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Abstract

Ranking from pairwise comparisons is a particularly rich subset of ranking
problems. In this work, we focus on a family of ranking methods for
pairwise comparisons which encompasses the well-known Massey, Colley,
and Markov methods. We will accomplish two objectives to deepen our
understanding of this family. First, we will consider its network diffusion
interpretation. Second, we will analyze its sensitivity by studying the
“maximal upset” where the direction of an arc between the highest and lowest
ranked alternatives is flipped. Through these analyses, we will build intuition
to answer the question “What are the characteristics of robust ranking
methods?” to ensure fair rankings in a variety of applications, ranging from
choosing political candidates to ranking web pages to comparing sports
teams.
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Preface

How should you read through this work? I recommend starting with Section
1.3 to understand the purpose of this thesis, and skimming the rest of
Chapter 1 to understand the landscape in which this work lies. The next
step depends on the reader’s interest.

1. For the undergraduate reader, you should be familiar with basic ideas
of linear algebra, but not much else is required! If you’re curious about
some fun intuition for a ranking method, you can start by reading
Section 2.5 and Section 3.5. If you’re still interested, you may wish to
return to the rest of Chapter 2 and Chapter 3 to skim for background
information you are unfamiliar with. Along the way, I will also leave
asides to provide background information, which will look like this
green box:

Background Box

Here is some background information relevant to my thesis.

2. For any reader already familiar with background about the Laplacian
and ranking methods, I would recommend starting at Section 4.2
and Section 5.2 for highlights of my main contributions, then reading
deeper into the rest of Chapters 4 and 5 if you are still interested in
learning more.

I will also continue leaving general asides as well in red boxes, which look
like this:

Author’s Note

One helpful tip is to print out Appendix A if you are planning to delve
into Chapters 4 and 5 to reference side-by-side.





Chapter 1

Questions in Ranking

After seeing applications ranging from choosing political candidates to
ranking web pages to comparing sports teams, you have likely grown to
appreciate the power of ranking algorithms. Furthermore, these applications
can all be handled using similar ranking methods, as they use pairwise
comparison data. In general ranking problems, a set of 𝑛 alternatives is
ordered into a single list by importance. Using pairwise orderings adds
complexity to this problem, because there may be contradictory or missing
ordered pairs of alternatives among the

(𝑛
2
)

total pairs.
For this thesis, we will focus on the sensitivity of a family of ranking

methods through the lens of ranking sports teams. However, the results
and structure of our analysis will still provide insight into other critical
applications of ranking. The rest of this thesis is dedicated to answering
two main questions about this ranking family: which ranking methods
in the family outputs are more stable when ranking high variability data,
and which methods are more suitable for partial ranking problems? The
remainder of Chapter 1 will motivate and contextualize these questions,
Chapters 2 and 3 introduce this family of ranking methods under a network
diffusion interpretation, and Chapter 4 and 5 will answer the questions that
we pose. Finally, we summarize and present future directions in Chapter 6.
There are also several appendices for more tangential explanations along
the way, as well as Appendix A, which will provide a useful summary of
the key definitions and examples for easy reference.



2 A Long Time Ago in a Land Far Away: Questions in Ranking

1.1 Motivation

Have you ever wondered things like “If Tomoa Narasaki’s foot hadn’t slipped
during his speed climbing finals in the 2020 Tokyo Summer Olympics, would
he have won the gold medal?1”? If we are not confident in pairwise
comparison data being inputted, we should apply ranking methods that are
more robust and will more fairly determine an overall ranking. Furthermore,
we primarily care about the top three placements in the Olympics, which
means we might want to prioritize a ranking method that will clearly
distinguish the top few athletes from the rest, as opposed to a method that
maximizes the overall spread between ratings. What constitutes a “good” or
a “fair” ranking method, and how can we tell? In this thesis, we will explain
why the Laplacian family of ranking methods introduced by Devlin and
Treloar (2018) yields an answer to these questions, with a parameter that
allows us to maximize the effectiveness of the ranking method by accounting
for questionable pairwise ordering inputs and focusing on higher quality
partial rankings.

In the interest of having concrete examples, we will frame our work
using the analogy of ranking sports teams, but ranking also has a plethora
of other application areas. We can rank anything from sports teams to
web pages, but how do some of these terms line up with a graph, or
with more mathematical definitions for ranking? To answer some of these
questions, we have constructed a “translation table” between applications
beyond sports, alongside how they can be visualized as a graph, and how
more mathematical ranking methods might abstract these terms. We have
given sports, voting, and website recommendations as examples of ranking
applications, but there are still many more, ranging from college applications
to food chains. While reading the remainder of this thesis, you may wish to
substitute analogous terminology from other applications or mathematical
ranking terminology depending on your interests.

In this table, the first two rows focus on setting up a common language
for different settings of ranking problems in graphs. The next two rows
examine two possible perturbations if the data used to rank the alternatives
is changed. The third row, with an edge value change, builds off Chartier
et al. (2011) in examining the sensitivity of rating vectors, and is a primary
focus for this thesis. In the last row, the idea of removing a node in an
election (“candidate elimination”) has been studied in voting theory as the

1Yes, he would have.
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Ranking Translations

Mathematics
of Ranking

Graph Sports Voting Web

Alternatives Nodes Teams Candidates Web pages
Data used
for ranking

Edge values Game scores Voter
choices

External
links

Perturbation Edge value
change

Upset Voter fraud Link spam-
ming

Perturbation Node re-
moval

Team dis-
qualified

Candidate
eliminated

Page deleted

Table 1.1 A translation table between ranking theory and applications. We
consider the graph elements like nodes and edges, and also a few perturbations
that are possible and how they translate into ranking for sports teams, elections,
and Web pages. For the data and both types of perturbations, there are other
possible interpretations, but we have listed some examples to give you an idea.

idea of a spoiler. Even beyond voting theory, removing a node has interesting
connections to other applications. In voting, researchers wonder whether
removing a lower-ranked candidate would cause the winner, or the top 𝑘

candidates, to change. In networks, we might wonder which Internet routers
would most damage the network connectivity, which is connected to the
idea of centrality (Franceschet, 2019).

Furthermore, methods that are originally designed for specific applica-
tions are still highly adaptable. For example, the Massey and Colley methods
can be used for ranking movies and web pages (Chartier et al., 2011). The
Markov method has been used for ranking political candidates and web
pages, but it has also been tailored for ranking species, genes, and social
networks (Chartier et al., 2011). Other ranking methods like the Elo method
for chess tournaments or Analytic Hierarchy Process (AHP) for high-stakes
decision-making are also used to hire job candidates, analyze food chains,
compare colleges, and identify hubs of social networks (Langville and Meyer,
2012).

Besides this table, other terminology used by literature studying the
mathematics of ranking includes the variables 𝑛 and 𝑘. Typically, 𝑛 describes
the number of alternatives (or teams or candidates), and 𝑘 relates to the
partial ranking problem. There, we are primarily concerned with the ranking
of the top 𝑘 alternatives. Perhaps the top 𝑘 alternatives are the teams that
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will make the playoffs or the Web pages that will show up on the first page
of a Google search (because I doubt you always click through until the tenth
page).

1.2 Methodology

How have mathematicians historically addressed and attempted to solve
these problems? Literature about ranking spans a variety of fields, including
social choice theory, voting theory, operations research, applied mathematics,
and machine learning.

We center our research around four categories of research in ranking.
The problems that we introduced in Section 1.1 are related to the first two
categories: the sensitivity of the ranking method (A1) and partial ranking
(A2). The third category (A3) concentrates on desirable properties of ranking
methods that are a promising extension of this thesis. Finally, the fourth
category (A4) is based on the underlying geometry and graph theoretic
interpretations for ranking methods. Our work contributes to (A1) and (A2),
while drawing from fundamental ideas in (A3) and (A4).

First, (A1) is concerned with the sensitivity of ranking methods. In
this context, sensitivity refers to the degree to which the output ranking is
altered when the inputted pairwise comparisons are changed. Especially
when we suspect the data we have might be inaccurate, it is critical to use
robust ranking methods that do not drastically change their output after
a minor adjustment to the input is made. One of the primary works we
build off in this thesis is Chartier et al. (2011), which tests the sensitivity
of the Massey method, the Colley method, and the Markov method. They
conduct perturbation analysis on “the perfect season,” an ideal tournament
structure, and find that the Markov method is less stable than the Massey
and Colley methods. To address the issue of sensitivity, there has also been
research attempting to modify existing ranking methods to be more robust.
For example, Burer (2012) modifies the Colley method and turns it into a
mixed integer nonlinear programming (MINLP) model that is less sensitive
to the win-loss outcomes of inconsequential games.

Next, in (A2), we hone in on the ranking of the top 𝑘 teams, or on the
partial ranking. What exactly is a partial ranking?

Definition 1.1 (Partial Ranking). A partial ranking is a partially known total
ordering of a set of alternatives. A common example is a top-𝑘 list, where the first
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𝑘 alternatives are ranked and the remaining elements are all tied at rank 𝑘 + 1. For
that reason, it can also be called ranking with ties.

When voter preference data is not complete, it is often not possible to
return a strict ordering of the alternatives. Can you imagine if Google asked
everyone to rank every single website on the Internet so they could provide
more reliable search results? Papers like Ailon (2010) work on algorithms
for improving partial rank aggregation. In this thesis, we will be able to
highlight the sensitivity in rankings for the top 𝑘 teams as a consequence of
learning about the sensitivity for the complete 𝑛 team ranking, which allows
us to recommend better ranking methods for partial ranking problems.

In (A3), researchers explore the quality of ranking methods, detailing
properties of fair ranking methods that may be sensible in a variety of
applications. In particular, González-Díaz et al. (2014) lists a plethora of
properties that are beneficial for ranking methods. For example, the idea
of inversion: if the results of a tournament are reversed, then the ranking
should also be reversed. Vaziri et al. (2018) hone in on three specific axioms
that should be critical for fair and comprehensive sports rankings. They
study the Win-Loss method, the Massey method, the Colley method, the
Markov method, and the Elo method. Then, they evaluate these five methods
based on three criteria: opponent strength, incentive to win, and sequence
of matches. Another way to measure the quality of a ranking is by counting
the number of violations, or the number of times a team is ranked lower
than a team it has beaten. Minimum violations ranking methods search for
rankings with the minimum number of violations, such as Chartier et al.
(2010), which applies evolutionary optimization and binary integer linear
program approaches in order to solve for the minimum violation ranking.

One important problem within the topic of ranking quality concerns
fairness. Traditionally, research in ranking focuses on a single optimal
ranking. Anderson et al. (2022) argue that it is important to find multiple
optimal rankings, and that if there are multiple rankings, the most fair one
should be used. In Pitoura et al. (2022) and Kuhlman and Rundensteiner
(2020), a fair ranking is one in which protected groups are ranked similarly to
the group as a whole. However, within the context of sports and this thesis,
we will consider a fair ranking as approximately equivalent to a “good”
ranking.

Several works illustrate the failings of ranking methods. Boudreau et al.
(2018) explains that although not common, the scoring of cross country run-
ning contains social choice violations, and Truchon (2004) similarly studies
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manipulability in figure skating. Stinson and Stinson (2021) and Nguyen
et al. (2022) criticize the rank product aggregate scoring of competitive
climbing in the Tokyo 2020 Olympics. From these works, it is clear that
research on more robust ranking methods is vital.

Finally, we return to (A4), which ties into more theoretical mathematics
and presents new interpretations for ranking methods. This category seeks to
provide tools and frameworks to better explain the results of the other three
fields. For example, Saari (2011) describes the geometry underlying ranking,
and introduces the Saari triangle for visualizing results of elections with
three candidates. Outside of voting theory, Jiang et al. (2010) examines how
HodgeRank, a ranking technique, can be used for incomplete and imbalanced
data and integrates ideas from graph theory. This work is extended and
applied to sports by Sizemore (2013). Moreover, many analyses have been
made of graph theoretic interpretations of ranking methods. Besides Chartier
et al. (2011), the other paper that is a cornerstone of this thesis is Devlin and
Treloar (2018). In this thesis, a network diffusion interpretation of ranking is
presented that allows us to unify the Massey, Colley, and Markov methods
under a single family from Devlin and Treloar (2018), and much of our work
leans on graph and network theory.

In summary, we have organized the literature about ranking problems
in Section 1.1 into four categories. The two pillars to which we contribute
are (A1) on the sensitivity of ranking methods and (A2) on partial ranking.
To answer questions from these two categories, we will rely on work from
(A3) on properties of fair ranking methods and (A4) on graph theoretic
interpretations of ranking methods.

1.3 Research Objectives

In this thesis, we are curious about the sensitivity of a family of ranking
methods that include the Massey method, the Colley method, and the
Markov method. There are two main goals:

(G1) analyze the sensitivity of this family of ranking methods and their
implications on (A1) and (A2) in light of (A3), and

(G2) study the connections to (A4) in order to gain intuition about this
family and generalize our results to any application area.

These objectives extend the work of Chartier et al. (2011), which examines
how rank-one updates (“upsets,” in the context of sports) to the perfect season
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affect the Massey, Colley, and Markov rankings, and Devlin and Treloar
(2018), which presents a generalized family of methods that includes the
Massey, Colley, and Markov methods. From those results, we wish to create
a framework to analyze the sensitivity of any method in this parametrized
family, initially just for rank-one updates to the perfect season (involving
two teams). Furthermore, we will connect this analysis on sensitivity to
the network diffusion interpretation of this family from Devlin and Treloar
(2018).

Due to interdisciplinary interest from researchers within computational
social choice, voting theory, operations research, applied mathematics,
and machine learning, the sensitivity of ranking methods is an important
question and has been studied for many commonly used methods (Chartier
et al., 2011; Burer, 2012; Morin et al., 2018). Through the results of this work,
researchers will be better able to characterize the robustness of ranking
methods. Moreover, they will be able to select a parameter corresponding to
a method within the family based on sensitivity properties that they desire
in their work. Finally, while this thesis describes the ranking problem for
sports ranking applications, this is only for the sake of concreteness; in fact,
all this work applies equally to any other application aggregating pairwise
comparisons as we saw in Table 1.1.





Chapter 2

A Laplacian Family of Ranking
Methods

In this chapter, we introduce the Laplacian family of ranking methods from
Devlin and Treloar (2018). Before doing so, we highlight the three well-
studied methods that lie within the family: the Massey, Colley, and Markov
methods. These three linear algebraic methods perform well: the Massey
and Colley methods were used by the NCAA Football Bowl Subdivision to
calculate the Bowl Championship Series rankings, and the Markov method
is the foundation for PageRank, a popular algorithm for ranking websites.

2.1 Rankings and Ratings

Before beginning, we will define a few terms and clarify some notation.

Definition 2.1. A ranking is an ordered list of alternatives or choices.

We can write the ranking from Example 2.1 of

1. AA
2. BB
3. CC

as 𝐴𝐴 ≻ 𝐵𝐵 ≻ 𝐶𝐶 using the succeeds symbol, representing a preference
relation.

Definition 2.2. A rating is a list of numerical scores for each alternative.

Ratings can be sorted in increasing or decreasing order to yield rankings.
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One challenge that ranking methods face is how to resolve paradoxes
that may arise. We can understand this idea through a few examples.

Example 2.1. Imagine we have three teams that play each other exactly once. The
Academic Alpinists (AA) beat the Boba Bears (BB), and the Boba Bears beat the
Coffee Crew (CC). We might expect the teams to be ranked as follows:

1. AA
2. BB
3. CC

But in the next game, the Coffee Crew beats the Academic Alpinists!

How should a ranking of the three teams reflect this upset? Furthermore,
we can generalize our notion of an upset to a paradox. To see how we could
translate Example 2.1 to another context, consider Example 2.2.

Example 2.2. Now, imagine that we are trying to elect the next leader for the
Upbeat Storks of Adventure. Three voters give the following votes:

1. AA
2. BB
3. CC

1. BB
2. CC
3. AA

1. CC
2. AA
3. BB

There is a voting paradox here with no clear winner, which parallels
the idea of upsets within sports seasons. Furthermore, these questions also
emerge in other applications of ranking problems.

It turns out that at least for voting, finding a perfect ranking is impossible!
A famous result in social choice theory from Arrow (1950) is that no ranked
voting electoral system with at least three alternatives can meet all of his
criteria. These are unrestricted domain, non-dictatorship, Pareto efficiency,
and independence of irrelevant alternatives.

Theorem 2.1 (Arrow’s Impossibility Theorem). When aggregating individual
voter’s preferences into the group’s preference, it is not possible to satisfy all of the
four criteria:

1. (Universality/Unrestricted Domain) The group’s preference must be complete
and unique (deterministic).

2. (Non-dictatorship) No single voter can determine the group’s preference.

3. (Pareto efficiency) If every voter prefers 𝐴 over 𝐵, then the group prefers 𝐴

over 𝐵.
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4. (Independence of Irrelevant Alternatives) If every voter’s preference between
𝐴 and 𝐵 remains unchanged, then the group’s preference between 𝐴 and 𝐵

will also remain unchanged (even if voters’ preferences between other pairs
like 𝑋 and 𝑍, 𝑌 and 𝑍, or 𝑍 and 𝑊 change).

It is worthwhile to note that not all of Arrow’s criteria are relevant to
every application. With sports, it is easy to see that the various strategies,
strengths, and weaknesses of each team that could explain Example 2.1 also
mean that overall rankings would change if one team were taken out of the
league.

2.2 Massey Method

The Massey method is often used for ranking sports teams, and it finds
the least squares solution based on point differentials for games. It was
developed by Kenneth Massey for his undergraduate thesis at Bluefield
College in 1997 (Massey, 1997). The underlying idea is that the ratings 𝑟𝑖
and 𝑟 𝑗 for teams 𝑖 and 𝑗 respectively can be determined by 𝑟𝑖 − 𝑟 𝑗 = 𝑦, where
𝑦 is the point difference in games between the two teams. To generalize to
rating 𝑛 teams and 𝑚 games, we construct a system of equations using the
vectors of rankings r for all 𝑛 teams and y for all 𝑚 games. Then, Massey’s
method can be represented by the equation

𝑋
𝑚×𝑛

r
𝑛×1

= y
𝑚×1

,

where 𝑋 is a matrix with entries

𝑋𝑘𝑖 =


1 if team 𝑖 won in game 𝑘

−1 if team 𝑖 lost in game 𝑘

0 otherwise

However, this system likely has no solution. Intuitively, we can imagine
that it is hard to find ratings that exactly satisfy 𝑟𝑖 − 𝑟 𝑗 = 𝑦 for all of the games.
From a linear algebra standpoint, there will be many more games played
than teams (𝑚 >> 𝑛), so the system will be overdetermined. To remedy this
issue, we use the method of least squares to find the ratings that most closely
match the point differentials of each game. Hence we multiply both sides by
𝑋⊤ to obtain the normal equations,

𝑋⊤𝑋r = 𝑋⊤y.
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Renaming this equation, we have 𝑀r = p, where 𝑀 = 𝑋⊤𝑋 and p = 𝑋⊤y.
There is still another issue, though. The matrix 𝑀 in this equation is not
full rank, so there are infinitely many solutions. To fix this issue, Massey
replaces the last row of 𝑀 to all ones and the last entry of 𝑝 to be zero, so
that the ratings must sum to zero. With this modification, we finally arrive at
the equation 𝑀r = p, corresponding to the modified 𝑀 matrix and p vector.

Furthermore, to determine 𝑀 and p, we do not need to calculate 𝑋 and
y. Instead, we can define 𝑀 based on the number of games played between
each team, and p based on cumulative point differentials for each team.
Let 𝑡𝑖 be the total number of games played by team 𝑖, and let 𝑛𝑖 𝑗 be the
total number of times team 𝑖 and team 𝑗 face each other. Let 𝑓𝑖 be the total
points scored by (for) team 𝑖 during the season, and let 𝑎𝑖 be the total points
scored against team 𝑖 during the season. In summary, we can write Massey’s
method as

𝑀
𝑛×𝑛

r
𝑛×1

= p
𝑛×1

,

where matrix 𝑀 has entries 𝑀 𝑖 𝑗 =


𝑡𝑖 𝑖 < 𝑛, 𝑖 = 𝑗

−𝑛𝑖 𝑗 𝑖 < 𝑛, 𝑖 ≠ 𝑗

1 𝑖 = 𝑛,

and vector p has entries p𝑖 =

{
𝑓𝑖 − 𝑎𝑖 𝑖 < 𝑛

0 𝑖 = 𝑛.

(2.1)

Then the goal of Massey’s method is to solve for r in Equation 2.1.

2.3 Colley Method

The Colley method is very similar to the Massey method. It is another least
squares problem and was developed by Wesley Colley to rank football teams
(Colley, 2002). At its core, the Colley method is motivated by a modification
of the winning percentage for each team called Laplace’s rule of succession.
With the modification, the rating for team 𝑖 is approximately 𝑟𝑖 =

1+𝑤𝑖

2+𝑡𝑖 , where
𝑤𝑖 is the number of wins and 𝑡𝑖 is the number of total games played by team
𝑖. We say that the rating is approximately based on the modification of the
winning percentage because Colley uses an estimation for 𝑤𝑖 .
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Laplace’s Rule of Succession

Theorem 2.2 (Laplace’s Rule of Succession). Let 𝑠 be the number of suc-
cesses out of 𝑛 trials. Traditionally, the probability of success is determined
by

𝑝 =
𝑠

𝑛
. (2.2)

Laplace’s Rule of Succession suggests that sometimes,

𝑝 =
𝑠 + 1
𝑛 + 2 (2.3)

is a better estimate for the probability of success.

For a small number of trials, using Laplace’s rule can be more accurate.
If there are no successes, Equation 2.2 would suggest there is no
chance of success. Similarly, if there are no failures, Equation 2.2
would suggest there is no chance of failure. On the other hand,
Equation 2.3 maintains a possibility of success or failure in either case.
Similarly, with sports, the basic win-loss method gives a rating by

𝑟𝑖 =
𝑤𝑖

𝑡𝑖
. (2.4)

Equation 2.4 parallels Equation 2.2. To apply the idea of Equation 2.3,
Colley’s method defines

𝑟𝑖 =
𝑤𝑖 + 1
𝑡𝑖 + 2 , (2.5)

so that the rating for teams with only a few games played is more
accurate than in the basic win-loss method. Notice that initially (when
𝑤𝑖 = 𝑡𝑖 = 0), the rating for each team is 1

2 , which only changes after
teams have won or lost games.

From Equation 2.5, we want to rewrite 𝑤𝑖 . We can use a clever trick to
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split 𝑤𝑖 up. We have

𝑤𝑖 =
𝑤𝑖 − 𝑙𝑖

2 + 𝑤𝑖 + 𝑙𝑖

2 (2.6)

=
𝑤𝑖 − 𝑙𝑖

2 + 𝑡𝑖

2 (2.7)

=
𝑤𝑖 − 𝑙𝑖

2 +
𝑡𝑖∑
𝑗=1

1
2 (2.8)

≈ 𝑤𝑖 − 𝑙𝑖

2 +
𝑡𝑖∑
𝑗=1

𝑟 𝑖𝑗 . (2.9)

Why is the approximation in Equation 2.9 valid? Notice that initially, all
teams are ranked at 1

2 , since 𝑤𝑖 = 𝑡𝑖 = 0. Since the rating is “conserved” (if
one team wins, the other team loses), it can be shown that the average rating
for an arbitrary team is 1

2 . Thus, we can say that
∑

𝑖∈𝑇𝐸𝐴𝑀𝑆
1
2 =

∑
𝑖∈𝑇𝐸𝐴𝑀𝑆 𝑟𝑖 .

If we assume that the set of all teams is close enough to the set of all
the opponents one team has played, we can say that

∑𝑡𝑖
𝑗=1

1
2 ≈ ∑𝑡𝑖

𝑗=1 𝑟
𝑖
𝑗

in
Equation 2.9, where 𝑟 𝑖

𝑗
is the rating for the 𝑗th opponent of team 𝑖.

We can now rearrange Equation 2.9 to

(2 + 𝑛𝑖)𝑟𝑖 −
𝑡𝑖∑
𝑗=1

𝑟 𝑖𝑗 = 1 + 𝑤𝑖 − 𝑙𝑖

2 ,

and switch to matrix form by defining 𝐶, the Colley matrix. Hence, the
Colley method can be summarized using the following equations:

𝐶
𝑛×𝑛

r
𝑛×1

= b
𝑛×1

,

where 𝐶𝑖 𝑗 =

{
2 + 𝑛𝑖 𝑖 = 𝑗

−𝑛𝑖 𝑗 𝑖 ≠ 𝑗

and 𝑏𝑖 = 1 + 1
2 (𝑤𝑖 − 𝑙𝑖).

(2.10)

To solve for the ratings, we solve for r in this system of equations. Also
notice that Equation 2.10 is very similar to Equation 2.1! We will discuss the
similarities more in Chapter 3.
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2.4 Markov Method

The Markov method, which is a generalization of PageRank, uses Markov
chains to rank and rate teams. The main idea is that each team will vote
for teams they think are better. The votes can be based on wins as in the
Colley method, point differentials as in the Massey method, or any other
statistics such as yardage information. For simplicity, we will describe the
version of the Markov method that only leverages win-loss data. This data is
encapsulated in the matrix 𝑉 , where 𝑉𝑖 𝑗 = 1 if team 𝑖 lost to team 𝑗. Next, we
create a stochastic matrix 𝑆 by normalizing the rows of 𝑉 and replacing any
rows of 0⊤ with 1

𝑛e⊤. (This solution comes from the dangling node problem
in webpage ranking.) Conceptually, these are equivalent because a row of
zeros means a team is undefeated, so that team votes for all teams equally.

Markov Chains

Definition 2.3. A Markov chain is a stochastic model describing a sequence
of events whose transition probabilities depend only on the current state.

Definition 2.4. A stochastic matrix, or Markov matrix, describes the tran-
sitions of a Markov chain. Its rows or columns must be probability vectors,
with entries between 0 and 1 that sum to 1.

To determine the rating vector, we wish to solve the system

𝑆
𝑛×𝑛

r
𝑛×1

= r
𝑛×1

. (2.11)

The solution r is the stationary vector of the stochastic matrix 𝑆, which
we find by calculating the dominant eigenvector of 𝑆.

Markov Chains

Definition 2.5. The stationary distribution of a Markov chain is the long-
run probability distribution. In other words, enough time has passed that
the distribution does not change any longer.

Definition 2.6. The dominant eigenpair consists of the dominant eigenvalue
and its corresponding eigenvector, the dominant eigenvector. The dominant
eigenvalue is real and has the greatest magnitude of all the eigenvalues.
The dominant eigenpair provides useful information about the steady-state
behavior of linear systems.
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Intuitively, the stationary vector represents the stationary distribution
and tells us about the proportion of time spent in each state. In this case,
those fractions indicate the dominance of each team, so they are used as
ratings. We will further discuss the interpretation of the Markov method in
Chapter 3 as well. At first glance, the Markov method seems to be completely
unrelated to the Massey and Colley methods. However, we will see in the
next section, and in Chapter 3 that we can connect all these methods.

2.5 The Family of Ranking Methods

Devlin and Treloar (2018) define a family of ranking methods: the Massey,
Colley, and Markov methods are all members of this one-parameter family.
The parameter 𝑝 separates these methods, where 𝑝 = 0 for the Markov
method and 𝑝 = 1 for the Massey and Colley methods.

Suppose there are 𝑛 teams in a league. Let 𝑤𝑖 𝑗 and 𝑙𝑖 𝑗 be the number of
wins and losses for team 𝑖 against team 𝑗 respectively, and 𝑊𝑖 and 𝐿𝑖 be the
total number of wins and losses for team 𝑖. Then, define the matrices 𝑊 and
𝐿 entrywise as

𝑊𝑖 𝑗 =

{
−𝑤𝑖 𝑗 𝑖 ≠ 𝑗

𝐿𝑖 𝑖 = 𝑗
, (2.12)

and

𝐿𝑖 𝑗 =

{
−𝑙𝑖 𝑗 𝑖 ≠ 𝑗

𝑊𝑖 𝑖 = 𝑗.
(2.13)

Similarly to the Colley method, the right hand side vector will be defined
by the difference in wins and losses, and here we have

s𝑝 =
[
𝑊𝑖 − 𝐿𝑖

]
𝑛×1 .

Now, we will then define a weighted combination of 𝑊 and 𝐿,

L𝑝 = 𝑊 + 𝑝𝐿.

Since L𝑝 is not full rank, Devlin and Treloar (2018) follows the convention
of the Massey method and specifies that the ratings must all sum to zero. To
do so, they add a row of ones in L𝑝 and a zero in the last entry of the right
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hand side vector s+𝑝 . For this modified system, define the matrix L+
𝑝 as the

(𝑛 + 1) × 𝑛 matrix

L+
𝑝 =

[
𝑊 + 𝑝𝐿

1 . . . 1

]
and right hand side vector s+𝑝 as the (𝑛 + 1) × 1 vector

s+𝑝 =


[[
𝑊𝑖 − 𝐿𝑖

]
𝑛×1

�� 0
]⊤

𝑝 > 0

0 𝑝 = 0.
(2.14)

Author’s Note

For clarity of notation, we will use L𝑝 rather than L𝑝 as Devlin and
Treloar (2018) originally have. We will see later, in Chapter 4, why
this adjustment is necessary (hint: we want to invert L𝑝!). In general,
we will use the bar symbol over the original symbols in Devlin and
Treloar (2018) that we will later redefine ourselves, and we will use
the + symbol for the system with an extra row added. Additionally, it
turns out that we use the symbol L because this matrix is very similar
to the graph Laplacian: the graph Laplacian is 𝑀 = L1, so L𝑝 can
almost be thought of as a weighted graph Laplacian.

Then, the rating vector v𝑝 from Devlin and Treloar (2018) is defined by

L+
𝑝 v𝑝 = s+𝑝 . (2.15)

Equation 2.15 encompasses Equation 2.1, Equation 2.10, and Equation 2.11.
It has a matrix L+

𝑝 and vector s+𝑝 that characterize the strength of a team
based on the number of wins and losses, and the total number of games
played by each team. Notice that in this framework from Devlin and Treloar
(2018), there is no point differential data used to determine the rating vector.

2.5.1 The Case of 𝑝 = 1

For 𝑝 = 1, we have a combination of the Massey and Colley methods, the
modified Colley method or the m-Colley method, as we will refer to it in the
remainder of this thesis. The matrix L+

1 is the same as the Massey matrix
𝑀, but the right hand side vector s+1 is more similar to the right hand side of
the Colley method from Equation 2.10. How does this case of 𝑝 = 1 in the
ranking family directly compare to the Massey and Colley methods?
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In the Massey method from Equation 2.1, point differentials are used as
the right hand side vector. For s+1 , we use wins and losses instead. However,
L+

1 is exactly the Massey matrix! So, all that changes is the right hand side
vector.

In the Colley method from Equation 2.10, recall that the right hand side
vector b has entries 𝑏𝑖 = 1 + 1

2 (𝑤𝑖 − 𝑙𝑖). In this family of ranking methods,
s1 (not augmented in the Colley right hand side vector) has entries 𝑤𝑖 − 𝑙𝑖 .
Hence, b and s1 are closely related, and we can characterize their relationship
with the equation

b = 1 + 1
2s1.

Now, let us consider the matrix L+
1 . We know that this matrix is almost

exactly the Massey matrix 𝑀, which connects to the Colley matrix 𝐶 through
the equation 𝐶 = 𝑀 + 2𝐼. Devlin and Treloar (2018) introduce the notion
of “virtual games,” artificial games that increase the total number of games
played. Hence we can generalize the Colley matrix to a related family
determined by the parameter 𝑘, the number of virtual games played:

𝐶 = 𝑀 + 𝑘𝐼.

Recall that the number of total games played by each team is on the diagonal
of the L+

𝑝 matrix. Therefore, when 𝑘 increases, that number of games is
artificially increased. Using a larger value of 𝑘 essentially dilutes the effect
of wins and losses: intuitively, it is less significant to have two losses or two
wins if there are fifty total games, as opposed to if there are only five total
games (Devlin and Treloar, 2018). In our family of ranking methods, we set
𝑘 = 0, so that L+

1 is merely the Massey matrix 𝑀. Since 𝑘 = 0, the win-loss
record becomes more important. Although we will assume that 𝑘 = 0 for
the rest of this thesis, one avenue of future research could explore the family
of ranking methods with both 𝑝 and 𝑘 as parameters.



Chapter 3

Network Diffusion and the
Laplacian

In this chapter, we will introduce the network diffusion interpretation for this
Laplacian family of ranking methods. We will first explain how the Markov
and m-Colley methods can be described with dominance graphs, then build
upon this foundation by leveraging the graph Laplacian to incorporate these
methods into a parametrized family.

3.1 Dominance Graphs

We will begin by introducing some basic concepts at the intersection of
ranking and graph theory. The simplest example we can provide is the
perfect season.

Definition 3.1 (Perfect Season). A perfect season is one in which all 𝑛 teams play
each other exactly once, and there are no upsets. If Team 1 is the best and Team 𝑛 is
the worst, then the first team wins 𝑛 − 1 games, the second team wins 𝑛 − 2 games
(only losing to the first team), and so on, with the 𝑛th team losing all 𝑛 − 1 games.

Example 3.1. Let’s consider the perfect season for a league comprised of the five
undergraduate Claremont Colleges (5Cs). They are ranked in the following order:

1. Harvey Mudd College (HM)
2. Pomona College (PO)
3. Scripps College (SC)
4. Pitzer College (PZ)
5. Claremont McKenna College (CM)
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Thus, each team plays exactly four games, and the number of wins for HM, PO,
SC, PZ, and CM respectively are 4, 3, 2, 1, and 0.

How can we represent Example 3.1 with a graph? We can use a dominance
graph.

Definition 3.2. A dominance graph is a directed graph such that for every pair of
vertices 𝑃𝑖 and 𝑃𝑗 , either 𝑃𝑖 → 𝑃𝑗 or 𝑃𝑗 → 𝑃𝑖 , but not both. We can consider 𝑖 the
winner and 𝑗 the loser of a game within a tournament.

For Example 3.1, the dominance graph is illustrated by Figure 3.1a. Each
node represents one of the college teams, and an edge directed from node
A to node B represents that team A beat team B in a game. For the perfect
season, we can interpret the direction of the edges to discern the winning
and losing teams for each game.

1.𝐻𝑀

3.𝑆𝐶

5.𝐶𝑀

4.𝑃𝑍

2.𝑃𝑂

a. The dominance graph for Example 3.1,
with the rankings in magenta inside
each node.

𝐻𝑀18.2

𝑆𝐶-5.4

𝐶𝑀 -17.4

𝑃𝑍 -13.4

𝑃𝑂 1820

8 18

45

38 27

45

31

2

3

b. The weighted dominance graph for Exam-
ple 3.2, with the Massey ratings illustrated
in magenta outside each node.

Figure 3.1 Examples of dominance and weighted dominance graphs.

To generalize the concept of a dominance graph, we can give the weights
of the edges representing point differentials for each game. Then we have
a weighted dominance graph, as in Figure 3.1b. To further illustrate this
concept, we will add this measurement to our example.

Example 3.2. Suppose that, as in Example 3.1, we have a league consisting of the
5Cs with the same overall ranking (𝐻𝑀 ≻ 𝑃𝑂 ≻ 𝑆𝐶 ≻ 𝑃𝑍 ≻ 𝐶𝑀). There is
one upset, where Pitzer wins their game against Scripps. The point differentials for
each game are listed in the table below.
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Winning Team Losing Team Point Differential
HM PO 20
HM SC 8
HM PZ 2
HM CM 45
PO SC 38
PO PZ 27
PO CM 45
SC CM 31
PZ SC 2
PZ CM 3

With the point differentials from Example 3.2, we end up with the
weighted dominance graph in 3.1b. Notice that the edge between Scripps
and Pitzer flips between the perfect season in 3.1a and the example with an
upset in Figure 3.1b, so the two graphs depict different scenarios. However,
since the upset between Scripps and Pitzer is very minor in Example 3.2
with a point differential of only two points, the rankings for that example
still match the ranking in the perfect season:

1. HM
2. PO
3. SC
4. PZ
5. CM.

By introducing the notion of a dominance graph, we can also note that
the Massey matrix, or L+

1 , is the same as the graph Laplacian of the game
graph.

Definition 3.3. The graph Laplacian is a matrix representation of a graph. For a
graph with vertices 𝑣𝑖 , the elements of the graph Laplacian 𝐿 are defined by

𝐿𝑖 𝑗 =


deg(𝑣𝑖) 𝑖 = 𝑗

−1 𝑖 ≠ 𝑗 , and 𝑣𝑖 is adjacent to 𝑣 𝑗

0 otherwise.

It can also be defined by the degree matrix 𝐷 and adjacency matrix 𝐴 so that
𝐿 = 𝐷 − 𝐴.
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3.2 Least Squares Methods

Both the Massey and Colley method are least squares methods, so they have
similar interpretations. As before, we will allow the nodes to represent teams
and the edges to represent games between teams. In the Massey method, we
try to find ratings such that the difference between the ratings of team 𝑖 and
team 𝑗 is equal to the point differential of a game played between them. That
is, 𝑟𝑖 − 𝑟 𝑗 = 𝑦 where 𝑦 is the point differential. These ratings correspond to
the node weights, and the point differentials correspond to the edge weights.
However, we solve the normal equations to ensure that this problem has a
solution. In other words, we find the least squares solution and try to find
the node weights that minimize the cumulative difference between the point
differentials and the ratings of the teams involved. This idea of minimizing
the offsets is analogous to finding the tightest fit of the node weights on the
graph (Langville and Meyer, 2012).

Similarly, in the Colley method, we can consider a similar setup, but with
differences in wins and losses instead of point differentials.

2.𝐻𝑀

18.2

3.𝑆𝐶5.8

5.𝐶𝑀

-46.6

4.𝑃𝑍 0.6

1.𝑃𝑂

22

20

8 18

45

38 27

45

31

2

3

a. The graph for Example 3.2 correspond-
ing to the Massey method, with the rat-
ings from Equation 2.1 illustrated in
blue outside each node. The rankings
associated with each team are inside
the nodes.

1.𝐻𝑀

0.785

4.𝑆𝐶0.357

5.𝐶𝑀

0.214

3.𝑃𝑍 0.5

2.𝑃𝑂

0.643

1

1 1

1

1 1

1

1

1

1

b. The graph for Example 3.2 correspond-
ing to the Colley method, with the rat-
ings from Equation 2.10 illustrated in
blue outside each node. The rankings
associated with each team are inside
the nodes.

Figure 3.2 The graphs from Example 3.2 for the Massey and Colley methods.

We know that the Colley method does not take into account point
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differentials for games, whereas the Massey method does consider point
differentials. By ignoring the margin of victory, Colley creates a “bias
free” method that does not depend on the “conference, tradition, or region”
(Colley, 2002). Subsequently, some of the rankings in Figure 3.2b and Figure
3.2a change between the Colley and Massey methods. In particular, notice
that there is a minor upset between Scripps and Pitzer in Example 3.2. In the
Massey method, Scripps is still ranked above Pitzer because it has beaten
other teams with a larger margin, and lost to other teams with a smaller
margin when compared to Pitzer. On the other hand, Scripps is ranked
below Pitzer in the Colley method because it has one win and three losses,
whereas Pitzer has two wins and two losses. Accordingly, we can see that
although the graph and least squares methodology for both the Massey and
Colley methods are similar, considering point differentials as opposed to
just the win-loss record affects the final rating and subsequently, the final
ranking.

3.3 Markov Method

Before discussing the Markov method, we will review some key definitions
and reminders about Markov processes. In a Markov process, the future
behavior is independent of the past behavior. So, the probability of transi-
tioning between states at each time step is only based on the current state,
and not on the current time.
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Markov Processes

Given a transition matrix of a Markov chain 𝑃, the transition proba-
bility of moving from state 𝑖 to state 𝑗 is given by the (𝑖 , 𝑗) entry of
𝑃.

Theorem 3.1. If the system starts in state 𝑖, then the probability of the
system being in state 𝑗 after 𝑡 time periods is the (i, j) entry of 𝑃𝑡 .

A common question to ask about Markov processes is about the
long-term behavior of the system, which is described by the steady
state vector. In Section 2.4, we previously introduced the stationary
distribution, but we will now specify how this vector relates to the
probability matrix 𝑃.

Definition 3.4 (State Vector). The state vector for a Markov chain with
𝑛 distinct states is an 𝑛 × 1 vector xt, with entry 𝑖 of xt describing the
probability that the system is in state 𝑘 at time 𝑡.

Definition 3.5 (Steady State Vector). The steady state vector does not
change from one time step to the next. So, it satisfies the equation 𝑃𝑥𝑡 = 𝑥𝑡+1
for any time 𝑡.

Also, the steady state vector is an eigenvector for 𝑃 corresponding to
the eigenvalue of 1! Furthermore, for entries in 𝑃, it is natural that
we might want entries to be nonnegative with columns that sum to
1 to represent probabilities. In other words, we wish for 𝑃 to be a
stochastic matrix (defined in Section 2.4).

The graph interpretation of the Markov method is a random walk on the
graph.

Definition 3.6 (Random Walk). A random walk is a process for determining the
likely location of a point subject to random motions, which are determined by the
probabilities of moving some distance in some direction. The probabilities are the
same at each step, which makes random walks an example of a Markov process.

Pretend that you are Fibonacci, a prospective student of the Claremont
Colleges, walking around to determine which college has the best sports
team. Fibonacci starts at a random school and moves to another school based
on the outcomes of the game in Example 3.2. Suppose Fibonacci starts at
Pitzer College and asks a student at Pitzer “Which school has the strongest
sports team?” Since Pitzer was defeated by Scripps, Fibonacci then moves
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to Scripps and asks a student there which school has the strongest sports
team. So, Fibonacci might next move to Harvey Mudd College. As Fibonacci
continues moving through the colleges, they will have some average time
spent at each school. This proportion is the steady state vector, which is
equivalent to the Markov rating vector. This vector is also equivalent to the
dominant eigenvector of 𝑆 from Equation 2.11.

1.𝐻𝑀0.442

3.𝑆𝐶0.110

5.𝐶𝑀 0.088

4.𝑃𝑍 0.095

2.𝑃𝑂 0.26520

8 18

45

38 27

45

31

2

3

Figure 3.3 The graph for Example 3.2 corresponding to the Markov method,
with the ratings from Equation 2.11 illustrated in blue outside each node. The
rankings associated with each team are inside the nodes.

In Figure 3.3, we can see that the ranking for the Markov method turns
out to be the same as the ranking for the Massey method! Since we consider
point differentials when calculating these ratings, these rankings make sense.
However, the ratings for the Markov method are completely different than
the ratings for the Massey method. Recall from Equation 2.11 that the
Markov rating vector should sum to 1 since we can think of each entry as the
fraction of time spent in a specific state. On the other hand, in Equation 2.1,
we can see that the Massey ratings should sum to zero (a convention set by
altering the last entry of the right hand side vector). While this example
results in the same ranking for the Markov and Massey methods, it is not
always the case that these rankings agree. The Markov method places
more weight on the strength of the opponent, so for a larger upset (say, if
Claremont McKenna beat Pomona), the rankings would likely differ. We
will be able to see this difference more in Chapter 5.
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3.4 The Laplacian

Now that we have a better understanding of how directed weighted graphs
can be used to represent data for each of the ranking methods in our family,
let us delve deeper into the linear algebraic connections. In particular, recall
that we defined the ranking family equation as L+

𝑝 v𝑝 = s+𝑝 . How does this
equation translate to a network where rank diffuses over a graph? To answer
this question, we must start by investigating the graph Laplacian, and how it
relates to the typical Laplacian for continuous multivariate functions. If you
were wondering, the connection to the Laplacian is why we use the symbol
L!

Intuitively, the Laplacian describes the shape or structure of a function.
For continuous functions, the Laplacian is defined as the divergence of a
function’s gradient:

Δ 𝑓 (x) := ∇ · ∇ 𝑓 (x).

Recall that the gradient of a function returns a vector field describing
the direction of steepest ascent, and the divergence returns a multivariate
function describing the “flow” in and out of x. The gradient informs us of
how much the function is changing at each point, and the divergence tells
us about the magnitude and sign of those changes. The flow determines the
sign of the divergence: if there is more flow moving inward, the divergence
is negative. If there is more flow moving outward, the divergence is positive,
and if there is an equal amount of flow in and out, the divergence is zero.
We can see an example of how the Laplacian of a continuous function is
formed in Figure 3.4, transforming our original multivariate function into
a vector field by taking the gradient, then graphing the Laplacian of the
function by taking the divergence of the gradient. Pay attention to the center
point, where we can see that in the vector field formed by taking the gradient
of 𝑓 (𝑥, 𝑦), arrows follow the direction of “steepest ascent,” and so all the
arrows in Δ 𝑓 (𝑥, 𝑦) point outwards at the center point because we are at a
“hole” in the graph where every direction is sloped sharply upwards, and all
equally. Then, in ∇ 𝑓 (𝑥, 𝑦), this point has a high “flow” outwards because all
the arrows are pointing outwards from the center point in Δ 𝑓 (𝑥, 𝑦), which
means that the divergence yields a large positive number.

For graphs, the analog of the Laplacian is the graph Laplacian, which
can be calculated as 𝐿 = 𝐷 − 𝐴 for an unweighted graph, where 𝐴 is the
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Figure 3.4 Visualization of the continuous Laplacian as the divergence of
a function’s gradient. Reproduced from "The graph Laplacian," by Bernstein
(2020). Reprinted with permission.

adjacency matrix with elements

𝐴𝑖 𝑗 =

{
1 if there is an edge between 𝑣𝑖 and 𝑣 𝑗

0 otherwise
,

and 𝐷 is the diagonal degree matrix for a graph with elements

𝐷𝑖 𝑗 =

{
deg(𝑣𝑖) if 𝑖 = 𝑗

0 otherwise
.

However, we can also interpret the graph Laplacian using the definition
of the continuous Laplacian Bernstein (2020). Imagine a graph as being a
discrete function, where the values of the nodes are function values (see
Figure 3.5a for an example). Again, the gradient embeds information about
the function’s change. So, the “gradient” on an unweighted graph can be
thought of as the difference in function values between two vertices, which is
represented by the edges (see Figure 3.5b)! What about the divergence? The
“divergence” for a graph measures the flow coming in and out of each point
(from each edge). To determine the divergence at a point for an unweighted
graph, we can simply subtract all the edge values flowing “into” that point
from all edge values flowing “out” of that point.

3.5 Rank Diffusion and Infusion

After reviewing the Laplacian, we can now study our equation L+
𝑝 v𝑝 = s+𝑝

under a new light. First, we will motivate why the graph Laplacian shows
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a. Visualization of node values as dis-
crete values of functions at points.

b. Visualization of edge values as differ-
ences of the node values, representing
the gradient of the graph.

Figure 3.5 Visualizations of the discrete version of the Laplacian, interpreting
the node and edge values as function values analogous to points in the contin-
uous Laplacian. Reproduced from "The graph Laplacian," by Bernstein (2020).
Reprinted with permission.

up in our equation. Then, we will highlight the connections that emerge
between the idea of rank diffusion and the solution for Markov and least
squares methods. Finally, we will briefly mention some other interpretations
and implications of the Laplacian emerging besides rank diffusion.

3.5.1 A Stable Solution

Suppose we wish to formulate an equation describing this idea of rank
diffusion. We will assume that in one time step, the quantity of rank flowing
from node 𝑗 to node 𝑖 is proportional to the difference in the rank at those
nodes. So, we can use the number of wins of team 𝑖 against team 𝑗 as the
flow from team 𝑗 to team 𝑖 and the opposite for the number of losses. Let 𝐴
be the adjacency matrix, and 𝑘 a parameter determining the rate of diffusion.
Then if 𝑣𝑡

𝑖
is the quantity of rank at node 𝑖 at time 𝑡, from Devlin and Treloar
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(2018), the change in rank (flow) for node 𝑖 is

Δ𝑣𝑡𝑖 =
∑
𝑗

𝑘𝐴𝑖 𝑗(𝑣𝑡𝑗 − 𝑣𝑡𝑖 )

= 𝑘
∑
𝑗

𝐴𝑖 𝑗𝑣
𝑡
𝑗 − 𝑘𝑣𝑡𝑖

∑
𝑗

𝐴𝑖 𝑗

= 𝑘
∑
𝑗

(𝐴𝑖 𝑗𝑣
𝑡
𝑗 ) − 𝑘𝑑𝑖𝑣

𝑡
𝑖

= 𝑘
∑
𝑗

(𝐴𝑖 𝑗𝑣
𝑡
𝑗 − 𝛿𝑖 𝑗𝑑 𝑗𝑣

𝑡
𝑗 ),

where we sum the rank that flows to node 𝑖, expand that sum, simplify∑
𝑗 𝐴𝑖 𝑗 as 𝑑𝑖 , the degree of node 𝑖, and finally introduce the Kronecker delta

𝛿𝑖 𝑗 to combine the sum. The Kronecker delta 𝛿𝑖 𝑗 is defined as

𝛿𝑖 𝑗 =

{
0 if 𝑖 ≠ 𝑗

1 if 𝑖 = 𝑗
.

Then, to look for a stable solution (Markov method) where there is no
flow in the system long term, set Δ𝑣𝑡

𝑖
= 0 for all nodes 𝑖, so we obtain the

matrix equation

0 = (𝐷 − 𝐴)v
Since the left hand side is 0, we can divide by −𝑘. The summation works

due to matrix multiplication of 𝐴 and v. And, notice that 𝐷 − 𝐴 = 𝐿, the
graph Laplacian!

We can also “infuse” rank into the system by not looking for a stable
solution. That is, letting the long-term change in rank for individual nodes
(and hence the system) be positive or negative. We will discuss rank infusion
in Subsection 3.5.2, but first we will think about the rank flow a bit more.

Returning to our family L+
𝑝 v𝑝 = s+𝑝 , we now have addressed the case of

𝑝 = 0 where s0 = 0. Infusing rank into our system is equivalent to having
𝑝 > 0 such that s+𝑝 ≠ 0. As 𝑝 changes, the “Laplacian” in our equation also
changes. Recall that in our family, the “Laplacian” matrix is defined as
L𝑝 = 𝑊 + 𝑝𝐿. Notice that 𝑊 and 𝐿 have the same sign, so they are treated
equivalently. As the elements of either 𝑊 or 𝐿 increase, the flow of the
system between the corresponding nodes also increases.

What happens as 𝑝 increases? If 𝑝 = 0, then we have the Markov method
discussed in the previous section, where transitions in a Markov process
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are determined only by the win percentage. As 𝑝 increases, the number
of losses contributes more and more to the flow of the system. For higher
values of 𝑝, losing against a strong team increases the rank flow out of the
node of the stronger team. Thus, credit is given for merely playing other
teams, especially strong ones. Intuitively, a stronger team has less flow
(there are fewer losses, and only wins), since more games mean more flow.
So if a weaker team plays a stronger team, the flow of the stronger team is
increased, almost like it is “leaked” to all the other teams. In Chapter 5, we
will see how increasing 𝑝 means that less weight is placed on the strength
of the schedule since the rank of stronger teams is diffused through losses
as well. At 𝑝 = 1, the flow from wins and losses is the same—how can we
differentiate between teams? To answer this question, we will return to our
question of rank infusion, which will allow us to take into account the overall
win-loss record of teams.

Author’s Note

These realizations are central to this thesis! To summarize, the flow
through L+

𝑝 accounts for the strength of the schedule, and s𝑝 accounts
for the record. By varying 𝑝, we can adjust the weight we want to
put on each of these factors. As 𝑝 increases, more weight is put
onto a team’s record and less weight is placed on the strength of the
schedule.

3.5.2 Infusion of Rank

As defined, this method of flow with L+
𝑝 might feel unintuitive, since wins

and losses are treated the same. To compensate, there is an external infusion
of rank through s+𝑝 . Recall that s𝑝 = 𝑊𝑖 − 𝐿𝑖 for each team 𝑖, so s𝑝 doesn’t
depend on the strength of teams, just their record. To better grasp the effect
of s𝑝 on the system, we can study graphs depicting the rank flow system for
𝑝 = 0, 𝑝 = 0.25, 𝑝 = 0.5, 𝑝 = 0.75, and 𝑝 = 1. First, in Figure 3.6, we can see
that the magnitude of the ratings decreases as 𝑝 increases, and also that the
gaps in ratings between each team decrease.

Having studied the general patterns in the rank flow for our family, we
can return to the extreme cases of 𝑝 = 0 and 𝑝 = 1. 𝑝 = 0 corresponds to the
Markov method. However, in our interpretation, the flows have the reversed
direction as the original Markov method, so we interpret it as a “reverse
random walk.” We can see the difference in these two graphs in Figure 3.7.
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a. The flows for 𝑝 = 0.25 in the fam-
ily of ranking methods.
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b. The flows for 𝑝 = 0.5 in the family
of ranking methods.
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c. The flows for 𝑝 = 0.75 in the family of ranking methods.

Figure 3.6 Flows for 𝑝 = 0.25, 𝑝 = 0.5, and 𝑝 = 0.75 in the network diffusion
family of ranking. The blue arrows are the flows from wins, and the pink arrows
are flows from losses. The ratings are in blue outside each node.
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a. The flows for 𝑝 = 0 in the family
of ranking methods, whose direc-
tion is flipped from the graph of
the random walk.
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b. The flows in the original Markov
ranking method correspond to a
random walk whose direction is
flipped from the network diffu-
sion flow graph.

Figure 3.7 Flows corresponding to 𝑝 = 0, which is associated with the Markov
method.

Next, for 𝑝 = 1, we have a highly symmetric graph for the perfect season,
where each pair of nodes has two directed edges between them in opposite
directions with equal weight. In light of the m-Colley method that this graph
corresponds to, we can interpret the pair of arcs as an undirected edge. In
this least squares method, we are trying to best find the node values such
that their differences are as close as possible to their corresponding edges.
Why is this idea related to least squares? In statistics, least squares methods
fit a curve to a collection of data, which we can also view as projecting a
vector. Here, we fit node values to the edge values. The residual represents
inconsistencies in the pairwise data. The details of this idea are explored in
the HodgeRank algorithm, a generalization of PageRank (Jiang et al., 2010).

In this chapter, we have seen how the Laplacian connects to the game
graph, as well as the equation for our parametrized family. This framework
sets the stage for the next chapter, where we will return to determine ratings
for teams in a perfect season.
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a. The flows for 𝑝 = 1 in the family
of ranking methods.
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b. An alternative interpretation of
flows for 𝑝 = 1, more related to
the concept of least squares.

Figure 3.8 Flows corresponding to 𝑝 = 1, which is associated with the Massey
and Colley methods.





Chapter 4

Laplacian Family Ratings

In this chapter, we find and prove an analytical solution for the ratings v𝑝 in
the perfect season that holds for any number of teams 𝑛 and any parameter
𝑝. Then, we will start to hypothesize about the sensitivity of the family based
on the numerical distribution of these ratings.

4.1 The Canonical Example

To begin with, we will run through an example with 𝑛 = 5 teams to build
intuition. How can we find (L+

𝑝 )−1 and s+𝑝 ?

4.1.1 Redefining L𝑝 and s𝑝
Before we can find (L+

𝑝 )−1, we need to address the issue that L+
𝑝 is not square

and hence is not invertible! Recall that as defined in Devlin and Treloar
(2018), we have the general augmented system

L+
𝑝 v𝑝 = s+𝑝 .

For an 𝑛 = 5 team system, we have

L+
𝑝 =



4𝑝 −1 −1 −1 −1
−𝑝 3𝑝 + 1 −1 −1 −1
−𝑝 −𝑝 2𝑝 + 2 −1 −1
−𝑝 −𝑝 −𝑝 𝑝 + 3 −1
−𝑝 −𝑝 −𝑝 −𝑝 4
1 1 1 1 1


, (4.1)
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which is a 6 × 5 matrix. Since L+
𝑝 is not square, it is not invertible, and

hence our method of finding v𝑝 as (L+
𝑝 )−1s+𝑝 would not work. In general, the

augmented matrix L+
𝑝 has dimensions (𝑛 + 1) × 𝑛, so it is also not square

or invertible. To remedy this issue, we will redefine L𝑝 as the matrix that
removes the second to last row of L+

𝑝 , as in the Massey method. Since the
𝑛th row is linearly dependent on the first 𝑛 − 1 rows, replacing it with a row
of all ones will still yield a valid answer in the plane of the original solution
space.

We now have a revised family of ranking methods given by the equation

L𝑝v𝑝 = s𝑝 , (4.2)

where L𝑝 is an 𝑛 × 𝑛 matrix with entry (𝑖 , 𝑗) described by

(L𝑝)𝑖 𝑗 =
{
𝑊𝑖 𝑗 + 𝑝𝐿𝑖 𝑗 𝑖 ≤ 𝑛 − 1
1 𝑖 = 𝑛

. (4.3)

So, L𝑝 for 5 teams in the perfect season is

L𝑝 =


4𝑝 −1 −1 −1 −1
−𝑝 3𝑝 + 1 −1 −1 −1
−𝑝 −𝑝 2𝑝 + 2 −1 −1
−𝑝 −𝑝 −𝑝 𝑝 + 3 −1
1 1 1 1 1


.

After redefining L𝑝 , we also need to modify s𝑝 from Equation 2.14 so
our new system of equations has a solution. In general, s𝑝 is a 𝑛 × 1 vector
defined by

s𝑝 =


[[
𝑊𝑖 − 𝐿𝑖

]
(𝑛−1)×1

�� 0
]⊤

𝑝 > 0

0 𝑝 = 0.
(4.4)

For the perfect season, we know the precise number of wins and losses
for each team, as team 𝑖 plays 𝑛 − 1 games: 𝑛 − 𝑖 wins and 𝑖 − 1 losses. Thus,
in this case s𝑝 can be explicitly written in terms of 𝑛 and 𝑖:

s𝑝 =


[[
𝑛 − 2𝑖 + 1

]
𝑛×1

�� 0
]⊤
(𝑛+1)×1

𝑝 > 0

0 𝑝 = 0.
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For 𝑝 > 0, instead of augmenting s𝑝 by adding a 0, we will replace the last
entry with 0, so that in the perfect season we have

s𝑝 =
[
𝑛 − 2(1) + 1 · · · 𝑛 − 2𝑖 + 1 · · · 𝑛 − 2(𝑛 − 1) + 1 0

]⊤
=
[
𝑛 − 1 · · · 𝑛 − 2𝑖 + 1 · · · 3 − 𝑛 0

]⊤
𝑛×1 ,

or for 0 ≤ 𝑝 ≤ 1,

(s𝑝)𝑖 =
{
𝑛 − 2𝑖 + 1 if 𝑝 > 0, 1 ≤ 𝑖 ≤ 𝑛 − 1
0 if 𝑝 > 0, 𝑖 = 𝑛 or 𝑝 = 0

, (4.5)

mimicking the alteration in the Massey method to have all ratings sum to 0
in order to resolve the issue of linear dependence (and non-invertibility) in
the original L𝑝 matrix.

4.1.2 Calculating v𝑝

Now that L𝑝 and s𝑝 have been defined more clearly, we can finally determine
v𝑝 for our five-team system. Since L𝑝 with 𝑛 = 5 is a 5 × 5 matrix with
known entries that are functions of only 𝑝, it is fairly trivial to compute L−1

𝑝

for 𝑛 = 5 with mathematical software. It turns out that

L−1
𝑝 =



1
4𝑝 + 1 0 0 0 1

4𝑝 + 1
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0
5𝑝

(4𝑝 + 1)(3𝑝 + 2)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
1

2𝑝 + 3 0
5𝑝

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
1

𝑝 + 4
5𝑝

(2𝑝 + 3)(𝑝 + 4)

− 1
𝑝 + 4 − 1

𝑝 + 4 − 1
𝑝 + 4 − 1

𝑝 + 4
𝑝

𝑝 + 4



.

(4.6)
We also know from Equation 4.5 that

s𝑝 =
[
4 2 0 −2 0

]⊤
, (4.7)

which means we are now ready to find v𝑝!
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Multiplying, we can now find

v𝑝 =

[
4

4𝑝 + 1
12𝑝 − 2

(4𝑝 + 1)(3𝑝 + 2)
6(𝑝 − 1)

(3𝑝 + 2)(2𝑝 + 3)
2(𝑝 − 6)

(2𝑝 + 3)(𝑝 + 4)
−4
𝑝 + 4

]⊤
.

(4.8)
Hooray! We now know what the rating vectors look like for 𝑛 = 5.

But what meaning can we derive from this computation, and how can we
generalize to 𝑛 teams? In the calculation above, notice that since a lot of
terms in L𝑝 repeat, there are sums of (4 + 2) and (4 + 2 + 0). As 𝑛 increases,
this summation can be simplified with a finite sum formula, and we will see
this in the next section. In fact, all the middle terms in the vector from the
second to second to last position follow this pattern, and only the first and
last term may need to be treated separately.

Now, let us return to the question of 𝑛 = 5. We can graph this rating
vector across the range where 𝑝 ∈ (0, 1] (recall that the Markov method
must be handled separately) in Figure 4.1. Furthermore, we can repeat this
exercise for 𝑛 = 10 to see that our findings should still hold merit for any
general 𝑛.

a. 𝑛 = 5 Teams b. 𝑛 = 10 Teams

Figure 4.1 The spread of ratings for the perfect season for five and ten teams
for 𝑝 ∈ (0, 1].

In Figure 4.1, we notice several key takeaways.
Remark 1: The ratio of ratings between teams for the first two teams and

the last two teams is very different as we slide the scale from near 𝑝 = 0 to
𝑝 = 1. Near 𝑝 = 0, the highest two ratings are highly distinct and separated,
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whereas the last two teams are almost indistinguishable. At 𝑝 = 1, on the
other hand, there is even spacing between the ratings of all the teams. This
difference has implications for the sensitivity of this family of methods, since
it seems that using a lower 𝑝 will lead to much larger upsets than with a
higher 𝑝 value.

Remark 2: The magnitude of the ratings decreases as 𝑝 increases. Near
𝑝 = 0, the rating of the first team has a rating of over 3 for 𝑛 = 5 and over 6
for 𝑛 = 10. However, the magnitude of the ratings decreases as 𝑝 approaches
1. It turns out that at 𝑝 = 1, the ratings are evenly spaced intervals centered
at 0, but this decrease in magnitude motivates us to examine the family’s
behavior for 𝑝 > 1 (out of bounds). In Chapter 5, we will examine exactly
what the ratio between the ratings of these teams looks like.

4.2 Finding v𝑝

To find v𝑝 , we once again consider the ranking family equation L𝑝v𝑝 = s𝑝 .

Author’s Note

Take out your cheat sheet (Appendix A)!

Recall that the ranking family equation is now fully defined, with L𝑝

in Equation 4.3 and s𝑝 in Equation 4.5. Then, if L𝑝 is invertible, we can
find v𝑝 = L−1

𝑝 s𝑝 . But, since we foresaw this problem, we modified L𝑝 to be
square, so it is invertible for 𝑝 ≠ 0!

Using the definition in Equation 4.3, we can say that (L𝑝)𝑛×𝑛 has entries

(L𝑝)𝑖 𝑗 =


−1 𝑖 ≠ 𝑛, 𝑖 < 𝑗

(𝑛 − 𝑖)𝑝 + (𝑖 − 1) 𝑖 ≠ 𝑛, 𝑖 = 𝑗

−𝑝 𝑖 ≠ 𝑛, 𝑖 > 𝑗

1 𝑖 = 𝑛

, (4.9)

or equivalently
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L𝑝 =



1 2 𝑖 𝑛 − 1 𝑛

1 (𝑛 − 1)𝑝 −1 −1
2 −𝑝 (𝑛 − 2)𝑝 + 1 −1 −1
3 −𝑝 −𝑝 (𝑛 − 3)𝑝 + 2 −1 −1

...
. . .

...

𝑖 −𝑝 −𝑝 (𝑛 − 𝑖)𝑝 + (𝑖 − 1) −1 −1
...

. . .
...

𝑛 − 1 −𝑝 −𝑝 𝑝 + (𝑛 − 2) −1
𝑛 1 1


.

(4.10)
We have a highly-structured matrix, with −𝑝 on the lower triangular and −1
on the upper triangular parts, and 1 in the final (𝑛th) row. On the diagonal,
there are entries of (𝑛 − 𝑖)𝑝 + (𝑖 − 1).

Leveraging our intuition from our canonical example (which we could
further build by testing with other 𝑛 values), we claim that we have found
L−1

𝑝 . We propose that the following theorem holds, which we will prove in
the following section.

Theorem 4.1. L−1
𝑝 has (𝑖 , 𝑗)th entry defined by

(L𝑝)−1
𝑖 𝑗 =



−1
𝑝 + 𝑛 − 1 𝑖 = 𝑛, 𝑖 ≠ 𝑗

𝑝

𝑝 + 𝑛 − 1 𝑖 = 𝑛 = 𝑗

0 𝑖 ≠ 𝑛, 𝑖 < 𝑗
1

(𝑛 − 𝑖)𝑝 + 𝑖
𝑖 ≠ 𝑛, 𝑖 = 𝑗

𝑝 − 1
((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1)((𝑛 − 𝑖)𝑝 + 𝑖) 𝑖 ≠ 𝑛, 𝑖 > 𝑗.

(4.11)

We can also see this matrix written out in Appendix B.

With this theorem for L−1
𝑝 , we can now continue to find v𝑝 .

Now, using Equation 4.5 and Equation 4.11, we can find v𝑝 = L−1
𝑝 s𝑝 as
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v𝑝 =



𝑛 − 1
(𝑛 − 1)𝑝 + 1

𝑝 − 1
((𝑛 − 1)𝑝 + 1)((𝑛 − 2)𝑝 − 2) (𝑛 + 1 − 2) + 1

(𝑛 − 2)𝑝 + 2
(𝑛 + 1 − 4)

𝑝 − 1
((𝑛 − 2)𝑝 + 2)((𝑛 − 3)𝑝 + 3) [(𝑛 + 1 − 2) + (𝑛 + 1 − 4)] + 𝑛 + 1 − 6

(𝑛 − 3)𝑝 + 3
(𝑛 + 1 − 6)

𝑝 − 1
((𝑛 − 3)𝑝 + 3)((𝑛 − 4)𝑝 + 4) [(𝑛 + 1 − 2) + (𝑛 + 1 − 4) + (𝑛 + 1 − 6)] + 𝑛 + 1 − 8

(𝑛 − 4)𝑝 + 4
(𝑛 + 1 − 8)

...
𝑝 − 1

(𝑛 − (𝑛 − 1)𝑝 + (𝑛 − 1))((𝑛 − 𝑛)𝑝 + 𝑛) [(𝑛 + 1 − 2) + (𝑛 + 1 − 4) + · · · + (𝑛 + 1 − 2(𝑛 − 1))] + 𝑛 + 1 − 2𝑛
(𝑛 − 𝑛)𝑝 + 𝑛

(𝑛 + 1 − 2𝑛)

−1
𝑝 + 𝑛 − 1 [(𝑛 + 1 − 2) + (𝑛 + 1 − 4) + (𝑛 + 1 − 6) + · · · + (𝑛 + 1 − 2(𝑛 − 1))]



.

Applying the series formula
∑𝑛

𝑖=1 𝑖 =
𝑛(𝑛+1)

2 , we find that in general,

v𝑝 =



𝑛 − 1
(𝑛 − 1)𝑝 + 1

𝑖 = 1
...

(𝑝 − 1)(𝑖 − 1)(𝑛 − 𝑖 + 1)
((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1)((𝑛 − 𝑖)𝑝 + 𝑖) +

𝑛 − 2𝑖 + 1
(𝑛 − 𝑖)𝑝 + 𝑖

𝑖 = 2...(𝑛 − 1)
...

1 − 𝑛

𝑝 + 𝑛 − 1 𝑖 = 𝑛


.

Moreover, it turns out that the formula for a general 𝑖 encompasses the
formulas for 𝑖 = 1 and 𝑖 = 𝑛, which means that v𝑝 is defined by

v𝑝 =

[ (𝑝 − 1)(𝑖 − 1)(𝑛 − 𝑖 + 1)
((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1)((𝑛 − 𝑖)𝑝 + 𝑖) +

𝑛 − 2𝑖 + 1
(𝑛 − 𝑖)𝑝 + 𝑖

]
𝑛×1

, (4.12)

or we can simplify to obtain

v𝑝 =

[ (𝑛 − 𝑖 + 1)(𝑛 − 𝑖)𝑝 − 𝑖(𝑖 − 1)
(((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1))((𝑛 − 𝑖)𝑝 + 𝑖)

]
. (4.13)

Now, we need to prove that this equation for v𝑝 holds.
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4.3 Verifying v𝑝

We want to verify that v𝑝 in Equation 4.12 is correct. To verify, we use proof
by induction. Just to check, we can also confirm the rating and L𝑝 matrix
are consistent with the outputs of the individual ranking methods. Since the
Massey and Colley method are combined and the Markov method does not
work with our method of inversion, this means that we just need to check
that our equation is consistent with the m-Colley method.

4.3.1 Colley Method

First, we will confirm that the rating vector is consistent with the Colley
rating vector. Let e be the vector of all ones, and e𝑖 be the vector consisting
of a one in the 𝑖th entry and zero everywhere else. Then, for the Colley
method, the rating vector is

r𝑐 = 𝐶−1b =
1

𝑛 + 2b + 𝑛

2(𝑛 + 2)e =
1

2(𝑛 + 2)

©«

2𝑛 + 1
2𝑛 − 1
2𝑛 − 3

...

2𝑛 − 2𝑖 + 3
...

3

ª®®®®®®®®®®®¬
, (4.14)

where

𝐶 = (𝑛 + 2)𝐼 − ee⊺ is the Colley matrix, and
b =

[
1 + 1

2 (𝑛 − 2𝑖 + 1)
]
𝑛×1 is the right hand side vector.

In the analysis of Devlin and Treloar (2018), the number of virtual games
𝑘 (artificial games that increase the total number of games played) is lowered
from 2 to 0. Also, in place of b we use s1, where s1 = 2(𝑏 − 1). To ensure the
matrix is nonsingular, we also use the Massey modification of replacing the
last row of 𝐶 with all ones. After setting 𝑘 = 0 and replacing the last row in
𝐶, we end up with the modified Massey matrix 𝑀.
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With these changes, the ranking would then be

v𝑐 = �̄�−1s1

=
1
𝑛
(𝐼 + ee⊺𝑛 − e𝑛e⊺)s1

=
1
𝑛

s1 +
1
𝑛

©«
1
1
...

1

ª®®®®¬
(
0 0 · · · 0 1

)
s1 −

1
𝑛

©«

0
0
...

0
1

ª®®®®®®¬
(
1 1 · · · 1

)
s1

=
1
𝑛

s1 + 0 −
[
𝑛−1
𝑛

]
𝑛×1

=

[
𝑛 − 2𝑖 + 1

𝑛

]
𝑛×1

,

since
𝑛−1∑
𝑖=1

(𝑛−2𝑖+1) = 𝑛(𝑛−1)− 2(𝑛 − 1)𝑛
2 +𝑛−1 = 𝑛2 −𝑛−𝑛2 +𝑛+𝑛−1 = 𝑛−1.

If we let 𝑝 = 1 in Equation 4.12, which we calculated with our formula
for L−1

𝑝 , we have the 𝑛 × 1 vector with 𝑖th entry

(v𝑐)𝑖 =
𝑛 − 2𝑖 + 1

𝑛
,

as we would expect - the two equations match!

4.3.2 Gaussian Elimination (5 Teams)

In Subsection 4.3.3, we will use Gaussian elimination on L𝑝 to determine L−1
𝑝 .

In order to gain intuition, we will first write out an example with 5 teams.
We are trying to determine L−1

𝑝 , so we can set up Gaussian elimination. We
start with the following matrix:



1 2 3 4 5
1 4𝑝 −1 −1 −1 −1
2 −𝑝 3𝑝 + 1 −1 −1 −1
3 −𝑝 −𝑝 2𝑝 + 2 −1 −1
4 −𝑝 −𝑝 −𝑝 𝑝 + 3 −1
5 1 1 1 1 1

𝐼5×5


.
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Next, we add row 5 to each of the other rows to create a lower triangular
matrix (except the last row),



1 2 3 4 5 1 2 3 4 5
1 4𝑝 + 1 0 0 0 0 1 0 0 0 1
2 −𝑝 + 1 3𝑝 + 2 0 0 0 0 1 0 0 1
3 −𝑝 + 1 −𝑝 + 1 2𝑝 + 3 0 0 0 0 1 0 1
4 −𝑝 + 1 −𝑝 + 1 −𝑝 + 1 𝑝 + 4 0 0 0 0 1 1
5 1 1 1 1 1 0 0 0 0 1


.

Next, subtract row 2 from row 3, and row 3 from row 4. We wish to
create a bidiagonal matrix (except the last row), so we add the previous row
to the current row, skipping the first two rows. This subtraction results in
the matrix



1 2 3 4 5 1 2 3 4 5
1 4𝑝 + 1 0 0 0 0 1 0 0 0 1
2 −𝑝 + 1 3𝑝 + 2 0 0 0 0 1 0 0 1
3 0 −4𝑝 − 1 2𝑝 + 3 0 0 0 −1 1 0 0
4 0 0 −3𝑝 − 2 𝑝 + 4 0 0 0 −1 1 0
5 1 1 1 1 1 0 0 0 0 1


,

and we can normalize the first row to obtain



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 1

4𝑝 + 1
2 −𝑝 + 1 3𝑝 + 2 0 0 0 0 1 0 0 1
3 0 −4𝑝 − 1 2𝑝 + 3 0 0 0 −1 1 0 0
4 0 0 −3𝑝 − 2 𝑝 + 4 0 0 0 −1 1 0
5 1 1 1 1 1 0 0 0 0 1


.

We can then use the first row to zero out the first entry in the second row.
If we add the first row times 𝑝 − 1 to the second row, we have



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 1

4𝑝 + 1

2 0 3𝑝 + 2 0 0 0
𝑝 − 1
4𝑝 + 1 1 0 0 1 +

𝑝 − 1
4𝑝 + 1

3 0 −4𝑝 − 1 2𝑝 + 3 0 0 0 −1 1 0 0
4 0 0 −3𝑝 − 2 𝑝 + 4 0 0 0 −1 1 0
5 1 1 1 1 1 0 0 0 0 1


.



Verifying v𝑝 45

At this point, it seems like the fifth column of L−1
𝑝 is starting to get a

bit messy, but this is not an issue! Recall that we are trying to find L−1
𝑝 to

calculate the rating vector v𝑝 = L−1
𝑝 s𝑝 . But since the last entry of s𝑝 is 0 for

𝑝 > 0, and we cannot use this method of inversion for 𝑝 = 0 anyways, we
can ignore the final column of L−1

𝑝 . This column is multiplied by the zero
entry, so while we are calculating L−1

𝑝 , we can just abstract these elements
whose values we can disregard as ★.

Now, we can repeat the previous step, dividing the second row by 3𝑝 + 2
(in other words, normalizing) and adding that resulting row times 4𝑝 + 1 to
the third row. Then, we have this matrix:



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 ★

2 0 1 0 0 0
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0 ★

3 0 −4𝑝 − 1 2𝑝 + 3 0 0 0 −1 1 0 ★
4 0 0 −3𝑝 − 2 𝑝 + 4 0 0 0 −1 1 ★
5 1 1 1 1 1 0 0 0 0 ★


.

We repeat this process, combining the two steps of normalizing the
second row and adding 4𝑝 + 1 times the normalized second row to the third
row. Our matrix will then become



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 ★

2 0 1 0 0 0
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0 ★

3 0 0 2𝑝 + 3 0 0
𝑝 − 1
3𝑝 + 2 −3𝑝 + 2

3𝑝 + 2 + 4𝑝 + 1
3𝑝 + 2 1 0 ★

4 0 0 −3𝑝 − 2 𝑝 + 4 0 0 0 −1 1 ★
5 1 1 1 1 1 0 0 0 0 ★


.

You can hopefully now see a pattern starting to emerge that could also
generalize to 𝑛 teams, where we normalize the (𝑖 − 1) row and use that
normalized row to zero out the (𝑖 − 1) entry in the 𝑖th row. In this example,
we have one final iteration, normalizing the third row and zeroing out the
third entry in the fourth row by multiplying the normalized third row by
3𝑝 + 2.



46 Their Journey Begins: Laplacian Family Ratings

After normalizing the third row, we have this matrix:



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 ★

2 0 1 0 0 0
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0 ★

3 0 0 1 0 0
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
1

2𝑝 + 3

(
−3𝑝 + 2

3𝑝 + 2 + 4𝑝 + 1
3𝑝 + 2

)
1

2𝑝 + 3 0 ★

4 0 0 −3𝑝 − 2 𝑝 + 4 0 0 0 −1 1 ★
5 1 1 1 1 1 0 0 0 0 ★


,

which simplifies to



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 ★

2 0 1 0 0 0
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0 ★

3 0 0 1 0 0
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
1

2𝑝 + 3 0 ★

4 0 0 −3𝑝 − 2 𝑝 + 4 0 0 0 −1 1 ★
5 1 1 1 1 1 0 0 0 0 ★


.

Multiplying the third row by 3𝑝 + 2 and adding it to the fourth row, we
obtain



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 ★

2 0 1 0 0 0
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0 ★

3 0 0 1 0 0
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
1

2𝑝 + 3 0 ★

4 0 0 0 𝑝 + 4 0
𝑝 − 1
2𝑝 + 3

𝑝 − 1
2𝑝 + 3 −2𝑝 + 3

2𝑝 + 3 + 3𝑝 + 2
2𝑝 + 3 1 ★

5 1 1 1 1 1 0 0 0 0 ★


,
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which results in this matrix after normalizing the fourth row and simplifying:



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 ★

2 0 1 0 0 0
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0 ★

3 0 0 1 0 0
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
1

2𝑝 + 3 0 ★

4 0 0 0 1 0
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
1

𝑝 + 4 ★

5 1 1 1 1 1 0 0 0 0 ★


.

Finally, we can subtract each of the other rows (one through four) from
the fifth row, ending up with



1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 1
4𝑝 + 1 0 0 0 ★

2 0 1 0 0 0
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0 ★

3 0 0 1 0 0
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
1

2𝑝 + 3 0 ★

4 0 0 0 1 0
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
1

𝑝 + 4 ★

5 0 0 0 0 1 − 1
𝑝 + 4 − 1

𝑝 + 4 − 1
𝑝 + 4 − 1

𝑝 + 4 ★


after some simplifying.

From this example of 𝑛 = 5 teams, we can start to think about how the
Gaussian elimination would work with a general number of teams. Our
overall process is to go through the Gaussian elimination one row at a time,
starting by simplifying the first and second rows. Then, we iteratively use
the previous row to simplify the next row and normalize it. Finally, the 𝑛th
row is a bit of an exception, but after subtracting, there is some very elegant
cancellation and simplification leading us to Equation 4.11.

4.3.3 Inductive Proof of v𝑝

With the intuition from the five team example in mind, we will now use
Gaussian elimination on L𝑝 to determine L−1

𝑝 for any number of teams 𝑛.
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We will use induction for the first 𝑛 − 1 rows, as we have seen that there
is a bit of a shift in the way we determine L−1

𝑝 for row 𝑛 from Subsection 4.3.2.

Matrix Manipulation: This section describes the first part of the calcula-
tions in Appendix C. To see the matrices written out, reference the equations
detailed there. First, we will turn the matrix into a lower triangular and
bidiagonal matrix to make it easier to work with. Begin by adding the 𝑛th
row of all ones to all other rows of the matrix to turn the matrix into a lower
triangular matrix. This matrix corresponds to Equation C.1. Next, for rows
𝑖 ≥ 3, zero most of the entries in the lower diagonal matrix by subtracting
the previous row. That is, for 3 ≤ 𝑖 ≤ 𝑛 − 1, do 𝑅𝑖 → 𝑅𝑖 − 𝑅𝑖−1. This matrix
corresponds to Equation C.2.

We wish to prove the form of row 𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1 in our Gaussian
elimination of L−1

𝑝 using induction on 𝑖. Then, we reduce the rows one
at a time (up to row 𝑛 − 1) to invert L𝑝 . Note that when we find L−1

𝑝 , we
can ignore the calculation of the final element in each row because the final
element of s𝑝 is 0, and our goal is to find v𝑝 = L−1

𝑝 s𝑝 . We can think of each
row as an array of size 1× 𝑛, or more simply an array of size 1× (𝑛 − 1) since
we ignore the final element.

Base Case: The base case corresponds to the second part of the calcula-
tions in Appendix C.

After simplifying the matrix we begin with, we can normalize row 1 by
dividing by (𝑛 − 1)𝑝. Thus for L−1

𝑝 , row 1 has 1
(𝑛−1)𝑝+1 in the first position,

and zeros everywhere else, which we can see in Equation C.3. For the
Gaussian elimination on row 2, add a linear combination of the first and
second rows: 𝑅2 → 𝑅1 + 1

𝑝−1𝑅2. Then, normalize by multiplying by 𝑝−1
(𝑛−2)𝑝+2 .

The second row of L−1
𝑝 will subsequently have 𝑝−1

((𝑛−1)𝑝+1)((𝑛−2)𝑝+2) in the first
position, 1

(𝑛−2)𝑝+2 in the second position, and zeros everywhere else, as in
Equation C.4. As we would expect, the left side of our augmented matrix
(originally L𝑝) is reduced to the first two rows of an 𝑛 × 𝑛 identity matrix.
We can summarize the starting point for our Gaussian elimination with
modifications in row 1 as

(L𝑝)−1
1𝑗 =


1

(𝑛 − 1)𝑝 + 1
𝑗 = 1

0 1 < 𝑗 < 𝑛
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and row 2 as

(L𝑝)−1
2𝑗 =



𝑝 − 1
((𝑛 − 1)𝑝 + 1)((𝑛 − 2)𝑝 + 2) 𝑗 = 1

1
(𝑛 − 2)𝑝 + 2

𝑗 = 2

0 2 < 𝑗 < 𝑛.

Inductive hypothesis: Assume that for rows 2 through 𝑖, the entries in
positions 1 through 𝑖−1 of L−1

𝑝 contain 𝑝−1
((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖) , entry 𝑖 contains

1
(𝑛−𝑖)𝑝+𝑖 , and there are zeros from entry 𝑖 + 1 to 𝑛 − 1. Since we are doing
Gaussian elimination, the left side of our augmented matrix is reduced to
the first 𝑖 rows of an 𝑛 × 𝑛 identity matrix. In summary, for row 𝑖, we have

(L𝑝)−1
𝑖 𝑗 =



𝑝 − 1
((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1)((𝑛 − 𝑖)𝑝 + 𝑖) 𝑗 < 𝑖

1
(𝑛 − 𝑖)𝑝 + 𝑖

𝑗 = 𝑖

0 𝑖 < 𝑗 < 𝑛.

Inductive step: We wish to show that performing Gaussian elimination
on row 𝑖 + 1 yields the right hand side L−1

𝑝 containing 𝑝−1
((𝑛−𝑖)𝑝+𝑖)((𝑛−𝑖−1)𝑝+𝑖+1)

in entries 1 through 𝑖, contains 1
(𝑛−𝑖−1)𝑝+𝑖+1 in entry 𝑖 + 1, and contains zeros

from entry 𝑖 + 2 through 𝑛 − 1. Recall that at this point, we have reduced the
previous 𝑖 rows on the left side. Thus, we can copy the reduced entries for
row 𝑖 according to the inductive hypothesis, and read off the two sides of
row 𝑖 + 1 within the augmented matrix from Equation C.4. On the left side,
we have

[1 · · · 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 · · · 𝑛

𝑖 0 · · · 0 1 0 0 · · · 0
𝑖 + 1 0 · · · 0 −(𝑛 + 1 − 𝑖)𝑝 − (𝑖 − 1) (𝑛 − 𝑖 − 1)𝑝 + 𝑖 + 1 0 · · · 0

]
,

and on the right side, we have


1 · · · 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 · · · 𝑛 − 1 𝑛

𝑖
𝑝−1

((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖) · · · 𝑝−1
((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖)

1
(𝑛−𝑖)𝑝+𝑖 0 · · · · · · 0 ★

𝑖 + 1 0 · · · 0 −1 1 0 · · · · · · 0

 .
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Now, replace row 𝑖 + 1 with a linear combination of row 𝑖 and row 𝑖 + 1.
Perform the row reduction 𝑅𝑖+1 → 𝑅𝑖+1 + 𝑅𝑖 · ((𝑛 + 1 − 𝑖)𝑝 + (𝑖 − 1)). Then,
we end with the left side of the augmented matrix being

[1 · · · 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 · · · 𝑛

𝑖 0 · · · 0 1 0 0 · · · 0
𝑖 + 1 0 · · · 0 0 (𝑛 − 𝑖 − 1)𝑝 + 𝑖 + 1 0 · · · 0

]
,

and the right side being


1 · · · 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 · · · 𝑛 − 1 𝑛

𝑖
𝑝−1

((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖) · · · 𝑝−1
((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖)

1
(𝑛−𝑖)𝑝+𝑖 0 · · · · · · 0 ★

𝑖 + 1 (𝑝−1)((𝑛+1−𝑖)𝑝+(𝑖−1))
((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖) · · · (𝑝−1)((𝑛+1−𝑖)𝑝+(𝑖−1))

((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖)
(𝑛+1−𝑖)𝑝+(𝑖−1)

(𝑛−𝑖)𝑝+𝑖 − (𝑛−𝑖)𝑝+𝑖
(𝑛−𝑖)𝑝+𝑖 1 0 · · · 0 ★



=


1 · · · 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 · · · 𝑛 − 1 𝑛

𝑖
𝑝−1

((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖) · · · 𝑝−1
((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖)

1
(𝑛−𝑖)𝑝+𝑖 0 · · · · · · 0 ★

𝑖 + 1 𝑝−1
((𝑛−𝑖)𝑝+𝑖) · · · 𝑝−1

((𝑛−𝑖)𝑝+𝑖)
𝑝−1

(𝑛−𝑖)𝑝+𝑖 1 0 · · · 0 ★

 .
Finally, normalize the left side by multiplying row 𝑖 + 1 by 1

((𝑛−𝑖−1)𝑝+(𝑖+1)) .
On the left, we have the (𝑖+1)th row of an 𝑛×𝑛 identity matrix. On the right,
we find the equation that we desired based on the inductive hypothesis!
That is, the entries in row 𝑖 + 1 are described by

(L𝑝)−1
𝑖+1, 𝑗 =



𝑝 − 1
((𝑛 − 𝑖)𝑝 + 𝑖)((𝑛 − 𝑖 − 1)𝑝 + 𝑖 + 1) 𝑗 < 𝑖 + 1

1
(𝑛 − 𝑖 − 1)𝑝 + 𝑖 + 1

𝑗 = 𝑖 + 1

0 𝑖 + 1 < 𝑗 < 𝑛.

Conclusion: Hence, we can conclude that the inductive hypothesis holds,
which means our equation for L−1

𝑝 in Equation 4.11 is valid up to row 𝑛 − 1!

Determining row n: At this stage, we have a row of ones in the 𝑛th row,
and the first 𝑛 − 1 rows of an 𝑛 × 𝑛 identity matrix above. So, we subtract
rows 1 through 𝑛 − 1 from row 𝑛 to conclude our Gaussian elimination. To
determine the final row, it turns out we can also use induction. Working
backward, we can set up our base cases, the 𝑛 − 1 and 𝑛 − 2 elements. The
𝑛 − 1 element simply comes from the diagonal element of the 𝑛 − 1 row, so it
is

(L𝑝)−1
𝑛,𝑛−1 = − 1

𝑝 + 𝑛 − 1 .
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The 𝑛 − 2 element comes from row 𝑛 − 1 and the diagonal element of
row 𝑛 − 2, and it is

(L𝑝)−1
𝑛,𝑛−2 = − 𝑝 − 1

((𝑛 − 𝑛 + 2)𝑝 + 𝑛 − 2)((𝑛 − 𝑛 + 1)𝑝 + 𝑛 − 1) −
1

(𝑛 − (𝑛 − 2))𝑝 + 𝑛 − 2

= − 1
𝑝 + 𝑛 − 1

To gain intuition before the inductive step, we can try calculating one
more element. The 𝑛 − 3 element comes from row 𝑛 − 1, 𝑛 − 2, and the
diagonal element of row 𝑛 − 3. However, we can also define it recursively in
terms of (L𝑝)−1

𝑛,𝑛−2.

(L𝑝)−1
𝑛,𝑛−3 = (L𝑝)−1

𝑛,𝑛−2 +
1

(𝑛 − (𝑛 − 2))𝑝 + 𝑛 − 2

− 𝑝 − 1
((𝑛 − 𝑛 + 3)𝑝 + 𝑛 − 3)((𝑛 − 𝑛 + 2)𝑝 + 𝑛 − 2)

− 1
(𝑛 − (𝑛 − 3))𝑝 + 𝑛 − 3

= − 1
𝑝 + 𝑛 − 1 + 1

2𝑝 + 𝑛 − 2 −
𝑝 − 1

(3𝑝 + 𝑛 − 3)(2𝑝 + 𝑛 − 2)

− 2𝑝 + 𝑛 − 2
(3𝑝 + 𝑛 − 3)(2𝑝 + 𝑛 − 2)

= − 1
𝑝 + 𝑛 − 1

If we follow this step of recursively defining the elements of L−1
𝑝 in row

𝑛, we can determine all the values inductively! We can exactly use our
calculations for (L𝑝)−1

𝑛,𝑛−3 above, substituting 𝑗 + 1 for 3 and 𝑗 for 2 in our
inductive step.

For our inductive hypothesis, assume that (L𝑝)−1
𝑛𝑗

= − 1
𝑝+𝑛−1 .

To prove this last row by induction, we wish to show that (L𝑝)−1
𝑛,𝑗+1 =

− 1
𝑝+𝑛−1 . In general, the 𝑗 + 1 element comes from row 𝑛 − 1, 𝑛 − 2, . . . 𝑛 − 𝑗 ,

and the diagonal element of row 𝑛 − (𝑗 + 1), and it can be defined recursively
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as

(L𝑝)−1
𝑛,𝑛−(𝑗+1) = (L𝑝)−1

𝑛,𝑛−𝑗 +
1

(𝑛 − (𝑛 − 𝑗))𝑝 + 𝑛 − 𝑗

− 𝑝 − 1
((𝑛 − 𝑛 + (𝑗 + 1))𝑝 + 𝑛 − (𝑗 + 1))((𝑛 − 𝑛 + 𝑗)𝑝 + 𝑛 − 𝑗)

− 1
(𝑛 − (𝑛 − (𝑗 + 1)))𝑝 + 𝑛 − (𝑗 + 1)

= − 1
𝑝 + 𝑛 − 1 + 1

𝑗𝑝 + 𝑛 − 𝑗
−

𝑝 − 1
((𝑗 + 1)𝑝 + 𝑛 − (𝑗 + 1))(𝑗𝑝 + 𝑛 − 𝑗)

− 𝑗𝑝 + 𝑛 − 𝑗

((𝑗 + 1)𝑝 + 𝑛 − (𝑗 + 1))(𝑗𝑝 + 𝑛 − 𝑗)

= − 1
𝑝 + 𝑛 − 1 + 1

𝑗𝑝 + 𝑛 − 𝑗
−
�����������������:

−1
𝑗𝑝+𝑛−𝑗

(𝑗 + 1)𝑝 + 𝑛 − (𝑗 + 1)
((𝑗 + 1)𝑝 + 𝑛 − (𝑗 + 1))(𝑗𝑝 + 𝑛 − 𝑗)

= − 1
𝑝 + 𝑛 − 1

Hence, the last row is also as we expect in Equation 4.11, and that
equation has now been fully verified.

4.4 Ratio for Sensitivity of the Family

Now that we are confident in our equation for v𝑝 , we can conduct more
preliminary analysis on the ratios between ratings for the perfect season.
Inspired by Vaziri (2016), we study the sensitivity by studying the ratio of
the smallest to the largest increment in rating. Thus, let the sensitivity ratio
be

𝑅𝑠 =
𝑣1 − 𝑣2

𝑣𝑛−1 − 𝑣𝑛
.

First, calculate the numerator, 𝑣1 − 𝑣2, as

𝑣1 − 𝑣2 =
𝑛 − 1

𝑛𝑝 − 𝑝 + 1 − (𝑝 − 1)(𝑛 − 1)
(𝑛𝑝 − 𝑝 + 1)(𝑛𝑝 − 2𝑝 + 2) −

𝑛 − 3
𝑛𝑝 − 2𝑝 + 2

=
2𝑛

(𝑛𝑝 − 𝑝 + 1)(𝑛𝑝 − 2𝑝 + 2) .
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Next, calculate the denominator as

𝑣𝑛−1 − 𝑣𝑛 =
(𝑝 − 1)(𝑛 − 2)2

(2𝑝 + 𝑛 − 2)(𝑝 + 𝑛 − 1) +
−𝑛 + 3
𝑝 + 𝑛 − 1 − (𝑝 − 1)(𝑛 − 1)

𝑛(𝑝 + 𝑛 − 1) − −𝑛 + 1
𝑛

=
2𝑛𝑝

(2𝑝 + 𝑛 − 2)(𝑝 + 𝑛 − 1) .

Thus, the ratio is

𝑅𝑠 =
��2𝑛

(𝑛𝑝 − 𝑝 + 1)(𝑛𝑝 − 2𝑝 + 2) ·
(2𝑝 + 𝑛 − 2)(𝑝 + 𝑛 − 1)

��2𝑛𝑝
(4.15)

=
𝑛2 − 𝑛(3 + 3𝑝) + (2𝑝2 − 4𝑝 + 2)

𝑛2𝑝3 − 𝑛(3𝑝3 + 3𝑝2) + (2𝑝3 − 4𝑝2 + 2𝑝) , (4.16)

and if we take the limit as 𝑛 approaches ∞, we have the sensitivity ratio 𝑅𝑠 is

lim
𝑛→∞

𝑅𝑠 =
1
𝑝3 . (4.17)

Notice that if 𝑝 = 0, as in the Markov method, lim𝑛→∞ 𝑅𝑠 = ∞. Thus
especially for larger 𝑛, the increments in the tail of the rating vector become
very small. Since only a small increment is needed to jump to the next
ranking spot, we can conclude that the tail of the Markov method is extremely
sensitive, which we can also confirm experimentally. On the other hand,
if 𝑝 = 1 as in the m-Colley method, the rating vector is much more stable.
Even without taking the limit, notice the numerator and denominator are
the same if we take 𝑝 = 1 in Equation 4.16, which means 𝑅𝑠 = 1 for all 𝑛.
In other words, the rating vector should be evenly spaced, evenly stepping
from the first to the last rating.





Chapter 5

Laplacian Family Sensitivity

In this chapter, we will study how the ratings of methods within the family are
affected when upsets occur. First, we will study the extreme case of maximal
upsets. Then, we will build up the relevant equations to mathematically
describe any upset between two teams (rank-one upsets). We will also return
to our canonical five team example to build intuition for this problem and
share some insights about the sensitivity of ranking methods based on the
effects of these rank-one upsets.

But first, what exactly do we mean by an upset?

Definition 5.1 (Upset, Maximal Upset). Suppose there are 𝑛 alternatives, and
we have a perfect season as in Definition 3.1. Now, let an additional 𝜖 of a game
be played that is unexpected based on the current ranking, so that Team 𝑗 has an
additional 𝜖 of a win against Team 𝑖 for 𝑗 > 𝑖. We call this game an upset (in other
words, a lone perturbation to the perfect season). If 𝑖 = 1 and 𝑗 = 𝑛, then there is a
maximal worst-beats-best upset, which we will call the maximal upset.

We first defined an upset as a perturbation to the perfect season involving
two teams. However, we can generalize this definition to involve 𝑛 teams.

Definition 5.2 (Rank-𝑛 Upset). In a rank-𝑛 upset, there are 𝑛 − 1 upsets between
distinct pairs of teams. For example, if Team 5 beats Team 1 (or it beats Team 1 ten
times), there is a rank-one upset.

Even after an upset, we will refer to teams by their original rank from
the perfect season, which means that Team 5 may start in fifth (last) place,
then move up to rank 1 after winning against Team 1 (the team originally
ranked first) five times, but we will still refer to it as Team 5.
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5.1 Maximal Upset

Ranking methods differ in how they weigh the strength of the schedule and
the number of points or games attributed to wins and losses. In this section,
we ask about how rankings change by applying the maximal upset, which is
a question that is also answered in Devlin and Treloar (2018). We replace the
win of Team 1 against Team 𝑛 with a loss. By investigating this extreme case
of maximal upsets on the perfect season, we will gain intuition for which
ranking methods in our family are ideal for a variety of applications. Across
the ranking family, we can see how rankings change when the maximal
upset is applied in Figure 5.1.

We see the same trends in Figures 5.1a, 5.1b, 5.1c, and 5.1d, but with the
number of teams varying from 𝑛 = 10 to 𝑛 = 25 to 𝑛 − 50 to 𝑛 = 100. In all
the subfigures within Figure 5.1, Team 𝑛 is tied for first place at 𝑝 = 0, and is
tied for last place at 𝑝 = 1, which is a dramatic shift!

Remark 1: There is a steep drop in the rank of the Team 𝑛 after 𝑝 increases
from 0, and this effect is even more pronounced as 𝑛 increases. The fast
decrease in rank can be attributed to the same fast decrease in rating in the
perfect season (see Figure 4.1).

Remark 2: At 𝑝 = 0 (the Markov method), there is a tie between Teams 1
and 𝑛. Using the rank diffusion interpretation of Chapter 3, recall that for
𝑝 = 0 there is only rank flowing from wins. Since Team 1 is undefeated in
the perfect season, and we then replace its win against Team 𝑛 with a loss,
all of the rank from Team 1 flows to Team 𝑛. Thus, Team 1 and Team 𝑛 are
tied at 𝑝 = 0. This definition of the Markov method at 𝑝 = 0 follows the
description of the Markov method in Chartier et al. (2011).

Remark 3: At 𝑝 = 1 (the m-Colley method), recall from Chapter 3 that the
flow from wins and losses is the same, which means that only the records
matter. With the maximal upset, Team 𝑛 and Team 𝑛 − 1 have the same
record: one win and 𝑛 − 2 losses. Since the record for the bottom two teams
is the same (and so is the number of games they have played), they have the
same external infusion of rank and hence the same rank. The same logic
holds for the rank of Team 1 and Team 2, which is why they also tie at 𝑝 = 1.

After seeing the effects of the maximal upset, we can place more faith in
our conclusions from the perfect season about the sensitivity of this Laplacian
ranking family, and how the ranking methods with larger 𝑝 deviate much
less from the rankings of the perfect season when upsets are applied (in
other words, they are more stable).

In this section, we ask how rankings change after the maximal upset is
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a. 𝑛 = 10 b. 𝑛 = 25

c. 𝑛 = 50 d. 𝑛 = 100

Figure 5.1 Ranks of teams across the range where 𝑝 ∈ [0, 1], where there is
a maximal upset such that Team 𝑛 unexpectedly beats Team 1 in their game,
swapping the direction of an edge in the perfect season.
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applied as in Devlin and Treloar (2018). However, we end up with slightly
different results, especially at 𝑝 = 0. In Figure 5.1, our rankings at 𝑝 = 0 align
with the Markov method defined in Chartier et al. (2011). However, they
do not fully match up with the definition of 𝑝 = 0 in the family of ranking
methods defined by Devlin and Treloar (2018). For example, Devlin and
Treloar (2018) finds that Team 𝑛 = 100 is ranked 11th when 𝑛 = 100, but in
Figure 5.1d, we can see that Team 𝑛 = 100 is tied for first place when we
use the definition of the Markov method from Chartier et al. (2011). One
direction of future work involves better integrating the Markov method into
this family of ranking methods.

5.2 Perturbation

If pairwise comparison data is altered, how do rankings change? This
question is crucial to many applications. In sports, you might wonder
“would my team have placed higher if they’d won the game against the
Dastardly Demons by five more points?”

Our motivating question in this section, derived from Chartier et al.
(2011), is as follows: given the number of teams 𝑛, an upset of Team 𝑗

winning over Team 𝑖 where 𝑖 < 𝑗, and a desired 𝑘 for the new rank of Team
𝑗, what 𝜖 is needed to propel Team 𝑗 to rank 𝑘? In contrast to Section 5.1
where we altered the result of a game in the perfect season, in this section
we keep all the games in the perfect season and add additional games. To
answer the motivating question, we will begin by studying how our matrix
equation changes. We will denote perturbed matrices and vectors with a
tilde symbol.

Author’s Note

Pull out your cheat sheet for this section! The equation numbers
match, but everything is listed for reference in Appendix A.

Recall that L𝑝 is essentially 𝑊 + 𝑝𝐿1 from Equation 4.3, and 𝑊 and 𝐿 are
summarized in Equation 2.12 and Equation 2.13. If Team 𝑗 beats Team 𝑖 by
an additional 𝜖, then there are four consequences that are reflected by L𝑝 :

(1) Team 𝑖 has an additional 𝜖 of a loss (total),

(2) Team 𝑗 has an additional 𝜖 of a win (total),

1The last row of L𝑝 is replaced by all ones, but the other rows are all the same as 𝑊 + 𝑝𝐿.
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(3) Team 𝑖 has an additional 𝜖 of a loss against Team 𝑗, and

(4) Team 𝑗 has an additional 𝜖 of a win against Team 𝑖.

Based on their definitions, (1) means that 𝑊𝑖𝑖 increases by 𝜖, (2) means that
𝐿 𝑗 𝑗 increases by 𝜖, (3) means that 𝐿𝑖 𝑗 decreases by 𝜖, and (4) means that 𝑊𝑗𝑖

decreases by 𝜖. Thus,

�̃� = 𝑊 + 𝜖(e𝑖 − e𝑗)e⊤𝑖
and 𝐿 = 𝐿 − 𝜖(e𝑖 − e𝑗)e⊤𝑗 ,

which means that based on Equation 4.3,

L̃𝑝 = L𝑝 + 𝜖(e𝑖 − e𝑗)(e𝑖 − 𝑝e𝑗)⊤.

There is one exception to this equation: the case of 𝑗 = 𝑛. Recall that L𝑝

is not full rank, and the information it contains can be described without the
last row. We replaced the last row of L𝑝 with all ones and the last entry in
s𝑝 with a zero to specify that all ratings must sum to one to create L𝑝 and s𝑝 .
Thus even when we modify the original data, all the necessary information
is still contained in the first 𝑛 − 1 rows, and we do not want to modify the
final row. Since (2) and (4) alter the last row, we need to specify that they
should only come into play for 𝑗 ≠ 𝑛. To do so, we modify the previous
equation by introducing the Kronecker delta (first mentioned in Section 3.5):

𝛿𝑖 𝑗 =

{
0 if 𝑖 ≠ 𝑗

1 if 𝑖 = 𝑗
,

and we have
L̃𝑝 = L𝑝 + 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗)(e𝑖 − 𝑝e𝑗)⊤ , (5.1)

where row 𝑗 is only modified for 𝑗 ≠ 𝑛 because 1 − 𝛿 𝑗𝑛 is only 1 if 𝑗 ≠ 𝑛.
Similarly, we need to modify s𝑝 . From Equation 4.4, we can see that we

need to subtract 𝜖 from the 𝑖th entry and add 𝜖 to the 𝑗th entry of s𝑝 . Again,
we should only modify the last entry if 𝑗 ≠ 𝑛. Thus, we have

s̃𝑝 = s𝑝 − 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗). (5.2)

To find (L̃𝑝)−1, we need to apply the Sherman-Morrison formula for a
rank-one update:

(𝐴 + uv∗)−1 = 𝐴−1 − 𝐴−1uv∗𝐴−1

1 + v∗𝐴−1u
. (5.3)
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Let u = 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗) and v∗ = (e𝑖 − 𝑝e𝑗)⊤ in Equation 5.3. Then,
(L̃𝑝)−1 is equivalent to

(L̃𝑝)−1 = (L𝑝 + uv∗)−1 = (L𝑝)−1 −
L−1

𝑝 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗)(e𝑖 − 𝑝e𝑗)⊤L−1
𝑝

1 + (e𝑖 − 𝑝e𝑗)⊤L−1
𝑝 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗)

.

To simplify this complicated expression, we will say that (L̃𝑝)−1 = L−1
𝑝 −𝛽𝐻,

where 𝛽 is the constant term from the denominator and a factor of 𝜖 from u
in the numerator such that

𝛽 =
𝜖

1 + (e𝑖 − 𝑝e𝑗)⊤L−1
𝑝 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗)

,

and H is the matrix from the numerator without the factor of 𝜖, so

𝐻 = L−1
𝑝 (e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗)(e𝑖 − 𝑝e𝑗)⊤L−1

𝑝 .

We can examine these equations for 𝛽 and 𝐻 further to simplify the
expressions. For 𝛽, there are constant factors, but we will study the second
term in the denominator, where we essentially have an inner product, but
in two steps. First, there is (e𝑖 − 𝑝e𝑗)⊤L−1

𝑝 , which results in a 1 × 𝑛 vector
representing row 𝑖 of L𝑝 minus row 𝑗 of L𝑝 weighted by 𝑝. Second, we have
an inner product where this row difference is multiplied by 𝜖(e𝑖 −(1− 𝛿 𝑗𝑛)e𝑗).
Thus, we have the 𝑖th minus the 𝑗th entry of this row difference as a result,
which is a constant! For 𝑗 = 𝑛, we merely return the 𝑖th entry of the row
difference. If we denote this constant 𝑐, then 𝛽 = 𝜖

1+𝜖𝑐 . To simplify the
notation, we will create an alias for L−1

𝑝 , so that the matrix 𝐴 = L−1
𝑝 , with

columns a1 , a2 . . . , a𝑛 and entries 𝑎𝑛𝑚 to make it easier to reference. In
summary,

𝛽 =
𝜖

1 + 𝜖(𝑎𝑖𝑖 − 𝑝𝑎 𝑗𝑖 − (1 − 𝛿 𝑗𝑛)(𝑎𝑖 𝑗 − 𝑝𝑎 𝑗 𝑗))
. (5.4)

In 𝐻, we have an outer product. The first term in the outer product is
L−1

𝑝 (e𝑖 − (1− 𝛿 𝑗𝑛)e𝑗), which is a difference of columns 𝑖 and 𝑗 (or just column
𝑖 if 𝑗 = 𝑛), and results in a 𝑛 × 1 vector. The second term is (e𝑖 − 𝑝e𝑗)⊤L−1

𝑝 ,
which is row 𝑖 of L𝑝 minus row 𝑗 of L𝑝 weighted by 𝑝, and results in a
1 × 𝑛 vector. Their product is an outer product of these column and row
differences to determine 𝐻. So, we can conclude that the elements of 𝐻 are

𝐻𝑛𝑚 = (𝑎𝑛𝑖 − (1 − 𝛿 𝑗𝑛)𝑎𝑛𝑗)(𝑎𝑖𝑚 − 𝑝𝑎 𝑗𝑚). (5.5)
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Moving back to the rating vector, we can conclude that the perturbed
rating vector is ṽ𝑝 = (L̃𝑝)−1s̃𝑝 = (L−1

𝑝 − 𝛽𝐻)(s𝑝 − 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗)), which
we can expand to

ṽ𝑝 = v𝑝 − 𝜖L−1
𝑝 (e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗) − 𝛽𝐻s𝑝 + 𝜖𝛽𝐻(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗). (5.6)

In the first term, we already know that L−1
𝑝 s𝑝 = v𝑝 , and we proved that

v𝑝 =

[ (𝑛 − 𝑖 + 1)(𝑛 − 𝑖)𝑝 − 𝑖(𝑖 − 1)
(((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1))((𝑛 − 𝑖)𝑝 + 𝑖)

]
(Equation 4.13)

in Chapter 4! Now we need to make sense of the remaining three terms. To
start to understand what ṽ𝑝 is, we will return to our canonical example and
see what intuition we can glean from the five-team system.

Recall that we previously found L−1
𝑝 for five teams in Equation 4.6.

Author’s Note

If you wish to gain more intuition about 𝐻 and 𝛽 (beyond the notes
about the inner and outer products in the previous section) try doing
the computations for the five team system!

We know 𝐻 from the previous section and L−1
𝑝 from Equation 4.11, and

we can substitute 𝑛 = 5, 𝑗 = 5 to determine that

𝛽 =
𝜖(4𝑝 + 1)(𝑝 + 4)

(4𝑝 + 1)(𝑝 + 4) + 2𝜖(2𝑝2 + 𝑝 + 2) .

Hence multiplying, we obtain that for an upset of Team 𝑖 against Team 5,
the perturbed rating vector is

ṽ𝑝 = v𝑝+
[
−𝜖 +

(
1

4𝑝 + 1 +
𝑝

𝑝 + 4

)
𝜖(4𝑝 + 1)(𝑝 + 4)

(4𝑝 + 1)(𝑝 + 4) + 2𝜖(2𝑝2 + 𝑝 + 2) (𝜖 − 4)
]

a𝑖 .

(5.7)
Now that we know what the perturbed rating vector for each of the five

teams would be, we can ask about how rankings change after upsets occur.
We will primarily ask about exactly what upset is required for the rankings
to shift and result in a tie between any two teams.

5.3 Epsilon Changes

Suppose there are 𝑛 teams, and Team 𝑖 is initially higher ranked than Team
𝑗. In this section, we are motivated by the question “how many wins (𝜖) are
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needed of Team 𝑗 against Team 𝑖 in order for Team 𝑗 to surpass the ranking
of Team 𝑖?” Mathematically, we are asking what 𝜖 is needed to have �̃� 𝑗 > �̃�𝑖?

Figure 5.2 For Team 𝑗 playing against Team 𝑖 < 𝑗, the 𝜖 of an upset or upsets
needed in order for Team 𝑗 to surpass Team 𝑖 in ranking.

Within Figure 5.2, we observe the 𝜖 needed for Team 5 to tie with various
Teams 𝑖 across the range where 𝑝 ∈ (0, 1]. Starting with the lowest rank team,
𝑖 = 5 has 𝜖 = 0 for all 𝑝 values, which should be true because no additional
games need to be played for Team 5 to have the same rating as Team 5 itself.
For 𝑖 = 2, 𝑖 = 3, and 𝑖 = 4, the 𝜖 needed for Team 5 to start to overtake
the other team’s ranking increases as 𝑝 increases. So, our observations in
Chapter 4 are reflected quite clearly, since higher 𝑝 values correspond with
more stable ranking methods which require larger 𝜖 upsets to affect the
overall rankings. Finally, for 𝑖 = 1, 𝜖 is constant at 4 across all 𝑝 values. Why
does this occur only for 𝑖 = 1? To answer this question, we will study the
perturbed ratings for Team 𝑖 = 1 and Team 𝑗 = 5 in Figures 5.3a, 5.3b, and
5.3c.

We can gain an intuition for why the 𝑖 = 1 line in Figure 5.2 has an 𝜖 of 4,
independent of the ranking method in the Laplacian family by considering
Figures 5.3a, 5.3b, and 5.3c. As we might expect, 𝜖 is higher for higher-ranked
teams 𝑖, as it takes more wins for Team 5 to tie with a higher-ranked team.

Remark 1: Looking at the ratings of Team 1 and Team 5, we notice that
rating magnitudes are higher and there is a larger range of ratings at lower
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a. 𝑖 = 1, 𝑗 = 5, 𝑝 = 0.1 b. 𝑖 = 1, 𝑗 = 5, 𝑝 = 0.5 c. 𝑖 = 1, 𝑗 = 5, 𝑝 = 1

d. 𝑖 = 2, 𝑗 = 5, 𝑝 = 0.1 e. 𝑖 = 2, 𝑗 = 5, 𝑝 = 0.5 f. 𝑖 = 2, 𝑗 = 5, 𝑝 = 1

g. 𝑖 = 3, 𝑗 = 5, 𝑝 = 0.1 h. 𝑖 = 3, 𝑗 = 5, 𝑝 = 0.5 i. 𝑖 = 3, 𝑗 = 5, 𝑝 = 1

j. 𝑖 = 4, 𝑗 = 5, 𝑝 = 0.1 k. 𝑖 = 4, 𝑗 = 5, 𝑝 = 0.5 l. 𝑖 = 4, 𝑗 = 5, 𝑝 = 1

Figure 5.3 The change in ratings for Team 𝑖 and Team 𝑗 = 5, after Team 𝑗

has 𝜖 of an upset against Team 𝑖. Within the range where 𝑝 ∈ (0, 1], the points
𝑝 = 0.1, 𝑝 = 0.5, and 𝑝 = 1 are studied. Each row has a different Team 𝑖, and
each column corresponds to a different parameter 𝑝 in the family.
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𝑝 values for the perfect season with 𝜖 = 0 as we mentioned in Chapter 4. In
Figure 5.3a, this large range in rating magnitudes is most apparent at 𝜖 = 0.

Remark 2: As 𝜖 increases from 0, the initial decrease in rating for Team 1
is steeper at lower 𝑝 values, since low 𝑝 values are sensitive to upsets due
to the uneven distribution of ratings we highlighted in Chapter 4. On the
other hand, for ranking methods corresponding to larger 𝑝 values, ratings
are more evenly spaced and the rankings are more stable so they require a
larger 𝜖 of upsets to change the rankings. Thus the rate of decrease for the
rating of Team 1 is much faster between 𝜖 = 0 to 𝜖 = 4 in Figure 5.3a (from
about 2.8 to 0) than in Figure 5.3b (from about 1.3 to 0) and 5.3c (from 0.8
to 0). In light of Chapter 3, we know that for lower 𝑝 values, losses do not
have as much of an effect on the rank diffusion, which is why Team 5’s rank
increases slower than Team 𝑖’s rank decreases.

The faster decrease in rating compensates for the higher ratings at lower
𝑝 values from Figure 5.3a to 5.3b to 5.3c, and this contrasting effect between
Remark 1 and Remark 2 leads to a tie between Team 1 and Team 5 after 𝜖 = 4
upsets in all three cases. Next, we can look at the ratings of Teams 𝑖 and 𝑗

for not just the maximal upset to deepen our understanding of Figure 5.2,
which leads us to the remainder of Figure 5.3.

Remark 3: For 𝑖 = 2, 3, and 4, we see similar effects when 𝜖 and 𝑝 increase
as in 𝑖 = 1. As per Remark 1, rating magnitudes and ranges are higher at
lower 𝑝 values. However, this effect is much less pronounced for 𝑖 > 1, as
we notice in Figure 4.1a from the perfect season ratings. As per Remark 2,
increasing 𝑝 leads to a slower decrease in ratings when 𝜖 is increased.

For 𝑖 > 1, as 𝑝 increases, the 𝜖 required for Team 𝑗 to tie with Team 𝑖 is
not constant. Since the effect of Remark 1 is weaker for 𝑖 > 1, the steeper
decrease in rating for Team 𝑖 (compared to the slower increase in rating for
Team 5) at low 𝑝 values means that the 𝜖 required to tie is smaller.

Remark 4: At 𝑝 = 1 in the network diffusion interpretation from Chapter 3
(see Figure 3.8), wins and losses both cause rank to diffuse with equal weights
of 1, which is why the rating increase for Team 𝑖 and rating increase for
Team 5 are the same. Hence the curves in Figures 5.3c, 5.3f, 5.3i, and 5.3l are
symmetric and reflected over the horizontal lines 𝑦 = 0, 𝑦 = −0.25, 𝑦 = −0.4,
and 𝑦 = −0.625 respectively.

Now, we have fully investigated Figure 5.2, and we can precisely deter-
mine the number of upsets needed for a lower-ranked team to tie with a
higher-ranked team.



Chapter 6

Conclusion

Finally, we will summarize the work done in this thesis and suggest future
directions.

6.1 Summary

Ultimately, we can now select methods within the Laplacian ranking family
of Devlin and Treloar (2018) that are more suitable for problems of partial
ranking and ranking using data with high variability. We draw these
conclusions by studying the ratings and rankings of the perfect season, then
applying rank-one perturbations such as the maximal upset under the lens
of a network diffusion interpretation.

To summarize, we first investigated the network diffusion interpretation
for the Laplacian family of ranking methods from Devlin and Treloar (2018).
The parameter 𝑝 can be visualized as the amount of backward flow resulting
from losses. The ranking method at 𝑝 = 0 corresponds to the Markov
method, where there is a reverse random walk, and the ranking method at
𝑝 = 1 corresponds to the m-Colley method where ratings are found via a
least squares approximation.

We then proved a formula for the rating for 𝑛 teams in the perfect season
using induction along with a version of Gaussian elimination. The ratings
near 𝑝 = 0 have a large range in ratings, and top-ranked teams have especially
high magnitude ratings, which is conducive to partial ranking problems.
As 𝑝 increases, the rating range and magnitudes decrease. The ratio of the
difference between the ratings of the top two and last two ranked teams is
proportional to 𝑝3. Then, at 𝑝 = 1, ratings are evenly spaced, which means
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this method (m-Colley) is much more stable and suitable for ranking with
high variability data.

After examining the perfect season, we tested the effect of perturbations
on the resulting rankings, starting with the maximal upset. We found that
our results from the perfect season were still valid when upsets were applied,
and ranking methods with higher 𝑝 values were much more stable.

Finally, we studied the effect of any upset on the rankings and derived
a formula for the number of wins a lower-ranked team would need to tie
with a higher-ranked team. Upon closer examination, we found that two
main factors contributed to the number of upsets: the rating of the team
in the perfect season and the stability of the ranking method. Interestingly
enough, for the first and last ranked team to tie, a constant number of wins
was required for all methods in the family. In this case, the two factors
were balanced out. However, for upsets between middle-ranked teams and
last-ranked team, a larger number of upsets was needed to tie with larger 𝑝
values because the ratings of the middle teams were not high enough in the
perfect season in low 𝑝 values (when compared to the first ranked team) to
compensate for the steep decrease in rating due to the less stable ranking
method at low 𝑝 values.

6.2 Future Directions

This family can be modified by using point differentials as input data instead
of the number of wins and losses for each team, as in the Massey method.
Using points allows for more intricacy and precision in the ranking data, as
there are more data to rank based on than simple wins and losses. On the
other hand, ignoring the margin of victory eliminates bias (see Section 3.2). In
addition, we can expand and adapt the family in other ways. As mentioned
in Subsection 2.5.1, we can add the number of virtual games 𝑘 as a parameter
to the family. Finally, as mentioned in Section 5.1, one important remaining
task is to better integrate the Markov method into the family of Laplacian
ranking methods.

Another future direction of this work involves expanding the rank-one
update to a rank-𝑛 update using the Woodbury formula. We proved the
formula for a perturbed rating vector using the Sherman-Morrison formula
(see Equation 5.3) for inverting a matrix after a rank-one update, but the
Sherman-Morrison formula is a special case of the Woodbury formula. The
Woodbury formula gives the inverse of a matrix after a rank-𝑛 update, and
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we could use this formula to study how upsets involving more than two
teams affect rankings in a perfect season.

Besides upsets, we can study different types of perturbations on the
pairwise comparison data. In particular, we can test the effects of spoilers,
where a node is removed (Myatt, 2007). In voting theory, a spoiler would
mean a candidate drops out of an election, which may change the election
results. This change is a violation of the independence of irrelevant alterna-
tives condition in Arrow’s impossibility theorem (Arrow, 1950). However,
for different applications, it may be desirable to violate this condition. In
sports, for example, the styles and various strengths of different teams mean
that a team dropping out of the league could change the rankings. How do
spoilers affect ranking methods in the Laplacian family?

Even more generally, we can try to measure the tractability of data for
ranking problems to see how different ranking methods handle messy data.
This measure is called rankability, and it is based on the distance from
perfectly rankable data 𝛿 and the number of optimal rankings 𝜌 that are 𝛿
away from the input data (Anderson et al., 2019, 2021). In this thesis, we only
study the effect of rank-one upsets on the perfect season. For rank-𝑛 upsets,
do our findings still hold as 𝑛 increases and the rankability decreases?

Finally, we found that ranking methods with low 𝑝 are better suited
towards ranking using data with high variability, and ranking methods
with high 𝑝 are better suited towards partial ranking problems. Are there
any other use cases or properties that shift as 𝑝 varies between 0 and 1?
Depending on the ranking method used, it would be interesting to study how
properties from Vaziri et al. (2018) and González-Díaz et al. (2014), as well as
other factors like fairness (Pitoura et al., 2022; Kuhlman and Rundensteiner,
2020), vary in this interval for 𝑝.

Author’s Note

Hope you enjoyed reading and learned something new! Thank you
for joining me on this journey.





Appendix A

Key Equations

A.1 Variables

Ranking Problem Variables
Variable Definition

𝑛 Number of teams/candidates/alternatives
𝑝 The ranking family parameter
v𝑝 The rating vector as a function of 𝑝
𝑊𝑖 The total number of wins for team 𝑖

𝑊𝑖 𝑗 The number of wins for team 𝑖 against team 𝑗

𝐿𝑖 The total number of losses for team 𝑖

𝐿𝑖 𝑗 The number of losses for team 𝑖 against team 𝑗

Table A.1 A summary of definitions for variables that emerge in the key equa-
tions.

A.2 Ranking Family Key Equations

The ranking family equation is

L𝑝v𝑝 = s𝑝 . (Equation 4.2)

The formulation for the modified Laplacian is

(L𝑝)𝑖 𝑗 =
{
𝑊𝑖 𝑗 + 𝑝𝐿𝑖 𝑗 𝑖 ≤ 𝑛 − 1
1 𝑖 = 𝑛

. (Equation 4.3)
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with the second to last row taken out, where 𝑊 and 𝐿 are defined entrywise
as

𝑊𝑖 𝑗 =

{
−𝑤𝑖 𝑗 𝑖 ≠ 𝑗

𝐿𝑖 𝑖 = 𝑗
, (Equation 2.12)

and

𝐿𝑖 𝑗 =

{
−𝑙𝑖 𝑗 𝑖 ≠ 𝑗

𝑊𝑖 𝑖 = 𝑗.
(Equation 2.13)

Alternatively, we can define L𝑝 piecewise as

(L𝑝)𝑖 𝑗 =


−1 𝑖 ≠ 𝑛, 𝑖 < 𝑗

(𝑛 − 𝑖)𝑝 + (𝑖 − 1) 𝑖 ≠ 𝑛, 𝑖 = 𝑗

−𝑝 𝑖 ≠ 𝑛, 𝑖 > 𝑗

1 𝑖 = 𝑛

, (Equation 4.9)

or write it in matrix form as

L𝑝 =



1 2 𝑖 𝑛 − 1 𝑛

1 (𝑛 − 1)𝑝 −1 −1
2 −𝑝 (𝑛 − 2)𝑝 + 1 −1 −1
3 −𝑝 −𝑝 (𝑛 − 3)𝑝 + 2 −1 −1

...
. . .

...

𝑖 −𝑝 −𝑝 (𝑛 − 𝑖)𝑝 + (𝑖 − 1) −1 −1
...

. . .
...

𝑛 − 1 −𝑝 −𝑝 𝑝 + (𝑛 − 2) −1
𝑛 1 1


.

(Equation 4.10)
The RHS vector in general is

s𝑝 =


[[
𝑊𝑖 − 𝐿𝑖

]
(𝑛−1)×1

�� 0
]⊤

𝑝 > 0

0 𝑝 = 0,
(Equation 4.4)

and for the perfect season, it is

(s𝑝)𝑖 =
{
𝑛 − 2𝑖 + 1 if 𝑝 > 0, 1 ≤ 𝑖 ≤ 𝑛 − 1
0 if 𝑝 > 0, 𝑖 = 𝑛 or 𝑝 = 0

. (Equation 4.5)
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L−1
𝑝 in the perfect season is

(L𝑝)−1𝑖 𝑗 =



−1
𝑝 + 𝑛 − 1 𝑖 = 𝑛, 𝑖 ≠ 𝑗

𝑝

𝑝 + 𝑛 − 1 𝑖 = 𝑛 = 𝑗

0 𝑖 ≠ 𝑛, 𝑖 < 𝑗
1

(𝑛 − 𝑖)𝑝 + 𝑖
𝑖 ≠ 𝑛, 𝑖 = 𝑗

𝑝 − 1
((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1)((𝑛 − 𝑖)𝑝 + 𝑖) 𝑖 ≠ 𝑛, 𝑖 > 𝑗.

(Equation 4.11)
The rating vector in the perfect season is

v𝑝 =

[ (𝑝 − 1)(𝑖 − 1)(𝑛 − 𝑖 + 1)
((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1)((𝑛 − 𝑖)𝑝 + 𝑖) +

𝑛 − 2𝑖 + 1
(𝑛 − 𝑖)𝑝 + 𝑖

]
𝑛×1

,

(Equation 4.12)
or we can simplify it as

v𝑝 =

[ (𝑛 − 𝑖 + 1)(𝑛 − 𝑖)𝑝 − 𝑖(𝑖 − 1)
(((𝑛 − 𝑖 + 1)𝑝 + 𝑖 − 1))((𝑛 − 𝑖)𝑝 + 𝑖)

]
. (Equation 4.13)

With a rank-one upset where 𝑝 ≠ 0, L̃𝑝 is

L̃𝑝 = L𝑝 + 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗)(e𝑖 − 𝑝e𝑗)⊤ , (Equation 5.1)

and the right hand side vector s̃𝑝 is

s̃𝑝 = s𝑝 − 𝜖(e𝑖 − (1 − 𝛿 𝑗𝑛)e𝑗). (Equation 5.2)

Thus, the perturbed rating vector for 𝑝 ≠ 0 is

ṽ𝑝 = v𝑝−𝜖L−1
𝑝 (e𝑖−(1−𝛿 𝑗𝑛)e𝑗)−𝛽𝐻s𝑝+𝜖𝛽𝐻(e𝑖−(1−𝛿 𝑗𝑛)e𝑗), (Equation 5.6)

where 𝛽 is

𝛽 =
𝜖

1 + 𝜖(𝑎𝑖𝑖 − 𝑝𝑎 𝑗𝑖 − (1 − 𝛿 𝑗𝑛)(𝑎𝑖 𝑗 − 𝑝𝑎 𝑗 𝑗))
, (Equation 5.4)

and the (𝑛, 𝑚)th element of 𝐻 is

𝐻𝑛𝑚 = (𝑎𝑛𝑖 − (1 − 𝛿 𝑗𝑛)𝑎𝑛𝑗)(𝑎𝑖𝑚 − 𝑝𝑎 𝑗𝑚). (Equation 5.5)
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A.3 Examples for 𝑛 = 5

L𝑝 for five teams is

L+
𝑝 =



4𝑝 −1 −1 −1 −1
−𝑝 3𝑝 + 1 −1 −1 −1
−𝑝 −𝑝 2𝑝 + 2 −1 −1
−𝑝 −𝑝 −𝑝 𝑝 + 3 −1
−𝑝 −𝑝 −𝑝 −𝑝 4
1 1 1 1 1


. (Equation 4.1)

L−1
𝑝 for five teams is

L−1
𝑝 =



1
4𝑝 + 1 0 0 0 1

4𝑝 + 1
𝑝 − 1

(4𝑝 + 1)(3𝑝 + 2)
1

3𝑝 + 2 0 0
5𝑝

(4𝑝 + 1)(3𝑝 + 2)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(3𝑝 + 2)(2𝑝 + 3)
1

2𝑝 + 3 0
5𝑝

(3𝑝 + 2)(2𝑝 + 3)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
𝑝 − 1

(2𝑝 + 3)(𝑝 + 4)
1

𝑝 + 4
5𝑝

(2𝑝 + 3)(𝑝 + 4)

− 1
𝑝 + 4 − 1

𝑝 + 4 − 1
𝑝 + 4 − 1

𝑝 + 4
𝑝

𝑝 + 4



.

(Equation 4.6)
s𝑝 for five teams is

s𝑝 =
[
4 2 0 −2 0

]⊤
. (Equation 4.7)

The rating vector v𝑝 for five teams is

v𝑝 =

[
4

4𝑝 + 1
12𝑝 − 2

(4𝑝 + 1)(3𝑝 + 2)
6(𝑝 − 1)

(3𝑝 + 2)(2𝑝 + 3)
2(𝑝 − 6)

(2𝑝 + 3)(𝑝 + 4)
−4
𝑝 + 4

]⊤
.

(Equation 4.8)
With a rank-one upset where 𝑝 ≠ 0, the perturbed rating vector ṽ𝑝 for

five teams is

ṽ𝑝 = v𝑝+
[
−𝜖 +

(
1

4𝑝 + 1 + 𝑝

𝑝 + 4

)
𝜖(4𝑝 + 1)(𝑝 + 4)

(4𝑝 + 1)(𝑝 + 4) + 2𝜖(2𝑝2 + 𝑝 + 2) (𝜖 − 4)
]

a𝑖 .

(Equation 5.7)



Appendix B

Matrix Form of (L𝑝)−1

In this appendix, we write out the expression for L−1
𝑝 from Equation 4.11 in

matrix form. For the sake of readability, we split L−1
𝑝 into two parts: one

containing columns 1 through 3, and the other containing the remaining
columns, up to column 𝑛. You may picture moving the second matrix up to
lie on the right side of the first matrix, piecing the two together.
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L−1
𝑝 =



𝑖 = 1 2 3

1 1
(𝑛−1)𝑝+1 0

2 𝑝−1
((𝑛−1)𝑝+1)((𝑛−2)𝑝+2)

1
(𝑛−2)𝑝+2 0

3 𝑝−1
((𝑛−2)𝑝+2)((𝑛−3)𝑝+3)

𝑝−1
((𝑛−2)𝑝+2)((𝑛−3)𝑝+3)

1
(𝑛−3)𝑝+3 0 · · ·

...

𝑖
𝑝−1

((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖)

...

𝑛 − 1 𝑝−1
(2𝑝+𝑛−2)(𝑝+𝑛−1)

𝑛 −1
𝑝+𝑛−1




𝑖 − 1 𝑖 𝑛 − 1 𝑛

1 0 0 1
(𝑛−1)𝑝+1

2 0 0 𝑛𝑝

((𝑛−1)𝑝+1)((𝑛−2)𝑝+2)

3 0 0 𝑛𝑝

((𝑛−2)𝑝+2)((𝑛−3)𝑝+3)
...

...

𝑖
𝑝−1

((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖)
1

(𝑛−𝑖)𝑝+𝑖 0 0 𝑛𝑝

((𝑛−𝑖+1)𝑝+𝑖−1)((𝑛−𝑖)𝑝+𝑖)

...
...

𝑛 − 1 𝑝−1
(2𝑝+𝑛−2)(𝑝+𝑛−1)

𝑝−1
(2𝑝+𝑛−2)(𝑝+𝑛−1)

1
𝑝+𝑛−1

𝑛𝑝

(2𝑝+𝑛−2)(𝑝+𝑛−1)

𝑛 −1
𝑝+𝑛−1

−1
𝑝+𝑛−1

𝑝

𝑝+𝑛−1



.

(Equation 4.11)



Appendix C

Matrix Reduction

We can use Gaussian elimination on L𝑝 to show that our formula for v𝑝

holds for any number of teams 𝑛 ≥ 3.
Notice that the last element of s𝑝 is 0, which means that we can ignore

the calculations for the last column of (L𝑝)−1. We will use ★ to denote these
calculations that we don’t care about.

Recall from Equation 4.10 the form of L𝑝 . We will set up Gaussian
elimination to find (L𝑝)−1 with

[
L𝑝 |𝐼

]
→

[
𝐼 |(L𝑝)−1] .

Initially, we begin with



L𝑝 = 1 2 𝑖 𝑛 − 1 𝑛

1 (𝑛 − 1)𝑝 −1 −1
2 −𝑝 (𝑛 − 2)𝑝 + 1 −1 −1
3 −𝑝 −𝑝 (𝑛 − 3)𝑝 + 2 −1 −1

...
. . .

...

𝑖 −𝑝 −𝑝 (𝑛 − 𝑖)𝑝 + (𝑖 − 1) −1 −1
...

. . .
...

𝑛 − 1 −𝑝 −𝑝 𝑝 + (𝑛 − 2) −1
𝑛 1 1


.

(4.10)
Now, set up the augmented matrix to perform Gaussian elimination, so

we have
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1 2 𝑖 𝑛 − 1 𝑛

1 (𝑛 − 1)𝑝 −1 −1
2 −𝑝 (𝑛 − 2)𝑝 + 1 −1 −1
3 −𝑝 −𝑝 (𝑛 − 3)𝑝 + 2 −1 −1

...
. . .

...

𝑖 −𝑝 −𝑝 (𝑛 − 𝑖)𝑝 + (𝑖 − 1) −1 −1
...

. . .
...

𝑛 − 1 −𝑝 −𝑝 𝑝 + (𝑛 − 2) −1
𝑛 1 1

𝐼


.

First, add the last (𝑛th) row to all the other rows to turn the matrix into a
lower triangular matrix. Then, we end up with



1 2 𝑖 𝑛 − 1 𝑛

1 (𝑛 − 1)𝑝 + 1 0 0 1 0 0 1
2 1 − 𝑝 (𝑛 − 2)𝑝 + 2 0 0 0 1 0 1
3 1 − 𝑝 1 − 𝑝 (𝑛 − 3)𝑝 + 3 0 0 0 0 1 0 · · · 1

...
. . .

...
...

. . .

𝑖 1 − 𝑝 1 − 𝑝 (𝑛 − 𝑖)𝑝 + 𝑖 0 0
...

. . .
...

𝑛 − 1 1 − 𝑝 1 − 𝑝 𝑝 + (𝑛 − 1) 0 0 0 1 1
𝑛 1 1 0 0 1


.

(C.1)
Notice that the last row (comprised of all ones) looks different than all

the other rows. We will ignore this row for now, and return to it at the end.
The next step is to turn L𝑝 into a bidiagonal matrix with entries only on the
diagonal and lower subdiagonal (except the last row). To do so, subtract the
previous row from the current row for the third row up to the second to last
row. So, for 3 ≤ 𝑖 ≤ 𝑛 − 1, do 𝑅𝑖 → 𝑅𝑖 − 𝑅(𝑖 − 1). Afterward, we obtain



1 2 𝑖 𝑛 − 1 𝑛

1 (𝑛 − 1)𝑝 + 1 0 0 1 0 0 ★

2 −𝑝 (𝑛 − 2)𝑝 + 1 0 0 0 1 0 ★

3 0 −(𝑛 − 1)𝑝 − 1 (𝑛 − 3)𝑝 + 3 0 0 0 −1 1 0 · · · 0
...

...
...

. . .
. . .

...

𝑖 0 0 −(𝑛 + 2 − 𝑖)𝑝 − (𝑖 − 2) (𝑛 − 𝑖)𝑝 + 𝑖 0 0 0 −1 1 0 · · ·
...

. . .
...

...
. . .

. . .
...

𝑛 − 1 0 −3𝑝 − (𝑛 − 3) 𝑝 + (𝑛 − 1) 0 0 · · · 0 · · · −1 1 0
𝑛 1 1 0 0 1



.

(C.2)
Now, we can reduce the first two rows. First, normalize the first row by
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dividing by (𝑛 − 1)𝑝 to find



1 2 𝑖 𝑛 − 1 𝑛

1 1 0 0 1
(𝑛−1)𝑝+1 0 0 1

(𝑛−1)𝑝+1
2 −𝑝 (𝑛 − 2)𝑝 + 1 0 0 0 1 0 ★

3 0 −(𝑛 − 1)𝑝 − 1 (𝑛 − 3)𝑝 + 3 0 0 0 −1 1 0 · · · 0
...

...
...

. . .
. . .

...

𝑖 0 0 −(𝑛 + 2 − 𝑖)𝑝 − (𝑖 − 2) (𝑛 − 𝑖)𝑝 + 𝑖 0 0 0 −1 1 0 · · ·
...

. . .
...

...
. . .

. . .
...

𝑛 − 1 0 −3𝑝 − (𝑛 − 3) 𝑝 + (𝑛 − 1) 0 0 · · · 0 · · · −1 1 0
𝑛 1 1 0 0 1


.

(C.3)
Next, we can normalize 𝑅2 by adding a linear combination of 𝑅1 and 𝑅2:

𝑅2 → (𝑅1 + 𝑅2
𝑝−1 )

𝑝−1
(𝑛−2)𝑝+2 . Then we have



1 2 𝑖 𝑛 − 1 𝑛

1 1 0 0 1
(𝑛−1)𝑝+1 0 0 ★

2 0 1 0 0 𝑝−1
((𝑛−1)𝑝+1)((𝑛−2)2)

1
(𝑛−2)𝑝+2 0 ★

3 0 −(𝑛 − 1)𝑝 − 1 (𝑛 − 3)𝑝 + 3 0 0 0 −1 1 0 · · · 0
...

...
...

. . .
. . .

...

𝑖 0 0 −(𝑛 + 2 − 𝑖)𝑝 − (𝑖 − 2) (𝑛 − 𝑖)𝑝 + 𝑖 0 0 0 −1 1 0 · · ·
...

. . .
...

...
. . .

. . .
...

𝑛 − 1 0 −3𝑝 − (𝑛 − 3) 𝑝 + (𝑛 − 1) 0 0 · · · 0 · · · −1 1 0
𝑛 1 1 0 0 1



,

(C.4)
which contains first two rows of (L𝑝)−1! We can determine the remaining
rows until 𝑛 − 1 using induction.
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