(𝑏) > 𝜎(𝑏 + 1). □

3.4 From Reduced Words to RSK Tableaux

We can now state a more detailed version of Proposition 3.4. This version will

give us the actual hook tableaux, not just the shapes. Since the tableaux are

standard, it is sufficient to specify the entries not in the first row. See Fig. 3.3

for a visualization of how the diagrams for decreasing nested permutations

relate to the insertion procedure for RSK tableaux.

Lemma 3.8. If 𝜎 has a nested word, its RSK tableaux are hook-shaped.

(1) If 𝜎 has a decreasing nested reduced word

(a) the entries not in the first row of the 𝑃 tableau are the left endpoints of
ladders.

(b) the entries not in the first row of the 𝑄 tableau are the right endpoints
of ladders plus one.

44 Reduced Words and RSK Tableaux

(2) If 𝜎 has a decreasing nested reduced word

(a) the entries not in the first row of the 𝑃 tableau are the left endpoints of
chutes plus one.

(b) the entries not in the first row of the 𝑄 tableau are the right endpoints
of chutes.

left endpoints

of ladders

< min(supp(𝜎))
and left endpoints

of non-ladders > max(supp(𝜎)) + 1

Insert left

endpoints of

ladders here

Figure 3.3 Visualization of how to read insertion tableaux directly from the
diagram for a word with decreasing runs.

Proof. Call our permutation 𝜎 and let 𝑤 be a decreasing nested word for

𝜎 with run decomposition 𝑟1 · 𝑟2 · · · 𝑟𝑘 . We prove (1) directly and prove (2)

using (1).

(1) Let 𝑎 = min(𝑟1) and 𝑏 = max(𝑟1). After filling in the letters {1, . . . , 𝑎−1},
we will have partial RSK tableaux

𝑃 =
1 · · · 𝑎−1 𝑄 =

1 · · · 𝑎−1 .

Next, we will fill in all of letters in positions 𝑎, 𝑎 + 1, . . . , 𝑏. Since 𝑎

is the right endpoint of the leftmost run and does not appear in any

other runs, 𝜎(𝑎) = 𝑏. Thus the new partial tableaux are

𝑃 =
1 · · · 𝑎−1 𝑏 𝑄 =

1 · · · 𝑎−1 𝑎 .

From Reduced Words to RSK Tableaux 45

From this point forward, there are two possible states that the partial

RSK tableaux can be in. Either we are in State A and all of the letters

in the first row of 𝑃 following 𝑎 − 1 are right endpoints of non-ladders,

or we are in State B and all but the last letter are right endpoints

of non-ladders and the last letter is the right endpoint of a ladder.

Additionally, in either state, each of the remaining rows of 𝑃 consists

of exactly one element which is the left endpoint of a ladder and each

of the remaining rows of 𝑄 consists of one element which is the right

endpoint of a ladder plus 1. Finally, the most recent letter inserted will

always be the last letter of the first row of 𝑃.

Notice that we begin in State B with the tableaux above. The condition

on the rows following the first row are vacuously satisfied, since there

is currently only one row. Now assuming we are in one of these states,

we wish to show that as we continue inserting we will remain in either

State A or State B.

Suppose we are in State A. If the next letter is the left endpoint of a

non-ladder, then by Lemma 3.6 this element will be inserted at the end

of the first row, and we will stay in State A. If the next letter is the left

endpoint of a ladder, then by Lemma 3.7 it will be added to the end

of the first row, putting us in State B. This move does not change the

rows after the first row, and we inserted at the end of the first row.

Suppose that we are in State B. If the next letter is the left endpoint of a

ladder, then by Lemma 3.6, this element will bump the last element into

the next row, keeping us in State B if the conditions on the remaining

rows are satisfied. If the next letter is the left endpoint of a non-ladder,

then by Lemma 3.7 it will bump the last letter into the next row, putting

us in State A if the conditions on the remaining rows are satisfied.

Notice also that in both of these cases, the letter we inserted was

inserted into the last spot in the first row.

By Lemma 3.6 the element in the second row will be bumped, if it

exists, and it will in turn bump the element below it, etc. Thus 𝑃 will

retain its hook shape and the rows after the first will still consist of

left endpoints of ladders, since the element we bumped was the left

endpoint of a ladder.

Now observe that if a left endpoint of a ladder is inserted, it is

immediately bumped by the next element. Since the shape of the 𝑃

tableau had a single element added in a new row, we must add a new

46 Reduced Words and RSK Tableaux

row to 𝑄 which will be filled with the right endpoint of the element

we just added. Since the element we just added was directly after a

ladder, this is the same as adding the right endpoint of the ladder plus

1 to 𝑄.

Notice that inserting the left endpoint of a non-ladder always puts us

in State A. Since max(supp(𝜎)) + 1 cannot be the minimum of any run,

the last letter we insert cannot be the left endpoint of a ladder, so we

will always end in State A.

After we insert the remaining letters which must be fixed by 𝜎 into the

first row, we will have obtained the tableaux we were looking for.

(2) We now suppose 𝜎 has a nested reduced word with decreasing runs.

Then 𝜎−1
has a nested reduced word with increasing runs, since we

can read the word backwards to get a reduced word for 𝜎. Thus we can

determine the 𝑃 and 𝑄 tableaux for 𝜎−1
from the first part of the claim.

By Theorem 2.2, the 𝑃 and 𝑄 tableaux for 𝜎 are the 𝑄 and 𝑃 tableaux

for 𝜎−1
, respectively. Since the diagram for a nested reduced word

for 𝜎−1
can simply be obtained by flipping the diagram for the nested

reduced word for 𝜎 over a vertical axis, the left and right endpoints

are swapped in the statement and the proof is complete.

□

Example 3.4. Consider panel (b) of Figure 3.2. The yellow, blue, and purple

paths are all ladders. The left endpoints of these lines are 6, 5, 3 and the

right endpoints are 4, 2, 1. Thus the RSK tableaux for this permutation are

𝑃 =
1 2 4

3

5

6

𝑄 =
1 4 6

2

3

5

.

Now consider panel (d) of Figure 3.2. The red, green, and blue lines are

all chutes. Their left endpoints are 1, 3, 4 and their right endpoints are 3, 4, 7.

Thus the RSK tableaux for the permutation are

𝑃 =
1 3 6 7

2

4

5

𝑄 =
1 2 5 6

3

4

7

.

From Reduced Words to RSK Tableaux 47

While it does seem that we need to compute the permutation to find

the paths which traverse entire runs, we can actually be more efficient with

a change of perspective. Since exactly one path will traverse the entirety

of each run, we can use the run to predict the path and its endpoints. The

entries we get from the minimum values of the runs, right in the decreasing

case and left in the increasing case, are fairly straightforward. For each run,

simply take its minimum value and add 1. In the decreasing case, this will

determine the 𝑄 tableau. In the increasing case, this will determine the 𝑃

tableau. To find the entries in the other tableaux, we need to subtract the

number of runs the ladder intersects after climbing a run or the number of

runs the chute intersects before sliding down a run.

Proposition 3.9. Let 𝜎 be a permutation with a nested reduced word with run
decomposition 𝑟1 · 𝑟2 · · · 𝑟𝑘 . If all of the 𝑟𝑖 are decreasing, then the RSK tableaux of
𝜎 have hook shapes and when the first rows are removed they are

𝑃̃ =

max(𝑟𝑘)
−(𝑘−1)

...

max(𝑟2)
−1

max(𝑟1)

𝑄̃ =

min(𝑟1)
+1

min(𝑟2)
+1

...

min(𝑟𝑘)
+1

.

If all of the 𝑟𝑖 are increasing, then the RSK tableaux of 𝜎 have hook shapes and when
the first rows are removed they are

𝑃̃ =

min(𝑟𝑘)
+1

...

min(𝑟2)
+1

min(𝑟1)
+1

𝑄̃ =

max(𝑟1)
−(𝑘−1)

max(𝑟2)
−1

...

max(𝑟𝑘)

.

Proof. This follows directly from Lemma 3.8 and Lemma 3.5. □

This result allows us to make some progress towards our original goal:

finding minimal run words.

48 Reduced Words and RSK Tableaux

Corollary 3.10. If 𝜎 has a nested word, then that word is a minimal run word for
𝜎.

Proof. If the nested run word has 𝑘 runs, then by Proposition 3.9 the first

component of RSK(𝜎) is 𝑛 − 𝑘. By Theorem 2.5, Run(𝜎) = 𝑘, so the word is a

minimal run word. □

3.5 Future Work

I only started studying this in the spring, but it’s been a lot of fun and I wish

I had some more time with it. If I were to keep working on this project, here

are some questions I would be thinking about.

Question 3.1. Prove that Algorithm 3 is well-defined, or adjust it to make it
well-defined.

Algorithm 3 being well-defined opens the door to many other interesting

questions.

Question 3.2. Characterize all permutations 𝜎 with hook-shaped RSK tableaux. If
the canonical word for a permutation is monotone but not nested, can we guarantee
that RSK(𝜎) is not a hook? Can the canonical word for a permutation with hook-
shaped RSK tableaux contain both increasing and decreasing runs?

Question 3.3. Prove that the canonical word of a permutation is a minimal run
word for that permutation.

The super-Yamanouchi word defined in by Assaf is simply a monotone

decreasing word, but Assaf proved that every permutation has a unique

super-Yamanouchi word; see Assaf (2019). From Proposition 3.4, we know

that if the super-Yamanouchi word is nested, then the RSK tableaux of the

corresponding permutation have hook shapes.

Question 3.4. Under what conditions do our canonical words coincide with super-
Yamanouchi words?

Question 3.5. Under what condition is the super-Yamanouchi word for a permu-
tation a minimal run word?

Question 3.6. Can the RSK tableaux of permutations be written down directly
from the super-Yamanouchi word, even when the runs are not nested?

The following questions are a bit more difficult or open-ended.

Question 3.7. Given some reduced word for 𝜎 is it possible to predict RSK(𝜎)?

Future Work 49

Question 3.8. Given a permutation, find an algorithm for a minimal run word.
Bonus points if you use the longest increasing subsequence.

Question 3.9. Develop a better understanding of diagrams for run words with
both increasing and decreasing subsequences. For example, can paths be both chutes
and ladders?

More broadly, studying minimal run words and their frequencies could

make for an interesting project. Relatedly, Run is a quirky statistic, and

studying it would be worthwhile.

Question 3.10. Give a combinatorial proof of Gunawan et al.’s result that the
length of the longest increasing subsequence plus the number of runs in a minimal
run word is always 𝑛; see Gunawan et al. (2022).

Question 3.11. If we randomly generate diagrams for reduced words, what kind
of distribution do we get on 𝔖𝑛?

This work was really motivated by finding interpretations of the longest

increasing subsequence function for other representations of permutations.

Question 3.12. What other representations have nice connections to long increas-
ing subsequences?

Chapter 4

A Basis for the 𝑘-Local Space

So far, we have defined the 𝑘-local space combinatorially and using represen-

tation theory. We have shown that many permutation statistics of interest

are 𝑘-local and given a spanning set for the 𝑘-local space. This chapter is

devoted to progress towards proving the following result.

Proposition 4.1. ℬ𝑘 is a basis for 𝐿𝑘 .

Here, 𝐿𝑘 is the 𝑘-local subalgebra of C𝔖𝑛 and ℬ𝑘 is the set of projections

of permutations containing an increasing subsequence of length 𝑛 − 𝑘 into

𝐿𝑘 .

In this section, we show that Proposition 4.1 boils down to showing that

𝜌(𝑛−𝑘,1
𝑘)

or 𝜌𝑘 evaluated at permutations with increasing subsequences gives

a linearly independent set of matrices.

4.1 Utilizing Full Local Modules

To prove Proposition 4.1, it will be easier to study modules than to look at

𝑘-local functions themselves. The 𝑘-local functions on 𝔖𝑛 form a subalgebra

ofC𝔖𝑛 which we denote by 𝐿𝑘 . To verify this, the only tricky part is showing

closure under multiplication by elements of C𝔖𝑛 . However, we see that

𝜎 · 1(𝐼 ,𝐽) = 1(𝜎·𝐼 ,𝜎·𝐽) ,

where 𝜎 · (ℓ1 , ℓ2 , . . . , ℓ𝑘) = (𝜎(ℓ1), 𝜎(ℓ2), . . . , 𝜎(ℓ𝑘)), is still 𝑘-local and so the

set of 𝑘-local functions is closed under multiplication by elements in C𝔖𝑛 .

We use the following notation for the remainder of this section. Let 𝑁 be

a full 𝑘-local module and 𝜌 be a representation for 𝑁 . Linearly extend 𝜌 to a

52 A Basis for the 𝑘-Local Space

DFT

𝐷 : C𝔖𝑛 → EndC(𝑁) where

∑
𝜎∈𝔖𝑛

𝑐𝜎𝜎 ↦→
∑
𝜎∈𝔖𝑛

𝑐𝜎𝜌(𝜎).

𝐷 is a C-algebra homomorphism, but not an isomorphism. By Theorem 2.7,

we can define an analogous map which is restricted to 𝐿𝑘

𝐷𝑘 : 𝐿𝑘 → im(𝐷) by

∑
𝜎∈𝔖𝑛

𝑐𝜎𝜎 ↦→
∑
𝜎∈𝔖𝑛

𝑐𝜎𝜌(𝜎).

Our goal in this section is to show that 𝐷𝑘 a bĳection. If this is the case, then

im(𝐷)will be isomorphic to 𝐿𝑘 .

We first prove this useful lemma.

Lemma 4.2 (Hamaker and Rhoades (2022)). Define

Ψ𝑘 : 𝐿𝑘 →
⊕
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

𝑀 𝑓 𝜆× 𝑓 𝜆 by
∑
𝜎∈𝔖𝑛

𝑐𝜎𝜎 ↦→
⊕
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

∑
𝜎∈𝔖𝑛

𝑐𝜎𝜌𝜆(𝜎)

for some irreducible representations 𝜌𝜆. Then Ψ𝑘 is an isomorphism.

Proof. By Wedderburn’s decomposition theorem, there exists an isomor-

phism

Ψ : C𝔖𝑛 →
⊕
𝜆⊢𝑛

𝑀 𝑓 𝜆× 𝑓 𝜆
defined by

∑
𝜎∈𝔖𝑛

𝑐𝜎𝜎 ↦→
⊕
𝜆⊢𝑛

∑
𝜎∈𝔖𝑛

𝑐𝜎𝜌𝜆(𝜎)

where the 𝜌𝜆 are irreducible representations such that they match the 𝜌𝜆 in

the statement of the result when 𝜆1 ≥ 𝑛 − 𝑘.
Ψ𝑘 is injective. Suppose 𝑓 , 𝑔 ∈ 𝐿𝑘 have Ψ𝑘(𝑓) = Ψ𝑘(𝑔). Then Ψ(𝑓) =

Ψ(𝑔), because the matrices indexed by 𝜆 with 𝜆1 ≥ 𝑛 − 𝑘 are identical since

Ψ𝑘(𝑓) = Ψ𝑘(𝑔) and the matrices indexed by 𝜆 with 𝜆1 < 𝑛 − 𝑘 are zero for

both 𝑓 and 𝑔 by Theorem 2.7. Because Ψ is injective, 𝑓 = 𝑔 and so Ψ𝑘 is

injective as well. Ψ𝑘 is also surjective. Given some

𝑚̃ ∈
⊕
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

𝑀 𝑓 𝜆× 𝑓 𝜆 ,

we can turn it into 𝑚 ∈
⊕

𝜆⊢𝑛 𝑀
𝑓 𝜆× 𝑓 𝜆

by appending zero matrices for all

for all of the partitions 𝜆 with 𝜆1 < 𝑛 − 𝑘. Since Ψ is an isomorphism,

Utilizing Full Local Modules 53

Ψ−1(𝑚) ∈ C𝔖𝑛 , and by Theorem 2.7, Ψ−1(𝑚)) ∈ 𝐿𝑘 . Because the matrices

indexed by 𝜆 with 𝜆1 ≥ 𝑛 − 𝑘 in 𝑚 are precisely the matrices in 𝑚̃,

Ψ𝑘(Ψ−1(𝑚)) = 𝑚̃,

so Ψ𝑘 is surjective.

The fact that Ψ𝑘 is a homomorphism follows directly from the fact that

the 𝜌𝜆 are representations. □

We can now prove that 𝐿𝑘 � im(𝐷).
Lemma 4.3. 𝐷𝑘 is an isomorphism.

Proof. Since 𝑁 is a full 𝑘-local module, there exist nonzero coefficients 𝑐𝜆
such that

𝑁 �
⊕
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

𝑐𝜆𝑆
𝜆.

There exists a change of basis 𝑇 so that 𝜌̃ = 𝑇−1𝜌𝑇 is an equivalent represen-

tation written with respect to a symmetry adapted basis for 𝑁 . Then 𝜌̃(𝜎) is
a block-diagonal matrix such that each block is an irreducible representation

𝜌𝜆 for 𝜎 and 𝜌𝜆(𝜎) appears as a block 𝑐𝜆 times for all 𝜆 with 𝜆1 ≥ 𝑛− 𝑘. Thus

there exists an isomorphism

Θ : im(𝐷) →
⊕
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

𝑀 𝑓 𝜆× 𝑓 𝜆
defined by

∑
𝜎∈𝔖𝑛

𝑐𝜎𝜌(𝜎) ↦→
⊕
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

∑
𝜎∈𝔖𝑛

𝑐𝜎𝜌𝜆(𝜎).

where 𝑓 𝜆 is the dimension of the irreducible module associated with 𝜆 and

𝜌𝜆 is the irreducible representation associated with 𝜆 which appears as a

block in 𝜌̃.

We can write

𝐷𝑘 = Θ−1 ◦Ψ𝑘

where Ψ𝑘 is the isomorphism defined in Lemma 4.2 such that the irreducible

representations are those that appear in the images of Θ. Since Θ−1
and Ψ𝑘

are isomorphisms, 𝐷𝑘 is an isomorphism. □

We can now define what we mean by the projection of 𝜎 into the 𝑘-local

subalgebra.

54 A Basis for the 𝑘-Local Space

Definition 4.1. For 𝑓 ∈ C𝔖𝑛 , define the projection of 𝑓 into 𝐿𝑘 by

𝑓 = 𝐷−1

𝑘
◦ 𝐷(𝑓).

This is a projection since 𝐷 restricted to the 𝑘-local subalgebra is simply

𝐷𝑘 . This also allows us to more precisely define ℬ𝑘 .

Definition 4.2. Let

1𝜎 : 𝔖𝑛 → C 1𝜎(𝜏) =
{

1 𝜏 = 𝜎

0 otherwise.

Then

ℬ𝑘 = {1̃𝜎 | 𝜎 ∈ 𝔖𝑛 has an increasing subsequence of length 𝑛 − 𝑘}.

The following lemma is a direct consequence of how we defined our

projection, and will allow us to prove that ℬ𝑘 is a basis for 𝐿𝑘 by showing

that the set of 𝜌(𝜎)where 𝜎 has an increasing subsequence of length 𝑛 − 𝑘
forms a basis for im(𝐷) � 𝐿𝑘 .
Lemma 4.4. For any 𝜎 ∈ 𝔖𝑛 , 𝐷𝑘(1̃𝜎) = 𝜌(𝜎).

Proof. By Definition 4.1

𝐷𝑘(1̃𝜎) = 𝐷𝑘 ◦ 𝐷−1

𝑘
◦ 𝐷(1𝜎) = 𝐷(1𝜎) = 𝜌(𝜎).

□

With this machinery, proving our conjecture now simply boils down to

showing that

𝐷(ℬ𝑘) = {𝜌(𝜎) | 1̃𝜎 ∈ ℬ𝑘}

is a C-basis for im(𝐷).
Using the full 𝑘-local module 𝑀𝜆

, I proved the result for 𝑘 = 1, 2. Using

the full 𝑘-local module 𝑀𝑘
, Doty proved the general case. Recall that 𝐷𝑘

is the linear extension of 𝜌𝑘 to a DFT, where 𝜌𝑘 is the representation which

arises from the action of 𝔖𝑛 on 𝑘-tuples with repetition.

Theorem 4.5 (Doty (2021)). 𝐷(ℬ𝑘) is a C-basis for im(𝐷𝑘).
This result allows us to easily prove the desired result.

Proposition 4.1. ℬ𝑘 is a basis for 𝐿𝑘 .

Dimension 55

Proof. By Proposition 2.10, 𝑀𝑘
is a full 𝑘-local module. By Lemma 4.3,

im(𝐷𝑘) � 𝐿𝑘 . By Theorem 4.5, 𝐷𝑘(ℬ𝑘) is a basis for im(𝐷𝑘). Thus, ℬ𝑘 is a

basis for 𝐿𝑘 . □

The next section gives an independent proof of the dimension of 𝐿𝑘 . The

following two sections contain my work on this problem for the 𝑘 = 1, 2

cases. While my methods are difficult to generalize to larger 𝑘, I think the

proof technique yields some insight into how we can use the structure of

permutation representations of 𝔖𝑛 .

4.2 Dimension

Showing that ℬ𝑘 has the correct number of vectors is straightforward using

the Robinson-Schensted correspondence:

Lemma 4.6 (Hamaker and Rhoades (2022)). The dimension of 𝐿𝑘 as a vector
space is |ℬ𝑘 |.

Proof. By Lemma 4.2,

𝐿𝑘 �
⊕
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

𝑀 𝑓 𝜆× 𝑓 𝜆 .

Thus

dim(𝐿𝑘) =
∑
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

(𝑓 𝜆)2.

By Theorem 2.6, 𝑓 𝜆 is the number of standard Young tableaux of shape 𝜆.

Thus (𝑓 𝜆)2 is the number of ordered pairs of standard Young tableaux of

shape 𝜆. Thus

dim(𝐿𝑘) =
∑
𝜆⊢𝑛

𝜆1≥𝑛−𝑘

(𝑓 𝜆)2

is the number of pairs of standard Young tableaux of the same shape such

that the first component of their shapes is at least 𝑛 − 𝑘. But by Theorem 2.3,

this is the number of permutations with a longest increasing subsequence of

length at least 𝑛 − 𝑘, which is |ℬ𝑘 |. Thus dim(𝐿𝑘) = |ℬ𝑘 |. □

56 A Basis for the 𝑘-Local Space

4.3 1-Local Case

Since we know that ℬ1 has the correct size, our goal is to show that the

matrices in 𝐷(𝑛−1,1)(ℬ1) are linearly independent, where 𝐷(𝑛−1,1)
is the C-

linear extension of the representation 𝜌(𝑛−1,1)
, which is the representation

arising from the action of 𝔖𝑛 on tabloids of shape (𝑛 − 1, 1). Our technique

is to begin with a linear combination of the matrices in 𝐷(𝑛−1,1)(ℬ1)which

is equal to zero, and show that all coefficients must be zero. We can do so

by showing that each matrix has a 1 in a unique spot, so that its coefficient

must be zero. However, this method will not quite work as is, so we must

apply it in stages. First, remove the matrices that have ones where no other

matrices do. This will not cover all the matrices, but once we have removed

those we can remove another batch.

Before we generalize, let’s take a look at this process for 𝑛 = 3. Our

goal is to show that {𝜌(2,1)(𝜎) | 𝜎 ∈ {123, 132, 213, 231, 312}} are linearly

independent. We begin with the C-linear combination

1 0 0

0 1 0

0 0 1

©­­­«
ª®®®¬

𝑐123

123

+
1 0 0

0 0 1

0 1 0

©­­­«
ª®®®¬

𝑐132

132

+
0 1 0

1 0 0

0 0 1

©­­­«
ª®®®¬

𝑐213

213

+
0 0 1

1 0 0

0 1 0

©­­­«
ª®®®¬

𝑐231

231

+
0 1 0

0 0 1

1 0 0

©­­­«
ª®®®¬

𝑐312

312

=

0 0 0

0 0 0

0 0 0

©­­­«
ª®®®¬.

Immediately, we know that 𝑐231 = 𝑐312 = 0, because the 231 matrix is the only

matrix with a nonzero entry in the first row and third column and the 312

matrix is the only matrix with a 1 in the third row and first column. Both of

these entries are boxed in the above sum. This leaves us with the following

linear combination.

1 0 0

0 1 0

0 0 1

©­­­«
ª®®®¬

𝑐123

123

+
1 0 0

0 0 1

0 1 0

©­­­«
ª®®®¬

𝑐132

132

+
0 1 0

1 0 0

0 0 1

©­­­«
ª®®®¬

𝑐213

213

=

0 0 0

0 0 0

0 0 0

©­­­«
ª®®®¬.

From here, we can see that 𝑐132 = 𝑐213 = 0, because the boxed entries are the

only nonzero entries in those positions in the sum. In this situation, the

choice might seem arbitrary, but as we move into larger 𝑛, it will seem more

1-Local Case 57

natural. Finally, we are left with

1 0 0

0 1 0

0 0 1

©­­­«
ª®®®¬

𝑐123

123

=

0 0 0

0 0 0

0 0 0

©­­­«
ª®®®¬

which implies that 𝑐123 = 0. Since all the 𝑐𝜎 were zero, we can conclude that

𝐷(2,1)(ℬ1) is a linearly independent set.

The important thing to note here is that as we were choosing which

entries to focus on to remove matrices, we worked our way from the corners

of the matrices in towards the diagonal. We will first remove representations

of permutations containing an entry 𝑖 ↦→ 𝑗 where there is a large difference

between 𝑖 and 𝑗. This will continue into the 2-local case as well and might

be a useful technique for larger 𝑘. Our goal is to show that if a permutation

has an increasing subsequence of sufficient length and 𝑖 ↦→ 𝑗 with |𝑖 − 𝑗 |
being sufficiently large, then it is the only permutation with an increasing

subsequence of that length which maps 𝑖 to 𝑗. The intuition behind why this

is true is that if 𝑗 is so far from where it is supposed to be, then it cannot

possibly be in an increasing subsequence.

Lemma 4.7. Suppose 𝜎 ∈ 𝔖𝑛 and 𝑖 , 𝑗 ∈ 𝑛 with |𝑖 − 𝑗 | ≥ 𝑎. Suppose also that
𝜎(𝑖) = 𝑗. Then the longest increasing subsequence of 𝜎 containing 𝑗 has length at
most 𝑛 − 𝑎.

Proof. We will construct the sequence in three parts: the part before 𝑗, 𝑗,

and the part after 𝑗. We wish to bound the length of the longest possible

increasing subsequence before 𝑗 such that the largest value is less than 𝑗.

Similarly, we want the longest increasing subsequence after 𝑗 such that all the

values are greater than 𝑗. The maximal increasing subsequence occurring

before 𝑗 is bounded above by 𝑖 − 1, the number of available spots, and

𝑗 − 1, the number of values less than 𝑗. Similarly, the length of the maximal

increasing subsequence occurring after 𝑗 is bounded above by 𝑛 − 𝑖, the

number of available spots, and 𝑛 − 𝑗, the number of values greater than 𝑗.

Thus the length of the longest increasing subsequence including 𝑗 is

𝑚 ≤ min(𝑖 − 1, 𝑗 − 1) + 1 +min(𝑛 − 𝑖 , 𝑛 − 𝑗)

where 1 accounts for 𝑗 itself. If 𝑖 < 𝑗, then this becomes

𝑚 ≤ 𝑖 − 1 + 1 + 𝑛 − 𝑗 = 𝑛 − (𝑗 − 𝑖) = 𝑛 − | 𝑗 − 𝑖 | ≤ 𝑛 − 𝑎.

58 A Basis for the 𝑘-Local Space

Similarly, if 𝑗 ≤ 𝑖, then

𝑚 ≤ 𝑗 − 1 + 1 + 𝑛 − 𝑖 = 𝑛 − (𝑖 − 𝑗) = 𝑛 − |𝑖 − 𝑗 | ≤ 𝑛 − 𝑎.

□

The following statistic will be useful when stating conditions in many of

the results that follow.

Definition 4.3. Define the maximum excedance of 𝜎 ∈ 𝔖𝑛 as the largest

difference between a number and its image under 𝜎. Define the function

Mexc : 𝔖𝑛 → C by

Mexc(𝜎) = max{|𝜎(𝑖) − 𝑖 | | 𝑖 ∈ [𝑛]}.

We can now show that if 𝜎 has a long increasing subsequence which

contains a mapping of maximum excedance, then many of the numbers in

[𝑛] are forced to be fixed points.

Lemma 4.8. Suppose 𝜎 ∈ 𝔖𝑛 satisfies

(1) Mexc(𝜎) = 𝑘

(2) either

(a) 𝜎(𝑖 − 𝑘) = 𝑖 for some 𝑖 ∈ {𝑘 + 1, . . . 𝑛}, or
(b) 𝜎(𝑖 + 𝑘) = 𝑖 for some 𝑖 ∈ {1, 2, . . . , 𝑛 − 𝑘}, and

(3) 𝜎 contains an increasing subsequence of length 𝑛 − 𝑘 which includes 𝑖.

Then 𝜎 satisfies 𝜎(ℓ) = ℓ

(a) for all ℓ ∈ {1, . . . , 𝑖 − 2𝑘} ∪ {𝑖 + 𝑘, . . . , 𝑛} or

(b) for all ℓ ∈ {1, . . . , 𝑖 − 𝑘} ∪ {𝑖 + 2𝑘, . . . , 𝑛}.

Proof. We prove (a) and omit the proof of (b), since it is essentially the same.

Suppose 𝜎(𝑖 − 𝑘) = 𝑖. There are 𝑖 − 1 numbers less than 𝑖, but only 𝑖 − 𝑘 − 1

spots before 𝑖. Thus there must be 𝑘 numbers less than 𝑖 following 𝑖. These

cannot be in the increasing subsequence of length 𝑛 − 𝑘, since the sequence

must include 𝑘. Thus all the numbers larger than 𝑖 must be in increasing

order after 𝑖 and all the numbers with position less than 𝑖 − 𝑘 must be

in increasing order to achieve an increasing subsequence of length 𝑛 − 𝑘
containing 𝑖.

1-Local Case 59

Suppose ℓ ∈ {1, . . . , 𝑖 − 2𝑘} and 𝜎(ℓ) > ℓ . Let 𝑗 ∈ {1, . . . , ℓ }. Then 𝑗 must

appear before 𝑖 because 𝑗 ≤ ℓ ≤ 𝑖 − 2𝑘 and the positions after 𝑖 are at least

𝑖 − 𝑘 + 1, so the difference between 𝑗 and the positions after 𝑖 is at least

𝑖 − 𝑘 + 1 − (𝑖 − 2𝑘) = 𝑘 + 1. Since ℓ < 𝜎(ℓ), all of the numbers in [ℓ] must

appear before 𝜎(ℓ) in 𝜎, because the portion of 𝜎 before 𝑖 has to be increasing.

But this is impossible because there are only ℓ − 1 positions before ℓ and

at least ℓ numbers that must fit there. If 𝜎(ℓ) < ℓ , you can make a similar

argument by showing that everything in {ℓ , ℓ + 1, . . . , 𝑖 − 2𝑘} has to appear

between positions ℓ + 1 and 𝑖 − 2𝑘 (inclusive) and there are only 𝑖 − 2𝑘 − ℓ − 1

spots for 𝑖 − 2𝑘 − ℓ numbers. Thus 𝜎(ℓ) = ℓ .
Now suppose that 𝑗 < 𝑖 appears after 𝑖. Because 𝑗 ≤ 𝑖 − 1 the biggest

position 𝑗 can have is 𝑖−1+ 𝑘. This means that all of the elements in positions

𝑖 + 𝑘, . . . , 𝑛 must be greater than 𝑖. Then they must be in increasing order.

Now suppose there is some ℓ ∈ {𝑖 + 𝑘, . . . , 𝑛} with 𝜎(ℓ) ≠ ℓ . If 𝜎(ℓ) > ℓ , then

there are more positions after ℓ than there are numbers greater than ℓ , so the

subsequence cannot be increasing. If 𝜎(ℓ) < ℓ , we also have a contradiction

because 𝜎(ℓ), ℓ > 𝑖, so everything in {ℓ , . . . , 𝑛} must appear after 𝜎(ℓ), but

the only available positions are {ℓ +1, . . . , 𝑛}. Since there are fewer positions

than values, this is impossible. Thus 𝜎(ℓ) = ℓ . □

We can now use this lemma to show that if 𝑖 ↦→ 𝑗 and |𝑖 − 𝑗 | ≥ 2, then

there is exactly one permutation mapping 𝑖 to 𝑗 which has an increasing

subsequence of length 𝑛 − 1. This will allow us to conclude that all the

coefficients of permutations containing mappings 𝑖 ↦→ 𝑗 with |𝑖 − 𝑗 | ≥ 2 must

be zero.

Lemma 4.9. Suppose 𝑖 , 𝑗 ∈ [𝑛] and that |𝑖 − 𝑗 | ≥ 2. There is exactly one
permutation 𝜎 containing an increasing subsequence of length 𝑛 − 1 with 𝜎(𝑖) = 𝑗.

Proof. We give a construction. Fix 𝜎(𝑖) = 𝑗 and arrange all the other numbers

in [𝑛] in increasing order around 𝑗. Since they are in increasing order and

there are 𝑛 − 1 of them, they form an increasing subsequence of length 𝑛 − 1.

Now suppose some other permutation 𝜏 satisfies 𝜏(𝑖) = 𝑗. First, 𝜏 does

not have an increasing subsequence of length 𝑛−1 which excludes 𝑗, because

otherwise it would be equal to 𝜎. Thus if 𝜏 had an increasing subsequence

of length 𝑛 − 1, it would have to include 𝑗. But by Lemma 4.7, an increasing

subsequence containing 𝑗 has cannot be longer than 𝑛 − 2.

Thus 𝜎 is the only permutation with 𝜎(𝑖) = 𝑗 containing an increasing

subsequence of length 𝑛 − 1. □

60 A Basis for the 𝑘-Local Space

Now that all permutations with Mexc ≥ 2 are eliminated, the remaining

permutations contain only mappings 𝑖 ↦→ 𝑗 with |𝑖 − 𝑗 | < 2. This next

lemma allows us to zero out the coefficients of the remaining non-identity

permutations: the adjacent transpositions. The second condition is the

reason that we must zero out all of the other coefficients first.

Lemma 4.10. Suppose 𝑖 , 𝑗 ∈ [𝑛] and that |𝑖 − 𝑗 | = 1. There is exactly one
permutation 𝜎 satisfying

(1) 𝜎(𝑖) = 𝑗

(2) Mexc(𝜎) = 1

(3) 𝜎 contains an increasing subsequence of length 𝑛 − 1.

Proof. We prove the statement when 𝑗 = 𝑖 + 1. The 𝑗 = 𝑖 − 1 case is essentially

the same. The goal is to prove that there is only permutation 𝜎 satisfying

𝜎(𝑖) = 𝑖 + 1, |ℓ − 𝜎(ℓ)| ≤ 1 for all ℓ ∈ [𝑛], and 𝜎 contains an increasing

subsequence of length 𝑛 − 1. Suppose 𝜎 satisfies all of these criteria. There

are 𝑖 − 1 positions before 𝑖, but 𝑖 numbers which are less than 𝑖 + 1. This

means that some number in [𝑖]must occur after 𝑖 + 1, forming a decreasing

subsequence of length 2. Further, the only element in [𝑖] that can occur

after 𝑖 + 1 is 𝑖, because otherwise we would violate condition (2). This also

means that 𝜎(𝑖 + 1) = 𝑖. Since 𝑖 + 1 appears before 𝑖, and 𝜎 contains an

increasing subsequence of length 𝑛 − 1, all the other elements must form an

increasing subsequence of length 𝑛 − 2 around 𝑖 , 𝑖 + 1. This fixes 𝜎(ℓ) = ℓ for

all ℓ ≠ 𝑖 , 𝑖 + 1. Thus 𝜎 is the adjacent transposition (𝑖 𝑖 + 1). □

After removing the adjacent transpositions, we are left with the identity

and so we are finished. We can now put everything together to prove that

ℬ1 is a basis for 𝐿1.

Proposition 4.11. The set ℬ1 is a basis for 𝐿1.

Proof. By Lemma 4.6, ℬ1 has the correct size, so it is sufficient to show that

it is a linearly independent set. By Proposition 2.9, 𝑀(𝑛−1,1)
is a full 1-local

module. By Lemma 4.3, showing ℬ1 is linearly independent is equivalent to

showing that 𝐷(𝑛−1,1)(ℬ𝑘) is linearly independent.

Thus it is sufficient to show that if∑
1̃𝜎∈ℬ𝑘

𝑐𝜎𝜌
(𝑛−1,1)(𝜎) = 0,

2-Local Case 61

then all the 𝑐𝜎 = 0. Recall that the 𝜌(𝑛−1,1)(𝜎) are 𝑛 × 𝑛 matrices with a

1 in the 𝑖th column and 𝑗th row if and only if 𝜎(𝑖) = 𝑗. If 𝜎 is the only

permutation such that 𝜌(𝑛−1,1)(𝜎) has a nonzero value in a particular entry,

then the coefficient of 𝜌(𝑛−1,1)(𝜎) must be zero for the right-hand side to

remain zero.

Suppose |𝑖 − 𝑗 | ≥ 2 for some 𝑖 , 𝑗 ∈ [𝑛]. By Lemma 4.9, there is exactly

one permutation 𝜎 containing an increasing subsequence of length 𝑛 − 1

such that 𝜎(𝑖) = 𝑗. This means that 𝜌(𝑛−1,1𝑘)(𝜎) is the only matrix in our sum

with a nonzero value in the 𝑗𝑖-entry. Thus 𝑐𝜎 must be zero.

We have now given zero coefficients to all permutations which contain

a mapping where the index and image differ by at least 2. In other words,

all of the remaining matrices have all of their nonzero entries either on the

diagonal or directly adjacent to the diagonal. Now our sum is∑
1̃𝜎∈ℬ𝑘

Mexc(𝜎)≤1

𝑐𝜎𝜌
(𝑛−1,1)(𝜎) = 0.

Consider now some 𝑖 , 𝑗 ∈ [𝑛] with |𝑖 − 𝑗 | = 1. By Lemma 4.10, there is

exactly one permutation 𝜎 in the sum with 𝜎(𝑖) = 𝑗. Thus 𝜌(𝑛−1,1)(𝜎) is the

only permutation with a 1 in the 𝑗𝑖 entry, so 𝑐𝜎 must be zero.

We have now eliminated every permutation with Mexc(𝜎) > 0. The only

permutation with Mexc(𝜎) = 0 is the identity. Since this is now the only

permutation left in our sum, its coefficient must be zero as well. Thus the

vectors in ℬ1 are linearly independent and ℬ1 forms a basis for 𝐿1. □

4.4 2-Local Case

The 2-local case is a bit more complex than the 1-local case and relies heavily

on the 1-local result. In the 1-local case, we only had to consider mappings

with differences 0, 1, or 2+. In other words, we eliminated matrices with

nonzero entries far from the diagonal, then the ones with nonzero entries

adjacent to the diagonal, and finally the identity. In the 2-local case, we need

to consider mappings with differences 0, 1, 2, 3+. This means that instead of

eliminating all of the matrices with nonzero entries far from the diagonal at

once, we do them in two chunks; see Figure 4.1. As in the 1-local case, the 0,

1, and 3+ cases are fairly straightforward, but the 2 case is more tricky.

At first glance, Figure 4.1 seems a bit misleading, because the structure of

the 1 and 2-local representations are different. However, our proof technique

62 A Basis for the 𝑘-Local Space

Figure 4.1 Visualization of the proof techniques for showingℬ1 ,ℬ2 are lin-
early independent. In the 1-local case, we eliminate matrices with nonzero
entries 𝑖 𝑗 with |𝑖 − 𝑗 | ≥ 2, then those with |𝑖 − 𝑗 | = 1, and finally the identity.
The 2-local case is almost the same, but the |𝑖 − 𝑗 | ≥ 2 is split into sub-cases:
|𝑖 − 𝑗 | ≥ 3, which is similar to the |𝑖 − 𝑗 | ≥ 2 case in the 1-local proof, and
|𝑖 − 𝑗 | = 2, which is more difficult. This technique is difficult to generalize to
larger 𝑘 because the number of cases, represented by lines, increases with 𝑘.

for the 2-local case has a different focus. Where in the 1-local case, we

focused on zeroing out particular entries, in the 2-local case, our aim will

instead be to zero out entire blocks using the 1-local result. To make sense

of this, we need to understand what we mean by a block.

Definition 4.4. Define the 𝑗𝑖-block of 𝜌(𝑛−2,1,1)
as the submatrix formed by

taking all of the rows indexed by tabloids with 𝑗 in the second row and all of

the columns indexed by tabloids with 𝑖 in the second row.

Remark. While we defined 𝜌(𝑛−2,1,1)
as the representation arising from the

action of 𝔖𝑛 on tabloids of shape (𝑛 − 2, 1, 1), we can think of 𝔖𝑛 as acting

on ordered pairs without repetition, where the ordered pair comes from the

second and third rows of the tabloid.

The next lemma will help us use the 1-local result.

Lemma 4.12. If 𝜎(𝑖) = 𝑗, then 𝑗𝑖-block of the 2-local representation of 𝜎 is the
1-local representation of 𝜎 with 𝑗 removed and then reduced to a permutation in
𝔖𝑛−1.

Proof. Consider the 𝑗𝑖-block of the 2-local representation of 𝜎. Call this

matrix 𝐴. The rows are indexed by the ordered pairs (𝑗 , 1), . . . , (𝑗 , 𝑗 −
1), (𝑗 , 𝑗 + 1), . . . , (𝑗 , 𝑛) and the columns are indexed by the ordered pairs

(𝑖 , 1) . . . , (𝑖 , 𝑖 − 1), (𝑖 , 𝑖 + 1), . . . , (𝑖 , 𝑛). Relabel the rows and columns so that

2-Local Case 63

they are both indexed by 1, 2, . . . , 𝑛 − 1. Then the matrix 𝐴 has a 1 in the ℓ𝑚

entry if and only if 𝜎(𝑚) = ℓ where

ℓ =

{
ℓ if ℓ < 𝑗

ℓ + 1 else.
𝑚 =

{
𝑚 if 𝑚 < 𝑖

𝑚 + 1 else.

Now suppose we remove 𝑗 from 𝜎 and reduce, i.e., relabel all of the letters

so that the result 𝜎̃ is a permutation in 𝔖𝑛−1 which has the same relative

order as 𝜎 when 𝑗 is removed. Then 𝜎̃(𝑚) = ℓ if and only if 𝜎(𝑚) = ℓ . Thus

𝐴 is the 1-local representation of 𝜎̃. □

Example 4.1. Here is the 2-local representation of 4132 with zeros omitted

for clarity.

12 13 14 21 23 24 31 32 34 41 42 43©­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®¬

12 1

13 1

14 1

21 1

23 1

24 1

31 1

32 1

34 1

41 1

42 1

43 1

Notice that if we remove 4 from 4132, then we get the permutation 132,

which has 1-local representation

©­«
1

1

1

ª®¬
which is submatrix the in the lower left corner of the matrix, in the 1 ↦→ 4

block. If we remove 1, instead, from 4132, then we are left with 432. After

64 A Basis for the 𝑘-Local Space

we reduce, we get 321, which has 1-local representation

©­«
1

1

1

ª®¬
which can be found in the 2 ↦→ 1 block of the 2-local representation of 4132.

The same is true with the remaining two blocks when 2 and 3 are removed.

The idea behind the proof for the two-local case is to remove blocks by

showing that if we remove the mapping associated with the block from

all permutations containing that mapping and reduce, then they will still

have increasing subsequences of the same length, 𝑛 − 2, but the reduced

permutations will now be permutations in 𝔖𝑛−1. This means that they are

linearly independent by Proposition 4.11, which forces the coefficient for

the entire matrix to be zero. Thus the problem becomes this: for a given

mapping and permutation, can we construct an increasing subsequence of

length 𝑛 − 2 which does not contain the mapping?

This is straightforward in the situation where |𝑖 − 𝑗 | ≥ 3.

Lemma 4.13. Suppose 𝜎 ∈ 𝔖𝑛 , 𝑖 , 𝑗 ∈ [𝑛], and |𝑖 − 𝑗 | ≥ 3. If 𝜎 contains an
increasing subsequence of length 𝑛 − 2 and 𝜎(𝑖) = 𝑗, then 𝜎 contains an increasing
subsequence of length 𝑛 − 2 which does not contain 𝑗.

Proof. By Lemma 4.7, the longest increasing subsequence containing 𝑗 has

length at most 𝑛 − 3, so if 𝜎 contains an increasing subsequence of length

𝑛 − 2, then the subsequence must not contain 𝑗. □

Unfortunately, this does not always hold when |𝑖 − 𝑗 | = 2, even if the

maximum excedance in the permutation is 2. For example, 241567 ∈ 𝔖7

does not contain an increasing subsequence of length 5 which excludes 4.

However, it does contain one which excludes 1, so if we can remove all

permutations with that mapping first, we won’t need to worry about this

one when we get to the 2 ↦→ 4 mapping. This means we cannot eliminate all

of the mappings 𝑖 ↦→ 𝑗 with difference 2 in one fell swoop: we must do it

sequentially. It turns out the best strategy is to start from the ends.

Lemma 4.14. Suppose 𝜎 ∈ 𝔖𝑛 , 𝑖 , 𝑗 ∈ [𝑛], |𝑖 − 𝑗 | = 2, and 𝑖 or 𝑗 is equal to 1 or
𝑛. If 𝜎(𝑖) = 𝑗, Mexc(𝜎) ≤ 2, and 𝜎 contains an increasing subsequence of length
𝑛 − 2, then 𝜎 contains an increasing subsequence of length 𝑛 − 2 which does not
contain 𝑗.

2-Local Case 65

Proof. We prove the statement when 𝑖 = 1 and 𝑗 = 3, but the proof can

easily be adapted to the other cases. It is sufficient to show that if 3 is in the

increasing subsequence, then there is another increasing subsequence which

does not contain 3. By Lemma 4.8, if ℓ ≥ 5, when 𝜎(ℓ) = ℓ . This means that 𝜎
has an increasing subsequence of length 𝑛 − 4 consisting of 5, 6, . . . , 𝑛. The

only numbers we still need to place are 1, 2, and 4, since 3 and everything

greater than 4 is fixed. The only permutation of three numbers which does

not have an increasing subsequence of length 2 is 421, but this places 1 in

position 4, which contradicts the condition that |𝜎(ℓ) − ℓ | ≤ 2. Thus there

must be some increasing subsequence formed by the numbers 1, 2, 4, which

we can combine with the subsequence 5, 6, . . . , 𝑛 to construct an increasing

subsequence of length 𝑛 − 2 that does not contain 3. □

To get this result for general mappings 𝑖 ↦→ 𝑗 with |𝑖 − 𝑗 | = 2, we need to

impose an additional condition.

Lemma 4.15. Suppose 𝜎 ∈ 𝔖𝑛 , 𝑖 , 𝑗 ∈ [𝑛], and |𝑖 − 𝑗 | = 2. Suppose also that
𝜎(𝑖) = 𝑗, Mexc(𝜎) = ℓ , and 𝜎 contains an increasing subsequence of length 𝑛 − 2.
If

(a) 𝑖 < 𝑗 and 𝜎(𝑖 + 1) ≠ 𝑗 − 3

(b) 𝑖 > 𝑗 and 𝜎(𝑖 − 1) ≠ 𝑗 + 3

then 𝜎 contains an increasing subsequence of length 𝑛 − 2 which does not contain
𝑗.

Proof. We prove (a). Again, it is sufficient to show that if 𝜎 contains an

increasing subsequence of length 𝑛 − 2 that includes 𝑗, then it contains one

that does not include 𝑗. By Lemma 4.8, 1, 2, . . . , 𝑗 − 4, 𝑗 + 2, . . . 𝑛 forms an

increasing subsequence of length 𝑛 − 5. Thus we just need to show that the

values 𝑗−3, 𝑗−2, 𝑗−1, 𝑗+1 are arranged such that they contain an increasing

subsequence of length 3. The available positions are 𝑖 − 1, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3,

which is 𝑗 − 3, 𝑗 − 1, 𝑗 , 𝑗 + 1 in terms of 𝑗. Accounting for the fact that

Mexc(𝜎) = 2, this is equivalent to finding all permutations in 𝔖4 which

avoid the mappings 1 ↦→ 4, 4 ↦→ 1, 3 ↦→ 1, 4 ↦→ 2 and 2 ↦→ 1. These

permutations are 1234, 1243, 1324, and 1423. All of these permutations

contain an increasing subsequence of length 3. Thus we can merge this

increasing subsequence with 1, 2, . . . , 𝑗 − 4, 𝑗 + 2, . . . 𝑛 to form an increasing

subsequence of 𝜎 with length 𝑛 − 2 which does not contain 𝑗.

□

66 A Basis for the 𝑘-Local Space

Example 4.2. When a permutation 𝜎 satisfies Mexc(𝜎) = 2 it is not always

the case that for all 𝑖 ∈ [𝑛] with |𝜎(𝑖) − 𝑖 | = 2 𝜎 contains an increasing

subsequence of length 𝑛 − 2 which does not contain 𝜎(𝑖). For example,

take the permutation 𝜎 = 1253746 ∈ 𝔖7. The unique longest increasing

subsequence in this permutation is 12346. But this includes the mapping

6 ↦→ 4. This means that if we remove 4 from the word, we will be left with a

permutation in 𝔖6 with a longest increasing subsequence of length 4, which

means we cannot use the 1-local case to our advantage. However, not all

hope is lost. We can show that the coefficient of this permutation must be

zero by first examining either the map 5 ↦→ 7. This gives some idea of where

the extra condition in Lemma 4.15 comes from.

To zero out mappings where the image and preimage differ by 1, we use

a similar trick as in the 1-local case, but we still need the following lemma.

Lemma 4.16. Suppose 𝜎 satisfies Mexc(𝜎) = 1 and contains an increasing sub-
sequence of length 𝑛 − 2. Then if 𝜎(𝑖) = 𝑗 and |𝑖 − 𝑗 | = 1, 𝜎 has an increasing
subsequence of length 𝑛 − 2 which does not contain 𝑗.

Proof. Suppose 𝜎 contains an increasing subsequence of length 𝑛 − 2 which

includes 𝑗. We prove the case where 𝑖 < 𝑗, but when 𝑖 > 𝑗, the proof is

roughly the same. Since 𝑖 < 𝑗 and |𝑖 − 𝑗 | = 1, 𝑗 = 𝑖 + 1, so 𝜎(𝑖) = 𝑖 + 1. The

possible preimages of 𝑖 are then 𝑖 − 1 and 𝑖 + 1. If 𝜎(𝑖 − 1) = 𝑖, then we

have a contradiction because there are 𝑖 − 2 potential preimages before 𝑖 and

𝑖 − 1 potential images they can map to without violating the Mexc(𝜎) = 1

condition. Thus 𝜎(𝑖 + 1) = 𝑖. But then 𝜎 has a descent at 𝑖, so 𝑖 , 𝑖 + 1 cannot

both be in the same increasing subsequence. Since their positions and values

are adjacent, we can exchange 𝑖 for 𝑖 + 1 in the increasing subsequence to

obtain a new increasing subsequence of length 𝑛 − 2 which does not contain

𝑖 + 1. □

We now have enough information to prove the result for 𝑘 = 2.

Proposition 4.17. The set ℬ2 is a basis for 𝐿2.

Proof. By Lemma 4.6, ℬ1 has the correct size, so it is sufficient to show that

it is a linearly independent set. By Proposition 2.9, 𝑀(𝑛−2,1,1)
is a full 2-local

module. By Lemma 4.3, to show ℬ2 is linearly independent, it is sufficient to

show that 𝐷(𝑛−2,1,1)(ℬ2) is linearly independent. Thus we must show that if∑
1̃𝜎∈ℬ𝑘

𝑐𝜎𝜌
(𝑛−2,1,1)(𝜎) = 0,

2-Local Case 67

then 𝑐𝜎 = 0 for all 𝜎. Recall that 𝜌(𝑛−2,1,1)(𝜎) is an 𝑛(𝑛−1)×𝑛(𝑛−1)matrix with

rows and columns indexed by ordered pairs from the alphabet [𝑛] without

repetition in lexicographic order, i.e., (1, 2), (1, 3), . . . , (1, 𝑛), (2, 1), . . . , (𝑛, 𝑛−
1) and that the (𝑖 , 𝑗), (ℓ , 𝑚) entry is 1 when 𝜎(𝑖) = ℓ and 𝜎(𝑗) = 𝑚 and zero

otherwise.

We first consider the 𝑗𝑖-blocks with |𝑖 − 𝑗 | ≥ 3. Let 𝑆 ⊆ 𝔖𝑛 be the permu-

tations mapping 𝑖 to 𝑗 which contain an increasing subsequence of length

𝑛−2. Let 𝐵 𝑗𝑖 denote the set of 𝑗𝑖-blocks of the 𝜌(𝑛−2,1,1)
-representations of the

permutations in 𝑆. By Lemma 4.12, the matrices in 𝐵 𝑗𝑖 are 1-local representa-

tions of permutations formed by removing 𝑗 from the permutations in 𝑆 and

reducing so that the permutations are in 𝔖𝑛−1. Then by Lemma 4.13, every

permutation in 𝑆 contains an increasing subsequence of length 𝑛 − 2 which

does not contain 𝑗. Thus all the matrices in 𝐵 𝑗𝑖 are 1-local representations

of permutations in 𝔖𝑛−1 containing an increasing subsequence of length

𝑛 − 2. By Proposition 4.11, 𝐵 𝑗𝑖 is a linearly independent set. To zero out the

𝑗𝑖 block, then the coefficients 𝑐𝜎 must be zero for all 𝜎 ∈ 𝑆.

Since this holds for all 𝑖 , 𝑗 ∈ [𝑛]with |𝑖 − 𝑗 | ≥ 3, we are left with∑
1̃𝜎∈ℬ𝑘

Mexc(𝜎)≤2

𝑐𝜎𝜌
(𝑛−2,1,1)(𝜎) = 0.

Next, we will eliminate all permutations with maximum excedance 2. This

is the most difficult step in the proof because we cannot consider a generic

mapping; we must instead consider them one at a time. To see why, see

Example 4.2. To see the progression of which blocks in the matrix are zeroed

out, see Figure 4.2. We wish to show that if 𝜎(𝑚) = 𝑚 + 2 or 𝜎(𝑚 + 2) = 𝑚,

then 𝑐𝜎 = 0. We proceed by induction on 𝑚. We begin with the mappings

1 ↦→ 3 and 3 ↦→ 1. By Lemma 4.14 and the same reasoning as above, all the

𝑐𝜎 with 𝜎(1) = 3 or 𝜎(3) = 1 must be zero. Now suppose that 𝑐𝜎 = 0 when

𝜎(𝑚 − 1) = 𝑚 + 1 and when 𝜎(𝑚 + 1) = 𝑚 − 1. Recall that |𝜎(ℓ) − ℓ | ≤ 2 for

all ℓ ∈ [𝑛] and 𝜎 has an increasing subsequence of length 𝑛 − 2. If 𝑐𝜎 ≠ 0

and 𝜎(𝑚) = 𝑚 + 2, by condition (a) of Lemma 4.15 𝜎 has an increasing

subsequence of length 𝑛 − 2 which does not contain 𝑚 + 2 since 𝑐𝜎 = 0 when

𝜎(𝑚 + 1) = 𝑚 − 1. Similarly, if 𝜎(𝑚 + 2) = 𝑚, by condition (b) of Lemma 4.15

𝜎 has an increasing subsequence of length 𝑛 − 2 which does not contain 𝑚

since 𝑐𝜎 = 0 when 𝜎(𝑚 − 1) = 𝑚 + 1. Then by the same reasoning as above,

𝑐𝜎 = 0 if 𝜎(𝑚) = 𝑚 + 2 or if 𝜎(𝑚 + 2) = 𝑚.

68 A Basis for the 𝑘-Local Space

Now we can rewrite our sum as∑
1̃𝜎∈ℬ𝑘

Mexc(𝜎)≤1

𝑐𝜎𝜌
(𝑛−2,1,1)(𝜎) = 0.

By Lemma 4.16 and the same logic as given above, 𝑐𝜎 must be zero for all 𝜎
such that Mexc(𝜎) = 1.

Finally, we can rewrite our sum as∑
1̃𝜎∈ℬ𝑘

Mexc(𝜎)=0

𝑐𝜎𝜌
(𝑛−2,1,1)(𝜎) = 0.

which contains only the identity. Thus 𝑐1 must be zero and so all of the

coefficients are zero. Thus ℬ2 is linearly independent and forms a basis for

𝐿2. □

O
0
0

↳
0
0

-
Ofie
↑

O

-
0
0

-
&
o
0
0

~
w
m

=i
0

Figure 4.2 Visualization of the order in which permutations containing map-
pings with excedance 2 are zeroed out in the proof of Proposition 4.17.

Future Work 69

4.5 Future Work

Lemma 4.15 is the heart of why the 2-local case is more complex than the

1-local case and why this approach does not scale well. As 𝑛 grows, so

does the region of the permutation which is not guaranteed to be fixed by

Lemma 4.8. I have looked into the 3-local case a bit and creating an analog

of Lemma 4.15 seems very difficult.

Luckily, the result has already been proven by Doty (2021) so it’s okay if

we don’t prove it ourselves, and now we can ask lots of questions about our

new basis!

Question 4.1. It seems like when we write the 1(𝐼 ,𝐽) functions in this basis, we
tend to get integer coefficients. Are they counting something?

Question 4.2. If we do always get integer coefficients, then it would mean that
permutation statistics could also be written in this basis with integer coefficients.
Are those coefficients counting something?

Question 4.3. What does the projection of a permutation into the 𝑘-local space
even look like? Are there nice combinatorial descriptions for this function?

Question 4.4. In Hamaker and Rhoades (2022), the authors list several open
problems. One of these problems is to find a fast technique for projecting into the
𝑘-local space. Is it possible to do so with this basis for the 𝑘-local space?

Question 4.5. Lots of global functions have local analogs. How do the local
analogs relate to the local projections, and can this basis help us understand this
relationship?

Question 4.6. Permutations with long decreasing subsequences also form a basis
for this space! What other bases are there for the 𝑘-local space? Is there a nice basis
hiding inside the 1(𝐼 ,𝐽) functions?

Conclusion

I’ve had a lot of fun thinking about these ideas in the last year, and I hope you

enjoyed reading about them. At the beginning of this year, I did not think

that I would end up studying any of the ideas in this document. But that’s

what makes long increasing subsequences so wonderful. A long increasing

subsequence is not a complicated object, but you could spend years studying

connections between long increasing subsequences and other algebraic and

combinatorial ideas, and then spend more years doing that again. My hope

is that through reading any part of this, you’ve been able to get a feel for

some of the mathematics I’ve been working on and maybe been inspired to

work on it yourself. I recognize that many of my explanations may not have

resonated with you, or that you might have questions. If you do, or if you

make any progress towards one of the questions I’ve listed, please feel free

to contact me; I will be very happy to speak with you.

Bibliography

Assaf, Sami. 2019. An inversion statistic for reduced words. Advances in Ap-
plied Mathematics 107:1–21. doi:https://doi.org/10.1016/j.aam.2019.02.005.

URL https://www.sciencedirect.com/science/article/pii/S0196885819300429.

Babson, Eric, and Einar Steingrímsson. 2000. Generalized permutation

patterns and a classification of the Mahonian statistics. Séminaire Lotharingien
de Combinatoire [electronic only] 44:B44b, 18 p.–B44b, 18 p. URL http://eudml.
org/doc/120841.

Bóna, Miklós. 2012. Combinatorics of Permutations, Second Edition. Discrete

Mathematics and Its Applications, Taylor & Francis. URL https://books.
google.com/books?id=Op-nF-mBR7YC.

Bousquet-Mélou, Mireille, Anders Claesson, Mark Dukes, and Sergey

Kitaev. 2010. (2+2)-free posets, ascent sequences and pattern avoiding

permutations. J Comb Theory, Ser A 117:884–909.

Claesson, Anders, and Sergey Kitaev. 2008. Classification of bĳections

between 321- and 132-avoiding permutations. FPSAC’08 - 20th Interna-
tional Conference on Formal Power Series and Algebraic Combinatorics DMTCS

Proceedings vol. AJ,... doi:10.46298/dmtcs.3594.

Diaconis, Persi, Jason Fulman, and Robert Guralnick. 2008. On fixed points

of permutations. Journal of Algebraic Combinatorics 28(1):189–218. doi:

10.1007/s10801-008-0135-2. URL https://doi.org/10.1007/s10801-008-0135-2.

Doty, Stephen. 2021. Doubly stochastic matrices and Schur-Weyl duality

for partition algebras. Electronic Journal of Combinatorics 29.

Fässler, Albert, and Eduard Stiefel. 1992. Group Theoretical Methods and Their
Applications. Birkhäuser.

https://www.sciencedirect.com/science/article/pii/S0196885819300429
http://eudml.org/doc/120841
http://eudml.org/doc/120841
https://books.google.com/books?id=Op-nF-mBR7YC
https://books.google.com/books?id=Op-nF-mBR7YC
https://doi.org/10.1007/s10801-008-0135-2

74 Bibliography

Foulkes, H.O. 1980. Eulerian numbers, Newcomb’s problem and represen-

tations of symmetric groups. Discrete Mathematics 30(1):3–49.

Gaetz, Christian, and Laura Pierson. 2022. Positivity of permutation pattern

character polynomials. arXiv:2204.10633v1.

Gaetz, Christian, and Christopher Ryba. 2021. Stable characters from

permutation patterns. Selecta Mathematica 27:1–13.

Garsia, A.M., and A. Goupil. 2009. Character polynomials, their 𝑞-analogs,

and the Kronecker product. Electronic Journal of Combinatorics 16. doi:

https://doi.org/10.37236/85.

Gessel, Ira M, and Christophe Reutenauer. 1993. Counting permutations

with given cycle structure and descent set. Journal of Combinatorial Theory,
Series A 64(2):189–215. doi:https://doi.org/10.1016/0097-3165(93)90095-P.

URL https://www.sciencedirect.com/science/article/pii/009731659390095P.

Guillemot, Sylvain, and Daniel Marx. 2014. Finding small patterns in per-
mutations in linear time, 82–101. doi:10.1137/1.9781611973402.7. URL

https://epubs.siam.org/doi/abs/10.1137/1.9781611973402.7. https://epubs.siam.
org/doi/pdf/10.1137/1.9781611973402.7.

Gunawan, Emily, Jianping Pan, Heather M. Russell, and Bridget Eileen

Tenner. 2022. Runs and RSK tableaux of boolean permutations. 2207.05119.

Hamaker, Zachary, and Brendon Rhoades. 2022. Characters of local and

regular permutation statistics. arXiv:2206.06567v2.

Hultman, Axel. 2014. Permutation statistics of products of random permu-

tations. Adv Appl Math 54:1–10.

Jacques, Alain. 1972. Nombre de cycles d’une permutation et caractères du

groupe symétrique. In Permutation: Actes Du Colloque Sur Les Permutations,
93–96.

Kagey, Peter. 2021. Expected value of letters of permutations with a given

number of k-cycles. URL https://arxiv.org/abs/2112.05281. arXiv:2112.05281v1.

Kitaev, S. 2011. Patterns in Permutations and Words. Monographs in Theoret-

ical Computer Science. An EATCS Series, Springer Berlin Heidelberg. URL

https://books.google.com/books?id=JgQHtgR5N60C.

arXiv:2204.10633v1
https://www.sciencedirect.com/science/article/pii/009731659390095P
https://epubs.siam.org/doi/abs/10.1137/1.9781611973402.7
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973402.7
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973402.7
2207.05119
arXiv:2206.06567v2
https://arxiv.org/abs/2112.05281
arXiv:2112.05281v1
https://books.google.com/books?id=JgQHtgR5N60C

Bibliography 75

Knuth, Donald E. 1968. The Art of Computer Programming, vol. 1. Addison-

Wesley, 1st ed.

MacMahon, P.A. 1915. Combinatory Analysis, vol. 1. Cambridge University

Press.

Marcus, Adam, and Gábor Tardos. 2004. Excluded permutation matrices

and the Stanley–Wilf conjecture. Journal of Combinatorial Theory, Series
A 107(1):153–160. doi:https://doi.org/10.1016/j.jcta.2004.04.002. URL

https://www.sciencedirect.com/science/article/pii/S0097316504000512.

Mendes, Anthony, and Jeffrey Remmel. 2015. Counting with symmetric
functions. Springer.

Romik, Dan. 2015. The Surprising Mathematics of Longest Increasing Subse-
quences. Institute of Mathematical Statistics Textbooks, Cambridge Univer-

sity Press. doi:10.1017/CBO9781139872003.

Rubey, Martin, Christian Stump, et al. 2022. FindStat - The combinatorial

statistics database. http://www.FindStat.org. URL http://www.FindStat.org.

Accessed: May 4, 2023.

Sagan, B. 2001. The Symmetric Group: Representations, Combinatorial Algo-
rithms, and Symmetric Functions. Graduate Texts in Mathematics, Springer

New York. URL https://books.google.com/books?id=dmrnR48_x38C.

Schensted, C. 1961. Longest increasing and decreasing subsequences.

Canadian Journal of Mathematics 13:179–191. doi:10.4153/CJM-1961-015-3.

Schützenberger, Marcel Paul. 1963. Quelques remarques sur une construc-

tion de Schensted. Mathematica Scandinavica 12:117–128.

Stanley, Richard P., and Sergey Fomin. 1999. Symmetric Functions, Cambridge
Studies in Advanced Mathematics, vol. 2, 286–560. Cambridge University

Press.

https://www.sciencedirect.com/science/article/pii/S0097316504000512
http://www.FindStat.org
http://www.FindStat.org
https://books.google.com/books?id=dmrnR48_x38C

	Long Increasing Subsequences
	Recommended Citation

	Abstract
	Acknowledgments
	Preface
	Introduction
	Permutation Statistics
	The Symmetric Group
	Pattern Avoidance

	Background
	RSK Tableaux
	Reduced Words and Runs
	k-Local Functions: Combinatorially
	k-Local Functions: Algebraically
	A Change in Perspective

	Reduced Words and RSK Tableaux
	Canonical Reduced Words
	Some New Terminology
	Visualizing Canonical Run Decompositions
	From Reduced Words to RSK Tableaux
	Future Work

	A Basis for the k-Local Space
	Utilizing Full Local Modules
	Dimension
	1-Local Case
	2-Local Case
	Future Work

	Conclusion
	Bibliography

