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Communicating Applied
Mathematics: Four Examples∗

Daniel E. Finkel†

Christopher Kuster†

Matthew Lasater†

Rachel Levy†

Jill P. Reese†

Ilse C.F. Ipsen†

Abstract. Communicating Applied Mathematics is a writing- and speaking-intensive graduate course
at North Carolina State University. The purpose of this article is to provide a brief descrip-
tion of the course objectives and the assignments. Parts A–D of of this article represent
the class projects and illustrate the outcome of the course:
• The Evolution of an Optimization Test Problem: From Motivation to Implementa-

tion, by Daniel E. Finkel and Jill P. Reese
• Finding the Volume of a Powder from a Single Surface Height Measurement, by

Christopher Kuster
• Finding Oscillations in Resonant Tunneling Diodes, by Matthew Lasater
• A Shocking Discovery: Nonclassical Waves in Thin Liquid Films, by Rachel Levy

Key words. education, mathematical writing, presentations, audience, peer critique

AMS subject classifications. 97C90, 97D30, 97D40

DOI. 10.1137/S0036144504443523

1. Overview. Communicating Applied Mathematics (MA798I) is a graduate
course that I (I.C.F. Ipsen) teach in the Mathematics Department at North Carolina
State University. It is a writing- and speaking-intensive three-credit course for Ph.D.
students in applied mathematics who have passed the qualifying exams. The class web
page, http://www.math.ncsu.edu/SIAM Review paper/ma798I, contains links to the
homework assignments, as well as a list of resources on writing and presentations.

The general goal of the course is to improve the students’ writing and speaking
in the area of applied mathematics. In particular, the students learn to present their
ideas in a linear, coherent sequence. They also learn to identify their audience and
write and speak at a level appropriate for this audience. Two important ingredients
of the course are repeated revisions and peer critique.
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the Army Research Office through grant DAAD19-02-1-0391, the Department of Education through
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the Army Research Office under a MURI (Multidisciplinary University Research Institute) contract.
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We use two textbooks: Handbook of Writing for the Mathematical Sciences, by
Nick Higham [1], and A Primer of Mathematical Writing, by Steven Krantz [2]. Class
meetings consist of writing exercises (section 2), student presentations (section 3),
discussions of the class project, and peer critiques (i.e., the students critique each
other’s presentations or writing). There are one or two homeworks per week plus a
class project. Homeworks (section 4) are devoted to preparing presentations, explain-
ing one’s work to nonmathematicians, understanding and analyzing papers, reviewing
papers, preparing a CV, and working on the class project. The class project (section
5) consists of writing a paper for a general mathematical audience.

In 2004 the students in this course were Dan Finkel, Chris Kuster, Matthew
Lasater, Rachel Levy, and Jill Reese. The four parts of this article, which are set up
as individual papers, represent their class projects.

2. In-Class Exercises. I try to convince the students that good writing is impor-
tant. This is done through exercises like the ones below. The exercises encourage the
students to understand the contents of a text; identify its main ideas; analyze how
the writing affects the reader and explain how this is achieved; and practice their own
writing.

Exercise 1. Read the two summaries of the paper Rigid Body Dynamics with
Friction and Impact by David Stewart [5]: The first one is the abstract of the
paper [5, p. 3], and the second one an introduction to the paper by Nick Trefethen
[6].

Does one summary do a better job of enticing you to read the paper, and why? If
so, why does the other summary leave you indifferent?

Exercise 2. Test Your Writing IQ.

1. Question: What is the primary purpose of writing? (Answer in one word.)
Answer: Communication.

2. Question: As a writer, to whom are you primarily obligated? (Answer in
one or two words.)
Answer: Your readers.

3. Question: What does question 2 imply as far as the process of writing is
concerned? (Answer in fewer than ten words.)
Answer: Always put yourself in the place of your readers.
Or: Write so that the readers can understand you.

Exercise 3. Questions to Students.

• Do you like writing? If not, why?

• Which types of writing do you enjoy the most, or the least?

• Do you see any advantage to writing (besides getting a degree or expanding
your CV)?

• Have you found a strategy that makes writing easier for you?
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Exercise 4. Can you improve the two examples for opening paragraphs on page 88
in Nick Higham’s book [1]? Think about removing possessive pronouns, shortening
sentences, and delaying or avoiding the use of symbols.

Exercise 5. Read the mission statements on the web pages of SAMSI, the Statistical
and Applied Mathematical Sciences Institute (http://www.samsi.info), and Sandia
National Laboratories (http://www.sandia.gov/mission/index.html).

Write these mission statements in your own words (imagine that you are trying to
explain them to a friend).

Exercise 6. Read section 2.5 about cancellation in Beresford Parlett’s book The
Symmetric Eigenvalue Problem [3]. Give a one-sentence explanation of catas-
trophic cancellation. Was this easy or difficult? Why?

After they have gone through these exercises, I hope that the students understand
better why good writing is important and that they are motivated to put effort into
their writing. Moreover, I hope that they have learned the need to identify their
audience and to write with this audience in mind.

3. Student Presentations. The student presentations consist of rehearsals for
research talks at conferences as well as for talks at the graduate student recruitment
weekend. Each student gives at least one presentation, lasting between 10 and 30
minutes. All presentations use laptops.

Each presentation gets three runs. During the first run no questions or comments
are allowed, so that the students can critique the talk as a whole. During the second
run, the students critique each slide in detail. Then the presentation is revised, and
a third run occurs during the next class meeting. We found that no more than three
runs were needed.

The books by Higham [1, sections 10 and 11] and Krantz [2, section 4.4] provide
plenty of good advice on how to prepare and give talks. The section Help with Pre-
sentations on the class web page, http://www.math.ncsu.edu/SIAM Review paper/
ma798I, contains additional tips. Below are examples of criteria we use to judge the
different runs.

Criteria for evaluating the presentation as a whole after the first run include:

• Does the presentation carry a clear message?

• Is the exposition appropriate for the target audience?

• Does the presentation tell a story? Is the story exciting and coherent?

• Is the presentation well organized?

• Does the presentation start with an outline and finish with a summary?

• Does the presentation finish on time?

• Are the main ideas well explained by examples or pictures?

• Is the visual appearance of the presentation unhurried and calm?
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Criteria for evaluating individual slides during the second run include:

• Does the slide carry a clear message, preferably a single idea?

• Does the slide consist of at most 7–10 lines of text?

• Is the prose short and to the point?

• Are the mathematical expressions readable, intelligible, and as simple as
possible?

• Is the notation mnemonic and intuitive?

• Is every mathematical expression accompanied by an interpretation (oral
or visual)?

• Are all symbols defined?

• Are all subscripts and superscripts absolutely necessary?

• Do the coordinate axes in graphs have meaningful labels?

• Does the slide make effective use of colors (e.g., by attracting the eye to
the important parts, or by connecting related entities or concepts with
the same color)?

• Does the summary slide reiterate succinctly the main ideas of the talk?

• Is the transition from the current to the next slide smooth?

The third run is evaluated according to all criteria. When a student is giving
a presentation, it is helpful to designate another student as note taker to record
comments from the audience.

The students considered the presentations to be the most difficult part of the
course, because they were being put on the spot and there was no room for error.
In contrast, they found the writing easier because one can always make yet another
revision.

4. Homework. The purpose of the assignments below is to introduce mathemat-
ics to nonmathematicians, to help the students understand and analyze exposition,
and to prepare a CV. These assignments are interspersed with the work on the class
project described in section 5 (hence the nonconsecutive numbering of homeworks be-
low; the missing homeworks are listed in section 5). The due dates for the assignments
vary from 2 to 7 days.

Homework 1A. Write a one-page introduction to the “business” of your field for
outsiders who are unfamiliar with mathematics.

Put yourself in the shoes of a layperson: What do botanists or soil scientists or
organic chemists do? Where do they work? What do they study? What kinds of
questions do they ask? What kinds of methods do they use? Why is their research
important? Who uses the results of this research? Who is affected by its results?

After the business descriptions have been handed in, I distribute them to every-
body in class.



COMMUNICATING APPLIED MATHEMATICS: FOUR EXAMPLES 363

Homework 2. For each business description from Homework 1A answer the follow-
ing questions.

What are the good points? What needs improvement? Constructive suggestions
are always appreciated! Describe your honest reaction to each submission: Did you
find the description clear, lively, awkward, exciting, dry, pompous, confusing, stim-
ulating, bewildering, entertaining, boring, irritating, vague, condescending, vapid,
superficial, careless, clumsy, unrefined, muddled, suspenseful, precise, detached,
incomprehensible, animated, inadequate, incoherent, impenetrable, inarticulate,
. . ., and why?

Homework 3. Read the paper On the Norm of Idempotent Operators in a Hilbert
Space by Vladimir Racoc̆ević [4].

Determine the who, what, and why. (Who is my audience? What do I, the author,
want to say? Why do I want to say it? See [2, sections 1.1 and 1.2].) Then
write a single sentence that summarizes the contents of the paper. Make sure you
understand the mathematical details.

We will discuss the following issues in class: Is the paper easy to read and un-
derstand? Why or why not? Was it easy to write the summary? Why or why
not?

Homework 5. Revise your business description from Homework 1A, taking into
account the responses from Homework 2, as well as my suggestions.

Homework 6. The paper “The Perfidious Polynomial” by Jim Wilkinson [7] won
the Chauvenet prize of the MAA in 1987. The prize is awarded for an outstand-
ing expository article; its recipients are listed in http://www.maa.org/Awards/
chauvent.html [sic].

1. For each section state the main idea conveyed in that section.

2. Write an abstract for the paper.

3. Express items (i), (ii), (iii) in section 4 of the paper in your own words.

4. Does the introduction prepare you for the remainder of the paper? Ex-
plain why or why not.

5. Describe how this paper differs from other papers you have read.

We will discuss the issues above in class.

Homework 13 asks the students to prepare a CV. In the class meeting preceding
the assignment, I show the students samples of CVs, and we discuss the contents and
layout of an effective (academic) CV.

Although the students considered the presentations to be the most difficult part
of the course (due to their real-time nature and small margin for error), completing
the writing assignments seemed to cause more frustration than preparing the presen-
tations. One of the reasons is that suggestions for improving presentations are specific
(e.g., put fewer lines on the slide, display important terms in red, make the symbols
in a formula more mnemonic), hence easy to implement. In contrast, suggestions for
improving writing are much less tangible (e.g., make it flow more smoothly, make it
livelier), and it is not at all clear how to realize them.
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5. Class Project. This is the centerpiece of the course (represented by the four
example papers). Individually, or as part of a group, each student writes a paper for
a general mathematical audience.

The class project starts with the very first homework of the semester (Homework
1B below), so that the entire semester is available for revisions and the project has a
good chance of being completed by the end of the semester.

Homework 1B. Submit a pre-proposal for your class project, and determine the
main ingredients: authors (papers can be written individually or in groups), sub-
ject (preferably related to your research), and audience (SIAM Review, SIAM
News, or American Mathematical Monthly).

The web page for Homework 1B also provides links to the description of these
journals and to instructions for authors. The students decided to write papers for
SIAM Review about application problems that motivate their thesis research.

Work on the class project proceeds gradually, guided by a sequence of homework
assignments. As a consequence, students are not overwhelmed by a huge writing
assignment, looming large at the end of the semester, and they do not have much
opportunity to procrastinate. Moreover, I am able to monitor their progress, keep the
projects on track, and help those who are stuck.

The next assignment tries to preempt writer’s block and encourage brain storming
by first focusing on content rather than packaging.

Homework 4. Prepare a preliminary, informal pre-draft of your class project.

Here are some hints to get you going: Compile a table of contents. Sketch a rough
outline of the story you want to tell in your paper. Write a couple of sentences for
each section; jot down thoughts, key words, or issues you want to address. Draw a
picture of your example. Collect papers you need to reference. For whom are you
writing the paper—who is your audience? What are you planning to say? Why are
you saying it? If you are having difficulty getting started, think about the following:

I am going to tell you about . . .
It’s really important because . . .
Let me give you a concrete example . . .
Here is where it occurs specifically . . .
It’s interesting because . . .
It has defeated scientists so far because of . . .
The mathematical difficulties are . . .
People have tried the following approaches . . .
But they failed because of . . .
Then someone came along and tried . . .

The submissions for Homework 4 were extremely ambitious, almost encyclope-
dic—quite appropriate for book proposals, actually. The drafts contained too much
material and lacked focus. They were geared towards an audience of experts, rather
than a general mathematics audience (apparently the journal descriptions and in-
structions for authors did not hit home the first time around).

The following assignment tries to remedy this situation by narrowing down the
contents and focusing on the target audience.
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Homework 7. Write a first draft.

1. Describe a single application, experiment, or problem.
Describe the “physical” situation or setup. Include graphics, if possible.
Tell the reader what s/he is seeing in the picture.
Explain why this example is important, difficult, representative, or sur-
prising.

2. Present the mathematics.
Distill it to one or two central ideas you would like readers to understand.
Simply write up these one or two ideas. Explain notation, but use as little
as possible. Provide plenty of intuition. Explain symbols and expressions
in equations. Explain meanings of variables. Interpret derivatives, per-
haps as rates of change or acceleration.

3. Find an inspiring title for your paper.

Two revisions (Homeworks 8 and 10) and one peer critique (Homework 9) follow.
The papers resulting from the revision in Homework 10 are distributed to everybody
in class.

Homework 11. Review each paper to determine whether it is ready for publication.
If not, justify why and submit your reasons in writing.

Consider the following criteria:

• Is the paper consistent with the editorial objectives?
See the Editorial Policy for SIAM Review (http://www.siam.org/
journals/sirev/policy.php) and the Instructions for Authors (http://www.
siam.org/journals/sirev/authors.php).

• Is the presentation clear and well organized?

• Is the notation well conceived and consistent?

• Are the references relevant and complete?

• Does the title accurately describe the paper?

Now comes the next-to-last revision and the writing of the abstract.

Homework 12.

• Revise your paper according to the suggestions from Homework 11.

• Write a brief abstract for your paper (that is, summarize its contents
briefly without being vague).

• List key words and AMS subject classifications (http://www.ams.
org/msc/).

The purpose of the last assignment below is to create a distance between the
students and their work, so that afterwards they are again able to see the forest for
the trees.

Homework 14. Do not look at your paper for two weeks.

Then read your paper, and only afterwards read my comments. Make the necessary
revisions, so that your paper is ready for publication.
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6. Outcome. The four parts that follow represent the final versions of the class
project. All papers were completed on time and submitted to SIAM on the last day
of classes.

The last class meeting was conducted at Cup a Joe’s, a local coffee house, where we
evaluated the course. The students found the assignments and in-class presentations
helpful. A unanimous complaint was that too much time was spent on mathematics
(to understand the papers from Homework 3 and 6); and that this time could have
been better spent on learning to write abstracts for talks, Ph.D. theses, or proposals
to funding agencies.

There are many other assignments that could be included in a course like this.
For instance:

• Abstracts and summaries for talks, papers, Ph.D. theses, or proposals to
funding agencies.
• A review of a paper for MathSciNet (http://www.ams.org/mathscinet). The
students have to extract the main ideas of a paper and describe them suc-
cinctly and clearly.
• A referee’s report for a journal paper. The students learn about criteria for
evaluating papers, as well as the format and style of referees’ reports.
• A book review (or a comparison) of the textbooks. By the end of the semester
the students are thoroughly familiar with the texts by Higham and Krantz
(because all homework includes specific reading assignments), putting them in
a position to write an informed review (section 4.2 in Krantz’s book contains
advice for book reviews).
• More detailed feedback for presentations. When a student gives a presenta-
tion, the other students take notes about the presentation, polish these notes
at home, and then give them to the presenter. The notes tell the presenter
which messages from the talk came across and which ones did not.

Part A. The Evolution of an Optimization Test Problem: From Motivation to
Implementation. By Daniel E. Finkel and Jill P. Reese.

Abstract. We introduce a water-supply problem considered by the optimization and hydrology com-
munities for benchmarking purposes. The objective is to drill five wells so that the cost of
pumping water out of the ground is minimized. Using the implicit filtering optimization
algorithm to locate the wells, we save approximately $2,500 over the cost of a given initial
well configuration.

Key words. optimization, implicit filtering, well field design, groundwater flow

AMS subject classifications. 93C20,78M50

A.1. Introduction. Hydrologists and environmental engineers are often faced
with the daunting task of choosing the appropriate optimization strategy for complex
problems. In 2002, with this thought in mind, a series of groundwater test problems
was proposed in [14, 15]. This suite of test cases, known collectively as the commu-
nity problems, is a set of prepackaged codes, including a preset initial condition, used
to compare the performance of optimization algorithms. This collaborative research
between engineers and optimization experts has led to an increased understanding of
the advantages and disadvantages of current optimization algorithms, and helped to
further optimization as a field.



COMMUNICATING APPLIED MATHEMATICS: FOUR EXAMPLES 367

In this paper, we focus on one of the community problems and its evolution from
fundamental equations to a well-defined optimization problem. We describe some of
the modeling issues that arose during formulation and present the results obtained by
the implicit filtering optimization algorithm.

A.2. Optimization. We focus on a particular community problem to illustrate
some of the concepts and difficulties underlying the test cases. The objective is to find
the optimal locations at which to drill five wells in an underground water-bearing re-
gion (an aquifer). Since the cost to install five wells is fixed at approximately $100,000,
the goal is to minimize the cost to operate the wells. Some regions underground con-
tain more water than others, and a well located in a drier part of an aquifer has to
work harder than a well located in a region of the aquifer where more water is avail-
able. Since the cost of pumping a well depends on its location within the aquifer, we
want to find the �x = (x, y, z) locations to drill the wells within the domain (aquifer)
in order to minimize the cost of operation. Section A.3 explains this idea in more
detail.

A.2.1. Test ProblemSpecifications. We consider an aquifer 1000 meters long on
each side, 30 meters deep, and of homogeneous composition. Specifying homogeneous
composition implies that all aquifer material properties are constant in both space
and time. We assume that all five wells remove water at the same fixed pumping
rate, P = −0.0064 meters per second (we follow convention and indicate extraction
by P < 0), and extract water at the same depth, zw. The decision variables are thus
reduced to (x, y) locations within the domain.

A.2.2. Objective Function. The objective function of the minimization problem
quantifies the intuitive relationship between the amount of water in the domain at a
given location and the work required to pump water from that location. We think
of hi as the amount of water available at well i, although more specifically it is the
hydraulic head level at well i. The physical meaning of the hydraulic head level is
discussed in section A.3. Given a pumping rate Py in meters per year,1 and the
30-meter-deep aquifer, the operating cost per year for well i is given by

(A.1) fi =
(
2.9 · 10−4) (hi − 30)Py.

In (A.1), the constant
(
2.9 · 10−4

)
is a cost coefficient provided in [14]. Since the

pumping rate, Py, is negative the minimization problem is attracted to regions where
the hydraulic head level, hi, is large. However, Figure A.1 illustrates that if head
levels exceed 30 meters, then water would flow over the ground surface and result
in flooded land. Thus, (A.1) is formulated in conjunction with a constraint on the
hydraulic head levels over the entire domain (including at the wells) such that

(A.2) 10 ≤ h ≤ 30.

Just as keeping hydraulic head levels below 30 meters prevents flooding of the land,
constraining the head levels to be greater than 10 meters avoids the possibility of
pumping the land dry.

A.3. Groundwater Flow. From (A.1) we see that given the fixed pumping rate,
Py, the only unknown in the objective function is the hydraulic head level at each

1Py is equivalent to the previously defined P, although the units have changed. The units of Py
are meters per year, while P has units of meters per second.
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h i
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Fig. A.1 Schematic of the cross section of a well in an aquifer.
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Fig. A.2 Diagram showing the components of hydraulic head (adapted from [9, p. 35]).

well. Computing the hydraulic head level requires a simulation involving the solution
of a partial differential equation describing transient, three-dimensional flow through
an aquifer that is entirely saturated with water. The simulation models how the
installation and operation of wells in the aquifer alters the natural hydraulic head
levels and flow pattern.

A pumping well causes a drop in pressure, p, within the aquifer close to the
well. A pressure difference is the primary driving force for groundwater flow, so this
pressure drop causes water to flow toward the well from areas of higher pressure.
Other contributions to groundwater flow come from gravity, g; water density, ρ; and
the well depth, zw. Hydrologists combine the contributions of p, g, ρ, and zw into a
single quantity known as hydraulic head. The hydraulic head level, h, can be thought
of as the height to which the surrounding aquifer pressure forces water to rise at a
given point in the domain, as shown in Figure A.2.

How the hydraulic head level, h, changes in time primarily depends on (i) how
it changes in space, (ii) the rate at which the wells are pumping, and (iii) how easily
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the water can move through the soil. The ease with which water can move through
soil is expressed in a soil property called hydraulic conductivity, denoted here by the
constant Hc. Another factor affecting the hydraulic head level is C, which accounts
for the compressibility of both the water and the porous medium. Compressibility
describes how much the volume of water changes in response to a change in pressure,
and for these computations we assume slightly compressible flow with C = 10−6. The
diffusion equation [11, p. 65]

(A.3) C
∂h

∂t
= Hc∇2h+ S

describes the three-dimensional flow of water through a homogeneous, isotropic do-
main, where the left side represents the rate of change in head level at a point in the
domain. This rate of change is balanced by spatial changes in head levels due to diffu-
sion and any external sources of hydraulic head, denoted by S. For our test problem
the only contribution to S comes from the five pumping wells, and the mathematical
representation of S depends on how one chooses to model the wells.

A.4. Simulation. The hydraulic head levels are calculated by a computer sim-
ulation of the aquifer using MODFLOW software from the U.S. Geological Survey
[12]. MODFLOW inputs include the well locations and pumping rates, initial hy-
draulic head levels throughout the domain, boundary conditions on hydraulic head,
and properties of the domain. The software uses a point-source well model; thus, the
MODFLOW-specific mathematical representation for S is

(A.4) S = P
5∑
i=1

δ (�x− �xi) ,

assuming that well i is located at the point �xi, �x is a generic point within the aquifer,
and δ represents the Dirac delta function. The software outputs the hydraulic head
level at each point in the domain. The simulation accounts for groundwater flow in all
three spatial dimensions; however, the plots in this paper show only two-dimensional
slices of the domain.

The initial hydraulic head levels, h(x, y, z, t) = h(x, y, zw, 0) (given in meters),
that were input to MODFLOW are shown by the contour lines in Figure A.3(a).
This initial condition is included in the community problems package. Figure A.3(a)
illustrates that the highest hydraulic head levels occur at the lower left corner of our
domain, while the lowest head levels are in the upper right corner. Like pressure,
hydraulic head provides a potential which induces flow, so initially the groundwater
is flowing from lower left to upper right. This is illustrated by the velocity field which
overlays the contour plot.

The boundary conditions and aquifer properties required for this simulation are
provided in [14, 15].

A.5. Constraints. To pose the optimization problem in a physically reasonable
fashion, constraints are introduced in addition to those on hydraulic head level (see
(A.2)). The (x, y) locations of the five wells are constrained so that (i) the wells are
not too close to the boundary of the domain, and (ii) the wells are not too close to each
other. These conditions prevent us from pumping water from our neighbor’s property
and from installing two wells in the same location; moreover, they add difficulty to
the optimization problem.
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Fig. A.3 Hydraulic head contours (in meters) when the wells are installed but not pumping. (a)
Entire domain. (b) Enlarged view of the region within the black dotted square.
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Fig. A.4 Change in head levels when the wells pump in the initial configuration included in the
prepackaged code. The contours form blue diamonds near the wells due to the pressure
drop at an extraction well. (a) Entire domain. (b) Enlarged view of the region within the
black dotted square.

Figure A.4(a) shows an initial iterate (well configuration) for the optimization
problem that satisfies all the constraints. The contour plot shows how this well con-
figuration affects the flow field once the wells begin pumping. Figure A.4(b) is an
enlarged view of a portion of the domain and shows that the water is flowing toward
each well (because of a drop in pressure). As a comparison, Figure A.3(b) shows the
same part of the domain when no wells are pumping. Note that the head levels over
the whole domain are lower once the wells begin pumping water out of the domain.

A.6. Optimization Problem. Again, the objective is to minimize the cost of
supplying water for five years by optimally placing five wells in a given region. We
can find the total cost for operating all the wells by adding the individual costs to
operate each well, and then multiplying by how long they are in operation (five years).
The total cost is

(A.5) f = 5
5∑
i=1

fi,
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Fig. A.5 The relationship between the optimizer, the prepackaged code, and the MODFLOW simu-
lator.

Table A.1 Cost comparison between initial condition and optimal solution obtained using IFFCO.

Initial cost $26,959
Optimal cost $24,314

Percent decrease 10.9%
Simulator calls 273

where fi is defined in (A.1). The constraints described in the previous section are
quantified and described in [10]. The five well locations are passed as input to the
objective function. Before running the MODFLOW simulation, the well locations are
checked within the objective function to verify that the wells are not too close to
each other. If this constraint is satisfied, MODFLOW is called with the given well
locations as input. The simulator calculates the hydraulic head level at each point
in the domain. These head values are then checked within the objective function to
ensure that they satisfy (A.2). Figure A.5 describes the optimization procedure.

MODFLOW is computationally expensive; thus, it accounts for much of the time
required to compute the objective function. In [10], several optimization algorithms
are tested on this problem and their results compared by determining how many calls
to the simulator were necessary to obtain an optimal solution.

A.7. Results. The results presented in this section are computed with the implicit
filtering algorithm. Implicit filtering is a finite-difference quasi-Newton method for
solving noisy optimization problems which requires a feasible initial iterate [8, 13].
Implicit filtering was chosen as a representative case for the results collected in [10], as
it was the first algorithm applied to the community problems. Furthermore, example
results from a particular implementation of the implicit filtering algorithm, IFFCO
[8], are included in the community problems distribution.

The initial well locations are shown in Figure A.3(b), corresponding to an oper-
ational cost of $26,959. IFFCO reduces the operational cost to $24,314, a savings of
10.9%. The optimization process involves 273 evaluations of the objective function.
See Table A.1. The final well locations are shown in Figure A.6, while Figure A.7
presents the optimization history for this problem. This history shows the decrease
in cost at each iteration.
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Fig. A.6 Optimal well configuration. (a) Entire domain. (b) Enlarged view of the region within the
black dotted square.
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Fig. A.7 Reduction in operational cost as a function of number of calls to the objective function.

A.8. Summary. Collaboration between mathematicians and environmental en-
gineers has led to the creation of a suite of community groundwater test problems.
These test problems afford environmental engineers the ability to compare groundwa-
ter flow simulators, and mathematicians a means to evaluate optimization algorithms.

Determining the cost of extracting water from the ground via a well requires a
fundamental understanding of the flow of water through an aquifer. Equation (A.3) is
the basis of the optimization problem; its unknown, the hydraulic head level, is used
to calculate the cost of operating an extraction well.

Although we report the results of only one optimization package here, seven other
software packages were applied to this problem and the results are compiled in [10].
One of the goals of this project is to better understand which optimization algorithms
should be used to solve groundwater flow problems, and how to pose these problems to
efficiently find optimal solutions. Further information regarding the community prob-
lems can be found on the website http://www4.ncsu.edu/eos/users/c/ctkelley/www/
community.html.
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Part B. Finding the Volume of a Powder from a Single Surface Height Measure-
ment. By Christopher Kuster.

Abstract. The volume of powder poured into a bin with obstructions is found by calculating the
height of the surface at every point. This is done using the fast marching algorithm.
We look at two different bin geometries and determine the volumes as a function of the
powder height under the spout. The surface of the powder satisfies a two-dimensional
eikonal equation. This equation is solved using the fast marching method.

Key words. granular materials, sand piles, eikonal equation, fast marching

AMS subject classifications. 70H20, 00A69, 35-01

B.1. Introduction. In the pharmaceutical industry, many ingredients are in pow-
der form. These powders are stored in bins before they are combined to form pills.
To guarantee the same amount of each ingredient per pill, the bins contain solid in-
serts that keep the flow of powder constant (see Figure B.1). It is important to keep
track of how much powdered ingredient there is in each bin. Knowing the amount of
powder in a bin allows for a quick check on the flow rate and helps ensure that the
drugs are not being skimmed off for illegal sale. Our goal is to accurately measure
the amount of powder in a bin using only observations of the surface. To this end,
we create a mathematical model of the powder and then employ existing numerical
methods to accurately solve for the height of the surface at every point in the bin.
Once the height of the surface is known, the volume of powder in the bin is just the
volume under the surface.

If the powder is put into the bin slowly from a single source (say, a spout some-
where above the bin), then the only physical parameter necessary to model the surface
is the angle of repose (see Figure B.2). This is the maximum slope the surface of the
powder can have without causing an avalanche. Every granular material has its own
angle of repose that depends on the average shape and roughness of the individual
grains. For the purposes of our model, we assume that at each point, the largest
angle that the surface makes to the ground is equal to the angle of repose. This is a
simplified version of the model used by Aronsson [17].

Fig. B.1 Cutaway view of a bin with a flow correction insert.
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δ

δ

Fig. B.2 Left: Large angle of repose. Right: Small angle of repose.

Source Source

Fig. B.3 Possible solutions to (B.6).

If we define f(x) to be the height of the powder at a point x, and δ to be the
angle of repose, then in one dimension our assumption leads to the equation

(B.6) |f ′(x)| = tan δ.

We have used the fact that, by definition, the derivative is the same as the slope,
which is in turn equal to the tangent of the angle of repose. Requiring (B.6) to be
satisfied nearly everywhere leads to an infinite number of solutions for the surface of
the powder, f(x) (see Figure B.3 (left)). Physically, the height of the surface decreases
farther from the source, so we add that condition to the model. This leads to a single
solution [19] (see Figure B.3 (right)).

In contrast to the one-dimensional case, in higher dimensions we can model obsta-
cles that cannot be penetrated by the powder. Inside obstacles, we define the angle of
repose to be 90◦. This means that the slope is infinite and the height of the powder is
zero inside the obstacle [16]. This leads to a discontinuous function S(x, y, z), defined
by

S(x, y, z) =

{
tan δ if (x, y, z) 	∈ Obstacle,
∞ if (x, y, z) ∈ Obstacle.

The function S is defined over all space, but since we only are looking at the surface,
(B.6) can be generalized to the two-dimensional eikonal equation

(B.7) |∇f(x, y)| = S(x, y, f(x, y)).

Notice that the value of S on the right-hand side of the equation depends on the
solution, f . The word eikonal comes from the Greek word for image, and (B.7) has
long been studied in the context of optics [18].

B.2. Numerical Methods. A standard method for solving the eikonal equation
is the fast marching method first proposed by Tsitsiklis in 1994 [21]. The basic idea of
the fast marching method is that it calculates the solution along contour lines moving
outward from the source. Given a single measurement of the height at the source,
this method automatically returns a solution that satisfies the condition of height
decreasing with distance from the source (avoiding obstacles). A detailed description
of the fast marching method is given by Sethian [20].
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Fig. B.4 Surface profile around a circular prism (red is high, blue is low). Left: surface. Right:
contours.
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Fig. B.5 Volume as a function of height. Solid: Results from Figure B.1. Dashed: Results from
Figure B.6.

B.3. Results. First, we tested the algorithm on a square domain containing a
cylindrical obstacle. The results are shown in Figure B.4. The left image shows the
surface of the powder and the cylindrical obstacle. The right image is a plot of the
height contours as seen from directly above the obstacle. The source is directly above
the highest point. Near the source, the surface contours are concentric (quarter)
circles indicating that the solution there is a cone. Opposite the source, however, the
obstacle causes a valley. This is also observed in physical experiments.

Finally, we apply the fast marching method to the case of the realistic bin shown
in Figure B.1. We estimate the volume of powder in the bin by integrating over the
surface. In Figure B.5, the computed volume is shown as a function of the height at
the source. The results for a square bin with a cylindrical obstacle (Figure B.6) are
also shown for comparison. The cylinder was chosen so that the volumes are equal
when the height at the source is 10 (at the right side of Figure B.5). The volume of
powder in the case with the cylinder (dashed line) increases smoothly with the height
at the source. In fact, once the entire floor of the square bin is covered, the volume
increases linearly with changes in height. In the case of the more realistic bin (solid
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Fig. B.6 Cutaway of square bin with cylindrical obstacle.

line), changes in the shape of the walls and the obstacle lead to the volume being a
more complicated function of the height at the source.

B.4. Summary. We start with a single measurement of the height of the powder
surface under the spout. Then, using a single physical parameter (the angle of repose)
to model the surface of a powder, we calculate the height of the surface at every point.
With this information, we are able to estimate the volume of powder in the bin. The
results we obtain correspond to those expected. More details about this method are
available in [16].

Part C. Finding Oscillations in Resonant Tunneling Diodes. By Matthew Lasater.

Abstract. Resonant tunneling diodes (RTDs) are ultrasmall semiconductor devices that have poten-
tial as very high-frequency oscillators. To describe the electron transport within these
devices, physicists use the Wigner–Poisson equations which incorporate quantum mechan-
ics to describe the distribution of electrons within the RTD. Continuation methods are
employed to determine the steady-state electron distributions as a function of the voltage
difference across the device. These simulations predict the operating state of the RTD un-
der different applied voltages and will be a tool to help physicists understand how changing
the voltage applied to the device leads to the development of current oscillations.

Key words. Wigner–Poisson equations, continuation methods, Hopf bifurcation

AMS subject classifications. 81S30, 35B32

C.1. Introduction. When consumers choose new electronic devices, one impor-
tant factor is the size of the device. Whether getting a new cell phone or buying
a laptop, most people want a smaller, more compact device. Through technological
advances electronic devices are becoming ever smaller. Current research on electronic
devices involves analyzing their operation at the nanoscale level (10−9 meters), which
is the typical length scale of molecules. At this tiny length scale the device physics are
determined by quantum mechanics instead of classical electromagnetism. One such
nanoscale device being investigated is the resonant tunneling diode (RTD).

In the 1980s, scientists and engineers began using RTDs in circuits in an at-
tempt to produce a high-frequency power source [29, 28]. High frequency in this case
means terahertz (THz), which is 1012 oscillations per second and 1000 times faster
than current computer processors. Small devices that can produce and sustain THz
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Fig. C.1 Diagram of an RTD and its electric potential U.

oscillations are of considerable interest to the U.S. government for their potential
military applications. One such application is the remote detection of a biological
weapon in a battlefield environment. Research on identifying biological agents with
THz radiation is being conducted [25]. The energy in the THz radiation excites the
molecules in biological agents, making it possible to use THz radiation to determine
the molecular structure of biological agents. Small devices that can act as THz radi-
ation source/receivers would be required if this research is successful since the mobile
environment of warfare demands compact devices.

While THz oscillations exist in the above-mentioned circuits, unwanted lower
frequency oscillations also develop. These lower frequency modes result in a power loss
which makes these circuits impractical. Ongoing RTD research involves theoretically
analyzing the RTD outside of a circuit to see if high-frequency oscillations can be
produced and sustained in the RTD itself [31]. The research is theoretical since no
physical experiments are performed, only computer simulations. In the simulation
the RTD is isolated from the circuit so that external effects are excluded. A voltage
difference is applied across the RTD which creates a current. Engineers and scientists
want to know which voltages give rise to current oscillations in the RTD.

C.2. RTDs. The top of Figure C.1 shows a diagram of an RTD. An RTD is
created by joining together two different semiconductors, type I and type II. Two
regions of type II semiconductor are placed between three areas of type I. Far to the
left and right of the type II regions, the semiconductor is doped (represented by the
dark area). In the doped regions atoms containing more (or fewer) electrons than the
semiconductor itself are inserted to add (or remove) extra electrons.

The bottom of Figure C.1 shows the electric potential in an RTD. The electric
potential is made up of two parts. One part is the electrostatic potential created by
the electrons, the smooth portion of the electric potential. The other part represents
the two potential barriers that arise since the device is a composite of two different
semiconductor materials.

In Figure C.1 a voltage drop of V volts attracts electrons to the right side. The
far left of the RTD, from where the electrons are moving, is called the emitter, and the
far right of the RTD, to where the electrons are moving, is called the collector. The
part of the RTD that is between the two potential barriers is called the main quantum
well. Classically, an electron is treated as a particle. If a particle runs into a potential
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Fig. C.2 Electron density in RTD.

barrier, it is reflected back if it does not have enough speed to overcome the barrier.
In quantum mechanics, though, electrons are treated as waves, and no matter how
slowly the electrons are traveling, they still have some probability of passing through
the barriers. This effect is known as quantum tunneling, and it is the basic idea behind
the device.

The electron waves that move toward the left barrier from x = 0 (called the
incidental waves) either (1) transmit through the barrier or (2) reflect back to x = 0.
How many waves transmit through the barrier depends on the voltage difference V .
If many electron waves are reflected back from the barrier, a cancellation between
the incidental waves and the reflected waves occurs. This effect is known as quantum
interference. Quantum interference creates an area to the left of the barriers with a
depletion of electrons. This area is referred to as the emitter quantum well.

Figure C.2 shows the electron density (number of electrons per volume) across
the RTD for a voltage difference that creates an emitter quantum well. In Figure C.2,
the dark lines on the x -axis show the locations of the potential barriers. The electron
density is the lowest at the potential barriers since the electric potential is so large in
these regions. There is a local maximum in the electron distribution between the two
potential barriers. This is the main quantum well and is where some electrons get
“trapped” between the barriers. The recent theory for explaining the development
of current oscillations postulates that the interactions between the emitter quantum
well and the main quantum well are responsible for the oscillations [32].

Computer simulations are used to validate this theory and to gain a better un-
derstanding of the coupling between the quantum wells. Once this mechanism is
understood, physical parameters in the simulations (heights of barriers, widths of
barriers, widths of doped regions, etc.) will be varied to find the values that induce
and sustain the current oscillations.

C.3. Mathematical Model. We introduce some mathematical techniques that
give a better understanding of how an RTD operates. The first part presents the
mathematical model for the time-evolution of the electrons in the RTD. The second
part introduces continuation methods and their role in this model. The final part
of this section explains the stability of a steady-state solution and how this helps to
predict oscillations.
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C.3.1. Wigner–Poisson Equations. We model the electron transport in the RTD
with the Wigner–Poisson equations [30]. They describe the distribution of the elec-
trons in the device, which we denote by f . The distribution f depends on the location
of the electrons, the velocity of the electrons, and time. The Wigner–Poisson equa-
tions describe the time evolution, ∂f

∂t , as a nonlinear function of f and the voltage
difference V across the device. The Wigner–Poisson equations can be represented as
∂f
∂t =W (f, V ).

For a given voltage difference V , we want to determine the current produced by
the RTD. To this end we want to find the steady-state distribution of the electrons and
use it to calculate the current output. The steady-state distribution describes how the
electrons adjust themselves to the applied voltage V . For a given V , we want to find
a distribution f such that ∂f

∂t =W (f, V ) = 0. Solving W (f, V ) = 0 for f amounts to
solving a nonlinear equation that depends on a parameter V . Continuation methods
were devised to handle such a task.

C.3.2. Continuation Methods. Continuation methods solve nonlinear equations
that depend on a parameter. In our case, the nonlinear equation is the time derivative
of f , W (f, V ), and the parameter is the voltage difference V . Continuation methods
find solutions, f , as a function of the parameter, V , represented by f(V ), such that
W (f(V ), V ) = 0. They trace the steady-state solution f(V ) as V is varied. Once we
have these steady-state solutions, we determine how the stability of these solutions
changes as V varies.

C.3.3. Stability of Steady-State Solutions. For our application, we are search-
ing for voltage differences that render the steady-state distribution f unstable. We
want a specific kind of instability that creates oscillations about the steady-state dis-
tribution. In turn we have oscillations in the current of the RTD.

The stability of the steady-state solutions can be determined by computing ∂W
∂f ,

the Jacobian of W . The Jacobian of W measures how sensitive the time-derivative of
f , W (f, V ), is to changes in f . It can be shown that if all the eigenvalues of ∂W∂f at a
steady state have negative real part, then the steady state is stable; however, if any
eigenvalue has positive real part, then the steady state is unstable [22]. A point in the
parameter space where the stability of the steady-state solutions changes is known as
a bifurcation.

C.3.4. Hopf Bifurcation. The change in stability we are looking for is a (super-
critical) Hopf bifurcation in which a steady state loses stability to a stable oscillatory
solution. Instead of rigorously explaining how Hopf bifurcations arise, we present an
ODE example to illustrate one.

Example 1: Hopf Bifurcation. This example comes from [26]. We describe a
two-dimensional state, z = (x, y), by an ODE which depends on the real parameter p,

dz

dt
= g(z, p) =

(
px− y − x(x2 + y2)
x+ py − y(x2 + y2)

)
.

The origin (x, y) = (0, 0) is a steady-state solution for any value of p because dz
dt = 0.

The Jacobian of g is

∂g

∂z
=
(
p− 3x2 − y2 −1− 2xy

1− 2xy p− 3y2 − x2

)
.
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Fig. C.3 (a) Solution to ODE when p < 0. (b) Solutions to ODE when p > 0.

At the steady state (x, y) = (0, 0), the Jacobian of g is

∂g

∂z
=
(
p −1
1 p

)
.

The eigenvalues of this matrix are p ± i where i =
√
−1; their real parts are p. For

p < 0 the origin is a stable equilibrium, for p > 0 the origin is an unstable equilibrium,
and p = 0 is a bifurcation point in the parameter space. Figure C.3 shows typical
solutions in (x, y) coordinates for p < 0 and for p > 0.

If we switch from Cartesian coordinates (x, y) to polar coordinates (r, θ), then
we can examine the bifurcation point more carefully. Using the transformation
r =

√
x2 + y2 and tan(θ) = x

y , the ODE becomes

dr

dt
= r(p− r2),

dθ

dt
= 1.

Case 1: p < 0. If p < 0, then dr
dt < 0 for all r > 0. Since r is decreasing, all

solutions approach r = 0 (the origin). A typical solution is shown in Figure C.3(a).
Case 2: p > 0. If p > 0, in addition to our equilibrium at r = 0, we find another

nonnegative value of r at which dr
dt = 0, namely, r =

√
p. We look at three different

regions of r-space to see what happens.
Region 1: r =

√
p. At r =

√
p, dr

dt = 0 but dθ
dt = 1 always. So θ is always

increasing. This solution is shown in Figure C.3(b) as the solid line path that forms
a circle.

Region 2: r >
√
p. In this region, drdt < 0. So r decreases and approaches r =

√
p.

This solution is represented by the dotted line in Figure C.3(b).
Region 3: r <

√
p. In this region, drdt > 0. Therefore r increases and approaches

r =
√
p. This solution is shown in Figure C.3(b) as the dashed line.

Consequently when p > 0, r approaches the constant value
√
p while the angle

θ constantly increases since dθ
dt = 1. Therefore, the long-term dynamics represent a

point moving along a circle of radius
√
p. So, back in the (x, y) coordinates, x and y

are oscillating between −√p and
√
p.
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Fig. C.4 Eigenvalues of the Jacobian which create oscillatory solutions. (Legend shows voltage drop
across RTD.)

To summarize, the origin is a stable equilibrium for this system when p < 0. When
p > 0, the origin becomes unstable and an oscillatory solution to the ODE appears.
This behavior can be predicted by evaluating the eigenvalues of the Jacobian of g,
∂g
∂z , at the equilibrium. A Hopf bifurcation occurs if a complex-conjugate pair of
eigenvalues has a real part that changes from negative to positive as the parameter
is varied. In the supercritical case (illustrated above), when the real part of the
eigenvalue changes sign, the equilibrium becomes unstable, and the ODE acquires a
stable oscillatory solution. This is what we appear to observe below.

C.4. Back to RTDs. As illustrated in our last section, we are searching for a
Hopf bifurcation in our parameter space, the applied voltage V . The main idea is to
use continuation methods to trace the steady-state solutions f for various voltages V .
As we compute these steady-state solutions, we are inspecting the eigenvalues of the
Jacobian of W , ∂W∂f , to find a complex-conjugate pair of eigenvalues whose real part
is switching from negative to positive. Preliminary research has discovered a part of
the parameter space where this may occur.

Figure C.4 presents the complex-conjugate pair of eigenvalues of ∂W∂f that create
this oscillatory behavior. The x -axis represents the real part of the eigenvalues, and
the y-axis represents the imaginary part of the eigenvalues. The legend shows the
different voltages at which these eigenvalues were calculated. At V = 0.240 volts, the
real part is negative, so we expect a stable equilibrium with no oscillation. As the
voltage is increased to 0.256 volts, the real part becomes positive and stays positive.
So the stability of the equilibrium is lost, and we expect oscillatory behavior. At V =
0.256 volts, the real part is almost negative again. These calculations were performed
with LOCA (Library of Continuation Algorithms) [27], a software library developed
at Sandia National Laboratory to implement continuation algorithms. Figure C.5
is a plot of the current density versus time for various voltage differences. Current
density is the current produced per area of the device. The x -axis represents time in
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Fig. C.5 Current density versus time. (Legend shows voltage drop across RTD.)

femtoseconds (10−15 seconds), the y-axis represents current density, and the legend
shows what voltage is being applied across the device. As predicted by the eigenvalue
study, the current oscillates when the applied voltage is 0.248 volts and 0.256 volts, but
at 0.240 volts and 0.264 volts, there is no oscillation. The current plots in Figure C.5
were produced by VODEPK [23, 24], a time-integration code developed at Lawrence
Livermore National Laboratory.

The simulations presented in this article are numerical approximations to the
Wigner–Poisson model of electron transport within nanoscale semiconductor devices.
If scientists can understand how varying the applied voltage drop across the RTD leads
to current oscillations, they can use the voltage drop to control the development of this
oscillation. In the future, we want to establish without a doubt the existence of this
Hopf bifurcation by performing more accurate computer simulations, and in particular
making sure the bifurcation is not an artifact of the numerical approximations. Then
this tool can be used to guide physicists and engineers in developing device structures
that make effective high-frequency electronic devices.

Part D. A Shocking Discovery: NonclassicalWaves in Thin Liquid Films. By Rachel
Levy.

Abstract. When a thin film flows down an inclined plane, a bulge of fluid, known as a capillary ridge,
forms on the leading edge and is subject to a fingering instability in which the fluid is
channeled into rivulets. This process is familiar to us in everyday experiments such as
painting a wall or pouring syrup over a stack of pancakes. It is also observed that changes
in surface tension due to a temperature gradient can draw fluid up an inclined plane.
Amazingly, in this situation the capillary ridge broadens and no fingering instability is
observed. Numerical and analytical studies of a mathematical model of this process led
to the discovery that these observations are associated with a nonclassical shock wave
previously unknown to exist in thin liquid films.
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D.1. Introduction. Thin liquid films coat surfaces, such as computer chips, with
layers as thin as thousandths of a millimeter. Ideally, the layer should be perfectly
even. In reality, however, thin liquid films are uneven, leading mathematicians and
scientists to study how thin films form and why they are not uniform in height.

Thin films exhibit many properties that interest mathematicians. At the leading
edges of the film, fingering instabilities develop, which look like drips of paint and
cause the film edge and height to be uneven [40, 41, 47, 56]. A second issue is the not
yet understood mechanism for movement at the leading edge of the film, the contact
line where air, liquid, and solid meet [34, 43, 50, 53]. We will focus on a third issue:
two kinds of shock waves that occur in the thin films experiment, and how they affect
the capillary ridge, a bulge of fluid near the leading edge of the film.

In the 1990s, Anne Marie Cazabat and her colleagues in Physics at the College
de France in Paris designed an experiment to investigate thin films of silicone oil
coating a silicon wafer [40, 42]. Surprising experimental results led to the discovery
of nonclassical waves in thin liquid films.

D.2. The Experiment. Cazabat’s thin film experiment takes place on an inclined
brass plate with a reservoir of silicone oil at the bottom end (see Figure D.1). The
plate is heated at the bottom and cooled at the top, with a temperature difference of
45◦C. A silicon wafer prewetted with silicone oil is attached to the plate, which can
be inclined from an angle of 0◦ (horizontal) to 90◦ (vertical).

There are two opposing forces at work in the experiment. Since surface tension
decreases with temperature, the surface tension is lower at the bottom where the film
is hotter. At the top of the plate, where the film is cooler, the surface tension is higher.
Consequently, a thin film of oil is pulled up the plate toward the region with higher
surface tension, a phenomenon called a Marangoni force. At the same time, the oil
is pulled down the plate by gravity. In the experiment, the change in temperature
is large enough that the upward surface tension force exceeds the downward force of
gravity, and the oil creeps up the wafer at a speed of a few centimeters per hour.

The thin films that develop on the plate are flat as they emerge from the reservoir,
dip slightly before the buildup of fluid known as the capillary ridge, then slope steeply
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Fig. D.1 On the left is a schematic of the thin film experiment viewed from the side. On the right
is a numerical solution of the PDE (D.8) showing a similar profile, including the capillary
ridge where the solution reaches its maximum height.
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down to the height of the prewetted surface (see Figure D.1). These features can be
analyzed in one spatial dimension and time. We model the height of the film h(x, t) as
a function of position (x) and time (t) with a fourth-order nonlinear partial differential
equation (PDE)

(D.8) ht + (h2 − h3)x = −S(h3hxxx)x.

The boundary conditions for the PDE include the height emerging from the reser-
voir, h = hL, and the height of the prewetting layer, h = hR. As an initial condi-
tion, we use a smooth approximation of piecewise constant data jumping down from
h(x, 0) = hL for x < 15 to h(x, 0) = hR for x > 15. Here x = 15 represents the
position at which the oil emerges from the reservoir.

In the PDE, the left-hand side of the equation models how the film moves and is
called convective transport. In the second term, f(h) = h2 − h3 represents the flux,
the amount of fluid moving past a particular point at a particular time, due to the
Marangoni force (h2) and gravity (h3). The right-hand side of the equation contains
a fourth derivative term that represents the surface tension of the oil. This property
quantifies how the oil tends to pull together (like a higher surface tension fluid such
as liquid mercury that beads up) or spread out (like a low surface tension fluid such
as soapy water). The variables and the equation have been derived using the well-
known lubrication approximation [37, 44] which takes advantage of the thinness of the
film and eliminates terms that become negligible as the film thickness decreases. The
equation is nondimensionalized and terms are balanced so that material properties
such as viscosity and surface tension are lumped into the positive coefficient S [39].

Solutions of (D.8), such as the numerical simulation in Figure D.1, agree with
the expected behavior of the thin films in the experiment at large inclination angles.
However, when Cazabat adjusted the inclination angle from a nearly vertical angle,
such as 85◦, to a flat angle, such as 15◦, she observed dramatically different results.
At a large inclination angle the film travels all at one speed. This means the side
profile of the film, including the capillary ridge, does not change over time once the
profile has formed, as in Figure D.2 (left). This is called a classical wave, which is
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Fig. D.2 Numerical simulation of shock waves in thin liquid films. Initial condition h(x, 0) is the
dashed line. Film is moving to the right and is plotted at equally spaced time intervals,
with the latest profile at the far right. Left plot contains a classical wave with one wave
speed, corresponding to the experiment at a large inclination angle (a magnification of one
profile is the right plot of Figure D.1). Right plot contains a leading faster nonclassical
wave and a trailing slower classical wave, with broadening capillary ridge, corresponding
to the experiment at a smaller inclination angle.
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well understood through the theory of Lax and Olĕınik which originated in the 1950s
[48, 54, 55]. In contrast, at a small inclination angle the film travels at two speeds.
The leading part of the film travels faster and the trailing part travels slower, causing
the capillary ridge to widen over time, as in Figure D.2 (right). The mystery of the
spreading capillary ridge cannot be explained by classical wave theory.

Cazabat communicated the strange results to Andrea Bertozzi at Duke University,
who had previously published results on thin films [35]. Bertozzi formed a collabo-
ration with Andreas Münch visiting Duke from Technische Universität München in
Germany and my doctoral advisor, Michael Shearer, from North Carolina State Uni-
versity to consider the possibility of having classical and nonclassical waves in a thin
liquid film [45, 46].

D.3. Classical and Nonclassical Waves. To understand the difference between
classical and nonclassical shock waves, two graphs are helpful. In both graphs we
fix a prewetting height of hR = 0.1 and vary the height hL at which the oil emerges
from the reservoir. The first type of graph, shown in Figure D.2, represents numerical
solutions of (D.8). The left plot of Figure D.2 shows a classical wave as it moves
from left to right and is plotted at eight equally spaced time intervals. This wave
has a short initial profile (dashed) with hL = 0.2 and hR = 0.1. The classical wave
moves at a single speed and the capillary ridge maintains a constant shape, which
matches the results of the experiment with a large inclination angle. The right plot of
Figure D.2 contains a pair of waves: a leading faster nonclassical wave and a trailing
slower classical wave, plotted at equally spaced times. This solution has a tall initial
profile with hL = 0.4 and hR = 0.1. The capillary ridge widens, which agrees with
experimental observations at a smaller inclination angle.

D.4. The Flux Function. The nonconvex flux function f(h) = h2−h3 is essential
to the existence of nonclassical waves [37, 38]. This flux function is depicted in Figure
D.3 with a black dotted curve. Each wave from Figure D.2 appears on this graph as
a chord; the speed of each wave is exactly the slope of the corresponding chord.

Whether there is a single classical wave or a double wave structure depends on
a critical nucleation value hN , which in turn depends on hR. (See Table D.1.) For
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Fig. D.3 Plot of the flux function f(h) = h2 − h3 (dotted black curve). The dashed blue chord from
hL = 0.2 to hR = 0.1 represents the classical shock waves from Figure D.2 (left). The
solid blue chord from hL = 0.4 to hK = 0.558 represents the trailing classical shock from
Figure D.2 (right). The dash-dotted red chord from hK = 0.558 to hL = 0.1 represents the
leading nonclassical shock wave from Figure D.2 (right).
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Table D.1 Nucleation determines the types of wave structures emerging from monotonic initial data.
The initial film height is piecewise constant with a single jump down from hL to hR.

hL < hN (hR) Single classical wave from hL to hR
Double wave structure with:

hL > hN (hR) Classical wave from hL to hK

Nonclassical wave from hK to hR

hR = 0.1, hN = 0.348. If hL is below hN , the film develops a single classical wave
from hL to hR. If hL is greater than hN , the film nucleates a double wave structure
[49, 51], consisting of a trailing slower classical wave and a leading faster nonclassical
wave. The double wave structure gives rise to a second critical value, hK = 0.558, as
an endpoint for each of the wave chords. The two waves in the double wave structure
are, then, a classical wave from hL to hK and a nonclassical wave from hK to hR.

A classical wave is one for which the corresponding chord does not pass through
the dotted black curve f(h). This is true for the classical waves from hL = 0.2 to
hR represented by a dashed blue chord and from hL = 0.4 to hK represented by a
solid blue chord. The nonclassical wave from hK to hL = 0.4 is represented by a
dash-dotted red chord passing through the flux curve. Since the dash-dotted (red)
chord has a steeper slope than the solid (blue) chord, the leading nonclassical wave is
faster than the trailing classical wave and the capillary ridge between them separates.

In contrast to nonclassical waves, classical waves satisfy the Lax shock inequalities
[48]

(D.9) f ′(hL) >
f(hR)− f(hL)

hR − hL
> f ′(hR).

Here the left and right terms represent the slope of the tangent to the flux function
at the ends of the chord from hL to hR. The center quantity is the speed of the
wave, equal to the slope of the chord. The inequality implies that compared to the
wave speed, the characteristic speed ahead of the wave is slower and behind the
wave is faster, so that characteristics enter the wave from both sides. In Figure
D.3, this requirement is satisfied by the two blue (classical) chords but not by the
red (nonclassical) one for which both characteristics speeds are slower than the wave
speed and the characteristics pass through the wave from front to back:

(D.10) max(f ′(hR), f ′(hK)) <
f(hK)− f(hR)

hK − hR
.

D.5. Connection between Theory and Experiment. Now we know that for a
given prewetting height hR, if the height hL of the emerging oil is small enough, a
single classical wave develops. If hL is large enough, a classical/nonclassical wave pair
develops instead. We can connect this information to the mysterious results of the
experiment. The key is that a large inclination angle causes the oil to emerge from
the reservoir at a lower height and thus form a classical wave. A small inclination
angle causes the oil to emerge from the reservoir at a larger height and thus form a
classical/nonclassical pair. The existence of nonclassical waves also explains another
curious result in the experiment, a lack of fingering at the edge of the film in the low-
angle case because the nonclassical wave stabilizes the leading edge [36, 40, 41, 56].

Bertozzi, Münch, and Shearer performed numerical experiments to explore the
possibility of nonclassical waves in thin films and employed mathematical analysis to
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prove the existence of the waves in the second half of 1998 [37, 38]. This led to an
NSF-funded focused research group on thin films which still meets regularly today
[57]. One area of research I have pursued with Michael Shearer is to predict the types
of waves that emerge for a given initial profile [49]. In 2003, we completed a map of
the Riemann problem [51], which means that for (D.8) and the experiment, we can
predict which types of waves emerge from monotonic initial data (piecewise constant
initial profiles with a single jump up or jump down from hL to hR).

The successful international collaboration between Cazabat’s group in Europe
and Bertozzi’s group in the United States brought physicists and mathematicians
together to explain the mysterious experimental results and paved the way to a deeper
understanding of the role of classical and nonclassical waves in thin liquid films.
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