
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

HMC Senior Theses HMC Student Scholarship 

2023 

An Inquiry into Lorentzian Polynomials An Inquiry into Lorentzian Polynomials 

Tomás Aguilar-Fraga 
Harvey Mudd College 

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses 

 Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Aguilar-Fraga, Tomás, "An Inquiry into Lorentzian Polynomials" (2023). HMC Senior Theses. 274. 
https://scholarship.claremont.edu/hmc_theses/274 

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator 
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/274?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu


An Inquiry into Lorentzian Polynomials

Tomás Aguilar-Fraga

Mohamed Omar, Advisor

Francis Su, Reader

Department of Mathematics

May, 2023



Copyright © 2023 Tomás Aguilar-Fraga.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of the author. To
disseminate otherwise or to republish requires written permission from the author.



Abstract

In combinatorics, it is often desirable to show that a sequence is unimodal.
One method of establishing this is by proving the stronger yet easier-to-prove
condition of being log-concave, or even ultra-log-concave. In 2019, Petter
Brändén and June Huh introduced the concept of Lorentzian polynomials,
an exciting new tool which can help show that ultra-log-concavity holds in
specific cases. My thesis investigates these Lorentzian polynomials, asking
in which situations they are broadly useful. It covers topics such as matroid
theory, discrete convexity, and Mason’s conjecture, a long-standing open
problem in matroid theory. In addition, we discuss interesting applications
to known combinatorial objects and possible future paths for discovery.
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Chapter 1

Introduction

Lorentzian polynomials are currently some of the most exciting objects in
the world of combinatorics. My hope is that, through this thesis, we can
take an informative journey through the world of these fascinating objects
together. I present a quick outline of what this thesis entails, chapter by
chapter, and a quick note on how it is written in the end.

We begin with chapter 2, in which we introduce the concept of uni-
modality (Definition 1), a highly desirable result to obtain in a combinatorial
setting. We describe two related concepts, log-concavity (Definition 2) and
ultra-log-concavity (Definition 3), and provide some examples as to illustrate
its importance (Theorems 2, 4). We also introduce an idea of multivariable
log-concavity (Definition 7).

In chapter 3, we introduce the main subjects of the thesis, Lorentzian
polynomials (Definition 11). After a brief history of their prominence, we
introduce a recursive definition, along with reintroducing some important
objects, such as the Hessian (Definition 10), and provide several examples
(Example 7). We relate this back to ultra-log-concavity, and provide a broad
motivation for an alternative definition (Example ??).

In chapter 4, we present an alternative characterisation for Lorentzian
polynomials. We present some important ideas, such as the support of
a polynomial (Definition 12) and 𝑴-convexity (Definition 13), which are
used in this equivalent characterisation (Theorem 7). We then provide some
examples to help show the utility of this characterisation (Example 13).

In chapter 5, we introduce two definitions of matroids, algebraic objects
closely related to the prior characterisation (Definitions 14 and 15). We give
several examples to help illustrate their utility (Example 16). We end by
sketching out how the language of matroids can be used to prove Mason’s
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conjecture, a long-standing open problem in matroid theory (Theorem 9).
In chapter 6, we briefly mention denormalised Lorentzian polynomi-

als, as a possible way to apply Lorentzian polynomials to non-matroidal
situations, and provide a link to a pre-print which may do so.

Dear reader, there are many things I love about mathematics, but the
way it is typically written is not one of them. Mathematical texts are almost
always designed with more care for the mathematics inside of them than
for the reader of these ideas. It is paradoxical, as the two cannot truly be
separated. This is a goal I wish to address in this thesis. In addition to
learning about a fascinating combinatorial idea, I hope that you, reader, feel
invited by the mathematics within this text. I hope that I express my passion
for it in a way such that you, too, can feel that this work is accessible and
maybe even be inspired to think about it yourself!



Chapter 2

Unimodality and Log-Concavity

Let us begin, as we often do, with a definition.

Definition 1 (Unimodality, (Stanley, 2011)). A sequence {𝑎𝑘} of length 𝑛 + 1
is unimodal if there exists a value 0 < 𝑘 < 𝑛 such that

𝑎0 ≤ 𝑎1 ≤ · · · ≤ 𝑎𝑘−1 ≤ 𝑎𝑘 ≥ 𝑎𝑘+1 ≥ · · · ≥ 𝑎𝑛−1 ≥ 𝑎𝑛 .

This behaviour is foundational in combinatorics. There are several
ways we can conceptualise why. Of course, we may be satisfied with the
explanation that unimodality is important for the sake of unimodality, in
the same sense that in algebra, finding structure is important for the sake of
finding structure. However, unimodality can also be interesting for reasons
related to statistical analysis of sequences. One may note that, for statistical
results such as the local limit theorem, which shows when a distribution
approximates the normal distribution, it may be helpful for said distribution
to be unimodal (Bender, 1973). And, in general, many sequences we care
about happen to be unimodal. Some examples follow.

Example 1 (Binomial Coeffcients (Brändén et al., 2015)). The sequence of
binomial coefficients for a fixed 𝑛 ∈ ℤ+ and iterating 𝑘, that is, the sequence
such that 𝑎𝑘 =

(𝑛
𝑘

)
for 0 ≤ 𝑛 ≤ 𝑘, is unimodal. These quantify all sorts of

useful phenomena, including how to pick a subset of 𝑘 distinct objects from
a set of 𝑛 objects.

Example 2 (Symmetric Group on 𝑛 Letters). Permutations of the symmetric
group on 𝑛 ∈ ℤ+ letters, 𝑆𝑛 , with exactly 𝑘 ≤ 𝑛 disjoint cycles in their
decomposition, are unimodal. An example of a permutation on 5 letters
with 2 disjoint cycles in its composition would be (124)(35), that is, a function
sending the list (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) to the list (𝑑, 𝑎, 𝑒 , 𝑏, 𝑐). This we will prove later.
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Example 3 (Stirling Numbers of the Second Kind (Sibuya, 1988)). The Stirling
numbers of the second kind for a fixed 𝑛 ∈ ℤ+ and an iterating 𝑘, that is,
the sequence such that 𝑎𝑘 =

{
𝑛
𝑘

}
for 1 ≤ 𝑛 ≤ 𝑘, are unimodal. The value

{
𝑛
𝑘

}
quantifies the number of ways to partition an 𝑛 element set into 𝑘 distinct
subsets.

What may be helpful to note about some of these sequences is that they do
not necessarily have nice closed forms. In particular, it is somewhat difficult
to use a generating function to find Stirling numbers of the second kind,
as doing so involves a somewhat nasty generating function (Boyadzhiev,
2012). As such, simply knowing that any such sequence will be unimodal
helps capture some of the behaviour we wish to understand about it without
actually needing to calculate any such sequence.

Although it is sometimes done, it is rare that one proves something is
unimodal directly. Instead, it is often advantageous to prove something
slightly stronger, after which we can show that a sequence is unimodal. In
particular, we can prove that a sequence is log-concave.

Definition 2 (Log-Concavity (Stanley, 2011)). We call a sequence {𝑎𝑘} log-
concave if, for every 𝑘 with 0 < 𝑘 < 𝑛, it is the case that

𝑎2
𝑘
≥ 𝑎𝑘−1𝑎𝑘+1.

Let us firstly show that this statement is indeed stronger than unimodality,
through two quick propositions.

Theorem 1. Log-concavity is a stronger condition than unimodality. That is,
log-concavity implies unimodality, but the converse is not true.

Proof. We firstly prove that log-concavity implies unimodality using the
contrapositive. If we can show that a sequence {𝑎𝑘} that is not unimodal is
also not log-concave, then this statement will be proven. Note that, were a
sequence {𝑎𝑘} to not be unimodal, there would be some 𝑘 in the sequence
for which 𝑎𝑘−1 > 𝑎𝑘 and 𝑎𝑘 < 𝑎𝑘+1. Colloquially, this would mean that there
would be at least one "dip" and thus at least two "peaks" in the sequence.
Combining these two statements, we would see that that 𝑎2

𝑘
< 𝑎𝑘−1𝑎𝑘+1,

implying that the sequence is, indeed, not log-concave. Thus, we have
proven that if a sequence is log-concave, then it is unimodal.

We then show that a sequence that is unimodal is not necessarily log-
concave through simple counterexample. Consider the sequence 1, 5, 3, 2.
This is clearly unimodal, as we see 𝑎1 = 5 to be its only peak. However,
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note that 𝑎2
2 < 𝑎1 · 𝑎3; that is, 32 < 5 · 2. As such, this is a sequence that is

unimodal, but not log-concave.
Thus, taken together, these imply that log-concavity is a stronger condi-

tion than unimodality. □

We have seen several examples of log-concave sequences already; in
fact, all the sequences we have mentioned up to this point we know to be
unimodal because we know them to be log-concave.

There are several ways we can choose to establish log-concavity. We can
first choose to do so using the technique of injection. As a broad idea of how
this argument may work, we note that, we often can construct sets based
on each element of the sequence, such that 𝑎𝑖 = |𝑆𝑖 |. This is especially true
if our sequence is firmly based in a known combinatorial object. If we can
find an injection from the pairs of sets 𝑆𝑖−1 × 𝑆𝑖+1 into 𝑆𝑖 × 𝑆𝑖 that works for
every 0 < 𝑖 < 𝑛, then it will automatically be the case that 𝑎2

𝑖
≥ 𝑎𝑖−1𝑎𝑖+1 for

each 0 < 𝑖 < 𝑛. This is broadly the most direct, and thus the most desirable,
way to prove that something is generally log-concave.

As an example, let us show that this works for the binomial coefficients.

Theorem 2. The sequence of binomial coefficients, as described in Example
1, is log-concave.

Proof. We firstly establish which sets we will be working with. Given 𝑛, for
any 𝑎𝑘 , we associate it with a set 𝑆𝑘 such that 𝑎𝑘 = |𝑆𝑘 |. In particular, we
consider the set of subsets of {1, 2, · · · , 𝑛} with 𝑘 elements; we note that these
are counted exactly by

(𝑛
𝑘

)
. Thus, a prototypical element (𝑠𝛼 , 𝑠𝛽) ∈ 𝑆𝛼 × 𝑆𝛽

will be pairs of subsets of {1, 2, · · · , 𝑛}, the first with 𝛼 elements and the
second with 𝛽 elements.

Now that we’ve established the sets we will be using to be counted
by each element of 𝑎𝑘 , we now show the injection from 𝑆𝑘−1 × 𝑆𝑘+1 to
𝑆𝑘 × 𝑆𝑘 . For each element of the set (𝑠𝑘+1 , 𝑠𝑘−1) ∈ 𝑆𝑘+1 × 𝑆𝑘−1, consider the
set 𝐼 = 𝑠𝑘+1\ (𝑠𝑘+1 ∩ 𝑠𝑘−1). This is exactly the set consisting of all elements in
𝑠𝑘+1 that are not in 𝑠𝑘−1. Also note that this set cannot be empty, as there are
at least two elements in 𝑠𝑘+1 that are not in 𝑠𝑘−1, due to the size of the sets.
Thus, we pick the smallest element 𝑒 ∈ 𝐼 and add it to the subset 𝑠𝑘−1 while
subtracting it from 𝑠𝑘+1 to get two sets of size 𝑘. That is, more explicitly, we
send the element (𝑠𝑘+1 , 𝑠𝑘−1) to the element (𝑠𝑘+1\{𝑒}, 𝑠𝑘−1 ∪ {𝑒}). We note,
then, that this process is an injection; if 𝑓 (𝑠𝑘+1 × 𝑠𝑘−1) = (𝑠𝑘 × 𝑠′

𝑘
), then to

reconstruct the original element of our set, we find the smallest element
in 𝑠′

𝑘
that’s not in 𝑠𝑘 , add it to 𝑠𝑘 and remove it from 𝑠′

𝑘
. This will always
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be possible if the sets were generated in this manner, and the answer of
𝑠𝑘+1 × 𝑠𝑘−1 will be unique. As such, this is an injection. □

It is also the case that one can prove that a finite sequence is log-concave
if its generating polynomial has all of its roots real and negative; this is
how one proves, for example, that elements of 𝑆𝑛 with exactly 𝑘 disjoint
cycles in their decomposition are log-concave. Let us firstly lay out a proof
showing that, indeed, these functions are log-concave, and then show their
log-concavity, and hence, their unimodality.

Theorem 3 ((Brändén et al., 2015)). Given a finite sequence {𝑎𝑘} of length 𝑛

with non-negative coefficients, if the associated polynomial

𝐴(𝑥) =
𝑛∑

𝑘=0
𝑎𝑘𝑥

𝑘

has all roots real and negative, then the sequence {𝑎𝑘} is log-concave.

Proof. This proof proceeds through induction on 𝑛.
We firstly note two base cases. If 𝑛 = 1, then the sequence is automatically

log-concave, as the sequence is of the form 𝑎0 + 𝑎1𝑥, and as such, has no
middle terms we need to worry about satisfying the log-concavity condition.

If 𝑛 = 2, note that the condition of 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 being real rooted, by

utilising the discriminant, is the condition that 𝑎2
1 − 4𝑎0𝑎2 ≥ 0. This implies

log-concavity, as, since all the terms are positive,

𝑎2
1 ≥ 4𝑎0𝑎2 ≥ 𝑎0𝑎2.

Now we perform our inductive step. Suppose that, for some fixed
𝑛 ∈ ℤ+ and 𝑐 ∈ ℝ+, we have that the polynomial 𝐴(𝑥) = (𝑥 + 𝑐)𝐵(𝑥), where
𝐵(𝑥) = 𝑏𝑛𝑥

𝑛 + · · · + 𝑏1𝑥 + 𝑏0, has roots all real and negative. We know,
then, that 𝐵(𝑥) also has roots only real and negative, as it has the same
roots as 𝐴(𝑥), save −𝑐. Thus, 𝐵(𝑥) is log-concave, meaning 𝑏2

𝑘
≥ 𝑏𝑘−1𝑏𝑘+1

for all 0 < 𝑘 < 𝑛. Since we know that 𝐴(𝑥) = (𝑥 + 𝑐)𝐵(𝑥), performing this
multiplication tells us that

• 𝑎0 = 𝑐𝑏0

• 𝑎𝑛+1 = 𝑏𝑛

• 𝑎𝑘 = 𝑏𝑘−1 + 𝑐𝑏𝑘 otherwise (that is, for 0 < 𝑘 < 𝑛 + 1
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We firstly note that for 2 ≤ 𝑘 ≤ 𝑛 − 1, it is the case that, since

𝑏2
𝑘
≥ 𝑏𝑘−1𝑏𝑘+1 ,

multiplying both sides by 𝑏𝑘−1 gives us

𝑏2
𝑘
𝑏𝑘−1 ≥ 𝑏2

𝑘−1𝑏𝑘+1 (2.1)

and similarly, since
𝑏2
𝑘−1 ≥ 𝑏𝑘𝑏𝑘−2 ,

multiplying both sides by 𝑏𝑘+1 gives us

𝑏2
𝑘−1𝑏𝑘+1 ≥ 𝑏𝑘+1𝑏𝑘𝑏𝑘−2. (2.2)

Combining equations 2.1 and 2.2 gives us that

𝑏2
𝑘
𝑏𝑘−1 ≥ 𝑏𝑘+1𝑏𝑘𝑏𝑘−2 ,

or more simply,
𝑏𝑘𝑏𝑘−1 ≥ 𝑏𝑘+1𝑏𝑘−2. (2.3)

Thus, we see that

𝑎2
𝑘
− 𝑎𝑘+1𝑎𝑘−1 = (𝑏𝑘−1 + 𝑐𝑏𝑘)2 − (𝑏𝑘 + 𝑐𝑏𝑘+1)(𝑏𝑘−2 + 𝑐𝑏𝑘−1)

= (𝑏2
𝑘−1 − 𝑏𝑘𝑏𝑘−2) + 𝑐(𝑏𝑘𝑏𝑘−1 − 𝑏𝑘+1𝑏𝑘−2) + 𝑐2(𝑏2

𝑘
− 𝑏𝑘+1𝑏𝑘−1).

Note that the three terms which make up this sum are all nonnegative.
The first term (𝑏2

𝑘−1−𝑏𝑘𝑏𝑘−2) is as such because of our log-concavity condition.
Similarly, the third term 𝑐2(𝑏2

𝑘
− 𝑏𝑘+1𝑏𝑘−1) is also true due to the log-concavity

condition, as the index has shifted but otherwise all parts of the quanitity
are nonnegative. And finally, the term 𝑐(𝑏𝑘𝑏𝑘−1 − 𝑏𝑘+1𝑏𝑘−2) is nonnegative
due to 2.3 above. As such, this is indeed nonnegative always. Finally, one
can check edge cases.

Thus, if this is true for 𝑘, it must also be true for 𝑘 + 1, meaning our
inductive step holds.

As such, this proof is shown. □

Let us now show that the sequence of elements of 𝑆𝑛 with exactly 𝑘

disjoint cycles in their decomposition are log-concave.

Theorem 4 (The Symmetric Group on 𝑛 Letters is Log-Concave). The
sequence of the symmetric group on 𝑛 letters, as described in Example 2, is
log-concave.
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Proof. We use an inductive argument to firstly prove that
∑𝑛

𝑘=0 𝑎𝑘𝑥
𝑘 =

𝑥(𝑥 + 1)(𝑥 + 2) · · · (𝑥 + 𝑛 − 1). Note that, for fixed 𝑛, it holds for 𝑘 = 0, as
there are no disjoint cycle decompositions. We note that, for any

𝑓𝑛+1(𝑥) = 𝑥 𝑓𝑛(𝑥) + 𝑛 𝑓𝑛(𝑥),

and as such,
[𝑥𝑘] 𝑓𝑛+1(𝑥) = [𝑥𝑘]𝑥 𝑓𝑛(𝑥) + [𝑥𝑘]𝑛 𝑓𝑛(𝑥),

meaning
[𝑥𝑘] 𝑓𝑛+1(𝑥) = 𝑎𝑘−1 + 𝑛 · 𝑎𝑘 .

This is true, as the first term represents putting 𝑛 + 1 in its own cycle, while
the second represents putting it in an existing cycle, after one of the 𝑛 existing
numbers–there are 𝑛 ways to do this.

We note that
(𝑥 + 1)(𝑥 + 2) · · · (𝑥 + 𝑛 − 1)

only has negative real roots, and as such, is log-concave. Similarly,

𝑥(𝑥 + 1)(𝑥 + 2) · · · (𝑥 + 𝑛 − 1)

must too be log-concave, as 𝑎𝑘−1𝑎𝑘+1 ≤ 𝑎2
𝑘

still holds, just for a different
indexing. The only term we need to check is that of 𝑎1, and since 𝑎0 = 0,
𝑎0𝑎2 ≤ 𝑎2

1. So this is indeed a log-concave sequence. □

There is, in fact, an even stronger condition than log-concavity that we
often encounter. Let us define it below.

Definition 3 (Ultra Log-Concavity (Anari et al., 2018)). We denote a sequence
{𝑎𝑘} as ultra log-concave if, for every 𝑘 with 0 < 𝑘 < 𝑛, it is the case that

𝑎2
𝑘(𝑛

𝑘

)2 ≥ 𝑎𝑘−1( 𝑛
𝑘−1

) 𝑎𝑘+1( 𝑛
𝑘+1

) .
This is a stronger case even than log-concavity; let us now show this.

Theorem 5. Ultra log-concavity is a stronger condition than log-concavity.
That is, ultra log-concavity implies log-concavity, but the converse is not
true.
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Proof. We firstly show that ultra log-concavity implies log-concavity. Note
that we can rewrite the condition for ultra log-concavity in terms of factorial
coefficients, that is, show that

𝑎2
𝑘

𝑛!2
𝑘!2(𝑛−𝑘)!2

≥ 𝑎𝑘−1
𝑛!

(𝑘−1)!(𝑛−(𝑘−1))!

𝑎𝑘+1
𝑛!

(𝑘+1)!(𝑛−(𝑘+1))!
.

Multiplying both sides by 𝑛!2
𝑘!2(𝑛−𝑘)!2 thus gives us that

𝑎2
𝑘
≥ (𝑘 + 1) · (𝑛 − (𝑘 − 1))

𝑘 · (𝑛 − 𝑘) 𝑎𝑘−1𝑎𝑘+1

We note that, since 𝑘+1 > 𝑘 and 𝑛−(𝑘−1) > 𝑘, the fraction (𝑘+1)·(𝑛−(𝑘−1))
𝑘·(𝑛−𝑘) > 1,

and as such, we see that it must be the case that

𝑎2
𝑘
≥ 𝑎𝑘−1𝑎𝑘+1 ,

which implies log-concavity.
Next, we show that log-concavity does not always imply ultra log-

concavity. Consider the sequence 1, 4, 3, 2. It can be checked that this
sequence is log-concave. However, note that

𝑎2
2(3

2
)2 <

𝑎1(3
1
) 𝑎3(3

3
) ,

as
9
9 <

8
3 .

Thus, it is not always the case that a log-concave sequence is ultra log-concave.
As such, it must be the case that, in general, ultra log-concavity is indeed

stronger than log-concavity. □

Example 4. An example of a sequence that is ultra log-concave is that of
binomial coefficients outlined in Example 1. Note that, in all cases, the
inequality reduces to the statement that 1 ≥ 1, which is of course quite true.

We finally introduce an idea of multivariable log-concavity, one which
will come into play later as we try to apply the ideas of these Lorentzian
polynomials. We must firstly define a notation that helps us simplify our
definitions.
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Definition 4 (Δ𝑑
𝑛 (Matherne et al., 2022)). We write that the 𝑛-dimensional

vector 𝛼 = (𝛼1 , 𝛼2 , · · · , 𝛼𝑛) with all 𝛼𝑖 ≥ 0 is in the set Δ𝑑
𝑛 if

∑𝑛
𝑖=1 𝛼𝑖 = 𝑑.

Definition 5 (x𝛼 (Matherne et al., 2022)). We also write, for any 𝛼 ∈ Δ𝑑
𝑛 and

for the 𝑛-dimensional vector x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛), the notation x𝛼 to represent
the monomial

∏𝑛
𝑖=1 𝑥

𝛼𝑖

𝑖
= 𝑥

𝛼1
1 𝑥

𝛼2
2 · · · 𝑥𝛼𝑛

𝑛 .

Definition 6 (Multivariable Factorial (Matherne et al., 2022)). We finally
define 𝛼! =

∏𝑛
𝑖=1 𝛼𝑖 , and 𝑒𝑖 to be 𝑖th standard basis vector, with 1 in the 𝑖th

position and 0 everywhere else.

We now introduce the idea of multivariable log-concavity.

Definition 7 (Multivariable Log-Concavity (Matherne et al., 2022)). We
consider a polynomial 𝑓 =

∑
𝛼∈Δ𝑑

𝑛
𝑐𝛼x𝛼, with each 𝑐𝛼 some non-negative

integer. We understand this to possess multivariable log-concavity when

𝑐2
𝛼 ≥ 𝑐𝛼+𝑒𝑖−𝑒 𝑗 𝑐𝛼+𝑒 𝑗−𝑒𝑖

for all 𝑖 , 𝑗 ∈ {1, · · · 𝑛} and 𝛼 ∈ Δ𝑑
𝑛 .

We can think of this informally as being indicative of log-concavity "in all
directions," as if we fix 𝑖 and 𝑗, this becomes a similar idea to log concavity
in one direction.

Remark. Note that this is generally true when

(𝛼!)2𝑐2
𝛼 ≥ (𝛼 + 𝑒𝑖 − 𝑒 𝑗)!(𝛼 + 𝑒 𝑗 − 𝑒𝑖)! · 𝑐𝛼+𝑒𝑖−𝑒 𝑗 𝑐𝛼+𝑒 𝑗−𝑒𝑖 ,

again, for all 𝑖 , 𝑗 ∈ {1, · · · 𝑛} and 𝛼 ∈ Δ𝑑
𝑛 . This mirrors, in some sense, the

same idea as that of ultra log-concavity. In fact, one can prove that this
implies 𝑐2

𝛼 ≥ 𝑐𝛼+𝑒𝑖−𝑒 𝑗 𝑐𝛼+𝑒 𝑗−𝑒𝑖 (Matherne et al., 2022)).

We now move on to describing the central objects of this paper.



Chapter 3

A First Pass at Defining
Lorentzian Polynomials

In this section, we take a first look at Lorentzian polynomials, defining them
recursively as Brändén and Huh do in their paper. We also introduce a
couple of clarifying examples.

In 2019, mathematicians Petter Brändén and June Huh wrote a paper
entitled "Lorentzian Polynomials" (Brändén and Huh, 2020). This paper
caused a lot of buzz within the mathematics community, as people were
fascinated by how this class of polynomials could be used to establish log-
concavity for various combinatorial objects. June Huh even won both a Fields
medal and a MacArthur Genius Grant, in part, for his work surrounding
these mathematical structures. In short, these Lorentzian polynomials
happen to have had a clear impact on mathematics, so it is important to be
able to understand them.

So how do we define Lorentzian polynomials? To do so, we use the same
recursive formulation laid out by Brändén and Huh in their original paper.

We first start by laying out some notation.

Definition 8 (𝐻𝑑
𝑛 , (Brändén and Huh, 2020)). For nonnegative integers 𝑛

and 𝑑, we write 𝐻𝑑
𝑛 as the set of degree 𝑑 homogenous polynomials in

ℝ[𝑥1 , · · · , 𝑥𝑛].

Definition 9 (𝑃𝑑
𝑛 , (Brändén and Huh, 2020)). We additionally denote by 𝑃𝑑

𝑛

the subset of 𝐻𝑑
𝑛 containing polynomials with all positive coefficients.

Let us show a quick example.
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Example 5 (Polynomial in 𝑃𝑑
𝑛). We see that

6𝑥3
1 + 8𝑥2

1𝑥2 + 3𝑥1𝑥
2
2 + 𝑥3

2 ∈ 𝑃3
2 .

Remark. We can define a natural topology on 𝐻𝑑
𝑛 for any fixed 𝑛, 𝑑 ∈ ℤ≥0

by using the Euclidean norm on the coefficients considered as a vector.

We now introduce the Hessian.

Definition 10 (Hessian (Brändén and Huh, 2020)). The Hessian of any
function 𝑓 ∈ ℝ[𝑥1 , · · · , 𝑥𝑛] is the symmetric matrix

ℋ 𝑓 =

[
𝜕𝑖𝜕𝑗 𝑓

]𝑛
𝑖,𝑗=1

,

where 𝜕𝑖 represents the derivative 𝜕
𝜕𝑥𝑖

.

We provide an example below.

Example 6. The Hessian of the polynomial 6𝑥2
1 + 8𝑥1𝑥2 + 3𝑥2

2 is
[
12 8
8 6

]
.

Remark. We used a polynomial of degree 2 in our above example, as this
will always give us a matrix with no indeterminates. This is the type of
Hessian we eventually plan on calculating most often.

Now, we delve into Lorentzian polynomials themselves, which are
defined recursively.

Definition 11 ((Strictly) Lorentzian Polynomials (Brändén and Huh, 2020)).
Let us firstly define the set of strictly Lorentzian polynomials 𝐿̊𝑑

𝑛 . We set
𝐿̊0
𝑛 = 𝑃0

𝑛 and 𝐿̊1
𝑛 = 𝑃1

𝑛 . We also set

𝐿̊2
𝑛 =

{
𝑓 ∈ 𝑃2

𝑛 | ℋ 𝑓 is invertible and has exactly one positive eigenvalue
}
.

And finally, for 𝑑 > 2, we write

𝐿̊𝑑
𝑛 =

{
𝑓 ∈ 𝑃𝑑

𝑛 | 𝜕𝑖 𝑓 ∈ 𝐿̊𝑑−1
𝑛 for all 𝑖 ∈ {1, 2, . . . , 𝑛}

}
.

These polynomials are strictly Lorentzian.
We then consider the closure of a set of strictly Lorentzian polynomials

under the topology discussed earlier. These are precisely the set of Lorentzian
polynomials 𝐿𝑑

𝑛 .
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It may help to have some examples to clarify these definitions. Let us
firstly show a strictly Lorentzian polynomial, then some examples where
it is not the case that a polynomial is strictly Lorentzian, even though they
are within 𝑃𝑑

𝑛 . Showing that a polynomial is Lorentzian but not strictly
Lorentzian is somewhat unclear at the moment, and as such, we will leave it
for a future chapter.

Example 7 (Polynomial in 𝑃𝑑
𝑛). We see that 6𝑥2

1 + 8𝑥1𝑥2 + 𝑥2
2 ∈ 𝑃2

2 is a strictly
Lorentzian polynomial. It is of degree 2, and as such, we need only examine
its Hessian. We see that said matrix is[

12 8
8 2

]
.

It has a determinant of −40, and is thus invertible. Additionally, its eigen-
values are 7 ±

√
89, meaning that it has exactly one positive eigenvalue. As

such, it is a Lorentzian polynomial by Definition 11.

Example 8 (Non-Strictly Lorentzian Polynomial: Eigenvalues). The polyno-
mial 6𝑥2

1 + 2𝑥1𝑥2 + 8𝑥2
2 ∈ 𝑃2

2 is not Lorentzian; to see this, simply consider its

Hessian,
[
12 2
2 18

]
. A quick calculation will show that it has eigenvalues of

2(7 +
√

2) and 2(7 −
√

2), both of which are positive. Thus, it has more than
one positive eigenvalue, and therefore is not Lorentzian.

Example 9 (Non-Strictly Lorentzian Polynomial: Invertibility). Consider the
polynomial 𝑥3

1 + 𝑥3
2. We note that its partials with respect to both variables

are 3𝑥2
1 and 3𝑥2

2, respectively. Note that the Hessian of both of these terms[
6 0
0 0

]
. and

[
0 0
0 6

]
, respectively, each of which have exactly one positive

eigenvalue. However, these matrices are not invertible, and as such, this is
not a Lorentzian polynomial.

It may seem a bit unclear as to why Lorentzian polynomials are related
to unimodality and log concavity at all. However, an interesting fact can
help us further elucidate this.

Theorem 6 (Generalised Bivariate Polynomial (Brändén and Huh, 2020)).
Consider the generalised bivariate polynomial

𝑓 (𝑥1 , 𝑥2) =
𝑛∑

𝑘=0
𝑎𝑘𝑥

𝑘
1𝑥

𝑛−𝑘
2 .
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with positive coefficients, that is, such that 𝑓 (𝑥1 , 𝑥2) ∈ 𝑃𝑛
2 . In fact, 𝑓 is

Lorentzian if and only if the sequence {𝑎𝑘} satisfies

𝑎2
𝑘(𝑛

𝑘

)2 ≥ 𝑎𝑘−1( 𝑛
𝑘−1

) 𝑎𝑘+1( 𝑛
𝑘+1

) .
This condition is precisely that of ultra-log-concavity! Thus we see that,

in this case, being Lorentzian and satisfying log-concavity are inherently
linked.

We will right now state this without proof, as a proof of this is more clear
using a definition we introduce in the next chapter.

Now, although the recursive definition is fundamental to our under-
standing, it is not always the most useful. As with any recursive definition,
as we get in some sense larger (in this case as our degree increases), the
recursive definition becomes somewhat unwieldy. As such, we may wish to
introduce an equivalent definition.



Chapter 4

M-Convexity Characterization
of Lorentzian Polynomials

In this section, we introduce an equivalent definition of Lorentzian polyno-
mials.

We firstly recall that it would be quite time-consuming to check that a
polynomial is Lorentzian using the recursive definition each time. However,
there is indeed a way to understand if a polynomial is Lorentzian without
actually referring to the recursive definition. To understand this, we need to
firstly understand two other definitions.

Definition 12 (Support (Brändén, 2020)). For a homogenous multivariable
polynomial 𝑓 =

∑
𝛼∈Δ𝑑

𝑛
𝑐𝛼x𝛼, we define the support of such a polynomial as

supp( 𝑓 ) = {𝛼 ∈ Δ𝑑
𝑛 such that 𝑐𝛼 ≠ 0}.

Informally, we can understand this as the vector coefficients such that the
term in the polynomial is non-zero. While this definition can be generalised
to non-homogenous polynomials, we will be using it in relation to those that
are homogenous, and as such, will keep the definition specific as of right
now.

Definition 13 (𝑀-convexity (Brändén, 2020)). Consider a collection of vectors
𝐽 ⊆ ℤ𝑛

≥0. We call such a collection 𝑀-convex if, for any two vectors 𝛼, 𝛽 ∈ 𝐽

such that 𝛼 = (𝛼1 , 𝛼2 , · · · , 𝛼𝑛) and 𝛽 = (𝛽1 , 𝛽2 , · · · , 𝛽𝑛), if for some 𝑖 ∈
{1, 2, · · · , 𝑛}, 𝛼𝑖 > 𝛽𝑖 , then it is the case that there is some 𝑗 ∈ {1, 2, · · · , 𝑛}
such that 𝛼 𝑗 < 𝛽 𝑗 and 𝛼 − 𝑒𝑖 + 𝑒 𝑗 ∈ 𝐽.

Let us examine what sort of collections are 𝑀 convex.
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Example 10 (𝑀-convex and non-𝑀-convex sets (Brändén, 2020)). Con-
sider the collection {(0, 0), (−1, 1), (−2, 2)}. One can check, through pair-
wise analysis, that indeed this set is 𝑀-convex. However, the similar set
{(0, 0), (−2, 2)} is not 𝑀-convex, as, if we take 𝛼 = (0, 0) and 𝛽 = (−2, 2), and
𝛼1 > 𝛽1 and there exists a 𝑗, namely, 𝑗 = 2, such that 𝛼 𝑗 < 𝛽 𝑗 , the element
𝛼 − (1, 0) + (0, 1) = (−1, 1) is not in our original set.

Example 11 (A Useful 𝑀-convex Set (Brändén, 2020)). We firstly define an
operation on elements 𝛼 ∈ ℤ≥0

𝑛 , that is, vectors with integer components
Consider the set Δ𝑑

𝑛 ⊆ ℤ≥0
𝑛 , which sometimes referred to as the 𝑑-th discrete

simplex. We define elements of Δ𝑑
𝑛 as all 𝛼 ∈ ℤ≥0

𝑛 such that |𝛼 |1 = 𝑑.

Remark. It is the case that the 𝑀 in 𝑀-convexity is related to matroids, a
type of well-studied algebraic object. We will discuss these objects in the
next chapter.

We can now move on to our equivalent characterisation of Lorentzian
polynomials.

Theorem 7 (An Equivalent Characterisation of Lorentzian Polynomials
(Brändén and Huh, 2020)). A polynomial in𝐻𝑑

𝑛 with non-negative coefficients
is Lorentzian if and only if

1. Its support is 𝑀-convex.

2. The Hessian of 𝜕𝑖1𝜕𝑖2 . . . 𝜕𝑖𝑑−2 𝑓 has at most one positive eigenvalue for
all 1 ≤ 𝑖1 , 𝑖2 , . . . , 𝑖𝑑−2 ≤ 𝑛.

The proof of this theorem is difficult and involves mathematics outside
of the scope of this thesis. As such, we will not be proving this statement.
However, we can perhaps better understand how we utilise it in order to
check if a polynomial is Lorentzian.

In using this characterisation to check if a polynomial is Lorentzian, we
firstly find that the coefficients of our multivariable objects understood as
vectors form a collection that is 𝑀-convex, and then show that, no matter how
we "reduce" our original vector down to a quadratic, we still get a Hessian
with at most one positive eigenvalue. This is a relatively straightforward
process, and as such, is the one we tend to use when deciding whether a
polynomial is Lorentzian. It may retain a slight bit of that recursive nature,
in that we need to check all of the partials given each pair of indeterminates,
but that requires analysing only

( 𝑛
𝑑−2

)
Hessians, as opposed to 𝑛! Hessians,

and so is broadly much more scalable than using the prior characterisation.
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Let us maybe find a way to understand this idea utilising some good
examples.

Example 12 (Lorentzian Polynomial). We recall the polynomial 6𝑥2
1 +8𝑥1𝑥2+

𝑥2
2 ∈ 𝑃2

2 from Example 7 is Lorentzian. Let’s see how we can prove this
using Theorem 7 instead. We note that the support of this polynomial,
{(2, 0), (1, 1), (0, 2)}, forms an 𝑀-convex set. Additionally, we’ve seen already
that the Hessian of this polynomial,[

12 8
8 2

]
,

has eigenvalues of 7±
√

89, meaning that it has at most one positive eigenvalue.
As such, it can also be seen to be Lorentzian through this method.

Example 13 (Polynomial that is M-Convex but fails Hessian Test (Matherne
et al., 2022)). Consider the polynomial

𝑓 (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) =
∑

{𝑖 , 𝑗 ,𝑘,𝑙}⊂{1,2,3,4,5}
24𝑥𝑖𝑥 𝑗𝑥𝑘𝑥𝑙+∑

{𝑖 , 𝑗 ,𝑘}⊂{1,2,3,4,5}
4𝑥2

𝑖 𝑥 𝑗𝑥𝑘 + 4𝑥𝑖𝑥2
𝑗 𝑥𝑘 + 4𝑥𝑖𝑥 𝑗𝑥2

𝑘
+

∑
{𝑖 , 𝑗}⊂{1,2,3,4,5}

2𝑥2
𝑖 𝑥

2
𝑗 .

It can be shown that the support of this polynomial is 𝑀-convex. However,
if we examine the particular Hessian 𝜕1𝜕2 𝑓 (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5), we can see that
it equals 

0 8 8 8 8
8 0 8 8 8
8 8 8 24 24
8 8 24 8 24
8 8 24 24 8


,

which has eigenvalues of {8(4 +
√

15), 8(4 −
√

15),−8,−16}. The first two of
these are positive, and as such, this is not a Lorentzian polynomial.

Example 14 (Polynomial that is Lorentzian but not Strictly Lorentzian).
Consider the polynomial 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4. We firstly see that
its Hessian is 

0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0


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Note that this matrix is not invertible, as its determinant is 0. As such, we
cannot say that it is strictly Lorentzian using the recursive Definition 11.
However, we see that its support,

{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)},

is 𝑀-convex, and the eigenvalues of the Hessian are{
1
2

(
1 +

√
17

)
,
1
2

(
1 −

√
17

)
,−1, 0

}
,

only the first of which is positive. As such, it has at most one positive
eigenvalue and can be seen to be Lorentzian by Theorem 7.

As such, we see that, often, it is more clear to prove that a polynomial
is Lorentzian using this alternate characterisation, rather than using the
recursive definition.

Remark. Keep an eye out for a polynomial much like this one in the next
section of our paper.

With this new characterisation in our back pocket, let us now prove
Theorem ?? from the prior chapter.

Proof. We wish to show that the generalised bivariate polynomial

𝑓 (𝑥1 , 𝑥2) =
𝑛∑

𝑘=0
𝑎𝑘𝑥

𝑘
1𝑥

𝑛−𝑘
2 .

with positive coefficients is Lorentzian if and only if the sequence {𝑎𝑘}
satisfies

𝑎2
𝑘(𝑛

𝑘

)2 ≥ 𝑎𝑘−1( 𝑛
𝑘−1

) 𝑎𝑘+1( 𝑛
𝑘+1

) .
We note firstly that the support of this polynomial is always 𝑀-convex.

Note that this polynomial’s support takes the form

supp( 𝑓 ) = {(0, 𝑛), (1, 𝑛 − 1), · · · , (𝑛 − 1, 1), (𝑛, 0)}.

We now need show that this set satisfies Definition 13. We note that it must,
as for any two distinct vectors 𝛼, 𝛽 ∈ supp( 𝑓 ) such that 𝛼 = (𝛼1 , 𝛼2) and
𝛽 = (𝛽1 , 𝛽2), either 𝛼1 > 𝛽1 and 𝛼2 < 𝛽2 or 𝛼2 > 𝛽2 and 𝛼1 < 𝛽1. As such, we
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know that if there is some 𝑖 such that 𝛼𝑖 > 𝛽𝑖 , then there exists some 𝑗 such
that 𝛼 𝑗 < 𝛽 𝑗 ; since there are only two variables in each vector, it must be the
other. Additionally, note that if 𝛼𝑖 > 𝛽𝑖 then 𝛼𝑖 > 0, meaning that 𝛼 𝑗 < 𝑛.
As such, the vector (𝛼𝑖 − 1, 𝛼 𝑗 + 1) ∈ supp( 𝑓 ), meaning that, indeed, this set
is 𝑀-convex.

We now aim to prove our main result.
Firstly, let us show that, if 𝑓 (𝑥1 , 𝑥2) satisfies the second condition of

Theorem 7, and is thus Lorentzian, then the sequence {𝑎𝑘} satisfies ultra
log-concavity. Note that, for any sequence of partial derivatives, we will
need to take 𝑞 − 1 partials of 𝑥2, with 1 < 𝑞 < 𝑛 − 1 (we choose this in order
to make the labelling clearer). The polynomial we will be taking the Hessian
of will thus be of the form

(𝑞 − 1)!(𝑛 − (𝑞 − 1))!
2! 𝑎𝑞−1𝑥

2
1 +

𝑞!(𝑛 − 𝑞)!
1! · 1! 𝑎𝑞𝑥1𝑥2 +

(𝑞 + 1)!(𝑛 − (𝑞 + 1))!
2! 𝑎𝑞+1𝑥

2
2 .

This can be rewritten as

𝑛!
2

(
𝑎𝑞−1( 𝑛
𝑞−1

) 𝑥2
1 +

2𝑎𝑞(𝑛
𝑞

) 𝑥1𝑥2 +
𝑎𝑞+1( 𝑛
𝑞+1

) 𝑥2
2

)
.

Note that the hessian of this polynomial is

ℋ 𝑓 =


𝑛! 𝑎𝑞−1

( 𝑛
𝑞−1)

𝑛! 𝑎𝑞

(𝑛𝑞)

𝑛! 𝑎𝑞

(𝑛𝑞)
𝑛! 𝑎𝑞+1

( 𝑛
𝑞+1)

 ,
which has the same eigenvalues as the matrix

1
𝑛!ℋ 𝑓 =


𝑎𝑞−1

( 𝑛
𝑞−1)

𝑎𝑞

(𝑛𝑞)
𝑎𝑞

(𝑛𝑞)
𝑎𝑞+1

( 𝑛
𝑞+1)

 .
We recall that this needs to have exactly one positive eigenvalue. We also
remember that the determinant of a matrix is the product of its eigenvalues.
As such, if there is exactly one positive eigenvalue det( 1

𝑛!ℋ 𝑓 ) ≤ 0, and as
such,

𝑎𝑞−1( 𝑛
𝑞−1

) 𝑎𝑞+1( 𝑛
𝑞+1

) − 𝑎2
𝑞−1(𝑛
𝑞

)2 ≤ 0.
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This can more simply be expressed as

𝑎2
𝑞−1(𝑛
𝑞

)2 ≥
𝑎𝑞−1( 𝑛
𝑞−1

) 𝑎𝑞+1( 𝑛
𝑞+1

) ,
which is precisely ultra-log concavity! As such, this direction is proven.

The backwards part of this proof left as an exercise to the reader, but is
relatively similar to the forwards version of it. □



Chapter 5

Matroids and Their Relevance

In this section, we introduce the algebraic objects known as matroids, which
will help us broadly understand our prior equivalent characterisation of
Lorentzian polynomials in Theorem 7.

Firstly, I want to introduce the concept of matroids. Broadly, matroids
are a way to formalise the idea of independence, as usually introduced in
linear algebra, to other structures. It is perhaps useful to firstly introduce a
motivating example before introducing formal definitions.

Example 15 (The Columns of a Matrix can form a Matroid). Consider the
columns of the following matrix considered over the field ℝ:

𝑀 =

v1 v2 v3 v4[ ]
1 0 1 2
0 1 1 2

We could write the power set of these columns, that is, all possible subsets
of the set of all columns 𝐸 = {v1 , v2 , v3 , v4}, as

2𝐸 = {∅, {v1}, {v2}, {v3}, {v4}, {v1 , v2}, {v1 , v3}, · · · , {v2 , v3 , v4}, {v1 , v2 , v3 , v4}}}.

For ease of notation, we will represent a set as a list of its elements, that is,
we will write v1v3 to represent {v1 , v3}.
Note that, when considered as vectors, the independent sets of the columns
of this matrix are

ℐ = {∅, v1 , v2 , v3 , v4 , v1v2 , v1v3 , v1v4 , v2v3 , v2v4}.
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Note, too, that the maximal independent sets, or bases, are

ℬ = {v1v2 , v1v3 , v1v4 , v2v3 , v2v4}.

Also note that the bases all span the space generated by the columns of 𝑀.

There are some interesting properties to note about ℐ and ℬ. These are
what will define for us matroids.

Definition 14 (Matroids (Independent Sets Definition)(Alderete 2021, Reiner
2005)). A matroid ℳ is an ordered pair (𝐸,ℐ), with 𝐸 a finite set (also
called the ground set) and ℐ ⊆ 2𝐸 a collection of subsets satisfying the the
following three properties:

I1) ∅ ∈ ℐ

I2) 𝐼1 ∈ ℐ and 𝐼2 ⊆ 𝐼1 implies 𝐼2 ∈ ℐ

I3) 𝐼1 , 𝐼2 ∈ ℐ and |𝐼1 | < |𝐼2 | implies there exists 𝑥 ∈ 𝐼2 − 𝐼1 such that
𝐼1 ∪ 𝑥 ∈ ℐ. This is sometimes called the exchange axiom.

In this case, we call ℐ the collection of independent sets of ℳ.

A fun exercise is to convince oneself that this property holds for Example
15. We can also define matroids in the following manner.

Definition 15 (Matroids (Bases Definition) (Reiner, 2005)). A matroid ℳ is
an ordered pair (𝐸,ℬ), with 𝐸 a finite set and ℬ ⊆ 2𝐸 a collection of subsets
satisfying the the following two properties:

B1) ℬ ≠ ∅.

B2) Given 𝐵1 , 𝐵2 ∈ ℬ and 𝑥 ∈ 𝐵1 − 𝐵2, there exists 𝑦 ∈ 𝐵2 − 𝐵1 such that

(𝐵1 − {𝑥}) ∪ {𝑦} ∈ ℬ.

This is sometimes called the exchange axiom for bases.

In this case, we call ℬ the collection of bases of ℳ.

Note that this definition implies that all sets in ℬ are of the same size.
While we see that the columns of a matrix can form an underlying set for

a matroid, we can also formulate other examples.
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Example 16 (A Set of Vectors in a Vector Space Can Form a Matroid).
Consider the set of standard basis vectors 𝐸 in ℝ𝑛 , and consider all subsets
𝐼 such that, for all 𝐼 ∈ 2𝐸, all elements span a vector space of dimension
𝑚 ≤ 𝑛 (with 𝑚, 𝑛 ∈ ℤ+). These can be used to form a matroid, where ℐ is
the collection of all subsets of at most 𝑚 vectors in 𝐸 and ℬ is the collection
of all bases for 𝑚-dimensional vector spaces.

Example 17 (A Connected Graph Can Form a Matroid (Reiner, 2005)).
Consider a connected graph 𝐺 = (𝑉, 𝐸), with 𝑉 representing its vertices and
𝐸 its edges. Now consider all subsets 𝐼 ∈ 2𝐸 such that the edges 𝐼 do not
form cycles (for those more familiar with graph theory, this is a forest of
edges). These can be used to form a matroid, where ℐ is the collection of all
subsets of 𝐸 such that no edges form a cycle in 𝐸 and ℬ is the collection of
all spanning trees of 𝐺.

At this point, matroids may seem an interesting diversion, with their
relation to Lorentzian polynomials being slightly opaque. Let us clear this
up by noting that, in some cases, there is an equivalence between the basis
of a matroid and 𝑀-convexity.

Theorem 8 (Matroids and 𝑀-convexity (Brändén, 2020)). Let ℬ be the set of
all bases of a matroid with ground set 𝐸. Note that 𝐵 ∈ ℬ can be associated
to an 𝑀-convex set in {0, 1} |𝐸 | (that is, an set of ordered strings of 0’s and
1’s) whose sum is |𝐵|. Then the polynomial 𝑓ℬ ∈ ℝ[𝑥𝑖 : 𝑖 ∈ 𝐸] given by

𝑓ℬ =
∑
𝐵∈ℬ

∏
𝑖∈𝐵

𝑥𝑖

is Lorentzian.

An example of an application of this result can be seen below.

Example 18 (Extension of Example 15). Recall that, in Example 15, our
ground set 𝐸 was formed by the columns of the matrix

𝑀 =

v1 v2 v3 v4[ ]
1 0 1 2
0 1 1 2

considered over ℝ. We also recall the basis set of the matroid was

ℬ = {v1v2 , v1v3 , v1v4 , v2v3 , v2v4}.
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Thus, Theorem 8 states that the polynomial

𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4

is Lorentzian.

Let us show a more concrete example of this using a larger matroid.

Example 19 (Example Using a Matroid of Rank 3). Consider a matroid (𝐸,ℬ)
whose ground set 𝐸 is produced by the columns of the following matrix:

𝑀′ =

v1 v2 v3 v4[ ]1 0 0 1
0 1 0 1
0 0 1 0

over ℝ. Note that
ℬ = {v1v2v3 , v1v3v4 , v2v3v4}.

Thus, the polynomial of the form

𝑝(𝑥) = 𝑥1𝑥2𝑥3 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4

is Lorentzian. We can also convince ourselves of this using Theorem 7.
Note that the support of this polynomial,

{(1, 1, 1, 0), (1, 0, 1, 1), (0, 1, 1, 1)}

is indeed an 𝑀-convex set; we see that, pairwise, the exchange axiom holds.
We can then investigate the Hessians of this polynomial. Note that, since

𝜕1𝑝(𝑥) = 𝑥2𝑥3 + 𝑥3𝑥4 ,

we can write that the Hessian of 𝜕1𝑝(𝑥) takes the form
0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0

 ,
which, when considering multiplicties, has eigenvalues of {

√
2, 0, 0,−

√
2},

exactly one of which is positive. Note that 𝜕2𝑝(𝑥) and 𝜕4𝑝(𝑥) are the same
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polynomial, up to a change of labelling, so they too will have this property.
We lastly note that

𝜕3 𝑝(𝑥) = 𝑥1𝑥2 + 𝑥1𝑥4 + 𝑥2𝑥4 ,

and as such, we can write that the Hessian of 𝜕3 𝑝(𝑥) takes the form
0 1 0 1
1 0 0 1
0 0 0 0
1 1 0 0

 .
With respect to multiplicities, we note that this polynomial has eigen-

values of {2, 0,−1,−1}, exactly one of which is positive. As such, this
polynomial is indeed Lorentzian.

This is a really cool result! In particular, this result is useful in the proof
of a particular result in combinatorics known as Mason’s conjecture.

Mason’s conjecture comes in three forms, each stronger than the last. We
will state these three theorems below, then sketch out how Theorem 8 can
be used to help prove this fact.

Theorem 9 (Mason’s Conjecture (Anari et al., 2018)). For a matroid 𝑀 =

(𝐸,ℐ) such that |𝐸 | = 𝑛 and with ℐ𝑘 independent sets of size 𝑘, the following
is true:

i) ℐ2
𝑘
≥ ℐ𝑘−1 · ℐ𝑘+1. Note that this is the condition for log-concavity, as

stated in Definition 2.

ii) ℐ2
𝑘
≥

(
1 + 1

𝑘

)
· ℐ𝑘−1 · ℐ𝑘+1.

iii) ℐ2
𝑘
≥

(
1 + 1

𝑘

)
·
(
1 + 1

𝑛−𝑘
)
· ℐ𝑘−1 · ℐ𝑘+1. Note that, by multiplying both

sides by 1
(𝑛𝑘)2 , we obtain the statement ℐ2

𝑘

(𝑛𝑘)2 ≥ ℐ𝑘−1
( 𝑛
𝑘−1)

· ℐ𝑘+1
( 𝑛
𝑘+1)

, which is the

condition for ultra log-concavity, as stated in Definition 3.

These are all written in an increasing order of strength, that is, the second
implies the first, and the third implies both the second and first. While first
conjectured in the 1970’s, even the weakest formulation of this theorem had
not yet been proven until 2018 using techniques in Hodge theory, a method
of analysing surfaces that is outside the scope of this paper (Adiprasito et al.,
2018). The work that had been made in proving the strongest version of
this theorem had been very particular and seemed to only confirm it for
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matroids of size 𝑛 ≤ 11 or 𝑘 ≤ 5 (Kahn and Neiman, 2011), both of which
are quite stringent conditions.

However, it is the case that, by showing polynomials generated by
matroids are in fact Lorentzian, the third and strongest form of this conjecture
can be proven quite effectively. We will not prove this thoroughly in this
paper, but will give a sketch of how it could be done, and allow the reader
to fill in the details.
Sketch of Proof. (Anari et al., 2018)

Given a matroid ℳ, we define 𝑟 as the rank of ℳ and 𝑛 the size of its
ground set. We order the ground set 𝐸 in some arbitrary manner. In doing
this, we can associate each element of the ground set to a variable 𝑥𝑖 , with
1 ≤ 𝑖 ≤ 𝑛, depending on its order. We then construct the set of polynomials

ℐ𝑘(𝑥1 , · · · , 𝑥𝑛) =
∑
𝐼∈ℐ
|𝐼 |=𝑘

∏
𝑥𝑖∈𝐼

𝑥𝑖 .

We note that, for this polynomial, each summand represents an element 𝐼 of
ℐ of size 𝑘, with a variable being multiplied in the summand if and only if
its associated ground set element is an element of 𝐼. Thus, it serves as a way
to codify which elements are in each subset of the independent sets of the
matroids. We then construct the polynomial

ℐℳ(𝑥1 , · · · , 𝑥𝑛 , 𝑥0) =
𝑟∑

𝑘=0
ℐ𝑘(𝑥1 , · · · , 𝑥𝑛)𝑥𝑟−𝑘0 .

We claim this to be strictly Lorentzian; one can check this by noticing it is
homogenous and that its support must form a ground set, due to statements
I2 and I3 of Definition 14. We can check the Hessian condition by utilising
something called the contraction of a matroid; although this will not be
explained here, a quick idea can be found in the linked paper by Anari et al.,
which points to a more robust explanation in the textbook by Oxley.

By proving this, one can then see that this implies the polynomial

𝑓ℳ(𝑦, 𝑧) =
𝑟∑

𝑘=0
|ℐ𝑘 |𝑦𝑘𝑧𝑟−𝑘

is Lorentzian, as we have simply identified the variable 𝑥1 · · · 𝑥𝑛 with 𝑦 and
the variable 𝑥0 with 𝑧. This is of the form of Theorem 6, and as such, we see
that this sequence is in fact ultra-log concave.
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A Possible Non-Matroidal
Direction

I want to end this brief survey by quickly describing an interesting direction
in which we could apply Lorentzian polynomials not just to matroidal
sequences, but too to log-concave and ultra log-concave sequences that are
non-matroidal.

We define what it means for a polynomial to be denormalized Lorentzian.

Definition 16 (Denormalized Lorentzian Polynomials (Brändén et al., 2022)).
Consider a polynomial 𝑝(x) such that x = (𝑥1 , 𝑥2 , · · · 𝑥𝑛) defined as

𝑝(x) =
∑
𝜇

𝑝𝜇𝑥
𝜇

for some set of elements 𝜇 such that 𝜇. We define its normalisation to be
the polynomial

𝑁[𝑝](x) =
∑
𝜇

𝑝𝜇
𝑥𝜇

𝜇! ,

with the expression 𝜇! defined as in Definition 6. If our original 𝑝(x)
was homogeneous and with positive real coefficients, then, if 𝑁[𝑝](x) is a
Lorentzian polynomial, we say that 𝑝(x) is denormalized Lorentzian.

This definition is interesting, because, it seems that if we can prove a
sequence leads to a denormalised Lorentzian polynomial, it is possible that
it could lead to showing that the original sequence is simply log-concave.
This is of course still quite helpful in showing unimodality, the first concept
introduced in this paper.
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I would recommend checking out the following preprint by Hafner et.
al, which discusses a knot-theoretic object called the Alexander polynomial
(Hafner et al., 2023). One needs not understand knot theory in general or
the Alexander polynomial in particular to appreciate the approach their
proof takes, but hopefully, this provides a good idea of where Lorentzian
polynomials could be applied in a non-matroidal context.
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