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ABSTRACT OF THE THESIS

Mimetic Coastal Ocean Modeling in General Coordinates and using Machine Learning
based predictions.

by Manuel Alonzo Valera
Claremont Graduate University and San Diego State University: 2021

Abstract

Nonlinear internal waves are a ubiquitous and fundamental aspect of the coastal

ecosystem understanding. However, they rely on extreme geographical conditions and precise

dimensional equilibrium to be captured accurately. The General Curvilinear Coastal Ocean

Model (GCCOM) was validated, serial and parallel versions for a set of experiments

showcasing stratified and non-hydrostatic flow phenomena. Still, the 3D curvilinear capability

has proven to be elusive. We apply cutting-edge numerical methods to improve upon the

previously validated GCCOM, elevating it to field-scale capacity. This reformulation of the

GCCOM equations uses novel 3D curvilinear mimetic operators, a buoyancy body force, and

mimetic upwind and gradient-based momentum equations developed for this work. This

model represents the most complete implementation of the 3D curvilinear mimetic operators

utilizing the MOLE library or any other mimetic applications in literature to date. Results

show it to be more physically accurate and better energy conserving than the validated

GCCOM and other similar models, permitting the use of 3D curvilinear grids for arbitrary

geometries, parallelizable arbitrary domain decomposition, and order-of-magnitude wider time

steps. Additionally, we implement machine learning models to coastal ocean data to predict

Dissolved Oxygen (DO) content with supervised methods; results show a Median Absolute

Percentage Error (MAPE) of 2-6% for instantaneous indirect readings of DO and 0.18% for

five days forecast of DO in coastal areas, using a previously predicted temperature of 1.60%

MAPE. Dissolved Oxygen is known to be a critically important component to track in coastal

environments but also expensive to measure and almost impossible to model with traditional

methods due to high nonlinearity. The ML component of this thesis opens the possibility of

high precision indirect estimates of biogeochemical quantities, along with highly accurate time

series forecasts and a host of new applications of machine learning to environmental sciences.
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CHAPTER 1

INTRODUCTION

Science is a conversation with nature. This dialogue can happen differently; since

our early origins, we have interpreted and understood what nature says and used it to

our benefit. On the other hand, theoretical science is a monologue that needs the

response of an experiment to become confirmed science, and experiments need to be

formalized as a theory if the knowledge created is to be replicated and conserved.

Science advanced under this dichotomy until a few decades ago when the experiment

and the theory met a branch new way of communicating with nature, using the power of

computers, which simulate reality and bring to life algorithms and differential equations.

For the first time in history, we could use the third cornerstone of science that

has been hidden from us until then. This computational science can work as a bridge

between theory and experiment. Still, it can also partially replace one of the two other

facets of science, and at the same time is its realm of research. This miracle is a

multi-generational happening that our kind has the responsibility and the exciting

opportunity to develop and apply for the first time in all sorts of fields of knowledge.

Some aspects of computational science are more natural to some applications.

For example, engineering and physics problems can apply computational fluid dynamics,

and machine learning has been developed and applied in statistical analysis for decades.

The application of different aspects of computational science is a continually exciting

and evolving exercise, and a naturally interdisciplinary activity, offering an almost

infinite combination of possible applications and cross-cultural exchange.

The focus of this work is the development of models for coastal ocean dynamics,

specifically computational fluid dynamics models capable of capturing several scales and

physics phenomena while generating accurate results in a timely fashion. By the end of

this dissertation, we will also introduce several machine learning models that can also



be used in coastal ocean science to monitor and predict critical quantities for the

environment and ecological equilibrium.

The oceanographic community has developed and validated several global and

regional models capable of interacting and encompassing scales from kilometers to

hundreds of kilometers. These models can also track and forecast global currents, ice

sheet covering, sea surface temperature, etc. Still, the lower scales remain lacking a

sufficiently good model that can capture the thermodynamics and hydrodynamics of the

sub-kilometer to sub-meter scales, along with the coastal ocean interface that introduces

highly nonlinear behaviors and so far intractable problems.

The first requirement of a coastal ocean model is to be non-hydrostatic.

Hydrostaticity is an assumption that works in the open ocean. It implies that the

vertical velocities are too small compared to the horizontals, for which the

Navier-Stokes (N-S) equations, the fluid dynamics equations, are significantly simplified.

Hydrostaticity works in the open ocean because the horizontal scales are many times

larger than the ocean depth. Still, as we move near the coast, these scales start

becoming comparable, and in many cases, the water column depth would be equal or

even more significant than the horizontal scales modeled. Thus, the Navier-Stokes

equations must be non-hydrostatic in coastal ocean models.

A second requirement for coastal ocean models is to capture multiple physical

systems at the same time. Stratification is one main feature of oceanic waters and

becomes especially important in the coastal ocean. Stratification is the natural ordering

of water density in layers. Practically all ocean water is stratified, with each layer

receives a denomination and even specific ecosystems within it. On the coastal region,

the number of layers diminishes with lower depths but depending on the slope of the

shelf in the particular area, ocean currents and tidal forces can induce mixing and

shoaling of the contents of the lower layers towards the higher layers. The content of

each layer is density, salinity, and temperature specific. Still, it also has a different

biogeochemical composition that functions as nutrients for the various ecosystems they

can reach. For example, in a gentle slope coast, cold, nutrient-rich, and oxygen-deprived
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waters from the bottom layers will shoal into the uppermost layers with a certain

regularity. This process will provide the necessary nutrients for the higher ecosystems to

survive. A similar process occurs in steep slope regions, but in this case, the layer

shoaling becomes more chaotic, creating bores and turbulence that trigger cascading

energy events. These events feed energy from the broad ocean currents into the

sub-meter and millimeter-scale, providing the power for crucial metabolic processes.

Stratified seawater is a core feature of oceanic and coastal environments. The natural

movement created by tidal forces and oceanic currents will transport waves inside the

bulk of the water mass on what is called internal waves (IWs) [35]. In stratified media,

this means energy transport between density layers when the IWs start interfering with

each as a product of changing bathymetry, at the point where they become nonlinear

internal waves (NLIWs) and trigger turbulent mixing events across scales. These mixing

events are responsible for feeding oceanic-current (kilometers) scale energy into the

millimeter and sub-millimeter scale, enabling the production of food for the whole

chain, and is a crucial phenomenon to understand and model [97].

Finally, coastal ocean models require energy conservation and handling rough

geometries very well, since dissipation effects can take over the mixing and turbulence

typical of these environments [90]. In addition, the bathymetry increased abruptly and

in exotic ways in many coastal regions, especially underwater canyons. These two

specific requirements, along with the novelty of the application, are the primary

motivation to introduce mimetic operators in the development of a new version of the

General Curvilinear Coastal Ocean Model (GCCOM) [82].

Curvilinear or general coordinates will -partially or fully- adapt the grid cells to

the bathymetry shape [47], and different degrees of generality or non-traditional grid

geometries are widely used in oceanographic and atmospheric models. For example, the

curvilinear grid can be done partially. In this case, the vertical coordinate remains

rectilinear while the horizontal grid lines are curvilinear. This spawns a family of grid

geometries called σ (sigma) grids. The fully general (curvilinear) coordinate includes

the curvilinear quantities of the vertical coordinate as well and, while is more expensive
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to solve, is also more accurate in rough or steep submarine terrain, since it is

guaranteed, first, that the boundaries of the problem perfectly adapt to the actual shape

of the bathymetry, without the need of shaving cells, and secondly, since the whole issue

is translated using a general coordinates transformation, to a computational field that is

equivalent to a unit cube. This process also simplifies the application of boundary

conditions. The coastal ocean modeling community has developed several models, each

designed for a specific use, most recently including nonhydrostatic solvers, and usually

treating the grid with some degree of boundary following coordinates. σ-grid models

remain the most popular choice as of now. Still, the steep bathymetry of submarine

canyons and the increasing need for High-Performance, scalable models with higher

resolution make the need for a fully-3D curvilinear model apparent. In the coastal ocean

dynamics research group of San Diego State University, of which I form part, the need

for a new model has been attacked from the ground up, giving birth to the GCCOM.

The GCCOM is a non-hydrostatic, 3D curvilinear, Navier-Stokes model with

turbulence capabilities. It has been validated for stratified flows and internal waves

modeling [40], and it is the product of several generations of researchers, each of which

has expanded and improved into its capabilities. However, as we will later discuss, there

is a good case for overhauling its core functioning parts. Mimetic operators are a

natural choice for us to explore since this is the expertise of the head of the research

group Dr. Jose Castillo. Mimetic operators are discrete analogs of the first order

invariant operators’ divergence, gradient, curl and Laplacian from vector calculus. For

this thesis’s purposes, we will operate as tool-users of the MOLE library [31], knowing

that they are capable of generating the necessary operators and that these have been

validated and tested for the 2D curvilinear and 3D form. The development of 3D

curvilinear mimetic operators is a novel concept that escapes the scope of this thesis.

Regardless, these new operators have also been used in the development of the model

described here, and additionally at some point new implementations of the MOLE

library operators had to be developed for the kind of problems here described, dipping

our toes into tool-making territory as well.
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This thesis’s secondary but equally impactful objective is to explore the

application of machine learning models to coastal ocean dynamics. Several different

models have been applied to regression problems to obtain indirect dissolved oxygen

estimations in the coastal waters in the last year. Dissolved oxygen (DO) in seawater is

known to be linearly dependent on temperature, salinity, and depth in the open ocean.

Still, this clear dependence is lost when we move towards the coastal region, which

becomes highly nonlinear. Similarly, more fundamental variables like temperature

become not predictable by traditional methods in the coastal regime. Therefore, the

DO estimation problem can be attacked as a nonlinear regression model. Previous

purely nonlinear regression models had limited success in estimating DO in coastal

waters [95, 76], while more advanced machine learning approaches have been scarce,

only adequate in accuracy, and long in time scales for forecasting [71, 99, 51, 98, 89],

limiting their applicability. Furthermore, a DO forecast would be a beneficial tool for

coastal fisheries, ecological managers, and similar activities, but the task’s complexity

has not yielded any advances in this matter. In the second part of this thesis, we

describe the application of supervised machine learning techniques to obtain an almost

exact reading of DO in coastal waters, which was published in the last year in [87], as

well as a novel implementation of time series forecast using Long Short-Term Memory

neural networks for five days forecasts of DO and temperature in a coastal site.

1.1 Motivation

The first main objective for a new GCCOM formulation is to be able to

reproduce internal waves accurately. Internal waves are the primary process driving the

energy from ocean currents into more minor scales, where krill and plankton grow,

becoming fundamental phenomena in the ocean food chain [97]. Internal waves (IW)

occur when a stratified body of water is perturbed, which is usually generated by ocean

currents and tidal forces. Just like surface waves breaking on a beach, the large slopes

of the continental shelf and bathymetric features cause internal waves to break, giving

rise to turbulence and the formation of underwater (internal) bores [92]. These features

enhance mixing and affect small scales at which microscopic marine life lives. These
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underwater features also deliver nutrients to coastal ecosystems like kelp forests and

coral reefs, maintaining productive nearshore waters. The rising of global and oceanic

temperatures will most likely affect the vertical stratification of coastal areas [68].

However, the implications of these changes in the coastal ecosystems and economic

activities are still unknown.

Figure 1.1. Scales and biogeochemical-physical phenomena present in Coastal
Ocean Dynamics with GCCOM-related scales marked in red. From [22].

Figure 1.2. Map of internal wave beams propagating in the world’s oceans.
From [97].

6



Internal waves travel undisturbed in the open ocean, using the stratified ocean as

waveguides to propagate with minimal dissipation, in a soliton-like state (see Figure

1.2), until turbulence, mixing, and bore creation overcome this behavior. This happens

especially at the coastal ocean and is evident in underwater canyons [92, 93, 38, 91].

The Internal Waves/Coastal Shelf interaction is often understudied, in part because

coastal ocean high-resolution models are scarce, and even fewer are models that can

adapt to the coastal bathymetry well enough to capture the physics realistically, such as

a 3D curvilinear model. Coastal models capable of handling IW also need to be

non-hydrostatic, render turbulence and be able to perform and scale in HPC

architectures to model all of the (multi-scale, multi-physics) processes present in this

phenomenon, from the ocean current in the kilometers wavelength to the sub-meter

scale of turbulent mixing, as illustrated in Figure 1.1, and in the other sense, from fluid

dynamics to convection-diffusion, equation of state, and even biogeochemical models,

that as we will see may be able to be replaced by Machine Learning models.

Several models with partial fulfilling of this list were produced and used in the

last three decades [75, 25, 61, 67, 79, 39, 72, 9, 64], including the General Curvilinear

Coastal Ocean Model (GCCOM) developed at San Diego State University (SDSU) that

can handle 3D geometries [40]. GCCOM was recently validated, and part of this

project’s scope is to use it in a specific real-world scenario, aiming to emulate the

real-world physics of internal wave formation and mixing in the Monterey Bay and La

Jolla underwater canyons. This included realistic density and temperature profiles along

and across the bay.

On the other hand, the temperature has proved a good enough parameter to

estimate nutrients in surface water, and water column [53]. Furthermore, exploratory

work has demonstrated the potential to use Machine Learning techniques as regression

models to infer nutrient contents of seawater from temperature-salinity data at any

depth [37, 42, 45, 88]. The second part of this thesis describes supervised machine

learning methods employed to estimate highly nonlinear quantities in coastal ocean

environments, specifically dissolved oxygen, using simple estimators or time series data
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for forecasting. These machine learning models will be able to take the function of a

traditional biogeochemical module in a coastal ocean model, used instead as a

post-processing tool, and be capable of forecasting conditions of these markers in time

with the help of AI workflows here proposed.

1.2 Outline

This thesis is organized as follows, Chapter 2 includes the description of the

GCCOM model development history and latest advancements, as well as the validation

experiments we will replicate later in the thesis and some alternative approaches

recommended for future studies. Chapters 3 and 4 describe the history and

development of the mimetic operators and the ideas and design of the Mimetic

GCCOM model here presented, respectively, followed by the first batch of results in

Chapter 4.2 for the Mimetic GCCOM. The second part of this thesis is comprised of

Chapters 5 and 5.3 where their machine learning models and results are described.

Finally, conclusions and further work are presented in Chapter 6
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CHAPTER 2

THE GENERAL CURVILINEAR COASTAL

OCEAN MODEL

The General Curvilinear Coastal Ocean Dynamics model (GCCOM) [82] is a

nonhydrostatic, 3D-curvilinear capable model. It is also the product of many

generations of coastal ocean dynamics graduate students. The first version of GCCOM

was briefly introduced at [82] as an N-S solver for curvilinear grids in oceanographic

applications. Later, a paper formalizing this framework was published, including a

seamount test forced with a constant velocity flow [82]. This early was capable of

handling stratification and Coriolis forces in general curvilinear coordinates and became

the basis for future model iterations. Later, Abouali [3] refined the numerical methods

to include a forward-backward advection scheme by Kawamura [54] and three-staged

Runge-Kutta time integration. During this time, Abouali also created a 2D curvilinear

version of the model utilizing mimetic operators and later proved the 3D curvilinear

mimetic operators to be feasible to solve Poisson equation problems with high-order

accuracy cementing the basis for this work [2, 5]. At this moment in time, GCCOM was

being run in serial, for which Thomas [80] created a parallel framework for the model to

run on. At the same time, Garcia [40, 41] worked along with Ryan Walter and Paul

Choboter in improving the models’ capabilities significantly, including external forcing

compatible with ROMS output for model coupling, an implicit Poisson equation solver,

and designing and implementing several benchmark tests that went on to validate the

model for continuously stratified flows in 3D curvilinear coordinates. Shortly after

validation, a complete re-implementation and re-validation of the model was carried out

using a PETSc framework for parallelization [86, 84, 87]. The model showed the same

physical behavior as before, up to machine precision, and was tested to scale up to 300

processors across 12 nodes in a six million points grid for a seamount test case. This



promising advancement was hindered by the tiny time steps the model needs to run

with the physically correct behavior. The reasons for this time step requirement remain

a problem to be solved, and the Fortran, fully validated and parallelized version of the

model has realized its potential in its current form [82, 40, 87, 21].

In the rest of this chapter, we will describe how the GCCOM is formulated, how

its governing equations work, and outline the motivation to improve in a new iteration

of the model, built from the ground up with cutting edge methods and retaining as

much of the previous version as possible but without inheriting the shortcomings.

2.1 Governing Equations

GCCOM solves the full Navier-Stokes, seawater density equation of state and

temperature/salinity convection-diffusion equations, written in vector notation as

follows:

∂~u

∂t
+ ~u · ∇~u = − 1

ρ0

∇p− g(ρ− ρ0)

ρ0

k̂ −∇ · ~~τ, (2.1)

∂T

∂t
+ ~u · ∇T = ∇ · (kT∇T ), (2.2)

∂S

∂t
+ ~u · ∇S = ∇ · (kS∇S), (2.3)

∇ · ~u = 0, (2.4)

ρ = ρ(T, S) = ρref + ρdS(S − Sref ) + ρdT (T − Tref ) (2.5)

With specific equation of state parameters

ρref = 1027, Sref = 35.0, Tref = 10.0, ρdS = 0.781 and ρdT = −0.1708. The equations are

nondimensionalized using the following variables, with problem specific non-dimensional

factors:
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x∗i = xi/L
∗

u∗i = ui/U
∗

t∗ = t(U∗/L∗)

ρ∗ = ρ/ρ0

p∗ = p/(ρ0(U∗)2)

T ∗ = T/T0

S∗ = S/S0

g∗ = L∗/(U∗)2

(2.6)

GCCOM uses the Boussinesq approximation [18] to ponder a nonphysical analog

to pressure, and this approximation takes advantage of the continuity equation 2.4,

which when applied to the momentum equation 2.1 yields a quantity dimensionally

equivalent to pressure. This pseudo-pressure is then derivated to obtain a correction

term for the updating of the velocity fields. This is called a predictor-corrector method

for velocities. The solution of the pseudo-pressure is represented as a linear system of a

27-point stencil, with curvilinear coefficients associated as shown by Torres [83], this

step is solved using an iterative solver provided by the PETSc library, usually general

conjugate gradient. However, the option to use a wide array of solvers is present. The

correction step is admittedly much more straightforward, using an Euler time scheme to

correct the velocities.

2.1.1 Body Force

Typically, a body force is a term that defines the action of external forces in the

system; in the case of N-S, the typical body force is a buoyancy term. Buoyancy can be

defined in several ways, typically re-scaling the density field time the gravity force. In

our case, Buoyancy, b is defined as:

b = −gρ− ρ0

ρ0

(2.7)

This is the second-to-last term we see in 2.1 and is present in the k̂ direction only.

This specific buoyancy definition considers splitting the density between background

stratification and deviation from the mean, being this latter component the active body

force in the problem. This assumption holds only for small density variations.
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2.1.2 Large Eddy Simulation

GCCOM also takes advantage of Large Eddy Simulations (LES) to handle

turbulence inside the model; LES was first proposed by [78] as a way to reduce

computational demands of Direct Numerical Simulations. LES functions as a low-pass

filter of the minor scales in the simulation, called Smagorinsky scale Cs, and it requires

tuning of this scale for each application, but typical values range from 0.8 to 0.22-0.24.

Furthermore, the Length scale ` is proportional to the discretization and defined as

` = (∆x∆y∆z)1/3 with these constants we define a turbulent eddy viscosity νT that

replaces the bulk density of the problem and is defined as:

νT = (Cs`)
2
√

2S̄ijS̄ij (2.8)

S̄ij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (2.9)

Where the term S̄ij is called the strain-tensor. Finally, the τ in the last term of

2.1 is replaced by:

τij = −2νT S̄ij (2.10)

2.2 Numerical Algorithms

The choice and application of numerical algorithms in any model must be a

conscious decision and generally justified by the nature of the modeled equations. For

N-S, we deal with nonlinear, hyperbolic equations with a fully elliptic component in the

pressure solution (Poisson equation). In this section, we will define the algorithms used

by the validated version of GCCOM.

2.2.1 Space-based Derivation

2.2.1.1 Kawamura Advection
Scheme

The first critical component of the GCCOM is the use of a forward-backward

composite advection scheme especially crafted for terms like adu
dx

in general coordinates;
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this scheme was first described by [54] and has been implemented into every single

version of GCCOM until now, making it one of its trademarks. The Kawamura

advection scheme is described by:

(fξ
∂u

∂ξ
)i,j,k =(fξ)i,j,k

−ui+2,j,k + 8(ui+1,j,k − ui−1,j,k) + ui−2,j,k

12δξ
(2.11)

× |(fξ)i,j,k|
ui+2,j,k +−4ui+1,j,k + 6ui,j,k)− 4ui−1,j,k + ui−2,j,k

4δξ
(2.12)

In general coordinates, the term fξ becomes the covariant component of the

velocities or fξ = uξx + uξy + uξz. We see from this formulation that we need the

application of metric grids in each iteration of the solver (here only described w.r.t. one

direction) to solve for arbitrary geometries. This carries out a significant overhead in

calculations but also in memory requirements for the model, and to solve this, it is

necessary to convert all the quantities and equations beforehand, carry out the

calculations in the transformed equations, and then transform back only when needed.

A description of an attempt by the writer to do exactly this is described in 2.5.1.

2.2.2 Time-based Integration

The time integration scheme of GCCOM is the 3-stages Runge Kutta algorithm,

which is 2nd order accurate in nonlinear systems as what GCCOM solves. This time

scheme is robust and relatively stable. Still, it needs the updating of the right-hand side

of the algorithm at each stage, something equivalent to solving the model time update

three times fully and then aggregating the solutions. As we will see later, this scheme is

replaced in the Mimetic GCCOM by a strong-stability-preserving version of

Runge-Kutta which only uses one update of the right-hand-side (f(un, ...)), without

sacrificing stability, representing another important gain in overhead and memory

requirements for the model. For illustration purposes, the RK3 algorithm follows:
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u′ =un +
δt

3
f(un, ...) (2.13)

u′′ =un +
δt

2
f(u′, ...) (2.14)

un+1 =un + δtf(u′′, ...) (2.15)

2.3 Hydrostatic-Pressure Gradient Force
(HPGF) Algorithm

The hydrostatic pressure gradient formulation, which is currently being used on

GCCOM [29], is based on the split of the pressure term on the hosted equations into

non-hydrostatic and hydrostatic parts, i.e. p = ph + pnh, and recalling the hydrostatic

pressure to be ∂ph/∂z = −ρg, we get:

∂p

∂z
= −ρg +

∂pnh
∂z

(2.16)

This expression effectively becomes the z-contribution of the pressure gradient

and the body force g on the original equations, hence disregarding the need for

additional body force terms to account for the action of gravity. However, for reasons

that will be discussed in the next section, the hydrostatic pressure gradient is calculated

and accounted for in the horizontal directions instead, as part of the horizontal pressure

gradient correction, in the form:

∂ph
∂z

= −ρg (2.17)

ph =

∫ 0

z

ρgdz (2.18)

∂p

∂{x, y}
=

∂

∂{x, y}

∫ 0

z

ρgdz +
∂pnh
∂{x, y}

(2.19)

2.3.1 The Hydrostatic Inconsistency

The motivation to use the HPGF algorithm will become evident in this section.

In transformed equations problems, we formulate our experiment in two different
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spaces: Logical and physical. The physical space has curvilinear coordinates, while the

logical space is a rectilinear unitary cube governed by a bijective relationship to the

physical grid. Now let’s imagine a cell with the one-to-one, bijective projection of each

point to each space. The two coordinate systems that govern them are generally

different for each space, and each coordinate can be written as a composition of the

opposite coordinate system. Finally, we need to realize that in boundary-fitted

coordinates, the curvilinear physical space closely follows the bathymetry on the

bottom. Then, when bathymetry is too steep, the curvilinear cell is stretched so that

the computational horizontal direction becomes almost parallel to the physical vertical

direction; in this case, models’ the physically hosted equations need to be carefully

applied to account for these effects. In the HPGF algorithm, the vertical contribution of

hydrostatic pressure is always expected in the horizontal direction since we calculate the

vertical component of the hydrostatic pressure for each horizontal cell instead (equation

2.17), solving the problem of steep bathymetry with the added cost of requiring a

vertically-aligned coordinate [74, 20, 60].

2.3.2 Equivalency of Buoyancy and HPGF
body forces

If instead of splitting the pressure gradient into two pieces, we just define the

pressure split as [72]:

ph = patm + g

∫ 0

z

ρ̄(z′)dz′ (2.20)

for ρ̄(z) the initial stratification profile or background stratification, and patm the

pressure at the surface of water, then the momentum equation for the physical hosted

equations become:

∂~u

∂t
+ ~u · ∇~u = − 1

ρ0

∇(pnh − ph)−
g(ρ− ρ̄)

ρ0

k̂ −∇ · ~~τ (2.21)

This formulation does not take any grid considerations into account and, in

principle, should be calculated along with the fully 3D curvilinear transformed equations
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application by using the Jacobian of the transformation if needed. Additionally, we can

infer that in our formulation, the atmospheric and nonhydrostatic pressures will account

for the bulk of the calculation. The hydrostatic contribution will be minimal, as is

expected in models where the vertical and horizontal scales are comparable.

2.3.3 Formulation and Implementation of
HPGF

In order to calculate this integral on the curvilinear grid, a piece-wise polynomial

spline is adapted from similar models calculations, called here the HPGF algorithm,

that translates into:

∫ zk+1

zk

∂ph
∂x

dz =

∫ k+1

k

∂ph
∂x

hkdξ (2.22)

= hk(f
(0)ξ + 1/2! ∗ f (1)ξ2 + 1/3!f (2)ξ3 + 1/4!f (3)ξ4)|10 (2.23)

Where ξ is the computational variable of space, hk is a local variable defined

inside the cell, and the f (n) terms are spline coefficients carefully selected. This

algorithm is borrowed from ROMS, and other similar σ-grid models and hk and the

calculation of the coefficients assumes the physical vertical coordinate to be aligned, so

is not suited for 3D curvilinear grids, and the spline calculation requires the parallel

distribution of the code work to be limited to horizontal partitions, which limits the

performance.

The HPGF algorithm brings several significant consequences with it. For one, it

permits the validation of the GCCOM model by overcoming the hydrostatic

inconsistency; this is no small feat considering the model’s complexity and essential use

case. Unfortunately, the negative consequences end up being too many to keep this

algorithm. First, it restraints the models’ grid capabilities to sigma grids, which

dramatically hinders one of the main features of GCCOM, handling fully 3D curvilinear

geometries, which remain coded and capable inside the model, just never used.

Additionally, the spline calculation requires the parallel model to allocate the vertical
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entirely in one processor, hindering scalability. Finally, the most critical problem of the

HPGF in this implementation is that it requires a tiny ∆t choice to produce valid

results, otherwise introducing artifacts such as intrusions of high-temperature water, or

similar effects, which quickly overcome the physics of the problem. This ∆t problem has

been demonstrated to come from implementing the HPGF algorithm, but attempts to

repair it have not been successful.

Still, even with its limitation, there is a case to be made for solving the HPGF

algorithm implementation in the validated GCCOM model, since still to this day this

remains the most advanced and complete version of GCCOM, especially because of its

parallelization and fixing it would enable the simulation of submarine canyons with

internal waves right away.

2.4 GCCOM Validation Experiments

To validate the model, we have to prove that GCCOM is capable of handling

continuous stratification in the typical ranges of the coastal ocean and nonhydrostatic

effects that may arise in the experiment. The following experiments showcase this

behavior and prove the correctness of the model’s results quantitatively. We introduce

here the experiments we intend to replicate later in this thesis. For the complete list of

GCCOM validation experiments, refer to the literature [40, 3].

It is somewhat essential to remark that the grid configurations of Internal Wave

Beam are all sigma. At the same time, the Lock Exchange is a rectilinear grid, and the

Seamount test case is a curvilinear grid as described by [4].

2.4.1 Lock Exchange

The Lock Exchange (LE) experiment consists of a tank where two fluids of

different densities are present, one heavy fluid with higher viscosity on the right half of

the container and a light (lower viscosity) fluid on the left side. For GCCOM, the

dimensions and parameters have been kept consistent with [46, 39, 59] to make the

comparison of validation and results straightforward. The tank has length, Lx = 0.8m,

and depth Lz = 0.1m, the width of the tank for GCCOM is Ly = 0.1m, and the density
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profile changes smoothly from one constant density value to the other at the center of

the tank, thanks to the following density function:

ρ(x, y, z, t = 0) = ρmin +
∆ρ

2
(1− erf(

x

δ
)) (2.24)

where erf(f) is the computational error function, δ = 0.01m is the width of the

interface and ρmin = 1025.9525 is the density of the light fluid. The density difference

between fluids is selected so that the reduced gravity g′ = 0.01m/s2 i.e:

g′ = g
∆ρ

ρ0

= 0.01m/s2 (2.25)

with ρ0 a reference density of 1000 kg/m3 and g the gravitational acceleration of

9.81 m/s−2. The GCCOM resolution matches [59] and [39] with 400 cells in the

horizontal and 100 in the vertical, for a ∆x = 0.002m and ∆z = 0.001m and the

minimum 6 cells in the y − direction, while [46] used much finer grids for Direct

Numerical Simulation and is regarded as the benchmark for numerical LE simulations.

The GCCOM experiment is run for 180s total with a dimensional time step of

∆t = 0.0005

The narrow density interface in LE acts as a smooth barrier along which the

gravity-induced currents will develop. In the experimental setups of this experiment,

the two fluids are separated by a gate that must be removed quickly but not perturbing

the interface since the majority of the important behavior occurs in it. Hence, at the

starting time, there are no velocities present in the experiment. Still, these quickly

develop at the start of the simulation, when the fluids intrude mutually to each other

domain in a pair of fronts that travel opposite directions symmetrically. This

experiment is chosen for non-hydrostatic flows simulations for mainly two reasons. One

is that the fluid front speeds are easily measurable and they propagate with constant

velocity after a short transient [46, 65], the other reason is the apparition of

Kevin-Helmholtz (KH) instabilities or billows at the fluid interfaces, starting at the

center of the domain and propagating outwards towards the tank walls. KH billows
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frequently occur in nature where the vertical and horizontal velocities become similar in

a density gradient and are purely non-hydrostatic phenomena, as can be appreciated in

[39] where the hydrostatic and non-hydrostatic versions of the experiment are shown.

While the KH billows show a qualitative sign of the model working correctly as a

non-hydrostatic N-S solver, the quantitative validation of the LE experiment is done by

studying its wavefront speed. The fluids’ propagation speed along the top and bottom

walls is constant after a short transient and is unique to the non-hydrostatic solution as

well, and can be expressed in terms of the Froude number (Fr), which we will explain

next. Besides the front velocity uf , another buoyancy-induced velocity (ũb) can be

defined for the experiment as:

ũb =

√
g̃′
Lz
2

(2.26)

As it is clear, this buoyancy velocity is unique to the LE dimensions, and the

non-dimensional quantity uf/ub is defined as the Froude number Fr = uf/ub.

Moreover, we can also see that the two most important factors in the LE experiment

design are the density difference ∆ρ and the half-height of the tank h̃ = Lz

2
with whom

any-sized LE experiment may be physically validated for nonhydrostatic, stratified

flows. For this experiment’s configuration, Fr works out to be equal to 1/
√

2 = 0.7071.

2.4.1.1 GCCOM LE Results

The validated version of GCCOM was able to obtain a median Froude number of

0.7176, with a 1.8% error difference from the theoretical value, vs Fr = 0.654 from [39]

(7.5% error difference) and 0.675 from [46] (4.5% error difference). Figure 2.1 shows

various stages of the simulation, where the KH instabilities are clearly defined and seen

developing correctly, growing from the domain center towards the walls.

2.4.2 Seamount

The seamount experiment is here included as described in [4], this means with

homogeneous density, and with a bottom bathymetry defined by a Gaussian bump as:

19



Figure 2.1. GCCOM validation results for LE experiment, featuring the time
evolution and the Kelvin-Helmholtz billows formation. From [40].

D(x, y) = L∗(−1 + a exp(−b(x2 + y2))) (2.27)

Where L∗ = 1000m is the length scale of the problem, and its maximum depth,

(a, b) = (0.5, 8) and the domain size is (x, y) = [−1.8, 1.8]× [−1.4, 1.4] or

2.8km× 3.6km. A grid consisting of 99× 65× 38 points was created for this problem,

and a sigma version was compared to a curvilinear version. There is not a specific

description of the curvilinear grid created for this problem, but a redistribution of the

points in the x plane was carried out according to:

A =
1

2β
ln[

1 + (eβ − 1)D/Li
1 + (e−β − 1)D/Li

] (2.28)

xi = D1 +
sinh[β(ξi − A)]

sinh βA
(2.29)
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Where Li is the domain size in the i− th direction, β = 5 the clustering

parameter, and D = Li/2 the location of the clustering. The domain is forced on the left

X-Z plane with a linearly increasing velocity, from zero at the bottom to 1 at the top.

This experiment shows typical advective refraction behind the seamount, as appreciated

in Figure 2.2, and is not meant to be a physically validable result, only qualitatively.

Figure 2.2. GCCOM seamount experiment results for several time frames.
Slide 100 is equivalent to t=20000s. From [4].

2.4.3 Internal Waves Beam

The second experiment GCCOM was validated with is the internal wave beam

(IWB) experiment [91], also called tidal flow over a ridge [27] is field-scale experiment

as it has horizontal dimensions of kilometers and depth of Lz = 1000m. In this

experiment, a small ridge at the bottom of an open ocean is forced at each side with a

tidal force of known frequency ω, while the region is stratified with a constant density

gradient. The stratification profile has a natural buoyancy frequency, first described by

David Brunt and Vilho Väisälä, the Brunt–Väisälä frequency is a fundamental quantity

for continuously stratified media, marking the maximum allowed frequency at which the

internal wave propagates forward; it is defined by 2.4.3

N =

√
− g

ρ0

∂ρ

∂z
= 0.007

1

s
(2.30)
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It can be shown that, for a continuously stratified media, the buoyant restoring

force becomes an analog to a mass-spring system oscillating vertically about z0, in the

form:

d2∆z

dt2
= −g′ = −g(ρ(z0)− ρ(z0 + ∆z))

ρ(z0)
(2.31)

= −g(−dρ
dz

∆z)
1

ρ(z0)
(2.32)

from which the natural frequency at 2.4.3 arises.

Knowing the system’s natural frequency, we can introduce a tidal wave of known

frequency ω such that ω = Nsin(ϕ) creates an oscillation along a specific line at an

angle ϕ from the vertical. From this predictable behavior, internal waves form beams

inside a continuously stratified media with a tidal flow interacting with it.

The experiment is set up with a small ridge at the bottom, which will act as

sufficient perturbation to induce the beams to be created. The bathymetry of this

gaussian ridge is formulated as:

D(x) = Lz − ab exp(− x2

2L2
b

) (2.33)

Using ab = 20m and Lb = Lx/100m, with Lx the horizontal length of the domain.

The nonhydrostatic internal wave beam angle, without Coriolis force is given by:

ϕ = tan−1(

√
(ω/N)2

1− (ω/N)2
) (2.34)

We define Lx as a function of the ω/N parameters so that the beam reflection

with the surface is always inside the domain, this is done by choosing Lx to be:

Lx =
4Lz

tan(ϕ)
(2.35)
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The parameters in this experiment match [91] and are chosen to keep nonlinear

processes, and multiple beams at a minimum [62]. Additionally, boundary reflections

are filtered out using sponge layers (SL) at each side following the construction rule:

SL = −u− ubc
τs

sl(r) (2.36)

with r the distance to the boundary, τs = 100s the damping time scale,

ubc = u0sin(ωt) the tidal flow forcing at the boundaries, and u0 = 0.01m/s its

amplitude.

The simulation is run for 20T tidal periods (= 2π/omega) because of spin-up

concerns on the nonhydrostatic runs (only nonhydrostatic simulations of ω/N > 0.8

require extensive spin-up time). The time step used by GCCOM is ∆t = 0.01 while [91]

uses ∆t = T/500

A series of ω/N ratios from 0.2 to 0.8 are run and the angle obtained is

measured, then it is compared with the theoretical curves of hydrostatic and

non-hydrostatic predicted angles, which differ slightly; we have introduced the

nonhydrostatic ϕ angle before (2.4.3) while the hydrostatic expression for it is

ϕh = tan−1(ω/N).

2.4.3.1 GCCOM IWB results

IWB simulations were run for GCCOM at ω/N values of 0.2,0.4,0.6 and 0.8, and

once the run finished and the transient has died out, the beam angle is determined by

taking a least-square fit of the location of the highest RMS velocity over the last ten

tidal periods, in a region in the center of the domain. A sample of the solution can be

seen in Figure 2.3.

The quantitative appearance of the beams becomes evident after some time in

the GCCOM solution, as they seem to grow from the ridge up until reflecting from the

surface. This is a known property of internal waves reflecting off submarine structures

in the open ocean as explained in Section 1.1, here appreciated from a side view.

Finally, the qualitative analysis of the solutions comes from calculating the angle from
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Figure 2.3. GCCOM validation results for the IWB experiment. The beams
angle is dependent of the ω/N ratio. From [40].

the vertical, which is specific for hydrostatic or non-hydrostatic calculation. This can be

seen in Figure 2.4.

GCCOM attained a good agreement with the theoretical nonhydrostatic angle

for the conditions here described, then, compared with the results from [91] the results

are also comparable. Altogether, this set of experiments validated the nonhydrostatic

and continuous stratification features of the model and elevated it to a similar accuracy

level to the rest of the coastal ocean models in the field.

At this point, the necessity to go higher in resolution and broader in field-scale

problems was pressuring, so these kinds of problems were attempted for internal waves

shoaling and mixing in Monterey Bay and La Jolla underwater canyons. Still, the

requirements of small time-step proved to be too restrictive to get timely.
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Figure 2.4. GCCOM nonhydrostatic angles obtained for the IWB experiment.
From [40].

2.5 Alternative GCCOM Formulations

The writer proposed several improvements and upgrades and partially

implemented them during his tenure as a graduate student. The current section

describes these alternative approaches and their implementation status. All of the work

in this section has been recorded in the GCCOM bitbucket repository in several

different branches. The total amount of effort dedicated to these incomplete works

amounts to almost two years altogether.

2.5.1 Flux-Vector

Because of the hydrostatic inconsistency causing stiffness in the formulation of

the equations, the possibility of an upgrade to the code was proposed. The idea of this

upgrade was to finally pose the GCCOM in the computational formulation that permits

the complete transformation of all of the involved quantities, the advancement of these

quantities in the computational space only, and the conversion back to physical space

only when needed to visualize the status of a variable. This form is usually called

vectorial form, or flux-vector form of the Navier-Stokes equations, and it can immensely

improve the computational performance and memory requirements of the model.

The main idea of the Flux-Vector transformation of the equations is that each

equation from the N-S system, including the temperature and salinity equation, can be
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rewritten in terms of the derivatives taken, in vectorial variables Q,E, F,G,Ev, Fv, Gv

such as:

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
=
∂Ev
∂x

+
∂Fv
∂y

+
∂Gv

∂z
(2.37)

Where:

Q =



p

u

v

w

T

S


(2.38)

2

E =



u

uu+ p

uv

uw

uT

uS


(2.39)
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Ev =



0

τxx

τxy

τxz

kT qx

kSpx


(2.40)

F =



v

vu

vv + p

vw

vT

vS


(2.41)

Fv =



0

τyx

τyy

τyz

kT qy

kSpy


(2.42)
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G =



w

wu

wv

ww + p

wT

wS


(2.43)

Gv =



0

τzx

τzy

τzz

kT qz

kSpz


(2.44)

where qi = ∂T
∂xi

and pi = ∂S
∂xi

. These equations are now only a re-write of the N-S

system, but some algebraic manipulation can be made so that the same general

structure is preserved, introducing the transformed variables Q̄, Ē, F̄ , Ḡ, Ēv, F̄v, Ḡv, as

we will see next.

2.5.2 Transformed N-S equations in
Flux-Vector form

According to [47] (eq. 11-60) the conservative form of the full N-S equations can

be written in flux-vector form, in curvilinear coordinates as:

∂Q̄

∂τ
+
∂Ē

∂ξ
+
∂F̄

∂η
+
∂Ḡ

∂ζ
=
∂Ēv
∂ξ

+
∂F̄v
∂η

+
∂Ḡv

∂ζ
(2.45)

Where:
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Q̄ =
Q

J
(2.46)

Ē =
1

J
(ξtQ+ ξxE + ξyF + ξzG) (2.47)

F̄ =
1

J
(ηtQ+ ηxE + ηyF + ηzG) (2.48)

Ḡ =
1

J
(ζtQ+ ζxE + ζyF + ζzG) (2.49)

Ēv =
1

J
(ξxEv + ξyFv + ξzGv) (2.50)

F̄v =
1

J
(ηxEv + ηyFv + ηzGv) (2.51)

Ḡv =
1

J
(ζxEv + ζyFv + ζzGv) (2.52)

(2.53)

With the transformed shear stress tensor and T,S terms as:

τ̄xx = µ[
4

3
(ξxuξ + ηxuη + ζxuζ)−

2

3
(ξyvξ + ηyvη + ζyvζ)−

2

3
(ξzwξ + ηzwη + ζzwζ)]

(2.54)

τ̄yy = µ[
4

3
(ξyvξ + ηyvη + ζyvζ)−

2

3
(ξxuξ + ηxuη + ζxuζ)−

2

3
(ξzwξ + ηzwη + ζzwζ)]

(2.55)

τ̄zz = µ[
4

3
(ξzwξ + ηzwη + ζzwζ)−

2

3
(ξxuξ + ηxuη + ζxuζ)−

2

3
(ξyvξ + ηyvη + ζyvζ)]

(2.56)

τ̄xy = µ(ξyuξ + ηyuη + ζyuζ + ξxxξ + ηxvη + ζxvζ) (2.57)

τ̄zx = µ(ξzuξ + ηzuη + ζzuζ + ξxxξ + ηxvη + ζxvζ) (2.58)

τ̄zy = µ(ξzxξ + ηzvη + ζzvζ + ξyuξ + ηyuη + ζyuζ) (2.59)
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q̄x = (ξxTξ + ηxTη + ζxTζ) (2.60)

q̄y = (ξyTξ + ηyTη + ζyTζ) (2.61)

q̄z = (ξzTξ + ηzTη + ζzTζ) (2.62)

p̄x = (ξxSξ + ηxSη + ζxSζ) (2.63)

p̄y = (ξySξ + ηySη + ζySζ) (2.64)

p̄z = (ξzSξ + ηzSη + ζzSζ) (2.65)

The central equation to be solved would be 2.45, with the rest of this section’s

formulas being necessary to resolve it fully. In this analysis, we have omitted

non-dimensionalization and body force. These need to be carefully added to the

appropriate momentum equation (ζ).

There exists a further step to solve this system according to [47] and is the

creation of special flux Jacobian matrices that escape the scope of this thesis but were

not included in the transformation because they looked to be very poorly scalable

because they are comprised of several of the variables of this formulation, making them

extremely big, full matrices. This step, however, is regarded as necessary in literature to

solve for the pressure. Instead, the writer opted for a hybrid approach, where the

transformation is applied to solve the momentum. The velocities are recovered with the

anti-transformed, and the pressure is solved with the usual Poisson equation or another

alternative approach, such as the artificial compressibility method explained next.

2.5.3 Artificial Compressibility

2.5.4 Improvements to the HPGF algorithm

2.5.4.1 Status of Implementation

The Flux-Vector formulation was able to solve stratified flows over an

underwater seamount in the same sense as the GCCOM does. Still, it could not handle

the lock exchange experiment, no further tests were done, but the work is accessible and
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testable for anyone with access to the GCCOM bitbucket repository (Arakawa3D).

Debugging this implementation is tricky, and maybe better to port a MATLAB version

of GCCOM along with this flux-vector formulation to get a better grip on what may be

failing in the Fortran code.

The artificial compressibility has good agreement with the hybrid flux-vector

implementation (also using the flux-vector formulation). The solution of the artificial

compressibility is exceptionally similar to MATLAB tests of the same model

implementation done in late 2020, and again all of the work is archived in the

repositories. This excellent formulation probably only needs tuning the pseudo-time

parameters and is very easy to test and tweak. It is available for future studies in the

GCCOM bitbucket repository.
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CHAPTER 3

MIMETIC OPERATORS

Mimetic operators are numerical representations of the mathematical operators

Gradient (G = ∇), Divergence (D = (∇·)), Laplacian (L = ∇2 = D*G) and Curl

(C = (∇×)). Their formulation is based on finite difference but quickly develops

intrinsic and unique properties. Several advantages are inherent to a mimetic operator

approach. First, once the operator is obtained, its action is represented in a matrix that

becomes a single matrix-product vector for each operator’s application. This means a

much cheaper computational operation than the typical application of a spatial

derivative scheme in a multiple for-loop. Secondly, it is simpler and intuitive to develop

a numerical code using analogs of the mathematical operators for each function since

these are reutilizable and adaptable to each situation with simple accommodations.

Finally, arguably the most important advantage of a mimetic operator approach is their

highly conservative nature and the fact that they preserve the approximation order to

the problem boundary.

3.1 History and function

The origin of mimetic methods as we know them can be traced back to the idea

of summation by parts numerical integration [58], but applied to spatial quantities

instead of time-based integrations as is more traditional. In the past, this type of

operation was not able to conserve order of accuracy at the border while using nodal

grids, something that was partially solved later by using weighted inner products [49].

The Castillo-Grone operators [23], first introduced in 2003, are shown to conserve

accuracy at the borders by using a stagged grid and matrix analysis to modify the

matrices at the edge with the help of Vandermonde matrices with specific properties.

This approach was extended to extra dimensions in time [24] but was still improved

upon by removing free parameters and optimizing their bandwidth [31], and showed to



be more accurate than previous versions. Lastly, the Corbino-Castillo mimetic

operators have been made available by an open-access library called the Mimetic

Operators Library Enhanced (MOLE) [30].

3.2 Development and available
implementation

As explained in [23], the main focus when constructing discrete approximations

to the divergence and gradient is to satisfy local conservation, global conservation, and

the divergence theorem:

∫
Ω

∇ · ~v f dV +

∫
Ω

~v ∇f dV =

∫
∂Ω

f~v · ~n dS (3.1)

Where ~v is a vector field and f is a scalar field. Then, by making f=1 in 3.2 and

integrating over a single cell, we obtain local conservation and making Ω the whole

region we observe global conservation. Discretization that follows these properties are

regarded as mimetic, and the solution of this equation in one dimension can be obtained

by integrating by parts in the [0,1] region as:

∫ 1

0

dv

dx
fdx+

∫ 1

0

v
df

dx
= v(1)f(1)− v(0)f(0) (3.2)

From this formulation, 1D operators can be created for uniform nodal grids.

However, to obtain higher-order operators, order-of-accuracy conservative to the

domain’s border, the staggered grid must be employed, and the operators must be

modified with auxiliary matrices of specific properties. Although this explanation’s

scope remains outside this thesis, it is enough for us to know that the mimetic operators

are designed and created to comply with the following properties.
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Gf = 0, (3.3)

Dv = 0, (3.4)

CGf = 0, (3.5)

DCv = 0, (3.6)

DGf = Lf, (3.7)

〈Dv, f〉Q + 〈Gf, v〉P = 〈Bv, f〉 (3.8)

Figure 3.1. Arakawa C-type grid utilized by the MOLE library. From [31].

Figure 3.2. Arakawa C-type stencil used by the MOLE library for a single
cell. From [31].

In which equation 3.8 is a discrete analogue of equation 3.2 with the addition of

operator B called the mimetic boundary operator, and P and Q are weight matrices.
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Figure 3.3. Scalar grid point distribution for mimetic operators, to be oper-
ated with G. From [2].

Figure 3.4. Vectorial grid point distribution for mimetic operators, to be
operated with D. From [2].

The remaining formulation of the 3D operators arises from the incremental

application of the methods described in [23] and refined in [31] to 1D mimetic stencils,

then 2D, and so on. However, it is vital to remark some methods utilized for the

mimetic operators’ constructions in these papers and the MOLE library. First, the grid

is staggered with C-type Arakawa stencil [7, 8]. Secondly, the logical-scalar grid, where

the f quantities are operated, has a half-step in each direction at the start and end of

the grid. Third, the finite difference applied to construct the operators is a central

difference. Finally, as we will see later, the choice of building the 3D operators taking

the y-direction, instead of the z-direction, as the vertical, has some unintended

consequences down the line that we will explore further.
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3.2.1 Previous Mimetic GCCOM-Related
Solvers

Before this attempt, a previous effort has been put into making the GCCOM

into a mimetic-operated model. This section seeks to recognize that work and frame it

in the discussion of this thesis.

In 2013, Abouali [2, 5] created a MATLAB library capable of solving Poisson’s

problem with Robin boundary conditions on a 2D curvilinear mesh, using the

Castillo-Grone mimetic operators. In his article, Abouali transforms the 2D Poisson

problem into a diffusion problem in general coordinates with Jacobian:

Jκ̃ =

 (y2
ν + x2

ν) (yξynu+ xξxν)

−(yξynu+ xξxν) (y2
ξ + x2

ξ)

 (3.9)

The application of Castillo-Grone operators to 2D Poisson equation was

satisfactory. However, it implied a correct implementation of L = D*G i.e. the

Divergence and Gradient must have been correctly implemented as well. Additionally,

this implementation was flexible enough to allow for Dirichlet, Neumann, or mixed

(Robin) boundary conditions. Mimetic operators of up to 6th order of accuracy were

tested, showing satisfactory error decrease in most cases, but some unexpected error

increase in specific accuracy and grid points conditions. The author also reports high

frequencies developing near the boundary, especially in curvilinear grids with different

smoothness degrees. The product in the form of a MATLAB library can still be

downloaded and run from the Mathworks repositories [1].

The main objective of Abouali was to port the entire GCCOM (then called

GCM) in a mimetic operator setting, as stated in the final chapter of his Dissertation

[2], however, the tools necessary to accomplish this task weren’t still developed and he

bumped into an increasing error with each iteration that made the solution degrade into

instabilities. In Abouali’s analysis, the amplification factor of the Castillo-Grone

gradient operator was calculated, and it was found that this operator had severe

wave-number restrictions to be stable [2]. Finally, because the Poisson problem was

already implemented, an alternative semi-mimetic model was envisioned and proposed
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as future work. This model would solve a Poisson problem using a mimetic operator

and the rest with a traditional finite-difference. A 3D curvilinear Poisson equation

solver was prototyped by Abouali in a conference paper [4], yielding better accuracy

and fewer iterations needed to converge. Unfortunately, these solvers were never

incorporated in the GCM model.

In hindsight, it is understandable that the mimetic operators in their

Castillo-Grone formulation were still not suited for computational fluid dynamics

simulations, as they were improved in stability and conservative properties years later

for the Corbino-Castillo implementation. Furthermore, the high-frequency behavior in

advection could also be, partially or completely, caused by the flow of information inside

the domain, something we address in our implementation in two ways; One is to

separate our problem in a gradient-based advection, instead of a divergence-based one

as it is natural to write, and the other is to incorporate the ideas of upwind and

downwind from finite-difference into mimetic operators models, with the help of

auxiliary interpolation matrices. These ideas will be developed in the following chapter,

but the reader may rest easy in that we accomplish the task of formulating a fully

mimetic fluid dynamics model in three dimensions.

3.2.2 State of the art

Mimetic operators have been applied to several dissimilar fields with the common

necessity of conserving accuracy very well to the boundary. In the Castillo-Grone

formulation, shear ruptures have been modeled with slip-dependent friction, generating

seismic waveforms in 2D solid media [69]. In contrast, the diffusion equation has been

solved in 1D and its convergence studied [44]. Mimetic operators were applied to

imaging processing and analysis, where they showed viability for image restoration [11],

while also being employed to model seismic waves in vertically deformed grids with

free-surface [36] and 2D acoustic wave propagation with the development of a mimetic

leapfrog method [32]. A 3D tensor notation for the mimetic operators was developed

and implemented in [13] to solve a diffusion problem in 3D. Still, to the writer’s

knowledge, this implementation was independent of the Corbino-Castillo formulation.
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This alternative approach is interesting in that it uses the natural lexicographical

ordering (z-vertical) and the aid of corner grid points to simplify the operators’

construction. Recently and using the Corbino-Castillo version of the operators,

anisotropic heat diffusion and Richard’s equation have been modeled [16, 15, 14], as well

as image restoration of glaucoma patients for automatic detection of the disease [10].

As can be gathered from the previous list, most applications of mimetic

operators have been in the fields of acoustic and seismic waves, image restoration, and

diffusion problems, and almost always applied to 1D and 2D problems, being the only

3D application of the operators the mentioned 3D Poisson solver. Finally, the 3D

curvilinear formulation of the Corbino-Castillo operators is unpublished, yet they are

already being tested. Therefore, according to the writer’s literature review, this works

represents the most complete and complex application of mimetic operators in a

practical application setting, the first application of mimetic operators to solve

Navier-Stokes equations, and the first implementation and use of 3D mimetic operators

and their curvilinear counterpart.

38



39

CHAPTER 4

THE MIMETIC GCCOM MODEL,

GCCOM-MOLE

Given the state of the GCCOM implementation and the privileged position of

the writer to use the new version of the 3D curvilinear mimetic operators, it was decided

in November 2020 to start a new version of the GCCOM model utilizing the latest

version of the mimetic operators available. The task was conceptualized and prototyped

during December 2020 and January 2021, when it was decided that a 2D MATLAB

version would be ideal to start. Then a 3D version capable of handling curvilinear

geometries would be eventually developed. The LE and IWB experiments were chosen

as validation sources to compare with the GCCOM results and literature. The goals of

this version were: 1.- To use a buoyancy implementation of the body force, which

wouldn’t be dependent on the vertically-aligned coordinate system, and allowed the use

of the fully 3D curvilinear grids. 2.- Improve the maximum time-step able to validate

results. The proposed mimetic model has the additional advantage of being the most

complete and complex application of mimetic operators to date, showcasing its potential

and pioneering its application on the coastal ocean field. In all, this new version of the

GCCOM represents a significant step further in both mimetic operator development

and coastal ocean modeling, setting up a new frontier for both fields simultaneously.

4.1 Design

The model layout was directly inspired by the validated GCCOM, with the

difference of having every simulation element inside the script. The starting point is the

grid design, which is created in the first section of the code. This includes grid copies

for each of the c-type Arakawa positions, u, v, w, and center. The next step is to define

the simulation parameters such as stratification, initial velocities, or any others. Then

the mimetic operators are called from the library directly, with the following call:



D = div3DCurv(2, X, Y, Z);

G = grad3DCurv(2, X, Y, Z);

N = robinBC3D(2,m,Dx,n,Dy,o,Dz,1,0); %Dirichlet

L = D*G + N;

As can be seen, the call uses the X, Y, Z grids, which can be 3D curvilinear and

the order of accuracy (2 in this case). For the Laplacian, we use the form L = D ∗G

plus the boundary conditions operator, which is a separate call with the last two

arguments controlling the coefficients for Robin boundaries; in the example, the

configuration (1, 0) denotes a Dirichlet boundary for the Laplacian operator.

Having our grids, operators, and parameters, in principle, we are ready to start

the main calculation, which comprises of the following steps:

• Advect the velocities.

• Integrate the time operator, obtaining a velocity prediction.

• Solve a Poisson equation to obtain pressure.

• Apply the gradient to the pressure. Correct velocities.

• Advect and update temperature, density, and buoyancy.

• Repeat

Early in the mimetic GCCOM development, we detected a rapid destabilization

of the velocity fields when applying the first step of this scheme repeatedly; after some

analysis, we concluded the problem could be coming from the direction of the

information transmitted in the simulation, two things made us believe this. First, the

mimetic problems tested on have flow in one direction only, and second, the GCCOM

uses a Wicker-Sckamarock forward-backward advection scheme, which is required for

the model to work. This way, we were motivated to consider an upwind analog to

mimetic operators, which we will discuss in the following sections.

Furthermore, the GCCOM uses the weakly conservative version of the N-S

equations, which have the momentum coefficient outside of the operatorś action. As we

are designing our new model as close to GCCOM as possible, we chose to keep this

version in the Mimetic GCCOM, another reason was instabilities arising when using the
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fully conservative version of N-S, but this was diagnosed and tested early in the

development, so there may be a way to make it work, this will be one of the further

work objectives.

4.1.1 A gradient-based momentum
formulation

This gradient-based formulation replaces the natural way of implementing the

momentum equation from a vectorial representation into a scalar analog. To the

writer’s knowledge, this approach to solve differential equations with mimetic operators

is entirely new and one of the novelties of this work. The motivation for this inclusion is

varied, including being the most successful implementation tested. Still, maybe the

most important is that it follows more closely the GCCOM formulation of the N-S

equations while at the same time permitting the interpolation of the quantities to the

spaces where they are to be operated.

The momentum equation, except body forces, can be written for one of the

velocities as:

∂~u

∂t
= −ω × u− 1

2
∇(~u · ~u)− ∇p

ρ
+
µ

ρ
∇2~u (4.1)

Where ω = ∇× u is the vorticity field of the flow. This is called the strongly

conservative N-S momentum equation, and it includes the velocity coupling inside the

operatorś action. Implementing this version of the momentum proved to be challenging,

presumably because of the dot product of two velocities, as each product must be

represented in the same grid space, something that is not trivial to do for the crossed

terms of different velocities, as they live natively in different positions in the grid, and

must be interpolated before operating it.

The same problem occurs if we try using the GCCOM version of the momentum,

which instead reads:

∂~u

∂t
= −(~u · ∇)~u− ∇p

ρ
+
µ

ρ
∇2~u (4.2)
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Again, we need to interpolate each term of the velocity to the appropriate space

before operating outside of the Divergence. The gradient-based momentum solves this

problem by rewriting the tricky part of the equation in the following form:

(~u · ∇)~u = (u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)~u (4.3)

= (uu
∂u

∂x
+ vu

∂u

∂y
+ wu

∂u

∂z
)~i+ (uv

∂v

∂x
+ vv

∂v

∂y
+ wv

∂v

∂z
)~j + (uw

∂w

∂x
+ vw

∂w

∂y
+ ww

∂w

∂z
)~k

(4.4)

for a velocity ~u = (u, v, w) and the notation uv meaning component u

interpolated to the position of v in the Arakawa C-stencil. In this form, we can apply

the mimetic operators in the following way:

(~u · ∇)~u =(uuGxu+ vuGyu+ wuGzu) ~i + (4.5)

(uvGxv + vvGyv + wvGzv) ~j + (4.6)

(uwGxw + vwGyw + wwGzw) ~k (4.7)

This is the basis of gradient-based momentum, and it also required some more

treatment to work. For example, the gradient operator is usually a matrix that includes

the three directions at once, so it had to be partitioned into three different matrices,

each one with a component of the gradient operator, then used accordingly in the

equation and the results added together. Nevertheless, this implementation was by far

the most stable and error-resistant that we came up with, and it can be argued that it

is also more intuitive to implement.

However, this gradient-based momentum was only part one of the new tools

needed to make the Mimetic GCCOM work. The second part was the necessity of

controlling the nonlinear effects common in nonhydrostatic environments, that were

modulated in the GCCOM by a forward-backward advection scheme [54], which is
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equivalent to an upwind scheme, that until now had not been known to be implemented

in mimetic operators either.

4.1.1.1 Mimetic Upwind

The advection and convection-diffusion equations are often solved with the aid of

upwind schemes, GCCOM does this utilizing the Kawamura scheme [54] which is a

higher-order (4th) upwind scheme. Unfortunately, the mimetic operators are based on

central differences, so the direction of the flow is not taken into account when solving a

hyperbolic equation. This makes the application of mimetic operators to fluid

simulations prone to errors [Versteeg & Malalasekera].

By using upwind, we create a framework in which the direction of the flow is

calculated before applying the operators by using only the side of the variable that is

upstream from the calculation point. The upwind scheme we implemented is based in

the compact form, which when solving for a general advection equation such as:

∂u

∂t
= −a∂u

∂x
(4.8)

can be solved numerically using Euler method (for illustration) as:

a+ = max(a, 0), a− = min(a, 0) (4.9)

u−x =
uni − uni−1

∆x
, u+

x =
uni+1 − uni

∆x
(4.10)

uni+1 = uni −∆t[a+u−x + a−u+
x ] (4.11)

As we can see from the algorithm, for each position in the velocity u we have an

accompanying vector a+ or a− which stores the coefficients of the advection in either its

real value or zeros, this causes that when we take the one-directional derivative u−x or

u+
x we always multiply of the terms by zero, and take only the element with the

information from the upstream flow.
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There is, however, one more element we must address before applying the

mimetic operator to this scheme. All of the mimetic operators are formulated with a

central difference, so the u−x , u
+
x operation cannot be done in mimetic operators directly.

4.1.1.1.1 Mimetic Interpolators

The Mole library, besides the mimetic operator generators, has several auxiliary

functions. One of them is a family of interpolators intended to calculate quantities from

the center of the cell to one of the velocities locations. With some modifications, and

the help of the creator of the library J. Corbino, we have come to the following use of

the interpolators to work as one-sided differences:

I0 = interpol3D(m, n, o, 0, 0, 0);

I1 = interpol3D(m, n, o, 1, 1, 1);

As we will see next, the interpolator I0 will be analogous to making u+ and I1

creates the quantity u−. This enables us to solve the convection-diffusion equation as:

Solplus = I0*T;

Solminus = I1*T;

aplus = max(uvec,0);

aminus = min(uvec,0);

uDT = D*(aplus.*Solminus’ + aminus.*Solplus’);

T_new = SSPRK101D(Tvec,-uDT,dt);

In this pseudocode version of the model, we see that applying the interpolators

I0, I1 to the quantity T is enough to solve the temperature convection equation with a

mimetic upwind analog. The last line of the pseudocode is the application of a time

integration scheme that we will discuss later in this chapter. We see high frequencies

arising rather quickly in the LE experiment without using this upwind method in the
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temperature equation. This approach solved that problem and is the primary current

approach for LE.

4.1.1.2 Partitioned Gradient and
Mimetic Upwind

The previous approach can solve the convection-diffusion equation with mimetic

operators with upwind, using the divergence operator and the strong conservative form

of the equation. This is because all of the elements in this equation are calculated in the

same layout, the central point of the Arakawa C-stencil, while the momentum equations

are each calculated in their own space. As we mentioned above, the approach we took

to solve this was to partition the gradient operator into three operators, one for the

action of each derivative. However, this by itself does not solve the central difference

problem, and the use of the interpolators above only yields the quantity u−,+, not u−,+x .

To accomplish a partitioned gradient that is also a one-sided derivative, the

writer designed and tested, and J. Corbino implemented a new family of operators,

which are equivalent to the action of the gradient for one-sided derivative calculations.

These operators are presumably mimetic but are not yet tested for the complete list of

conditions a mimetic operator must hold.

These gradient operators are called Gub, Gvb, Gwb in the backwards difference

version and Guf , Gvf , Gwf for their forward difference counterparts, and are

summoned by a new function called d3D (or d2D in the 2D version) as:

[Gub, Gvb, Gwb] = d3D(m, n, o, Dx, Dy, Dz, 0, 0, 0);

[Guf, Gvf, Gwf] = d3D(m, n, o, Dx, Dy, Dz, 1, 1, 1);

Then, we use the ideas of upwind as well with these new operators, which will

finally yield the necessary u−,+x quantities. This is illustrated next using the momentum

of the u-velocity, but the same procedure is applied for v and w.
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u+ = max(u, 0), u− = min(u, 0) (4.12)

u−x = Gubuu, u
+
x = Gufuu (4.13)

u
∂u

∂x

∣∣∣∣
u

= u+Gubuu + u−Gufuu (4.14)

v+ = max(v, 0), v− = min(v, 0) (4.15)

u−x = Gvbuv, u
+
x = Gvfuv (4.16)

u
∂u

∂x

∣∣∣∣
v

= v+Gvbuv + v−Gvfuv (4.17)

w+ = max(w, 0), w− = min(w, 0) (4.18)

u−x = Gwbuw, u
+
x = Gwfuw (4.19)

w
∂u

∂x

∣∣∣∣
w

= w+Gwbuw + w−Gwfuw (4.20)

(4.21)

The subscript u, v, w denotes the quantity being calculated in that position of

the Arakawa C-stencil. This means that the three components of the advection above

live in a different space and must be interpolated appropriately. An auxiliary function

called InterpVtoV has been crafted for the mimetic GCCOM that numerically takes

care of the interpolations.

4.1.2 Numerical schemes

For the most part, and whenever possible, the template for GCCOM functioning

has been transferred to the Mimetic GCCOM. This includes the equation resolution

scheme and order, the predictor-corrector method, and the Boussinesq approximation

for the pressure, solving the Poisson equation resulting of taking the divergence of the

momentum. Nonetheless, a critical part of the GCCOM functioning has been altered,

the time integration scheme.
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4.1.2.1 Time-based Integration

GCCOM uses a explicit Runge-Kutta 3 stages (RK3), 2nd order method in a

full-storage implementation. In 1980, the work of [96] demonstrated that an optimal

storage of 2N can be attained (two storage registers of N-length) to implement 2nd

order Runge-Kutta. Since then, [56] showed an extended family or low-storage R-K

schemes suited for compressible Navier-Stokes, and more recently, an optimized family

of low-storage schemes was described by [57], representing the most efficient R-K

schemes to that date.

Strong-stability preserving methods were first introduced as total variation

diminishing (TVD) methods in [77] and can be defined in terms of its effective SSP

coefficient ceff as:

ceff =
c

s
, (4.22)

∆t ≤ c∆tFE (4.23)

for an s-stages Runge-Kutta method bounded by a SSP coefficient c and a

maximum theoretical time step ∆tFE that satisfies monotonicity under forward Euler

integration, who hence has ceff = 1. Explicit Runge-Kutta methods have ceff ≈ 1 [57].

The RK3 time integration algorithm for the mimetic GCCOM has been replaced

by the Strong stability-preserving (SSP) Runge-Kutta method described in [57], which

enables for wider stability regions on the simulation, while at the same time providing a

solution with only one calculation of the right-hand-side. Specifically, we implemented

the low-storage 10 stages, 4th order SSP Runge-Kutta (SSPRK104) from [57]. This

scheme was selected because of the simplicity of the pseudocode and because it was the

best performing available scheme in many of the GCCOM experiments using PETSc.

This method is explicit, and the algorithm, being written in terms of the two N-length

objects necessary q1, q2, reads:
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Listing 4.1. Matlab function for a 10 stages 4th order SSP low-storage time
integration algorithm. This algorithm advances u a time increase dt using a
RHS F (u).

function [ u ] = SSPRK104(u , F , dt )
q1 = u ;
q2 = u ;

for i = 1 :5
q1 = q1 + dt∗F( q1 ) / 6 ;

end

q2 = 1/25∗q2 + 9/25∗q1 ;
q1 = 15∗q2 − 5∗q1 ;

for i = 6 :9
q1 = q1 + dt∗F( q1 ) / 6 ;

end

q1 = q2 + 3/5∗q1 + 1/10∗ dt∗F( q1 ) ;
u = q1 ;

end

This algorithm represents the first 4th-order 2N storage Runge-Kutta found in

literature, and it has ceff = 0.6 as shown in [57]. This SSPRK104 algorithm uses the

same amount of storage than the low-storage RK3 from [96]. In the Mimetic GCCOM,

several full-array calculations are saved with respect to the previous GCCOM version,

since the application of curvilinear metrics, interpolations and upwind have been

simplified, or are embedded in the mimetico operator being applied, additionally the

previous GCCOM used a full-storage version of RK3 which is here reduced on number

of objects utilized. However this current implementation doesn’t represent an

improvement in the number of memory access necessarily, since the increased number of

stages may offset the savings in low storage, still this ten stages algorithm is selected for

robustness and extended stability, while the optimal second order method (SSPRKs2)

from the same paper [57] might be better suited in the future for more computationally

heavy simulations. This SSPRK104 implementation attains two important advantages

over the previous GCCOM RK3 implementation, first, is 2N storage instead of

full-storage, while at the same time being 4th order accurate, making it more stable in

nonlinear problems.
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The extended stability region of these SSP methods can be appreciated in Figure

4.1 extracted from [57], where two of the SSP algorithms are compared with the

traditional 4th order Runge-Kutta method; The SSPRK104 stability region is

illustrated to be almost twice as large than the RK4 method. It is important, however,

to clarify that the bulk of the extended stability region gained in the Mimetic GCCOM

comes from the use of buoyancy as the only body force, and only a moderate advantage

(50%) is obtained from the use of SSPRK104.

It is possible that for higher resolution COD problems a second order SSP

method such as the SSPRKs2 would suffice, as it would represent a slight increase in

ceff = 1− 1/s for s the number of stages, with the drawback of having to reuse the

previous time-step solution, however this is left as a piece of future work since the

groundwork being laid out in this thesis requires a robust and encompassing algorithm

for best results and stability.

Figure 4.1. Stability range vs wavenumber for RK4 vs SSPRK64 and
SSPRK104. From [57].
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During the examination of this thesis, a problem with the implementation of the

SSPRK104 method was detected, and a correct implementation was then developed,

tested and included in the Mimetic GCCOM repository, this includes a correct update

of the right-hand-side function of the quantity being updated. Because of time

contraints, however, the results of Chapter 4.2 were not repeated and they have been

shown to work with a forward Euler time scheme.

4.1.2.2 Mimetic finite difference
hybrid approaches

Thanks to the scripts' modular and highly customizable nature, it is possible to

use hybrid FD-Mimetic designs to the Mimetic GCCOM. Several analogs to the

GCCOM finite difference derivative routines have been ported to MATLAB for the

mimetic model and routines to create the complete set of general curvilinear metric

pairs that the FD GCCOM uses and needs. Whenever necessary, some parts of the

mimetic model have been approximated with a finite-difference. Such instances are

clearly defined as hybrid approaches in the results section. However, they are usually

limited to the cases where the convection-diffusion equation where the interpolators

I0, I1 caused instabilities and errors.

4.2 Mimetic GCCOM experiment results

This section describes the results obtained from the development of the Mimetic

GCCOM model, we present qualitative and quantitative validation results for Lock

Exchange in 2D and 3D, quantitative validation for 3D Seamount, and working status

for Internal Wave Beam, for reasons later described. A number of secondary results,

such as 2D seamount and IWB, turbulence model testing, and so on, are not here

described, but it is sufficient to say that a fully curvilinear Navier-Stokes mimetic model

has been developed, tested and validated for continuously stratified flows in both two

and three dimensions, and that all of the work here presented and much more is readily

available in version control repositories.
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4.2.1 Lock Exchange 2D and 3D results

A 2D version of the GCCOM model was developed and the LE experiment was

developed in it as a proof of concept and prototype for the 3D environment. A contour

plot of the isotherms at the interface at different time stages is shown in Figure 4.2. In

this plot, the K-H billows are seen developing, validating the model qualitatively for

this 2D version. In Figure 4.3 we see the progression of the Fr number calculation

along both the top and bottom walls with time. As we see, both series show perfect

agreement, which is suitable for symmetry arguments. The Froude mean number

including the transient values at the start of the simulation is Fr = 0.6882, only 2.67%

off the theoretical value as can be seen in Figure 4.3 (left), while after the transient

settles, the Froude number becomes very stable and ends up being Fr = 0.7006 or

about 0.92% difference from the theoretical value.

Figure 4.2. Lock exchange experiment results on the 2D version of size
400x100 with rectilinear coordinates.
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Figure 4.3. Froude number tracking for the LE experiment shown in Figure
4.2. (Left) Froude number mean is 0.6882 including the initial transient.
(Right) Froude number mean is 0.7006 after the transient.

In the 3D case of LE, we added the minimum 6 points to the y-direction and two

resolutions were tested; one ran with the same parameters as described in [40] or

401x6x101 points, while the second with lower resolution 101x6x101 with the dynamics

of both solutions looking the same except for resolution related details. The solution at

different times can be seen in Figure 4.4, this time plotting the isotherms in 3D to

showcase the nature of this experiment and evoke a similar image to Figure 2 in [46].

The KH vortices are still visible in the isotherm surfaces at 22s and 29s, and the

contour plot of these images is very similar to the 2D case.

However, the Froude number of the 3D case resembles much better the

theoretical agreement, obtaining Fr = 0.7051 or a 0.27% difference in the best case (401

horizontal points, with no-slip boundaries). At the same time, the full resolution

experiment means Froude number was 0.739. The lower resolution 3D problem shows a

mean Froude number of 0.69679, all of these numbers remain within validate range, as

they are lower than other validated ocean models report. The plot from these Froude

numbers can be seen in Figure 4.7 and 4.6 and a table compiling the literature results in

the same light as the results here presented is shown in Table 4.1, with a bolded font for

the experiments that show better results than the validated GCCOM.

One aspect that is important to keep in mind, featured in the GCCOM

validation paper, is total energy conservation in the system. Figure 4.8 shows a plot of

energy conservation for the 3D lock exchange experiment. On the top panel, we see the

potential energy (PE) and kinetic energy (KE) curves for a full cycle; at the start of the

simulation PE is maximum and KE is zero, while by the end of the simulation PE has

been minimized and transformed into KE which has since peaked. The bottom panel
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Figure 4.4. Isotherms plot for the 3D lock exchange experiment results of
size 400x6x100 with rectilinear coordinates.
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Table 4.1. Lock Exchange mean Froude numbers obtained vs literature and
percentage errors from the theoretical free-slip Froude value. *Estimated
resolution from [46]

Model Fr % error Resolution

GCCOM 0.7176 1.48 401x6x101
Fringer et. al 0.654 7.5 400x100
Härtel et. al 0.675 4.5 768x61x91*

Mimetic-GCCOM 2D 0.6882 2.67 401x101
Mimetic-GCCOM 2D-Tr 0.7002 0.97 401x101
Mimetic-GCCOM 3D-FS 0.739 4.51 401x6x101
Mimetic-GCCOM 3D-NS 0.705 0.29 401x6x101
Mimetic-GCCOM 3D-LR 0.697 1.42 101x6x101

Figure 4.5. X −Z plane contour plot for the 3D lock exchange experiment of
size 400x6x100 with rectilinear coordinates.

shows the sum of the two energies, normalized by the initial total energy budget, this

curve tells us if there is any energy dissipation in the system, and for this experiment,

we see basically no energy escaping the system at all, up to the 10−4%. Conversely, we

don’t have any additional energy being spuriously injected in the system either.
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Figure 4.6. Froude number tracking for the LE-3D experiment with
101x6x101 points with free-slip boundary conditions. Froude mean number
is 0.69679 or 1.45% from the theoretical value.

Figure 4.7. Froude number tracking for the LE experiment with free-slip
(left) and no-slip (right) boundary conditions. Froude mean number is 0.705
for no-slip and 0.739 for free-slip or or 0.27% and 4.5% from the theoretical
value, respectively.

Figure 4.8. Energy conservation plots for the 3D Lock Exchange experiment.

4.2.2 Seamount 3D curvilinear results

For the Seamount experiment, we created a 3D curvilinear grid by varying the

clustering β parameter of the grid points in the X − Y and X − Z planes, the front and
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side views of this grid can be appreciated in Figure 4.9, having no straight lines in any

direction, hence, a fully 3D curvilinear grid in the most general sense. The resolution of

this grid aims to match that of [4] except for the y-direction where is only 7 points, this

because of the poor scaling of the MATLAB code, the z-direction however exceeds the

grid resolution of [4]. Another difference with the paper is the location and general

shape of the seamount, which is centered at 0.7 in our case, this showcases the drag of

the u-velocity with more space and detail.

Figure 4.9. Seamount 3D curvilinear grid created from modulating β in the
X-Y and X-Z planes.

Figure 4.10 is shown as an analog of Figure 2.2, a contour plot of the u-velocity

at different times. The similarities are remarkable; exhibiting the desired dragging

behavior that a seamount would inflict in a linearly increasing velocity profile
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(top-right) shows the start of mixing occurring, still early in the simulation. In contrast,

the other three frames show a much higher mixing degree as it is expected. The full

movie visualization of this run is also available upon request.

Figure 4.10. Seamount 3D curvilinear experiment results for various time
frames.

There are still some problems in this simulation, specifically artifacts that arise

at the top of the seamount, expressing as darker, discontinuous areas in the u-velocity.

This is most likely, the upwind scheme used since these don’t use 3D curvilinear

operators but instead one-sided approximations of the rectilinear gradient operator.

Unfortunately, at this date, the 3D curvilinear, one-sided, mimetic operators that would

be needed to create an upwind scheme to solve the advection equation don’t yet exist,

and the need for them was only identified after these findings.

In all, the 3D seamount results are satisfactory, showing the potential

capabilities of the mimetic GCCOM for fully 3D curvilinear geometries in coastal ocean

flows. The general behavior and physics are correct. However, this experiment does not

provide quantitative validation of the model, so the validation is only qualitative.

4.2.3 Internal Wave Beam 3D results

Results for the 3D IWB experiment are shown in Figure 4.11, from which we see

different ω/N ratios plotted after a few seconds of simulation. The dashed line

represents the expected beam angle to be formed for the u-velocity field. Top-left panel

shows ω/N = 0.2, followed by 0.4, 0.6, 0.9 for top-right, bottom-left and bottom-right
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panels respectively. There is a clear development of beams in the early stages of the

simulation. However, after the expected longer times, these structures dissipate and

don’t develop as expected.

The Internal Wave Beam experiment needs every element of the model to be

fully harmonized and working correctly. The grid in this experiment is sigma, and the

grid deformation is minor, making most of the grid rectilinear. Still, the model

dissipates the velocities in the areas of interest, probably because of the one-sided

gradient-based mimetic advection scheme here developed and employed in first-order in

nature. However, remarkably, the beams develop broadly in the expected angles and the

first few iterations of the problem, hinting at the model being correct although needing

further work to confirm this, specifically arbitrary order-of-accuracy one-sided gradient

operators which would enable a higher order mimetic upwind scheme.

Figure 4.11. Set of different ω/N ratios Internal Waves Beam experiments
with the related angle φ from the vertical as a dashed line.
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This experiment was recreated in 2D, with identical results, to anticipate any

possible effects of the 3D implementation taking over the accuracy of the model. The

2D version agreeing with Figure 4.11 clear any doubts that more work needs to be done

to attain higher-order in the mimetic upwind scheme.

4.3 Discussion

Both mimetic operators and coastal ocean dynamics models have been advanced

with these results. On the mimetic side, the developments of this thesis represent the

most complete and ambitious mimetic project to date, even with the current

shortcomings. The gradient-based advection implementation is entirely novel and

identifies a problem that was unknown to the team before starting this project, which is

the need for one-sided mimetic approximations due to the hyperbolic nature of it, while

providing a first-order solution to this problem, enabling the successful resolution of the

Lock Exchange problem with better performance than the validated GCCOM.

Additionally, several auxiliary routines had to be created and implemented, such as

interpolation schemes, visualization routines, grid creation scripts. All of these needed

to work correctly with MATLAB objects (meshgrid) and the MOLE mimetic operators.

These challenges proved to add to the enrichment of the model development and

provide a template, a toolbox, and a sandbox for future coastal ocean mimetic model

developers.

On the other hand, the gains the GCCOM model have attained with this

mimetic version are evident, starting for the exclusive use of a buoyancy term and no

other body force or pressure split, and more importantly, getting rid of the constraint of

sigma grids, the hydrostatic inconsistency and the subsequent restrictions to time step

and parallelization choices. Furthermore, this mimetic model, in its current form, even

under the limitations of the MATLAB environment, has a better simulation/wall time

ratio than the fully parallelized GCCOM because we are now only bounded by the CFL

condition in the time step choice. Still, also we take advantage of Strong-stability

preserving time schemes that stretch this choice even further. The Seamount

experiment, for example, was able to run with ∆t = 10s when the GCCOM was
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hard-capped to ∆t = 0.01 nondimensional time (in this case seconds because there is a

1:1 scale in the length and velocity scales of this experiment), this is an extreme case

with three orders of magnitude acceleration, but an illustrative result. For more strict

cases, the ∆t choice should be bounded by the CFL condition. The other clear

computational advantage of the mimetic implementation is the arbitrary processor work

distribution we can attain now, not being restricted to allocate the full vertical water

column in a single processor to calculate the HPGF spline correctly (we skip this step

now).

There are several other foreseeable advantages of the mimetic implementation.

The loops have been all replaced by matrix-vector products, such as the mimetic

operations are easily formulated this way. At the same time, the gradient-based

implementation makes it more intuitive to implement complicated partial differential

equations in a mimetic manner, since in practice, a differential formulation of a PDE

system is often preferred to an integral or tensorial formulation. For example in the

advection scheme of the Navier-Stokes system, crossed products of the velocities, along

with the staggered grid, require the interpolation of most of the quantities in a different

position of the stencil, and this needs to be done before the mimetic operations are

applied, something that is not practical to do in the tensorial formulation and for most

established CFD models, is done in a differential manner, working each direction

equation separately. Finally, the mimetic operators conserve energy better because the

accuracy order is the same even in the border of the domain, and this is appreciated in

the results presented here.

When the project was first presented, some of the limitations now known were

not yet identified, yet many other unknowns existed that made this project a formidable

challenge. Most of these limitations have been overcome in one way or another,

nonetheless, in the end, some knots are left to be untied by the next researcher. The

mimetic operator development is a daunting task that was out of the scope of this

project. Because of this and time limitations, the internal waves beam experiment could

not be completed satisfactorily. However, an alternative 3D curvilinear experiment was
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developed and tested; the Seamount shows promising and mostly correct behavior

although the advection term is not suited for curvilinear geometries, a surprising result

in which most probably, the strong engine of the Laplacian solver is offsetting the

shortcomings of the advection solver to give a meaningful result to our simulations.

Future work will first be the necessity of one-sided versions of the mimetic

operators or design that enables advection and hyperbolic equations solutions in general

coordinates and conditions. Then, a low-level version of this model must be done to

scale the problems up to a meaningful resolution for the coastal ocean community.

Lastly, more field-scale experiments such as the Seamount and the Internal Wave Beam

need to be validated in this model. The author trusts the newer generations to present

the work and improve it to its greatest potential, along with bolder and broader

applications.

We can summarize the multiple findings and advantages of these results in the

following manner:

• Most ambitious mimetic modeling implementation to date.

• Novel gradient-based formulation of Mimetic Navier-Stokes.

• Novel implementation and validation of a Mimetic Upwind scheme.

• Validated for Non-hydrostatic continuously stratified media in 2D and 3D.

• Enhanced time scheme allows for 10x longer time steps.

• Better agreement with physics.

• Better conservation of energy.

• Field-scale capable.

• Paralellizable with arbitrary domain decomposition.

And the future work insight derived from the work here presented would be:

• One-sided mimetic operators.

• Fully 3D curvilinear mimetic upwind.

• Validation of higher-order phenomena in field-scale problems.

• Parallelization and implementation in C/C++
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CHAPTER 5

MACHINE LEARNING APPLIED TO

COASTAL OCEAN DATA

5.1 Motivation

Machine Learning (ML) and Artificial Intelligence (AI) in general have taken the

scientific world by storm. In the last few decades, and with the increasing availability of

both quality datasets and reliable ML libraries, the application of automated data

processing techniques capable of forecasting and reinforced learning has become

ubiquitous. However, each scientific field has its pace to adopt new technologies, and

coastal ocean dynamics are still in the infancy of ML and AI applications. The writer

had the fantastic opportunity of collaborating with Los Alamos National Laboratory

early in his graduate student career in an ML project for graph-based representations of

discrete fracture networks [85], something that sparked an essential line of research.

While the need for ML applications in coastal ocean dynamics was evident, it was clear

that the research grounds would need to be laid out. This chapter describes the studies

published in [88] as well as newer experiments that aim to become another publication

in the short term.

5.2 Machine Learning Models

Support vector machines are selected as an alternative non-tree-based method

([33, 51, 98, 17, 81, 52, 43]) , which is relatively underrepresented in applications of

machine learning to environmental data. We decided to focus on these two techniques,

instead of other more complex methods like artificial neural networks, for their

straightforward approach and potential wider applicability. The strengths and

particularities of each algorithm are discussed in the next section. The sci-kit learn



software is used in this work for machine learning algorithms, as well as model scoring

and data selection and sampling for training and testing [66].

5.2.1 Random Forest

Random forest is a supervised algorithm consisting of an ensemble of decision

trees ([19]). Each decision tree is constructed using recursive partitioning based on

subsets of the variable space as the split points in the tree. Predictions are made by

averaging the outcome of each decision tree. Each tree in the ensemble is grown using a

different bootstrap sample of the original data. Using random sampling with

replacement, approximately one-third of the data is “out-of-sample” or “out-of-bag” for

each tree. This out-of-sample data act can be used to estimate predictions and

prediction error and variable importance for each predictor variable. In addition, the

subset of randomly selected variables tends to decorrelate the trees and produce more

diverse trees for highly correlated data. These characteristics have helped popularize

random forest as a reliable prediction algorithm used across a range of applications in

environmental and biological sciences. Random Forests has become one of the most

prominent machine learning methods being used in ocean sciences

([55, 81, 73, 34, 28, 50, 26, 6, 48, 12, 94, 43, 94, 89]) for which it was selected in this

research.

In particular, for this work, we implemented random forest regression (RFR),

which predicts a continuous quantity as a target. This makes the algorithm useful in a

wider range of applications, but at the same time, more difficult to tune and obtain

accurate results. Table 5.1 shows the parameters used by the RandomForestRegressor

scikit-learn function other than the defaults. Both datasets were implemented with the

same parameter configuration, and out-of-bag tests were carried out to obtain the

optimal parameters for the models. Variable importance is determined using a node

impurity measure (also known as Gini importance). This measure is the decrease in

node impurities from splitting on a variable, or the reduction of the impurity gained by

introducing a split on a specific node, averaged over all trees in the forest.
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5.2.2 Support Vector Machines

Support vector machine methods are part of the hyperplane-based methods

([17, 33]). They rely on the idea of finding optimal separating hyperplanes where the

data can be separated into categories. Hyperplanes defined between pairs for features,

determine areas of themselves as decision boundaries for any further data, defining one

decision area or areas for each couple of features and number of categories to be

predicted. The algorithm can also be extended to a regression problem by considering

the data points within a small distance of the decision boundary line. The best fit is the

hyperplane that includes the maximum number of data points. In support vector

regression (SVR), the kernel becomes the most critical parameter; this is the function

used to find the shape of the separating hyperplane. Kernels have varied complexity

functions such as linear, polynomial, sigmoid, or the most popular radial-basis function

(RBF). They will define a geometrical area in each hyperplane that belongs to a specific

label or value.

For SVR we can formalize the problem as follows: Given training vectors xi and

a response vector y we want to solve the minimization problem:

min(
1

2
wTw + C

n∑
i=1

(ζi + ζi∗)) (5.1)

subject to yi − wTφ(xi)− b ≤ ε+ ζi, (5.2)

wTφ(xi)− b− yi ≤ ε+ ζi∗, (5.3)

ζiζi∗ ≥ 0, i = 1, . . . , n (5.4)

where w is the solution to the minimization problem w = (XTX)−1XTy with X as the

feature matrix, ζi and ζi∗ penalizing factors, C controls the width of the area of the ε

tube or separation plane, and φ(xi) is the kernel function which maps the data from the

input space into the features space, where the problem is solved ([48, 66]).

The function for each kernel used will have specific parameters. To get the most

accurate SVR prediction, each of these parameters needs to be tuned by trial and error
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or various other tuning methods. For the work presented here we used the scikit-learn

SVR algorithm with the nonlinear RBF kernel (φ(x) = exp(−γ||x− x′||2)) where γ is

set to one over the number of features. The rest of the specified parameter values for

each model can be seen in Table 5.2. In this case, the process to find the optimal values

is more exhaustive. The SVR complexity grows quadratically with the number of

samples and thus takes a much longer time to train than RFR. Additionally, each kernel

can add further overhead to the calculations. After an exhaustive grid search strategy,

we obtained the parameters shown in 5.2 for offshore and nearshore cases.

Table 5.1. RFR parameters used
other than default.

RFR offshore nearshore

n estimators (trees) 400 400
criterion mse mse

max features log2 log2

Table 5.2. SVR parameters
used other than default.

SVR offshore nearshore

Kernel RBF RBF
C 1000 100
γ 0.20 0.20
ε 0.0031 0.019

5.2.3 Artificial Neural Networks

Artificial neural networks (ANN) ([63, 70]) are highly interconnected individual

fitting functions of some sort, forming a network in analogy to the biological brain.

Each of these functions is regarded as a neuron in the network. This similitude comes

from both the biological and artificial neurons receiving signals from their connections,

activating after accumulating some threshold signal and finally firing off an output

signal of its own. The network architecture, layers, activation functions, and

connectivity will ultimately define the ANN application. For example, a simple

feed-forward, the back-scattering neural network will assert as an expanded regression

model. Meanwhile, much more advanced ANNs can recognize ordinate amounts of data

even in spectral or graphical form, becoming the cornerstone of the modern face and

voice recognition algorithms, self-driving vehicles, deep learning, and many other

applications.
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In a feed-forward ANN, the information flow between the input and the output

layer in one direction. Each neuron is connected to all neurons in the next layer but to

none in the same layer, these links have an associated weight dependent on how much

the error function was minimized. The operation of a regression-based ANN neuron can

be written in the following form:

yj = f

(
n∑
i=1

xigi − bj

)
(5.5)

Where f is an activation function and gi the weight associated to the link from

input xi into current neuron j along with a bias bj. The exact weights values for each

link are unknown until the output layer is reached during the training process. The

response is assessed, and the information is back-propagated by assigning values to

them.

5.2.3.1 Recurrent Neural
Networks

A specific kind of feed-forward neural network, Recurrent Neural Networks

(RNNs), uses their internal memory to process sequences of inputs, creating a directed

graph sequence that allows for temporal connections to be made. These can be applied

to different kinds of corresponding data, such as handwriting or speech recognition,

making them ideal for time series analysis. RNNs can be further classified in finite and

infinite impulses, depending on if their directed graphs can be unrolled and replaced

with a feed-forward network or not.

5.2.3.1.1 Long Short-term
Memory Networks

A specific application of RNN is employed in the rest of this chapter for time

series analysis, training, and forecast. Called Long Short-term Memory networks

(LSTMs), these RNNs manipulate the stored states within the graph, augmenting the

data sequences in what are called forget gates. LSTMs avoid the vanishing gradient

problem (in which the memory of the node about the previous nodes can vanish quickly,

preventing the network from further training, or losing the information of the recurrent
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sequences) by permitting the errors to flow backward in the network unlimited times, in

a mechanism called Constant Error Carousel units (CEC), this enables LSTMs to learn

tasks that require information from even millions of steps behind in the training

sequence. LSTMs have been successfully trained to recognize languages by speech

recognition, read handwriting, and more popularly, predict time series. A schematic of a

possible LSTM architecture can be seen in Figure 5.1, with branching paths signifying

data copies, yellow boxes for different pointwise data operations, and five different

layers as orange boxes, labels for the Forget (Ft), Input (It), and Output (Ot) gates can

also be appreciated. Each LTSM network will be specifically tailored for the problem to

be solved.

Figure 5.1. Diagram of a Long Short-Term Memory unit. The orange boxes
represent layers while the yellow circles are pointwise operations. Each fork
in the scheme repesents a copy of the data.

5.2.4 Time Series forecasting

A time-series forecast, in some sense, is similar to a regression in the mind that

we are looking to estimate the next value of a series from an extensive dataset we know

came from similar conditions. The main difference relies on that time-series data

correlates them. At the same time, the regression does not care about the order of the

samples. The time series training much retains the information of the time series

somehow, with the ultimate goal of preserving the data correlation in time. However,

there are many ways in which the data may be formatted in a time series context. First,

we must consider that time series forecast is usually done in a single variable since the
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values we are trying to obtain lie outside the dataset we train on (the future). Still,

several variables may be used as input, called multi-variable problems. Likewise, a time

series forecast problem usually solves for a single new value at a time, but it is also

possible to solve for several outputs at a time. These are called multi-output variables.

By the end of this chapter, we will be describing multi-variable, multi-output time

series, forecasting models.

5.2.4.1 Multi-variable forecasting
with lagged variables

One way to define a supervised machine learning problem while preserving the

temporal correlation of the data is by using lagging variables. A one-dimensional time

series can be reformatted with as many lagging variables as needed, but an overfitting

tradeoff occurs when a balance must be maintained. We can see an illustration of the

lagged variables process in Figure 5.2.

Figure 5.2. Schematic of the lagged variables data augmentation process.
Each symbol represents a value in time, and each subsequent lagged column
adds a lag of one position as a new time series.

In Figure 5.2 we see an original time series comprised of a series of symbols

which represent unique values. The lagged variables process is a data augmentation

technique that aims to preserve the embedded correlations of time series, by creating

derivative lagged time series as independent variables. The example in Figure 5.2 shows

a one-lagged time series four different times, each one labeled Lag 1, Lag 2, Lag 3, Lag

4 respectively. In this example, we have expanded our data from one single feature (the

original time series) to a five features space, with the drawback of reducing the number
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of usable samples by 4, or the empty cells at the end of the last column. As we deal with

time series of hundreds of thousands samples, this is a reasonable drawback to deal with.

Each lagged variable is an additional independent variable, as this can be

assessed by calculation the autocorrelation function of the system, this is done later for

each of our models and in every case most, if not all lags fall below of the 95% percentile

mark. Adding other time series from different variables is possible, and these can also

be lagged. In this thesis we set up as many lags as the maximum forecasting period is

expected, this ensures that we have coherent information from a time window similar to

the one to be forecasted, this means we have 40 lagged variables per variable used.

5.2.4.2 Multi-output iterative
forecasting

A one-step time series forecasting model can be extended to produce more

extended forecasts by an iterative process. This process consists in making one-step

forecasting at a time, taking the predicted solution as actual data for the next step, and

repeating this process as many times as desired. The result is a longer time-frame

forecast which works proportionally as well as the one-step forecast. The trade-offs are

one, a decreasing accuracy with more extended forecasts, and two, the assumption that

we can predict each of the variables in the model. The first trade-off can be minimized

by tuning the number of lags in the model, while the second trade-off is just a design

choice that is not possible to address by itself and need to be handled carefully.

5.2.4.3 Workflows

Many time-series forecasting models can be combined to strengthen the

predictions. In the case of multi-variable, multi-output iterative models, a way to

ensure that the additional variables are also forecasted is to pre-train and pre-forecast

the extra variables in a separate model, then replace the data necessary for the iterative

forecast with the pre-forecasted variable, re-create the lags as needed, and forecast the

multi-variable model iteratively. This strategy makes it possible to handle the second

trade-off listed in the previous section.
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5.3 Machine Learning experimental results

The results shown in the first section of this chapter were published on [88] and

are here included by a suggestion of the doctoral committee, as a way to present the

other facet of the author’s work during graduate school, as well as to provide a context

for the second section of this chapter, which is entirely novel. It is expected to produce

an additional journal publication.

5.3.1 Offshore DO estimation

The first two models presented in the DO estimation are located offshore, in a

transitional zone between the open sea and coastal ocean. In this regime, the DO

relation with other variables is expected to be linear, and these models are expected to

work as a proof of concept before moving to more non-linear regimes. In this regime the

machine learning application is justified by the novelty, but traditional regression

approaches would still yield very good results, as these have been used for decades in the

open ocean [95, 76] and this data is located offshore and thus still linear in some degree.

Figures 5.3 and 5.4 show the results of the RFR and SVR models, respectively,

the top figure shows the relation plot between observed and predicted quantities, while

the middle field in RFR and bottom plot in SVR show the distribution of the residuals

of the testing dataset. Finally, for Figure 5.3 we have a different plot at the bottom

panel, which shows the relative importance of the variables in the model.

The offshore models results are outstanding and can be seen in Table 5.3, the R2

is 0.997 and 0.986 for RFR and SVR respectively, this is extremely good in both cases,

but random forests performs slightly better, and also provides variable importances,

making it more valuable in this setting. The most essential variables offshore were

depth (0.40), followed by temperature (0.35) and salinity (0.20), while time and

upwelling had a very low relative importance in the model, this is expected since this

dataset is taken from cruise data taken in discrete time windows, thus the time variable

lacks enough correlation to be of importance, while the upwelling was added to the

dataset later as a possible extra dimension who could improve the results, but this

wasn’t the case. In coastal ocean dynamics, there is a correlation between upwelling and

70



oxygen content, but this is generally dephased in time by some degree, and this

correlation is not evident in this case. These results hint of a possible dimensionality

reduction taking time and upwelling out of the model without affecting the models’

performance too much. These tests could be explored as future work.

Figure 5.3. Offshore model rela-
tional plot for Random Forest Re-
gression (top) with R2 = .997, along
with the residuals plot (center)
and relative impurity-based impor-
tance (bottom).

Figure 5.4. Offshore model rela-
tional plot for Support Vector Re-
gression (top) with R2 = .986, along
with the residuals plot (bottom).
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Table 5.3. Offshore oxygen prediction errors results.

RFR SVR

R2 0.997 0.986
mae [mg/L] 0.044 0.089

mse [mg2/L2] 0.007 0.045

5.3.2 Nearshore DO estimation

In this section we apply machine learning to nearshore coastal seawater data. In

this regime the typical linear relationship between temperature, salinity and dissolved

oxygen completely disappear, part of this behavior is because of the multitude of factors

that take part on the dynamics of the coastal ocean; Tides, upwelling and shallow

depths mean a much higher degree of mixing and turbulence in the seawater this close

to the coast, and the well behaved stratified water column of the open ocean is not

present here or is not as consistent. Furthermore, developing a numerical

reaction-diffusion model to obtain estimates of dissolved oxygen is a daunting task with

nontrivial validation requirements. For these reason, a data-driven machine learning

approach is best suited for this kind of problem and these results represent the best

solution to a problem considered complicated and hard to solve at this point in time.

The results for nearshore DO can be seen in Figures 5.5 and 5.6, again

corresponding to the RFR and SVR models, respectively, and with a similar layout to

the previous section. In this case, we see a higher variability in the residuals in both

models, telling us these results might not be as good as before. Still, more interestingly,

the importance coefficients for the variable space have shifted dramatically; now, depth

is the lowest ranking variable in importance. At the same time, time is the most

important variable with 0.40, followed by temperature (0.33) and salinity (0.20);

upwelling is consistently low in the importance ranking. These importances now tell us

that we might want to cut depth and upwelling as predictor features to simplify the

model further. In this case the dataset comes from continuously recording buoys with

depth profiles, so while we have data from the whole water column, is more useful for

the model to understand the time of the day, the season, or similar date related
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relationships to infer DO content, making the depth variable redundant and in turn less

relevant. The R2 for the RFR and SVR models now falls to 0.987 and 0.946 respectively,

this is, in the case of RFR, lower by a small fraction but much more dramatically lower

in the case of SVR. This is a somewhat expected result since the statistical ensemble of

random forests is robust against nonlinear relationships. At the same time, the support

vector methods have mixed results in this type of problem. In any case, the SVR results

are still excellent, just not comparable to the RFR model anymore. The summary of

error results for the nearshore models is presented in Table 5.4.

Table 5.4. Nearshore oxygen prediction error results.

RFR SVR

R2 0.987 0.946
mae [mg/L] 0.076 0.182

mse [mg2/L2] 0.022 0.091

5.3.3 Station-Based predictions

The final tests carried out in the regression analysis of DO data were, a

station-based prediction where training data in one station would be used to predict

DO in a different station, and a training percentage analysis to quantify the amount of

training data needed to get accurate enough results.

The results of the station-based analysis are presented in Table 5.5, where the

structure is divided into three main categories (self, OS, MB). These correspond to the

data used to train the model. This model is then used to predict the targets in the

second row of the table (predict). In the case of the left section of the table, the OS,

SB, NB, MB stations were trained and used to predict their stations’ data, in each case,

RFR was used, and the R2 never dropped from 0.990, giving us reasonable confidence in

the models’ performance. Next, the middle section trains in data from the OS station;

this station is close to the SB, NB, and MB stations, so these were chosen as possible

targets for prediction. The prediction power was very limited in this case, with R2

varying from 0.426 to 0.567. The last case in Table 5.5 was training a model in MB
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Figure 5.5. Nearshore model rela-
tional plot for Random Forest Re-
gression (top) with R2 = .987, along
with the residuals plot (center)
and relative impurity-based impor-
tance (bottom).

Figure 5.6. Nearshore model rela-
tional plot for Support Vector Re-
gression (top) with R2 = .945, along
with the residuals plot (bottom).

data to predict SB and NB station data; in this case, some success was obtained for the

SB data, but the NB predictions once again fell short, and other methods are suggested

to be used in this case. This experiment is interesting because it shines a light on the

need to have data from the actual study site to use machine learning appropriately;
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otherwise, many physical factors will erase the data validity for a different location.

Only good results were obtained in the MB to SB prediction. This is again probably

because of physical ocean currents and other natural factors that see a very similar

relationship on the two dynamics during the periods of data the model was trained on.

Table 5.5. Station-based RFR error predictions, where the top row shows
training the nearshore site used for training and bottom row the nearshore
site that is predicted.

Train: Self OS MB
Predict: OS SB NB MB SB NB MB SB NB

R2 0.997 0.993 0.995 0.990 0.426 0.567 0.554 0.701 0.438
mae [mg/L] 0.027 0.071 0.040 0.080 0.857 0.493 0.676 0.600 0.632

mse [mg2/L2] 0.002 0.015 0.005 0.020 1.351 0.509 0.913 0.704 0.661

Finally, in Figure 5.7 we show a series of curves showing the percentage of

training data used for each station’s model; the dashed series includes time as a

variable, while the solid lines don’t. This Figure is fascinating in the sense that for all of

the models, using 8-10% of the training data was sufficient to get R2 higher than 0.90

using time as an additional variable, or 0.85 without it. Thus, this experiment shows

that it is sometimes enough to train in only a fraction of the available data for

well-tuned models to reconstruct a highly nonlinear quantity like DO in it.

5.3.4 Time Series forecasting results

As described in the previous section, the time series forecasting models here

described rely on a re-arranging of time series data in a way that resembles a regression

model, using the previous data to predict the next time step, and utilizing lags or

differenced periods in the data new, auxiliary features to improve the model. This

section will relate how we designed and created time series forecasting models for

temperature and dissolved oxygen, using lagged variables and a workflow approach for

the DO forecast. We used the forecast of temperature as an additional feature to

improve the DO forecasting.
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Figure 5.7. Nearshore station-based R2 scores as a function of percentage of
available data used to train the model. “+t” series denote time used as an
input in the model.

5.3.4.1 Data Utilized

Tom Connolly provided the original data, comprised of curated records from the

Moss Landing sea intake, located in Monterey Bay; the records have a 5 minutes

frequency and contain temperature, dissolved oxygen, salinity, fluorescence, Ph, CO2,

and other markers. The data starts on 09-03-2010 and ends on 04-03-2021, totaling

almost 11 years of high-quality real coastal ocean data. The research team manifested

the need to make forecasts long enough to be helpful for the coastal communities that

might need the DO information in advance, e.g., fisheries, for which five-days forecasts

were defined as the project’s goal. Although this requirement forced the time series to

be down-sampled to a more manageable amount of data and the number of

multi-output points to be obtained, a compromise was found at 3-hours data frequency,

which amounts to 40 points of forecast at a time for a five days range.

Auto-correlation function and trend analysis were carried out in the raw data.

As a result, a strong seasonal trend as a general increasing trend was identified and

corrected, using Augmented Dickey-Fuller (ADH) Test and

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test controlled by p-values.
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The data is deseasonalized and detrended by differencing it once and then

rescaled between -1 and 1 to make it work better with the tanh activation function.

The lags are created afterward, and an equal number of lags than the desired maximum

forecasting period was found to work best, adding 40 lags per independent feature

utilized.

5.3.4.2 Model parameters

All of the time series forecasting models described here share the same

architecture and parameters. These were tuned manually from the vast array of possible

options available, and the number of epochs used was minimized by mapping the loss

gains per generation, yielding five epochs as the minimum number of generations to

attain good results for us, while at the same time minimizing over-fitting. Whenever

possible, the functions chosen were utilized with the default parameters. Tensorflow

2.4.1 was used as a backend, with Keras 2.4 as a frontend for the model’s engine.

Specific parameters are listed on Table 5.6 and are as follows: The model was

trained using 250 neurons and five generations, with mean squared error as the loss

function and root mean squared error as metrics, as well as utilizing the adam

optimizer. The network architecture is very simple and can be seeing in Figure 5.8: An

input layer equal to the number of lags times the number of features (80 total features

for temperature, 120 total features for DO), densely connected to a single LSTM

network of 250 neurons, finalized by a dense output layer of size 1, which will become

the forecasted value of the next point in time, 3 hours in the future. This configuration

is both simple and sufficient to complete the objectives. It is also important to point

out that shuffling the model fit must be disabled for time series forecast, and the LSTM

must be set to stateful to maintain the time series correlation. Finally, the model states

are reset after each generation as a precaution to prevent over-fitting.

Two different models are created, tested, and reported for each interest variable

(Temperature and DO), one forecasting for 200 points or 25 days and one forecasting

for an entire year (April 2020 - April 2021). The reason was to explore the forecasting

performance in a more extended period, especially across different seasons. The first
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Figure 5.8. Architecture of the LSTM neural networks employed. An input
layer of several variables V1 t, V2 t, V3 t, include lagged variables V1 (t-
1), V2 (t-1), V3 (t-1) and so on, are densely interconnected to the LSTM
neurons and produce a single output for a forecasted reading of the quantity
of interest.

Table 5.6. LTSM neural network parameters.

RFR

Neurons 250
Generations 5

Loss MSE
Optimizer Adam

Metrics RMSE

model splits the data into 97% training and 3% testing, and the second model uses a

90%-10% split between training and testing sets. As we will see, these two models’

performances are still similar, but they must be treated as different models since they

train and test is different data.
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Water level data

The tidal forcing of the site mainly defines the water level in the current context;

this is a well-known and highly predictable quantity. As such, it is suited for

multi-output iterative forecasts. With this in mind, the water level dataset from NOAA

was adapted and merged with the Moss Landing data to include this information as an

additional feature of the model. Water level becomes especially useful in the

temperature model, where we lack other information to forecast either in one-step or

multi-output forecasts. Still, it is also handy on the DO forecast; since we don’t have to

train and predict an additional variable for the multi-output step, we can assume we

have this information beforehand.

In the following sections, we present the model results, four models in total, two

for temperature and two for dissolved oxygen, the difference being the amount of

training data used, either 97 or 90% for a more comprehensive lecture of the forecasting

power across seasons. In both cases, the corresponding temperature models 5-days

forecasts are used in the multi-output dissolved oxygen forecast.

5.3.5 Temperature time series forecast

The first model, called T1S1 for temperature one-step, is a function of past

temperature and past water level, to produce the following reading for temperature 3

hours ahead, can be seen in Figure 5.9, the plot shows three panels, the top panel over

imposes the real temperature data from the testing set and the predicted data from the

model, the middle panel shows the residuals of the two series, expressing relative error

distribution. In contrast, the bottom panel is a representation of the autocorrelation of

the lags utilized with the testing data, autocorrelation being the correlation

measurement of past data with current data, the height of the autocorrelation stems

describe how much the lagged data resembles the present data, in our models the ideal

behavior is to keep autocorrelation at a minimum threshold not to be statistically

significant, meaning the lagged data is independent of the present data. This threshold

is shown as the shadowed area and is the 5% percentile, indicating the correlation of the

lagged data is below this threshold.

79



Right away, this first model results illustrate the power and limitations of our

model; on one side, the general trend of the temperature is captured very well, changing

signs and touching minimums and maximums at the same time as the real-time series

and overall grasping the behavior needed, on the other hand, the forecast tends to

overshoot the values in almost every case. Towards the end of the testing series, the

forecast worsens for a short-range; this can also be seen in the residual plot, where the

residuals are similarly distributed with higher residuals towards the end. The lag plot

shows most of the lags inside the shadowed area, and only some of the first lags being

statistically significant for the linear dependence hypothesis. The whole of this figure

tells us that this model can probably be improved with additional features, but in its

current form is still reliable, and it has not been overfitted, according to the

autocorrelation.

Figure 5.9. Single-output (3hr) forecast of Temperature based on T,WL using
40 lags in 3 hour frequency data, training in 97% of dataset. RMSE = 0.4782C,
MAPE = 0.0413%

The second temperature model, called T1S2, is based on 90% of the training

data, which permits a full year of forecasting to be studied. This is particularly

important to assess the models’ performance across different seasons; the plot for this

model can be seen in Figure 5.10, and it follows the same structure as the T1S plot. In

this case, the top panel is hard to read. Still, the forecast seems to follow the general
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trend of the real data, less so in the middle of the series that corresponds to the months

from September to December; this is better seen in the residual plot where most of the

residuals at the start of the series are close together, they spread out towards the center

of the series and narrow back down towards the end. The lags plot shows weak

autocorrelation of the data as well. This model is similar to the previous one in

performance and behavior but offers much more robust results after forecasting a full

year of data and presents evidence of seasonal variance on the data that becomes harder

to grasp for the model.

Figure 5.10. Single-output (3hr) forecast of Temperature based on T,WL
using 40 lags in 3 hour frequency data, training in 90% of dataset. RMSE =
0.9982C, MAPE = 0.0617%

The temperature multi-output model performances are described next, in Figure

5.11 we show the results of model T5D1, a sample of ten different forecast ranges are

shown, with the over imposed real and forecasted series for comparison, the error

measurements are reported for each range and the average errors are seen in the figure

description. This model is limited in the forecasting range, but it helps to illustrate the

architecture working for our data. The different forecast series seem to follow the

temperature trend roughly. Still, the RMSE is at 1.09C, and the MAPE is about 0.1%,

which can be regarded as low. Still, the maximum and minimum agreement left some to

be desired in the more abrupt temperature changes, as we will see for the next model,
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this might be a localized problem in some parts of the time series but not necessarily a

widespread problem, since the errors reported for this model are comparatively high.

Figure 5.11. 5 days forecast of Temperature based on T,WL using 40 lags in
3 hour frequency data, training in 97% of dataset. RMSE = 1.09C, MAPE =
0.10%

On the other hand, Figure 5.12 shows the results of model T5D2, which has a

much more extensive prediction range, one full year, for which the visualization of

superimposed time series wouldn’t be legible. So instead, this plot reports the error

values for every five days forecast on the testing set. The top panel shows RMSE, the

middle panel MAPE, and the actual temperature data appears in the bottom panel as a

reference. This plot is very interesting since it combines several elements from the

previous model in one wider picture, for once, we see a seasonal difference in the errors,

again showing the model to have difficulty forecasting the Fall months compared to the

rest of the year, next, we have a lower mean error for both RMSE and MAPE than in

the previous model, telling us those results are affected by short-range fluctuations in

temperature, and finally, this model performance is regarded as very good at RMSE =

0.95C, MAPE = 0.06%, so it can be used in a workflow chart as a pre-forecasted

quantity for more complicated markers, something we will do in the multi-output

dissolved oxygen models.
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Figure 5.12. Error for one year of 5 days forecast of Temperature based on
T,WL using 40 lags in 3 hour frequency data, training in 90% of dataset.
RMSE = 0.95C, MAPE = 0.06%

5.3.6 Dissolved Oxygen time series forecast

The first dissolved oxygen model is shown in Figure 5.13, for the model O1S1,

which trains in 97$ of the data. This model uses data from lagged water levels,

temperature, and oxygen in the past to predict the next step. As we see, the agreement,

in this case, is much better than in the temperature models. This is possible because of

the high correlation between temperature and oxygen content, an advantage that the

temperature models don’t have. The errors are extremely small, RMSE =

0.1284µmol/L and MAPE = 0.0005%. Like the temperature models, only some of the

lowest lags fall above the threshold established for random auto-correlation, which gives

us confidence in the model not being overfitted.

In the case of the O1S2 model, training in 90% of the data, the behavior is very

similar and can be appreciated in Figure 5.14, only in this case the errors are slightly

higher at RMSE = 0.1465µmol/L, MAPE = 0.0006%. This can be thought of as

counter-intuitive at first glance, but when we notice the residuals plot (middle panel) we

see most of the year, the residuals are minimal and are only around the Fall and less so

Spring months than the errors increase. Remembering our data records end during the

Spring, this error discrepancy makes sense. The autocorrelation in model O1S2 is also
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Figure 5.13. Single-output (3hr) forecast of Dissolved Oxygen based on
DO,T,WL using 40 lags in 3 hour frequency data, training in 97% of dataset.
RMSE = 0.1284µmol/L, MAPE = 0.0005%

signaling good linear independence between lags. In general, this model shows

outstanding performance, and it lays down the ground needed for the multi-output

forecast, which is expected to have higher errors associated just because of its design.

Figure 5.14. Single-output (3hr) forecast of Dissolved Oxygen based on
DO,T,WL using 40 lags in 3 hour frequency data, training in 90% of dataset.
RMSE = 0.1465µmol/L, MAPE = 0.0006%

In the following two models, we use a pre-forecasted temperature to complete

the iterative multi-output process. This is a necessary step for the model to be practical

since an iterative multi-output forecast assumes the provided data is all available.
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Unfortunately, there are no reliable forecast models for temperature in the coastal

region that the author or the research team knows about. A forecast for the water level,

on the other hand, is available. The alternative option was to exclude the temperature

as a feature in the dissolved oxygen models, but this would mean poorer forecasts. The

presented strategy was employed instead once the temperature forecast was proven to

perform well enough.

The first multi-output iterative five days forecast model, trained in 97% of the

dataset, called O5D1, can be appreciated in Figure 5.15 and shows a grid view of ten

prediction ranges, each one with its errors reported on top. From these plots, it is

remarkable how well the oxygen forecast follows the trends in the real data. Although

not perfect, most minimums and maximums are synchronous, with some discrepancies

in the values. The errors for the set of forecasts in this model are RMSE =

41.36µmol/L, MAPE = 1.60%, very far from the errors in the one-step models, which is

expected, but still, an excellent estimate attained.

Figure 5.15. 5 days forecast of Dissolved Oxygen based on DO, WL, pre-
forecasted T using 40 lags in 3 hour frequency data, training in 97% of dataset.
RMSE = 41.36µmol/L, MAPE = 1.60%

In the case of the O5D2 model, which predicts five days ranges for a full year of

data and is trained in 90% of the data, the results are even better and can be seen in

Figure 5.16. In this case, we report the errors only as it would be impossible to know
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the agreement between forecast and real data in this manner. The errors are RMSE =

43.87µmol/L, MAPE = 0.18%, and these are still much higher than the O1S1 and

O1S2 models, but still relatively low for a model of this kind.

A marked seasonally dependent error increase can be appreciated from both of

the full-year prediction models, mainly for the Fall season and into the first half of the

winter season. In contrast, the general error is lower for the rest of the year, with minor

fluctuations still. In Table 5.7, we summarize the models’ performance and some of the

characteristics between them

Figure 5.16. Error for one year of 5 days forecast of Dissolved Oxygen based
on DO, WL, pre-forecasted T using 40 lags in 3 hour frequency data, training
in 90% of dataset. RMSE = 43.87µmol/L, MAPE = 0.18%

Table 5.7. LTSM models performance results.

RMSE [C] MAPE [%] Training % Output #

T1S1 0.4782 0.0413 97 1
T1S2 0.9982 0.0617 90 1
T5D1 1.09 0.10 97 40
T5D2 0.95 0.06 90 40

RMSE [µmol/L] MAPE [%] Training % Output #

O1S1 0.1284 0.0005 97 1
O1S2 0.1465 0.0006 90 1
O5D1 41.36 1.60 97 40
O5D2 43.87 0.18 90 40
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5.4 Discussion

Machine learning in environmental sciences is a nascent field showing great

promise. The results of this chapter account for this, a highly complicated and

important marker to trace such as dissolved oxygen being easily defined by ubiquitous

counterparts, such as temperature, pressure, and salinity, is by itself a great application

of machine learning, as before this paper, only instrumentation would yield reliable

results of the dissolved oxygen in coastal regions. These instruments are usually a

thermo-couple or an optic refraction reader of seawater, which in actuality measure DO

indirectly from temperature and salinity readings. With these results, we have virtually

eliminated the necessity of the specialized equipment to make this variable

transformation, which translates into essential savings for the location with enough DO

data associated with the training features. As we saw, the matter of how much data is

enough data is an open question. Still, the results here presented show that it might be

much fewer readings than anticipated. Those ensemble methods could pick up the

highly nonlinear relations with only a few weeks of readings spaced during a year time.

These applications also open the possibility of creating post-processing modules for

CFD models such as the GCCOM, which handles the predictive features very well, to

create a layer of information for DO or other similar variables, traditionally modeled

using biogeochemical models that might not be accurate for the system. These results

seem to bypass those models altogether while providing more substantial results.

Additionally, cheaper alternatives to traditional DO reading instruments could be

manufactured using pre-trained ML models, and these could be more reliable than the

traditional ones.

The second part of the results, corresponding to the time series forecast, is novel

results presented in this thesis and unprecedented for coastal ocean problems in its

treatment and technique. The results are remarkably good and two-fold significant.

First, they describe a method to predict time series of temperature (which arguably

could be applied to other fundamental thermodynamic quantities) and a composite

technique to feed other models’ forecasts into more complicated variable estimates, such
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as DO. The most important application of these results is a possible weather-like

forecast of the temperature and DO conditions in a coastal location and possibly an

early warning system for abrupt changes in these markers, which could be detrimental

to fisheries and ecological reservoirs if not managed with enough warning. The other

important application would be relating PH level, chlorophyll production, and different

critical biogeochemical signatures to the current models for similar treatment and

predictability. Second, the correlation of DO/PH is higher than that of

temperature/DO here studied, which would make a PH time series forecast feasible in a

more robust way than what we show here for DO.

It is important to remember that the results and model performance will be as

good as the data used like any other AI or machine learning application. In this case,

we were privileged to have extensive data to make these models successful. Still, sadly

it is not possible to apply these techniques to other places without good data history.

The application of machine learning in environmental sciences, as well a

computational fluid dynamics models and environmental management are showing

performance that is hard to ignore and could revolutionize the way we attack

traditional problems (instrumentation), as well as accelerating our understanding of the

processes of the ocean while making use of large collections of data that already exist.

Finally, we can summarize the achievements of this chapter as follows:

• Implemented supervised ML models to measure DO in coastal waters indirectly

• These indirect measures are based on common thermodynamics markers, also
commonly used in CFD.

• This enables a data-driven biogeochemical formulation for numerical modeling, in
which pre-trained ML models can be included as part of a CFD simulation for the
same conditions as the ML was trained in.

• Additionally, the models can be placed in a new range of instruments which could
prove to be cheaper while maintaining accuracy.

• Weather-like (5-day) forecasts have been attained for temperature and DO in
coastal waters.

• These forecasts would be beneficial for coastal economic and ecological
management activities, being able to mitigate hypoxia or algae bloom events by
forecasting them with enough time for meaningful action to occur.
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CHAPTER 6

CONCLUSIONS, CONSIDERATIONS AND

FUTURE WORK

This thesis represents an ambitious effort to stitch together two different fields,

CFD and ML, in a wholesome manner. In contrast, each one has two equally

complicated components to work with: Coastal ocean field-scale experiments, mimetic

operator Navier-Stokes modeling, supervised general nonlinear machine learning

regression, and times series forecasts workflows for biogeochemical markers in coastal

seawater are each contributing in crucial ways to each of their fields but presented in

this thesis and framework, the possible cross-field impacts of these findings can be

appreciated better.

CFD/mimetic presents completely novel formulations tailored for N-S solvers

within the mimetic framework, marrying a traditional oceanographic model approach

with the mimetic technology, enabling unprecedented energy conservation and physics

fidelity in a novel application of mimetic operators, in what it has become the most

complex instance of mimetic models to date, and equally contributing to the insight or

their working along with computational fluid dynamics models requirements.

The GCCOM has been given a new build from the ground up, basing itself in

the mimetic operators’ MOLE library for arbitrary order of accuracy, superior energy

conservation, and improved validation. The mimetic operators worked exceptionally

well for most of the proposed settings. Previously, unknown issues were identified and

partially solved to make the mimetic operators work in the specific settings required by

the GCCOM model. Future work will expand on these novel implementations,

necessary for a higher order of accuracy on the advection step, and in turn, enable

finer-detailed phenomena as internal wave beams to be resolved accurately. In any case,

the results presented in the CFD portion of this work are remarkable in that they



represent a solid base for future researchers to work from, providing the framework to

drive the GCCOM to a fully deployable state.

The ML component presented here is novel in a different way, using techniques

that are still uncommon in the environmental sciences, and pushing them to new limits

on expected accuracy and time series resolution and forecast. Nevertheless, the results

seem to expand the horizon of what can be done in coastal ocean dynamics and possibly

in oceanography and atmospheric sciences at large.

The ML models here presented can be applied in a range of different uses; one

could be designing a pre-trained (or updated wireless) machine-learning-based DO

sensor, that could be self-improving and would be at least 10 times cheaper than

current DO sensor commercial models while yielding results at least as good, or even

better. Another use would be using the trained models to provide DO layers in CFD

simulations of the same sites where the data originated from, this would become an

alternative to bio-geochemical models that, in some cases, such as DO in the coastal

ocean, are not well understood and therefore yield low accuracy results, giving a

data-driven approach here proposed an edge.

The time series forecast models implications are far-reaching, these results open

the possibility of weather-like forecasts for biogeochemical markers in coastal regions, or

early warning systems for fisheries to correct for sudden drops in oxygen supplies that

might be about to happen, similarly for ecological reserves, mitigation strategies might

be adopted beforehand to prevent coral bleaching events or massive die-outs, many

times attributed to sudden hypoxia. This latter application still needs more research

done since the dataset studied here has too few events of hypoxia to be valid in that

case. However, the same tools and principles are applicable, and the framework should

work similarly.
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