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DEADLOCK ANALYSIS IN THE DESIGN OF DATA-FLOW CIRCUITS 

Chu S. Jhon Robert M. Keller 

Electrical and Computer Engineering Department 
University of Iowa, Iowa City, Iowa 

ABSTRACT 

One means of making VLSI design tractable is to 
proceed from a high-level specification of a cir- 
cuit in terms of functionality, to the circuit 
level. A notable error which may occur in a top- 
down design starting with a data-flow graph repre- 
sentation of a circuit is a design inconsistency 
due to deadlock. This paper attempts to further 
develop the theoretical basis for algorithms which 
analyze the deadlock property of circuits on the 
basis of their data-flow graph representations. A 
systematic scheme to verify the absence of deadlock 
in data-flow graphs is also presented. 

i. INTRODUCTION 
Data-flow graphs provide a modular approach to 

the design of VLSI systems from their high-level 

specifications 2. In a data-flow graph, a node typ- 
ically represents a function from streams (i.e. 
infinite sequences) of input values to streams of 
output values. That is, the node repeatedly 
absorbs input values and produces output values as 
specified by the function. A n arc of the data-flow 
graph denotes the flow of the output value of one 
function as an input to another. Conceptually, an 
arc may retain arbitrarily many values when there 
is an "imbalanced consumption" of replicated 
streams by nodes. 

A data-flow graph incurring deadlock is a design 
fault wherein an intended communication between a 
pair of nodes never completes, due to malformed 
interconnection. A complete analysis of deadlock 
in a data-flow graph requires that the input/output 
behavior of every node be known. However, the gen- 
eral problem for an arbitrary set of functions is 
doomed to be intractable. Hence, we restrict our- 
selves to a limited set of function schemes to spe- 
cify nodes shown below: 
i. An APPLY-TO-ALL version of a function "f" 
(denoted by f\\) which repeatedly absorbs one value 
each from all the inputs and then produces the out- 
put value by applying f to this set of absorbed 
values. For example, +\\[123 .... 123...]=246 .... 
2. The COND function, which has three inputs, and 
repeatedly absorbs the value arriving from the 
first input. It then passes the value arriving 
from the second (third) input to the output, 
depending upon whether the value absorbed from the 
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first input is "i" ("0"). For example, 
C0ND[I010...,13...,24...]=1234 . . . .  
3. The T-GATE function, which has two inputs, and 
passes the value arriving from the second input to 
the output only when the value absorbed from the 
first input is "I"; otherwise, the values arriving 
from both the inputs are merely absorbed. For 
example, T-GATE[0101 .... 1234...]=24 .... 
4. The fanout point, which has one input and two 
outputs, and replicates a stream. 

2. DEADLOCK IN DATA-FLOW CIRCUITS 
By a data-flow circuit, we mean a circuit which 

can be synthesized from a given data-flow graph by 
replacing every node with a functionally-equivalent 
circuit module, and every arc with a set of wires 
(possibly together with serially connected buffer 
slots). Deadlock in a data-flow circuit is infor- 
mally defined as a state in which the computation 
of some circuit module cannot be completed, yet 
must yield any further output "token" (hereafter, 
we shall refer to a valid value as a token). We 
classify deadlock into two main categories: buf- 
fering-independent deadlock (BID), which is caused 
by the inability of a module to produce any more 
tokens because its necessary input tokens never 
become available; and buffering-dependent deadlock 
(BDD), which is caused by the inability of a module 
to produce any more tokens because the module 
receiving them is unable to absorb further tokens. 

An example of BID is shown in.Fig.l(a), and is 
self-explanatory. An example of BDD is shown in 
t~e data-flow graph of Fig.l(b). Here the place- 
ment of only finitely many buffer slots on a cir- 
cuit module for arc "a" may make it impossible to 
synthesize a data-flow circuit from this graph. 
The computation of the ith token forces the module 
to retain i-I input tokens to preserve the same 
functionality. Hence, the module must have arbi- 
trarily many buffer slots in cases where the data- 
flow circuit needs to produce arbitrarily many out- 
put tokens. Were this arbitrary buffering capacity 
possible, there would be no deadlock. But in a 
physical circuit, the buffer size is limited. 

3. ANALYSIS OF DATA-FLOW CIRCUITS 
This section presents a conceptual model which 

simplifies deadlock analysis in data-flow graphs. 
Constructive schemes to derive such a model while 
verifying the absence of deadlock, are described. 

In the asynchronous computation of our data-flow 
graphs, the computation of nodes may be enabled 
simultaneously in any arbitrary order. In a state 
transition sense, such an asynchronous computation 
is deterministic, commutative, and persistent. 

Keller I proves that such a computation satisfies 
the Church-Rosser property, which indicates that 
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for any two s£ates reachable from a common state, 
there is a common state reachable from both. 
Therefore, if a specific asynchronous computation 
(including a synchronous computation which is a 
special case) reaches a deadlock state, then any 
other asynchronous computation may also. Thus, it 
suffices to deal only with the class of synchronous 
computations. 

We shall explain deadlock behavior of data-flow 
circuits through the notion of "synchronous token- 
flow" that can be constructively identified from 
their data-flow graph representations. 
Definition i : A synchronous token-flow for a 
data-flow graph is the flow of tokens resulting 
from the successive firing (application), during 
each clock period, of the largest set of nodes 
satisfying the following conditions: 
a) A node is fired iff (I) all the necessary input 
tokens are available and (2) the output token pro- 
duced, if any, can be absorbed by an output desti- 
nation or by a reachable node, which when fired, 
merely absorbs the input tokens (e.g. T-GATE). 
Here by an available token, we mean that the token 
is present sometime during the clock period, not 
necessarily only at the beginning. 
h) At each node, all available input tokens which 
are not consumed are retained in their input arcs 
so as to be available in the next clock period. 
c) No node can be fired more than once during a 
clock period. 
Note that the largest set of nodes may vary from 
clock period to clock period. 

The synchronous token-flow behavior of each arc 
in a data-flow graph can be represented by a "pat- 
tern stream" defined as follows: 
Definition 2: A pattern stream X is a stream of 
bits which is associated with each arc of a data- 
flow graph such that in the synchronous token-flow 
for the graph, if the arc passes a token during 
the ith clock period, then the ith element X. is I; 

l 
otherwise, it is 0. 

Fig.4(c) illustrates a data-flow graph which 
computes the Fibonacci stream 112358..., along with 
the associated pattern stream for each arc. In the 
synchronous token-flow for the graph, during the 
first clock period only the COND node at the top is 
fired, during the second period all the COND nodes 
are fired, and from the third onward all the nodes 
are fired. For brevity, we shall denote a stream 
as a regular expression whenever possible. For 

w 
example, 0(i) denotes 0111 .... 

Owing to the modular nature of the synchronous 
token-flow defined above, pattern streams can be 
constructively derived. For example, the pattern 
streams of the data-flow graph which is derived by 
merging two graphs A and B as shown in Fig.2 are 
systematically derivable. We emphasize that the 
synchronous token-flow for the merged graph may 
warrant more clock periods than that of graph A or 
B. The additional periods are needed whenever 
graph A cannot consume a token arriving from graph 
B during a particular clock period, or graph B is 
incapable of producing a token that is required by 
A. This scheme is made more clear in the descrip- 
tion of Function F which derives pattern streams 
for the merged graph of Fig.2(b). 
Function F: 
INPUT: X; pattern stream for an arc in graph A (B). 

Pattern streams P and Q of Fig.2(a). 

OUTPUT: V; pattern stream for the corresponding arc 
in the merged graph of Fig.2(b). 

PROCESS: 
i. i:=l,j:=l,k:=l 

2. if Pi=Qj then Vk:=Xi(Xj),i:=i+l,j:=j+l,k:=k+l 

if Pi>Qj then Vk:=0(Xj),j:=j+l,k:=k+l 

if Pi<Qj then Vk:=Xi(0),i:=i+l,k:=k+l 

3. Repeat STEP 2. 
Given the boolean streams for the relevant 

inputs (e.g. first input of CON]) node), the pattern 
streams for our primitive nodes are determined as 
shown in Fig.3, without any constraints on their 
input sources and output destinations. These 
associated pattern streams provide a constructive 
basis to derive pattern streams for a general 
data-flow graph. As an example, pattern streams 
for the graph of Fig.4(a) can he constructively 
derived using these streams along with Function F. 

Similarly, pattern streams for a data-flow graph 
constructed by adding a fanout point to a general 
graph, as shown in Fig.5, are derived by Function G 
defined below: 
Function G: 
INPUT: P and Q of Fig.5(a). 
OUTPUT: R of Fig.5(b) (others are unchanged). 
PROCESS: 

i. i:=2, if PI=QI=0 then RI:=0 else RI:=I 

i i i-i 
2. if max( E Pj,E Qj)>E Rj then Ri:=l else Ri:=0 

j=lj=l j=l 
3. i:=i+l, go to STEP 2. 

The acyclic connection shown in Fig.2 may intro- 
duce BID. If graph B is always capable of produc- 
ing tokens required by graph A, the merged graph is 
free from BID. This condition is represented as 
C(P) ~ C(Q), wherein C(X) denotes the number of is 
occurring in the stream X, and can be infinite. 

Another case of BID may be introduced in the 
construction of a cyclic data-flow graph, as shown 
in Fig.6. BID may arise in cases where the arc 
associated with Q is free of tokens, and the arc 
associated with P can carry a token only after that 
associated with Q carries a token. We introduce a 
notion of "accumulatively less than or equal to" to 
specify a condition for the absence of BID. 
Definition 3: For two infinite streams P and Q, P 
is said to be accumulatively less than or equal t_oo 
Q iff the sum of first i elements of P is less than 
or equal to the corresponding sum of Q for all i. 
Using the above explanation, we arrive at: 
Theorem i: The cyclic graph of Fig.6(b) con- 
structed by introducing a cyclic connection to the 
deadlock-free graph of Fig.6(a) is free from BID, 
if the first element of the pattern stream Q is 0, 
and the stream derived by removing the first ele- 
ment of Q is accumulatively less than or equal to 
the pattern stream P. 

Wedge's "check sum test ''3 follows a special case of 
Theorem i. 

For example, graphs of Fig.4(b) and (c) are free 

from BID, since first elements of both 0(i) and 
w 

00(i) are 0s, and 0(i) is accumulatively less 
w 

than or equal to both 0(I) and (I) . We note that 
in this case, a pattern stream associated with each 
arc is not changed due to the cyclic connection. 
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In the addition of a fanout point to a deadlock- 
free graph as shown in Fig.5 and 6, BDD may be 
introduced. BDD occurs due to a limit on the buf- 
fering capacity of some outputs for the added fan- 
out point. To express a condition for the absence 
of BDD, we define the "accumulative boundedness": 
Definition 4: Two infinite streams P and Q are 

said to be accumulatively bounded iff there exists 
a positive integer N such that the absolute value 
of the difference between the sum of the first i 
elements of P and that of Q is less than or equal 
to N for every non-negative integer i. 
N denotes the maximal number of tokens which can be 
retained in output arcs of added fanout points in 
the synchronous token-flow with pattern streams P 
and Q of Fig.5 and 6. 
Theorem 2: Data-flow graph shown in Fig.5(b) 
(Fig.6(b)) is free from BDD, if pattern streams P 
and Q are accumulatively bounded and the graph of 
Fig.5(a) (Fig.6(b)) is deadlock-free. 

As an example, the graph of Fig.4(c) is found to 
be free from BID by applying Theorem 2. 

4. A SYSTEMATIC DEADLOCK ANALYSIS SCHEME 
Deadlock properties of a data-flow circuit are 

determined by the characteristics of its input 
sources and output destinations. The scheme pro- 
ceeds with the construction of a data-flow graph, 
which consists of arcs that are inputs to all out- 
put destinations of a given graph to be tested, 
along with the associated pattern streams. These 
pattern streams are specified so as to denote 
tokens to be consumed by the corresponding output 
destinations depenendently of each other. We then 
construct a new graph with associated pattern 
streams by applying the constructive rules of sec- 
tion 3, to connect a primitive stream-based func- 
tion, a fanout point, and an arc (which is output 
from an input source) to the old graph, while 
checking for the introduction of deadlock in the 
new graph. This process is repeated until no 
further rule is applicable, in which case failure 

of testing is reported, or the graph being tested 
is constructed, in which case there is no deadlock. 

The above scheme does not terminate when pattern 
streams for a given graph are not effectively pre- 
sented. One type of pattern stream which is effec- 
tively derivable is that represented by "determin- 
istic regular expression", defined as a regular 
expression consisting of a finite sequence followed 
by the *-closure of a finite sequence (hence there 
is no union operator). If a data-flow graph has 
deterministic regular expressions for both boolean 
streams of data-dependent decision nodes, and pat- 
tern streams for arcs to/from output destinations/ 
input sources, then the scheme terminates. 

5. CONCLUSION 

The contribution of this paper is to help make 
the data-flow approach a more realistic alternative 
to contemporary VLSI design methodologies by pro- 
viding a basis for systematically ensuring the 
absence of deadlock in circuits at the data-flow 
specification level. One avenue for future 
research is to devise a means of extending the lim- 
ited framework of deterministic regular expressions 
so that the deadlock property of less-constrained 
data-flow specifications can he algorithmically 
detected. Another avenue is to extend our schemes 
to include a wider class of data-flow graphs. 
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