
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1984

Consistency Testing for Data-Flow Circuits
Chu S. Jhon
Seoul National University

Robert M. Keller
Harvey Mudd College

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more
information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Jhon, C.S., and R.M. Keller. "Consistency testing for data-flow circuits." Proceedings for the 1984 Design Automation Conference
(June 1984): 705-707. DOI: 10.1109/DAC.1984.1585889

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

DEADLOCK ANALYSIS IN THE DESIGN OF DATA-FLOW CIRCUITS

Chu S. Jhon Robert M. Keller

Electrical and Computer Engineering Department
University of Iowa, Iowa City, Iowa

ABSTRACT

One means of making VLSI design tractable is to
proceed from a high-level specification of a cir-
cuit in terms of functionality, to the circuit
level. A notable error which may occur in a top-
down design starting with a data-flow graph repre-
sentation of a circuit is a design inconsistency
due to deadlock. This paper attempts to further
develop the theoretical basis for algorithms which
analyze the deadlock property of circuits on the
basis of their data-flow graph representations. A
systematic scheme to verify the absence of deadlock
in data-flow graphs is also presented.

i. INTRODUCTION
Data-flow graphs provide a modular approach to

the design of VLSI systems from their high-level

specifications 2. In a data-flow graph, a node typ-
ically represents a function from streams (i.e.
infinite sequences) of input values to streams of
output values. That is, the node repeatedly
absorbs input values and produces output values as
specified by the function. A n arc of the data-flow
graph denotes the flow of the output value of one
function as an input to another. Conceptually, an
arc may retain arbitrarily many values when there
is an "imbalanced consumption" of replicated
streams by nodes.

A data-flow graph incurring deadlock is a design
fault wherein an intended communication between a
pair of nodes never completes, due to malformed
interconnection. A complete analysis of deadlock
in a data-flow graph requires that the input/output
behavior of every node be known. However, the gen-
eral problem for an arbitrary set of functions is
doomed to be intractable. Hence, we restrict our-
selves to a limited set of function schemes to spe-
cify nodes shown below:
i. An APPLY-TO-ALL version of a function "f"
(denoted by f\\) which repeatedly absorbs one value
each from all the inputs and then produces the out-
put value by applying f to this set of absorbed
values. For example, +\\[123 123...]=246
2. The COND function, which has three inputs, and
repeatedly absorbs the value arriving from the
first input. It then passes the value arriving
from the second (third) input to the output,
depending upon whether the value absorbed from the

This work was supported in part by the
Semiconductor Research Corporation (contract no.
83-01-003) and the National Science Foundation

(MCS-8106177).

Computer Science Department
University of Utah, Salt Lake City, Utah

first input is "i" ("0"). For example,
C0ND[I010...,13...,24...]=1234
3. The T-GATE function, which has two inputs, and
passes the value arriving from the second input to
the output only when the value absorbed from the
first input is "I"; otherwise, the values arriving
from both the inputs are merely absorbed. For
example, T-GATE[0101 1234...]=24
4. The fanout point, which has one input and two
outputs, and replicates a stream.

2. DEADLOCK IN DATA-FLOW CIRCUITS
By a data-flow circuit, we mean a circuit which

can be synthesized from a given data-flow graph by
replacing every node with a functionally-equivalent
circuit module, and every arc with a set of wires
(possibly together with serially connected buffer
slots). Deadlock in a data-flow circuit is infor-
mally defined as a state in which the computation
of some circuit module cannot be completed, yet
must yield any further output "token" (hereafter,
we shall refer to a valid value as a token). We
classify deadlock into two main categories: buf-
fering-independent deadlock (BID), which is caused
by the inability of a module to produce any more
tokens because its necessary input tokens never
become available; and buffering-dependent deadlock
(BDD), which is caused by the inability of a module
to produce any more tokens because the module
receiving them is unable to absorb further tokens.

An example of BID is shown in.Fig.l(a), and is
self-explanatory. An example of BDD is shown in
t~e data-flow graph of Fig.l(b). Here the place-
ment of only finitely many buffer slots on a cir-
cuit module for arc "a" may make it impossible to
synthesize a data-flow circuit from this graph.
The computation of the ith token forces the module
to retain i-I input tokens to preserve the same
functionality. Hence, the module must have arbi-
trarily many buffer slots in cases where the data-
flow circuit needs to produce arbitrarily many out-
put tokens. Were this arbitrary buffering capacity
possible, there would be no deadlock. But in a
physical circuit, the buffer size is limited.

3. ANALYSIS OF DATA-FLOW CIRCUITS
This section presents a conceptual model which

simplifies deadlock analysis in data-flow graphs.
Constructive schemes to derive such a model while
verifying the absence of deadlock, are described.

In the asynchronous computation of our data-flow
graphs, the computation of nodes may be enabled
simultaneously in any arbitrary order. In a state
transition sense, such an asynchronous computation
is deterministic, commutative, and persistent.

Keller I proves that such a computation satisfies
the Church-Rosser property, which indicates that

21st Design Automation Conference
Paper 47.3

0738-100X/84/0000/070551.00 © 1984 IEEE 705

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 10, 2009 at 14:57 from IEEE Xplore. Restrictions apply.

for any two s£ates reachable from a common state,
there is a common state reachable from both.
Therefore, if a specific asynchronous computation
(including a synchronous computation which is a
special case) reaches a deadlock state, then any
other asynchronous computation may also. Thus, it
suffices to deal only with the class of synchronous
computations.

We shall explain deadlock behavior of data-flow
circuits through the notion of "synchronous token-
flow" that can be constructively identified from
their data-flow graph representations.
Definition i : A synchronous token-flow for a
data-flow graph is the flow of tokens resulting
from the successive firing (application), during
each clock period, of the largest set of nodes
satisfying the following conditions:
a) A node is fired iff (I) all the necessary input
tokens are available and (2) the output token pro-
duced, if any, can be absorbed by an output desti-
nation or by a reachable node, which when fired,
merely absorbs the input tokens (e.g. T-GATE).
Here by an available token, we mean that the token
is present sometime during the clock period, not
necessarily only at the beginning.
h) At each node, all available input tokens which
are not consumed are retained in their input arcs
so as to be available in the next clock period.
c) No node can be fired more than once during a
clock period.
Note that the largest set of nodes may vary from
clock period to clock period.

The synchronous token-flow behavior of each arc
in a data-flow graph can be represented by a "pat-
tern stream" defined as follows:
Definition 2: A pattern stream X is a stream of
bits which is associated with each arc of a data-
flow graph such that in the synchronous token-flow
for the graph, if the arc passes a token during
the ith clock period, then the ith element X. is I;

l
otherwise, it is 0.

Fig.4(c) illustrates a data-flow graph which
computes the Fibonacci stream 112358..., along with
the associated pattern stream for each arc. In the
synchronous token-flow for the graph, during the
first clock period only the COND node at the top is
fired, during the second period all the COND nodes
are fired, and from the third onward all the nodes
are fired. For brevity, we shall denote a stream
as a regular expression whenever possible. For

w
example, 0(i) denotes 0111

Owing to the modular nature of the synchronous
token-flow defined above, pattern streams can be
constructively derived. For example, the pattern
streams of the data-flow graph which is derived by
merging two graphs A and B as shown in Fig.2 are
systematically derivable. We emphasize that the
synchronous token-flow for the merged graph may
warrant more clock periods than that of graph A or
B. The additional periods are needed whenever
graph A cannot consume a token arriving from graph
B during a particular clock period, or graph B is
incapable of producing a token that is required by
A. This scheme is made more clear in the descrip-
tion of Function F which derives pattern streams
for the merged graph of Fig.2(b).
Function F:
INPUT: X; pattern stream for an arc in graph A (B).

Pattern streams P and Q of Fig.2(a).

OUTPUT: V; pattern stream for the corresponding arc
in the merged graph of Fig.2(b).

PROCESS:
i. i:=l,j:=l,k:=l

2. if Pi=Qj then Vk:=Xi(Xj),i:=i+l,j:=j+l,k:=k+l

if Pi>Qj then Vk:=0(Xj),j:=j+l,k:=k+l

if Pi<Qj then Vk:=Xi(0),i:=i+l,k:=k+l

3. Repeat STEP 2.
Given the boolean streams for the relevant

inputs (e.g. first input of CON]) node), the pattern
streams for our primitive nodes are determined as
shown in Fig.3, without any constraints on their
input sources and output destinations. These
associated pattern streams provide a constructive
basis to derive pattern streams for a general
data-flow graph. As an example, pattern streams
for the graph of Fig.4(a) can he constructively
derived using these streams along with Function F.

Similarly, pattern streams for a data-flow graph
constructed by adding a fanout point to a general
graph, as shown in Fig.5, are derived by Function G
defined below:
Function G:
INPUT: P and Q of Fig.5(a).
OUTPUT: R of Fig.5(b) (others are unchanged).
PROCESS:

i. i:=2, if PI=QI=0 then RI:=0 else RI:=I

i i i-i
2. if max(E Pj,E Qj)>E Rj then Ri:=l else Ri:=0

j=lj=l j=l
3. i:=i+l, go to STEP 2.

The acyclic connection shown in Fig.2 may intro-
duce BID. If graph B is always capable of produc-
ing tokens required by graph A, the merged graph is
free from BID. This condition is represented as
C(P) ~ C(Q), wherein C(X) denotes the number of is
occurring in the stream X, and can be infinite.

Another case of BID may be introduced in the
construction of a cyclic data-flow graph, as shown
in Fig.6. BID may arise in cases where the arc
associated with Q is free of tokens, and the arc
associated with P can carry a token only after that
associated with Q carries a token. We introduce a
notion of "accumulatively less than or equal to" to
specify a condition for the absence of BID.
Definition 3: For two infinite streams P and Q, P
is said to be accumulatively less than or equal t_oo
Q iff the sum of first i elements of P is less than
or equal to the corresponding sum of Q for all i.
Using the above explanation, we arrive at:
Theorem i: The cyclic graph of Fig.6(b) con-
structed by introducing a cyclic connection to the
deadlock-free graph of Fig.6(a) is free from BID,
if the first element of the pattern stream Q is 0,
and the stream derived by removing the first ele-
ment of Q is accumulatively less than or equal to
the pattern stream P.

Wedge's "check sum test ''3 follows a special case of
Theorem i.

For example, graphs of Fig.4(b) and (c) are free

from BID, since first elements of both 0(i) and
w

00(i) are 0s, and 0(i) is accumulatively less
w

than or equal to both 0(I) and (I) . We note that
in this case, a pattern stream associated with each
arc is not changed due to the cyclic connection.

Paper 47.3
706

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 10, 2009 at 14:57 from IEEE Xplore. Restrictions apply.

In the addition of a fanout point to a deadlock-
free graph as shown in Fig.5 and 6, BDD may be
introduced. BDD occurs due to a limit on the buf-
fering capacity of some outputs for the added fan-
out point. To express a condition for the absence
of BDD, we define the "accumulative boundedness":
Definition 4: Two infinite streams P and Q are

said to be accumulatively bounded iff there exists
a positive integer N such that the absolute value
of the difference between the sum of the first i
elements of P and that of Q is less than or equal
to N for every non-negative integer i.
N denotes the maximal number of tokens which can be
retained in output arcs of added fanout points in
the synchronous token-flow with pattern streams P
and Q of Fig.5 and 6.
Theorem 2: Data-flow graph shown in Fig.5(b)
(Fig.6(b)) is free from BDD, if pattern streams P
and Q are accumulatively bounded and the graph of
Fig.5(a) (Fig.6(b)) is deadlock-free.

As an example, the graph of Fig.4(c) is found to
be free from BID by applying Theorem 2.

4. A SYSTEMATIC DEADLOCK ANALYSIS SCHEME
Deadlock properties of a data-flow circuit are

determined by the characteristics of its input
sources and output destinations. The scheme pro-
ceeds with the construction of a data-flow graph,
which consists of arcs that are inputs to all out-
put destinations of a given graph to be tested,
along with the associated pattern streams. These
pattern streams are specified so as to denote
tokens to be consumed by the corresponding output
destinations depenendently of each other. We then
construct a new graph with associated pattern
streams by applying the constructive rules of sec-
tion 3, to connect a primitive stream-based func-
tion, a fanout point, and an arc (which is output
from an input source) to the old graph, while
checking for the introduction of deadlock in the
new graph. This process is repeated until no
further rule is applicable, in which case failure

of testing is reported, or the graph being tested
is constructed, in which case there is no deadlock.

The above scheme does not terminate when pattern
streams for a given graph are not effectively pre-
sented. One type of pattern stream which is effec-
tively derivable is that represented by "determin-
istic regular expression", defined as a regular
expression consisting of a finite sequence followed
by the *-closure of a finite sequence (hence there
is no union operator). If a data-flow graph has
deterministic regular expressions for both boolean
streams of data-dependent decision nodes, and pat-
tern streams for arcs to/from output destinations/
input sources, then the scheme terminates.

5. CONCLUSION

The contribution of this paper is to help make
the data-flow approach a more realistic alternative
to contemporary VLSI design methodologies by pro-
viding a basis for systematically ensuring the
absence of deadlock in circuits at the data-flow
specification level. One avenue for future
research is to devise a means of extending the lim-
ited framework of deterministic regular expressions
so that the deadlock property of less-constrained
data-flow specifications can he algorithmically
detected. Another avenue is to extend our schemes
to include a wider class of data-flow graphs.

6. REFERENCES
[i] R.M. Keller, "A fundamental theorem of asynch-

ronous parallel computation," In Lecture Notes
in Computer Science, Vol. 24, Springer-Verlag,
pp. 102-112, 1975.

[2] R.M. Keller, G. Lindstrom, and S. Patil,
"Data-flow concepts for hardware design," In
IEEE COMPCON 80, pp. i05-IIi, Feb. 1980.

[3] W.W. Wadge, "An extensional treatment of data-
flow deadlock," In Lecture Notes in Computer
Science, Vol. 70: Semantics of Concurrent Com-
putation, G. Kahn, ed., Springer-Verlag, pp.
285-299, 1979.

I010.. ~
to
' i J?... ?

(b) (a)

Fig. i Fig. 2

(I) * (1) . ~
° , ° ,

(1)* alaz ...

(1) * ~ a~a~, ~ J o) Apply-to-oil
Version of "f"

aloe -." ~ ' I a, a t ' " ¢) COND (1)*mj T- GATE
i

b) T-GATE
Fig.3

0111 e'

I~,l" Io,='l~." i=..p~.lo=.. =."

,o,. A ,,o,. A =
, . j io=,,. ,o=,,

Fig.4

T-.-T T.-.T
[• J " * i " |

. , . j-

(a) (b)

Fig.5

~-->

1
>

[

(a)

Fig.6

(b)

(1)*

(b)

Paper 47.3
707

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 10, 2009 at 14:57 from IEEE Xplore. Restrictions apply.

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1984

	Consistency Testing for Data-Flow Circuits
	Chu S. Jhon
	Robert M. Keller
	Recommended Citation

	tmp.1318372926.pdf.uPUi7

