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Abstract

Although women have made progress in entering positions in academia and
industry, they are still underrepresented at the highest levels of leadership.
Two factors that may contribute to this leaky pipeline are gender bias,
the tendency to treat individuals differently based on the person’s gender
identity, and homophily, the tendency of people to want to be around those
who are similar to themselves. Here, we present a multilayer network model
of gender representation in professional hierarchies that incorporates these
two factors. This model builds on previous work by Clifton et al. (2019), but
the multilayer network framework allows us to track individual progression
through the hierarchy and relationships at the level of individual agents.
We use this model to investigate how the network structure and location of
female and male nodes within a given network affect gender representation
throughout the hierarchy.
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Chapter 1

Introduction

1.1 Gender Bias and Inequality

Gender bias and gender inequality are prevalent throughout many societies
and affect many people in a variety of ways. Gender bias can be formally
defined as a person receiving different treatment based on the person’s real
or perceived gender identity (Reference (2023)). Gender bias affects many
people in many ways, but one particularly important inequality is the gender
pay gap. According to the United Nations, globally, women earn only 77
cents for every dollar that men earn. Women are concentrated in low-wage,
unskilled jobs, and also do two and a half times as much unpaid work as men
(United Nations). Although these quantities have improved as compared to
historical averages, it will take 257 years to reach equal pay at the current
rate.

While there are many factors that contribute to the gender pay gap, in
this thesis we will focus on the disparity between the number of men and
women in leadership positions. One especially visible example of this is
in Chief Executive Officers of Fortune 500 companies, where only 8.8% of
them are women (Women Business Collaborative). Another example of a
type of hierarchical organization that is especially relevant to this thesis
is mathematics departments. According to the Association for Women in
Mathematics, in 2017, 38% of mathematics bachelor’s degrees were given to
women, 29% of PhDs were awarded to women, 21% of new postdocs were
women, only 17% of tenured or tenure track faculty were women, and only
12% of full professors at PhD-granting institutions were women. One possible
explanation is the so-called leaky pipeline, which describes how women and
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minorities are steadily lost at each stage in STEM fields; however, more work
is needed to determine the cause of this particular example. Because there
are very few female full professors who are mentoring students, prospective
female graduate students may feel less empowered to pursue graduate study,
and even if they do, may not have the same outcomes as men. For example,
Schwartz et al. (2021) found that researchers in the life sciences who had
been awarded an outstanding distinction trained male graduate students
at a higher rate than their other colleagues. They also found that female
mentors have less access to resources and that mentors and trainees tend to
be the same gender. This implies that mentors of women tend to have fewer
resources, contributing to the disproportionately small number of women
obtaining independent research positions.

1.2 Existing Mathematical Work on Professional Gen-
der Balance

There are many mathematical tools that researchers have been using to try to
better understand gender disparity in professional settings. In this section,
we will discuss previous projects which studied networks of collaboration
on papers between researchers in academia, academic recommendation
letters via natural language processing, and agent-based models of women
in corporations. Bellotti et al. (2022) investigated differences between male
and female professional networks in academia, specifically whether men
and women received the same benefits from having similar collaboration
networks. They found that in certain disciplines, despite having similar
social networks, women received less funding than men. They suggested
that increasing the representation of women in academic fields alone is not
enough to reduce inequalities. They concluded that this may be due to
the fact that women occupy fewer leadership positions in research, such as
principal investigators.

Lerman et al. (2022) analyzed author citation networks of researchers
elected to the National Academy of Sciences to better understand gender
disparities in senior faculty positions. They were able to identify gender
disparities in citation networks, such as women receiving fewer citations
over the course of their career than men do and women reciprocating a
significantly higher fraction of citations than men do. Furthermore, the
authors were able to infer the author’s gender based solely on their citation
network using a random forest classifier. They also found that women tend
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to have a higher clustering coefficient than men and that their peers are more
productive, which may indicate that women are more often a part of tight-
knit research communities. One possible reason that women’s advancement
in academic careers is limited could be evaluations from those at higher
levels in the professional hierarchy. Using natural language processing,
Bernstein et al. (2022) found that letters of recommendation tend to describe
women more often in terms of their work ethic and drive compared to men.
However, both genders are equally likely to be labeled as exceptional or
standout students in these letters.

Mathematicians have also built models incorporating individual action
and progression to understand how and where gender parity emerges in
hierarchical organizations. Du et al. (2022) used an agent-based model to
examine how women are affected by bias in the workplace. In this model,
a single instance of bias, such as being penalized slightly more for making
a mistake, doesn’t have a huge impact at that moment, but over time, bias
drastically affects women. Du et al. (2022) incorporated six different types
of bias into their model, which include that women’s successes on projects
are valued less than men’s, women’s failures and errors are penalized more
than men’s, women receive less credit when working on teams with men,
women receive more blame when their mixed-gendered team fails, women
are penalized for behaving non-altruistically, and that women receive fewer
opportunities for growth. Their results showed that in their model, women
must have a higher success rate to be promoted to the highest level of the
corporation than men and that individual biases against female success and
failure have the greatest effect on women’s career paths. They also examined
the effect of intervention strategies, such as quotas, on their model and
determine that as long as macro-level discrimination still exists, they won’t
be effective in the long run.

1.3 Previous Model of Gender Balance in Hierarchical
Organizations

Clifton et al. (2019) created a model of the fraction of each gender in
hierarchical organizations using ordinary differential equations. They model
an organization in which people occupy positions at different levels. People
are hired into the lowest level of the organization and have the potential to
rise through the ranks or quit. To progress through the levels, people on
the lower level apply for promotion, and people on the next level decide
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which applicants to promote. Bias affects the decisions of the higher level,
and homophily, the tendency to seek out people who are similar to oneself,
affects the decision to seek promotion. In the model, it is assumed that if the
next level in an organization has a high fraction of women, then a woman in
the lower level is more likely to seek promotion. Clifton et al. (2019) defined
bias as all conscious or unconscious decisions made by an employer that are
affected by the applicant’s gender and assumes that bias is the same in each
level of the organization.

In their model, Clifton et al. (2019) made a few key assumptions. They
assumed that the probability of promotion is a function of the fraction of
people who share the applicant’s gender and the fraction of like-gendered
individuals in the applicant’s current level. The probability of seeking
promotion did not change based on gender. Bias was a constant term that
exists uniformly throughout the professional hierarchy, and people were
promoted, which leaves vacancies that are subsequently filled.

To model the probability of seeking promotion, Clifton et al. (2019) used
a sigmoid function that incorporates a gradual switch from being not likely
to apply to very likely to apply as homophily increases:

𝑃(𝑢, 𝑣) = 1
1 + 𝑒−𝜆(𝑢−𝑣)

,

where 𝑢 is the fraction of like-gendered individuals in the next level up of
the hierarchy, 𝑣 is the fraction of like-gendered individuals in the current
level, and 𝜆 is the strength of the homophilic tendency. Then, they model
the fraction of women who are promoted using the function

𝑓 (𝑢, 𝑣; 𝑏) = 𝑏𝑣𝑃(𝑢, 𝑣)
𝑏𝑣𝑃(𝑢, 𝑣) + (1 − 𝑏)(1 − 𝑣)𝑃(1 − 𝑢, 1 − 𝑣) ,

where 𝑢 is the fraction of women in the higher level of the professional
hierarchy, 𝑣 is the fraction of women in the lower level, and 𝑏 is the fraction
of women promoted if the applicant pool has an equal number of men and
women and takes on possible values in the set [0, 1]. If 𝑏 < 1

2 , then women are
disproportionately not promoted and if 𝑏 > 1

2 women are disproportionately
promoted (Clifton et al. (2019)). Based on the function 𝑓 (𝑢, 𝑣; 𝑏), Clifton
et al. (2019) formulated a system of differential equations that incorporate
movement between levels.

To understand the effects of bias and homophily, Clifton et al. (2019)
considered multiple variations of their model. First, they examined a model
with no effects from either bias or homophily. They set the bias constant to
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𝑏 = 1
2 and let the probability of seeking promotion be a constant. With these

choices, the model reaches a stationary state where women represent half
the employees at each level of the professional hierarchy. In the model which
only considers the effect of bias, if 𝑏 < 1

2 , then the steady-state gender fraction
is reduced in comparison to when 𝑏 = 1

2 , with higher levels having fewer
women. In the model which only considers the effect of homophily, there
are three different types of outcomes. When the strength of the homophilic
tendency is low, the organization reaches gender parity on all levels, but
when the strength is moderate, they observe oscillations in the fraction of
women with respect to time at all levels. When the strength of homophily is
high, the system will converge to having either all men or all women on each
level. In the model which considers both homophily and bias, the system
experiences very similar long-term behavior to the bias-free model.

Clifton et al. (2019) applied their model to various academic fields by
estimating bias and homophily values for each field from data. Using these
values, they concluded that fields such as law and medicine that have bias
values near 1

2 and weak homophily will reach gender parity, whereas fields
with strong homophily, like engineering and nursing, should become either
male or female-dominated. Finally, fields with strong gender bias, like math
and computer science, will never reach gender parity at the highest levels.

This model is valuable because it incorporates bias and homophily into a
model which predicts gender balance over time and can be used to examine
different institutions and policies. However, there are a few limitations of
this model. They don’t consider any individual connections and interactions
in the decision to apply for promotion, and they assume that the population
of women and men is well-mixed on each level. They also assume that
all people on the next level in the professional hierarchy have the same
bias, whereas it is likely that women and men have different gender biases
in reality. They also assume that homophily is something experienced
universally throughout a level, rather than on an individual basis. Finally,
while bias and homophily may change over time, they assume that both
values are constant.

1.4 Goals of Thesis

In this thesis, we extend the work of Clifton et al. (2019). We model the
same hierarchical organizational structure, but instead of using differential
equations, we use a probabilistic process on networks. Differential equations
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assume that populations are well-mixed, but networks allow us to examine
relationships and how individual interactions impact gender balance in more
depth. We model homophily and bias for each individual in the network in
the following way. Homophily depends on the number of individuals of the
same gender to which an individual is connected in their current level of
the organization. Individuals are promoted to the next level based on the
bias of those in the level above and on the homophily of the individual. It is
important to include a hiring and retirement process so we can analyze the
fraction of women in the organization in a longer time frame. To encode the
hierarchical nature of the organization, we use a multilayer network Kivelä
et al. (2014). Using this model, we investigate how different models or levels
of bias affect the gender balance in the organization, the impact that the
location of female and male nodes within the network structure have on the
behavior, as well as the effects of the initial network structure.

The rest of the thesis will proceed as follows. In Chapter 2, we will
provide mathematical background, and in Chapter 3 the model formulation
is discussed. Results from the unbiased model are presented in Chapter 4,
and in Chapter 5 we examine the results from the biased model. Finally, the
thesis concludes in Chapter 6.



Chapter 2

Mathematical Background

2.1 Networks

2.1.1 Single-Layer Network

A network 𝐺 is a mathematical structure in which a set of vertices 𝑉 (also
called nodes) are connected by a set of edges 𝐸. If there is an edge from vertex
𝑢 to vertex 𝑣, we can write (𝑢, 𝑣) ∈ 𝐸. An undirected network has undirected
edges, indicating that the two nodes are connected in the same way, while
directed networks have directed edges that encode one-way relationships.
An abstract undirected network is shown in Figure 2.1. Directed networks
are useful because they can encode individual relationships and social
structures. For example, they can encode the social structures of a second-
grade classroom, as seen in Figure 2.2, or could represent members of a
family who are in contact with one another.

2.1.2 𝐺(𝑛, 𝑝) Random Network Model

One important type of random network model is called the Erdös-Rényi
model, also called a 𝐺(𝑛, 𝑝) model Brooks (2023). When using this model
to generate a network, we fix 𝑛 nodes and let 𝑝 be the probability of an
edge connecting any pair of nodes. Each graph 𝐺 with 𝑛 nodes has a
probability 𝑃(𝐺) = 𝑝𝑚(1 − 𝑝)(𝑛2)−𝑚 , where 𝑚 is the number of edges. The
𝐺(𝑛, 𝑝) model generates a simple, random graph. We will use the 𝐺(𝑛, 𝑝)
generated network as an important building block of our model.
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Figure 2.1 An abstract, undirected network. Circles represent nodes, while
lines represent edges.
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Figure 2.2 Directed network of a second-grade classroom. Nodes are labeled
with the initials of each child in the class. Directed edges represent social rela-
tionships between the second-graders. Grandjean (2015)
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2.1.3 Modularity

Vertices within a network may be assigned additional values or traits. For
example, we can assign vertices to be either male or female and can assign
values that could represent the amount of money that they make. Categorical
traits divide the vertices into groups, and modularity is a number that tells
us how connected vertices are to members of their own group. Modularity
can be defined for a partition into any number of groups, but because in
this thesis we only have two groups, we will focus on that case. When
considering two groups, modularity is calculated as

𝑀 =
1

4𝑚

∑
𝑖 𝑗

𝐵𝑖 𝑗𝑠𝑖𝑠 𝑗

where 𝑚 is the number of edges, 𝑘𝑖 is the degree of node 𝑖, and 𝑠𝑖 = 1 if it is
in the first group and 𝑠𝑖 = −1 if it is in the second. The expression for 𝐵𝑖 𝑗

is 𝐵𝑖 𝑗 = 𝐴𝑖 𝑗 −
𝑘𝑖 𝑘 𝑗
2𝑚 . The adjacency matrix, 𝐴, has entry 𝑖 , 𝑗 = 1 if there is an

edge between nodes 𝑖 and 𝑗. If we sum up
∑

𝑖 𝑗 𝐴𝑖 𝑗𝛿𝑖 𝑗 where 𝛿𝑖 𝑗 = 1 if 𝑖 and 𝑗

are in the same group and 0 otherwise, we get two times the total number
of edges between members of the same group. If we multiply this sum by

1
2𝑚

∑
𝑖 𝑗 𝐴𝑖 𝑗𝛿𝑖 𝑗 , we get the fraction of edges that belong to members of the same

group. Then, 𝑘𝑖 𝑘 𝑗
2𝑚 is the expected value of the number of same-group edges

between nodes with the degree of 𝑖 and degree of 𝑗. The sum
∑

𝑖 𝑗
𝑘𝑖 𝑘 𝑗
2𝑚 𝛿𝑖 𝑗 is

two times the number of expected edges between nodes of the same group,
and we can again divide by 2𝑚 to get the expected fraction of edges between
same-group nodes. Putting these together,

∑
𝑖 𝑗 𝐵𝑖 𝑗𝛿𝑖 𝑗 is the actual fraction

of edges between same-group nodes minus the expected fraction of edges
between same-group nodes. Some algebra leads us to the final equation

1
4𝑚

∑
𝑖 𝑗

𝐵𝑖 𝑗𝑠𝑖𝑠 𝑗 .

When 𝑀 is positive, members of the same group are more connected
with each other, while 𝑀 being negative means that it is more likely for
an edge to exist between nodes of different groups than nodes of the same
group. If 𝑀 = 0, then all vertices are equally likely to be connected to nodes
in either group. The concept of modularity will help us understand how
network structure affects the graph.
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Figure 2.3 An example of a multilayer network with three layers, drawn using
Kivelä (2013)

2.2 Multilayer Networks

A multilayer network is a network with multiple layers. Multilayer networks
can contain both intra-layer and inter-layer edges. Often, multilayer networks
are used to represent different types of relationships between the same nodes.
In my model, each level of the multilayer network represents a level in the
professional organization. Figure 2.3 shows an example of a multilayer
network.

2.3 Binomial Distribution

The binomial distribution is a probability distribution that describes the
number of successes in a fixed number of independent trials, each with the
same probability of success. It is often used to model situations where there
are only two possible outcomes for each trial, such as “heads" or “tails."
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The binomial distribution is characterized by the probability of success in
a single trial 𝑝 and the number of trials 𝑛. Figure ?? shows two example
binomial distributions with different probabilities of success.

In this model, we use a binomial distribution to make random choices be-
tween two options with a probability of success 𝑝. The binomial distribution
models the number of successes given 𝑛 trials with probability of success 𝑝.
In the special case where 𝑛 = 1, this is called a Bernoulli distribution.
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a. 𝑝 = 0.5

b. 𝑝 = 0.2

Figure 2.4 Two binomial distributions run with 𝑛 = 20 trials and a sample
size of 10000. The probability of success differs between the two distributions.





Chapter 3

Model Formulation

3.1 Overview of the problem

In this thesis, we create a network model to study gender balance in hierarchi-
cal organizations such as corporations and academic institutions. This work
is an extension of the work by Clifton et al. (2019), where they modeled the
fraction of women in hierarchical organizations using a system of ordinary
differential equations, studying gender balance. In the Clifton et al. (2019)
model, the fraction of women at each level of the organization is affected
by people hired to the lowest level, people who leave the company, and
people who are promoted. To determine the fraction of promoted people
who are women from a given level, the authors first determine the fraction of
women in an applicant pool using a function of the fraction of like-gendered
individuals in the applicant’s current level and level above. Then, a bias
parameter affects the probability that women will be promoted from the
applicant pool.

In my model, we create an agent-based model which incorporates
individual interaction. To do this, we use a multilayer network to encode
the organizational structure in which individuals are represented by nodes,
relationships are represented by edges, and levels of the organization are
represented by layers. Nodes are adjacent to other nodes in their current
layer, and we do not incorporate edges between layers. Each node is assigned
a homophily value, which we take to be the number of like-gendered nodes
it is connected to. Individuals decide to apply for promotion as a function
of the fraction of the homophily value over the number of neighbors it has.
From the applicant pool, nodes are promoted based on a constant probability
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Figure 3.1 This figure depicts the general flow of my model in one level of an
organization. It starts by initializing a multilayer network that represents each
individual, their gender, and their social connections by their edges. From there,
we cycle through promotion, quitting, and hiring for a specified number of time
steps.

of promotion, with a bias term reducing the probability of promotion for
female nodes. Then, new individuals are hired into the lowest level and
some quit from each level depending on some probability. Figure 3.1 shows
the progression of the model on a given level of the organization.

My model is structured using a multilayer network. Although each node
is only on one layer, each node has a placeholder node on every layer it is
not actually on. Every node in the multilayer network is either labeled as
an “active” or “shadow” node. Shadow nodes are the placeholder nodes,
while active nodes are the nodes that actually are on that layer. Shadow
nodes Because we keep track of which nodes are active and which are not,
the shadow nodes do not impact the dynamics overall.

In the multilayer model, we calculate homophily as the number of like-
gendered neighbors of a node. First, we determine which nodes apply for
promotion using a probability based on their homophily values, which are
the number of like-gendered neighbors to which they are adjacent. Then,
those nodes are promoted with a set probability. Once we know which nodes
are promoted, in their current layers, we set their status in their status to
“shadow” and remove all of their edges, while in their new layer, we set their
status to “active” and add new edges, with the same probability of an edge
occurring between any two nodes, 𝑝𝑔 , that was used in graph construction.
There is a possibility that nodes are promoted into the next layer and leave
a node that has no neighbors and no chance of being promoted but is still
active. We leave these nodes as they are.

When a node is hired, we add that node to all layers. However, we only
set the node to be active in the bottom layer. When a node quits, we set it to
be a shadow node in all layers and remove all of its edges, so it is effectively
not a part of the network anymore. See Figure 3.2 for an overview of how
the model works.
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a. The initialization of the multilayer network. Nodes 0, 1, and 2 are active in layer 0, the
lowest level of the organization, and nodes 3, 4, and 5 are active in layer 1, the highest.
Note how nodes 0, 1, and 2 appear in layer 1 and nodes 3, 4, and 5 appear in layer 0 with
no edges as shadow nodes. Shadow nodes are shown in black, where male nodes are
blue and female nodes are green.

b. The multilayer network after promotion. Node 0 was promoted from layer 0 to layer 1,
making no new connections. It was disconnected from its old neighbors and is a shadow
node in layer 0.

c. The multilayer network after quitting and hiring. None of the nodes quit, while node 6
was hired into layer 0, forming edges with nodes 1 and 2.

Figure 3.2 Example of the multilayer network model
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3.2 Initialization

In the initialization step, we need to construct the initial structure of the
multilayer network and all of the attributes of the nodes. The details of this
algorithm can be found in the appendix in Algorithm 1.

Let 𝑝𝑔 be the probability that any given pair of nodes are adjacent, and
𝑛𝑖 be the number of nodes on layer 𝑖. The first thing we do in this step is to
create a 𝐺(𝑛𝑖 , 𝑝𝑔) graph for each layer. We use the 𝐺(𝑛, 𝑝) model because of
it’s simplicity. When we hire nodes, it is easy to generate new adjacencies
as described by the 𝐺(𝑛, 𝑝) network model. Then, we create a multilayer
network by adding each 𝐺(𝑛𝑖 , 𝑝𝑔) starting graph to its corresponding layer.
For example, if we want to model a structure with one hundred nodes on
the first layer and thirty nodes on the second layer, we would generate a
𝐺(100, 𝑝𝑔) single-layer network and use that to initialize the bottom layer
of the multilayer network and a 𝐺(30, 𝑝𝑔) single-layer network which to
initialize the top layer.

We assign genders to each node, which we do by drawing from the
binomial distribution with mean 𝑝𝑤 , the probability of a node being assigned
female. Then, each node gets a homophily value, ℎ, which is it’s number of
like-gendered neighbors. For example, if a female node is adjacent to two
nodes, one male and one female, its homophily value will be 1. For each
node that we add to the multilayer network, we add a “shadow” version
of the node on every other layer of the network. This makes computation
easier when we promote nodes from one layer into the next. We give each
node the “shadow” or “active” attribute.

3.3 Promotion

In promotion, we first determine which nodes are in the applicant pool, and
from that subset we determine which are promoted to the next layer. The
implementation can be found in Algorithm 2. We do this process on each
layer except for the last one as no one is promoted from the top layer.

The first thing to do is to find which nodes are seeking promotion. To
do this, we calculate the probability of being promoted into the pool for
each node. This probability is the node’s homophily divided by its number
of neighbors. Then, we draw from the binomial distribution with that
probability, and if that is successful, we add that node to the subset of nodes
applying for promotion.
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Once we know which nodes are seeking promotion, we go through the
process of promoting nodes into the next layer. To determine which nodes
are promoted, again we draw from a binomial distribution and a constant
probability of success. The probability of promotion is multiplied by 𝑏, the
bias constant, if we are deciding on promotion for a female node. This serves
to incorporate institutional gender bias into the system.

If the draw from the binomial distribution was successful, then the node
is promoted. We set that node on its current layer to “shadow,” remove all
of its edges, and adjust the homophily values of all its former neighbors
accordingly. On the next layer up, we change the node to be “active.”
For each active node on the layer the node was promoted into, we draw
from the binomial distribution with probability of success 𝑝𝑔 , and add an
edge between the promoted node and the other node. We also update the
homophily values accordingly.

3.4 Hiring

To perform hiring, we first need to determine how many individuals will
be hired. We want to hire some percentage of the number of people on the
bottom layer, so we first determine the number of people on the bottom layer.
Then, the number of nodes that we hire is 𝑃ℎ𝑖𝑟𝑒 × 𝑎𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝐿𝑜𝑤𝑒𝑠𝑡, where
𝑃ℎ𝑖𝑟𝑒 is the percentage of the bottom layer we want to hire in. If the number
of nodes active in the bottom layer is small enough, we will not hire any
nodes. To ensure that we always have at least one node in the bottom layer,
we actually hire the maximum of 1 and the calculated number of nodes.

Once we know how many nodes to hire, we add each new node to
the network. Each node is only active in layer 0, the lowest layer, has its
corresponding “shadow” nodes in the other layers, and is assigned gender
in the same way that it is done during initialization. The homophily values
are initially set to 0 because they do not have any neighbors yet.

The next step is to add neighbors to the new nodes. We add new nodes
using the 𝐺(𝑛, 𝑝) network model. Each new node has a 𝑝𝑔 probability of
having an edge with every other active node in the bottom layer. For each
possible edge, we add it using a binomial generator with 𝑝𝑔 , the probability
of having an edge between two random nodes, as the probability. This
is consistent with the generation of the initial network structure. Our
implementation of this process can be found in Algorithm 3.
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3.5 Quitting

In this model, quitting occurs in each time step, and we use quitting as a way
to keep the number of people in each layer constant. On a given layer, each
node has the same probability of quitting. However, due to the different
types of interactions that happen on the layers, each layer can have a different
quitting probability.

To find the quitting probability, we first make the key assumption that
we want the number of nodes on each layer to be constant. Using the Law of
Large Numbers, we know that the mean number of nodes that are promoted
is 𝑝𝑖 × 𝑛𝑖 , where 𝑝𝑖 is some probability of promotion, 𝑛𝑖 is the number of
nodes on layer 𝑖, and 𝑖 is the current layer. Let 𝑞𝑖 be the quitting probability
from layer 𝑖 and 𝑘 be the probability of being hired. We assume that the
number of nodes entering the layer equals the number of nodes leaving the
layer. Using these facts, we find that in the top layer, where nodes only leave
by quitting, the equation for quitting is

𝑝𝑖−1𝑛𝑖−1 = 𝑞𝑖𝑛𝑖

𝑝𝑖−1
𝑛𝑖−1
𝑛𝑖

= 𝑞𝑖 .

In the bottom layer, where hiring, quitting, and promotion from the layer
occur, we find that the equation for quitting is

𝑘𝑛0 = 𝑞0𝑛0 + 𝑝𝑖𝑛0

𝑘 − 𝑝0 = 𝑞0.

For the middle layers, where individuals are promoted into and from the
layer and individuals quitting, we find that the equation for quitting is

𝑝𝑖−1𝑛𝑖−1 = 𝑞𝑖𝑛𝑖 + 𝑝𝑖𝑛𝑖

𝑝𝑖−1𝑛𝑖−1 − 𝑝𝑖𝑛𝑖

𝑛𝑖
= 𝑞𝑖 .

The number of nodes is a constant that we choose at the beginning of the
simulation. Thus, to calculate the quitting rates, we just need to find the
probability of promotion 𝑝𝑖 and the hiring probability 𝑘.
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In promotion, there are two main steps. The first is a node joining the
applicant pool and the second is being promoted from the applicant pool.
Using the definition of conditional probability, we find that

𝑃(Promoted) = 𝑃(Pool) × 𝑃(Promoted | Pool).

To find the probability of promotion into the applicant pool, we first
consider the formula for promoting an individual node. We draw a sample
using a probability of ℎ𝑖

𝑛𝑏𝑟𝑖
, where ℎ𝑖 is the homophily of node 𝑖 and 𝑛𝑏𝑟𝑖

is the number of neighbors of 𝑖. The number of neighbors on average in a
𝐺(𝑛, 𝑝) network is 𝑝𝑔 × 𝑛, where 𝑝𝑔 is the probability of two nodes having
an edge between them in the graph and 𝑛 is the number of nodes in the
layer. On average, each node will have roughly 𝑝𝑤 × 𝑛𝑏𝑟 female neighbors
and (1 − 𝑝𝑤) × 𝑛𝑏𝑟 male neighbors.

On average, female nodes will account for 𝑝𝑤 times the total number
of nodes, while the other (1 − 𝑝𝑤) will be male nodes. We can calculate a
weighted average of the homophily scores using these weights, finding that

ℎ𝑎𝑣𝑔 = 𝑝2
𝑤 × 𝑝𝑔 × 𝑛𝑖 + (1 − 𝑝𝑤)2 × 𝑝𝑔 × 𝑛𝑖 .

Finally, to find the overall probability of going into the applicant pool, we
divide the average homophily by the average number of neighbors:

𝑃(Pool) =
ℎ𝑎𝑣𝑔

𝑛𝑏𝑟𝑠

=
𝑝2
𝑤 × 𝑝𝑔 × 𝑛𝑖 + (1 − 𝑝𝑤)2 × 𝑝𝑔 × 𝑛𝑖

𝑝𝑔 × 𝑛𝑖

= 𝑝2
𝑤 + (1 − 𝑝𝑤)2

Next, we need to find the probability of being promoted given being
in the pool, 𝑃(Promoted | Pool). We promote from the pool to the next
layer with a constant probability of promotion, 𝑝promo, and multiply that
probability by a bias constant 𝑏 if the node is a female node. Because we
expect female nodes to account for 𝑝𝑤 of the total node population, we can
create a weighted average of the two gender’s probability of promotion from
the pool:

𝑃(Promoted | Pool) = 𝑝promo × 𝑏 × 𝑝𝑤 + 𝑝promo × (1 − 𝑝𝑤).
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Finally, to find the overall probability of promotion, we multiply the
equations for 𝑃(Promoted | Pool) and 𝑃(Pool), resulting in the equation

𝑃(Promoted) = (𝑝promo × 𝑏 × 𝑝𝑤 + 𝑝promo × (1 − 𝑝𝑤))(𝑝2
𝑤 + (1 − 𝑝𝑤)2).

It is interesting to note that the probability 𝑃(Promoted) has no depen-
dence on 𝑝𝑔 or 𝑛𝑖 and only depends on the parameters 𝑝𝑤 , 𝑝promo, and 𝑏.
The variables 𝑝𝑤 , 𝑝promo, and 𝑏 are all characteristics of the overall model,
not the structure of the network, while 𝑝𝑔 or 𝑛𝑖 describe the initial structure
of the graph. The formula for 𝑃(Promoted) suggests to us that on average,
the promotion probability, and long-term behavior of the model, averaged
over many trials, will not depend on the different graph structures. However,
this result depends on the use of a 𝐺(𝑛, 𝑝) network as the initial network.

Once we have calculated 𝑃(Promoted), we can create probabilities for
quitting on each layer. We use these probabilities by giving each node a
random chance of quitting. We do this in a layer-by-layer step, going from
the bottom up. The first thing we do is calculate the number of active nodes
in the layer. This allows us to make sure that we always have at least one
node in the layer. Then, for each node, we randomly pick if it will quit by
drawing from a binomial distribution with the quitting probability for the
layer. If the node is active and there are at least two active nodes in the layer
left, then we set that node to be inactive, reset its homophily, and disconnect
it from all edges, adjusting its neighbors’ homophilies. This algorithm is
found in Algorithm 4.

3.6 Shuffling

There are two ways that we reassign gender to nodes. The first is found in
Algorithm 5, where we keep the same number of male and female nodes in
each layer and permute the locations of the gender labels. We then update
the homophily values for each node. Using this method of shuffling keeps
the same starting fractions of women on each layer.

The other method of reassigning gender is done by randomly selecting
gender again using the probability of being a female node, 𝑝𝑤 . This process
is found in Algorithm 6. For each node, we find a new gender using a
weighted choice where being a female node has probability 𝑝𝑤 and being a
male node has probability 1−𝑝𝑤 . Then, for each node and layer combination,
we reassign the homophily value. This method doesn’t guarantee that the
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fractions of women are the same on each layer. Because we use probability
to reassign gender, there could be large differences in the number of men
and women on each layer between the original network and the shuffled
network.

3.7 Modularity

The modularity of a partition of a network is a way to quantify the connect-
edness of two groups of nodes. In our case, we want to see how connected
the male and female nodes are to each other. The formula for modularity is

𝑄 =
1

4𝑚

∑
𝑖 𝑗

𝐵𝑖 𝑗𝑠𝑖𝑠 𝑗 ,

where 𝐵𝑖 𝑗 = 𝐴𝑖 𝑗 −
𝑘𝑖 𝑘 𝑗
2𝑚 and shows how connected a node is to members of its

own group and 𝑘𝑖 is the number of neighbors of node 𝑖. The entry of the
adjacency matrix for nodes 𝑖 and 𝑗, 𝐴𝑖 𝑗 , is 1 if there is an edge between nodes
𝑖 and 𝑗 and 0 otherwise. If node 𝑖 is in group one, 𝑠𝑖 is 1, if 𝑖 is in group two,
𝑠𝑖 = −1, and 𝑚 is the total number of edges in the graph. Algorithm 7 shows
the calculation of the modularity of the partition between male and female
nodes, and Section 2.1.3 explains what the modularity calculation means in
more detail.

3.8 Putting It All Together

When running our model, there are six parameters that we can change:
𝑛𝑝𝑙, 𝑝𝑤 , 𝑝𝑔 , 𝑏, 𝑦𝑒𝑎𝑟𝑠, and 𝑡𝑟𝑖𝑎𝑙𝑠. We want to test how these different param-
eters affect the long-term behavior of our model. Table 3.1 shows what these
parameters mean and their range of values

The first is the number of nodes on each layer, 𝑛𝑝𝑙. This is a list of
integers. Because we want to directly compare different runs with different
parameters, we keep 𝑛𝑝𝑙 the same between all simulations to eliminate one
source of variance.

The next variable we can alter is 𝑝𝑤 , which is the probability a node is
assigned female and can range in value from 0 to 1. We use 𝑝𝑤 to assign
gender to nodes during initialization, hiring, and reassigning gender to
shuffle. We vary 𝑝𝑤 greatly through the simulations.
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Parameter Meaning Range of Values

𝑛𝑝𝑙 List of the number of nodes on each layer list of 𝑥𝑖 ∈ ℤ

𝑝𝑤 Probability a node is assigned female [0, 1]
𝑝𝑔 Probability of any two nodes sharing an edge [0, 1]
𝑏 Bias, 1 is unbiased, 0 is fully biased [0, 1]

𝑦𝑒𝑎𝑟𝑠 number of years the model should run ℤ

𝑡𝑟𝑖𝑎𝑙𝑠 number of trials the model should run ℤ

Table 3.1 Six parameters that influence the model.

The variable 𝑝𝑔 is the probability of two nodes being connected in our
network. This probability is used during initialization, promotion, and
hiring.

The bias constant, 𝑏, ranges from values of 0 to 1. When 𝑏 = 0, no women
are promoted at all. We call this case full bias. When 𝑏 = 1, women are
promoted at the same rate as men, which we call running an unbiased
simulation.

Finally, we can adjust the duration of our simulation by varying the
number of years and trials.

When we run our simulation, we start by initializing a graph model
starting with an initial graph for as many trials as specified. Due to computing
constraints, this is typically 10 or 20 trials. We cycle through promotion,
quitting, and hiring each year for a specified number of years. We record
the fraction of women at every layer for each year and average it with the
same data from all other trials, and similarly record data on the number of
nodes in each layer for each year.
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Results of Unbiased Model

4.1 Variance

We want to understand the variance between trials and find the number
of trials we would need to run to get results with low variance. A low
variance value would be when it is less than 5% of the mean value. To
test this, we calculate the variance of the fraction of women over time. An
example run can be found in Figure 4.1. Note that the variance is rather
large compared to the value of each point. This value could be lowered
with an increased number of trials. Due to limitations on computing power,
running more than twenty trials wasn’t feasible for this project. Also, we
note that the variance increases as the number of years goes on. This is due
to the randomness of the model. As time goes on, more random choices are
made in the promotion and quitting steps, which increases the variation
in the state of the model. Thus, the general trend of increasing variance is
consistent with our intuition of the model.

4.2 Number of Nodes

In Section 3.8, we calculated the probability of quitting to maintain the
initial number of nodes in each layer in expectation. Here, we compare the
analytical approximation to the direct numerical computations done by our
model.

We found that the probability of being promoted is 𝑃𝑝 = (𝑝𝑝𝑟𝑜𝑚𝑜 ∗ 𝑏 ∗
𝑝𝑤 + 𝑝𝑝𝑟𝑜𝑚𝑜 ∗ (1 − 𝑝𝑤))(𝑝2

𝑤 + (1 − 𝑝𝑤)2). The quitting rate is defined in terms
of 𝑃𝑝 and 𝑘, which the hiring rate. On the bottom layer, hiring, quitting, and
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Figure 4.1 A simulation of the model run for 100 years plotting the average
fraction of women over time. The dashed lines represent the average value
± the variance over the trials. We ran this simulation for twenty trials with a
bias parameter of 1, the probability of being a woman 0.3, and the connection
probability of 0.05. This network started with 50, 20, and 10 people in each layer
of the graph respectively.
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promotion processes are happening, so the quitting rate is

𝑞0 = 𝑘 − 𝑃𝑝 .

On the top layer, the only processes are promotion into the layer and quitting,
so the quitting rate is calculated to be

𝑞𝑖 = 𝑃𝑝
𝑛𝑖−1
𝑛𝑖

.

On the middle layers, nodes are promoted into and from the current layer
and nodes quit, so the quitting rate is

𝑞𝑖 =
𝑝𝑝𝑛𝑖−1 − 𝑝𝑝𝑛𝑖

𝑛𝑖
.

If we condition 𝑛𝑖−1 ≥ 𝑛𝑖 for the number of nodes 𝑛𝑖 on layer 𝑖, we won’t
have any issues with a negative probability of quitting for all but the bottom
layer. For the bottom layer, we need to set 𝑘, the hiring constant, to be larger
than 𝑃𝑝 to ensure we have a nonnegative quitting constant. To do so, we set
𝑘 to be

𝑘 = 0.1 + 𝑃𝑝 .

Figure 4.2 shows the total number of nodes on average during one
simulation of ten trials.

4.3 Sources of Difference

4.3.1 Different locations of genders

The most fundamental source of different behavior between the two simu-
lations is the placement of female and male nodes within the same graph
structure given the same number of nodes. For example, if we start with ten
nodes on the first layer, five nodes on the second layer, and two nodes on the
third layer, we will generate our initial multilayer network. This network
has randomly generated connections and genders. As an example, we have
three female and seven male nodes in the first layer, which are all randomly
connected together. We then randomly shuffle the locations of the genders
so that we still have three female and seven male nodes, but they are in
different locations within the network. The edges all remain the same, but
the homophily values are changed. This process is outlined in Algorithm 5
We do this process for each layer of the multilayer network. Shuffling the
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Figure 4.2 Graph of the mean number of nodes with time after the quitting
probabilities were calculated. There were initially fifty nodes in layer 0, 20 nodes
in layer 1, and 10 nodes in layer 2. We ran this simulation with a probability of
being a woman of 0.5.
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gender of the nodes is interesting because it reveals whether the placements
of female and male nodes within the network play an impactful role.

In Figure 4.3, we run simulations on the same graph that has shuffled
genders for probabilities a node is assigned female 𝑝𝑤 of 0.5, 0.3, and
0.1. We note that after shuffling the initial locations of the nodes, the
model does not produce the same exact graph as the original network.
However, the qualitative behavior in each pair of shuffled networks is the
same. In Figure 4.3a and Figure 4.3b, when 𝑝 = 0.5, we note that all three
levels of the organization fluctuate with respect to time around having half
female and half male nodes regardless of the modularity. The simulation in
Figure 4.3a has a more negative modularity, but the behavior between the
two is qualitatively the same.

The qualitative behaviors of the two runs for the rest of the probabilities
𝑝𝑤 are similar, with the steady-state fractions of women decreasing on each
level as 𝑝𝑤 decreases. Figures 4.3c, 4.3d, 4.3e, and 4.3f show that the level
with the highest fraction of women is consistently the lowest level, followed
by the middle layer, and then the highest layer has the lowest fraction of
women. For any probability of being a female node less than 0.5, female
nodes are underrepresented at the highest level of the organization. We also
note that as the modularity of the initial networks of each simulation varies,
the overall behavior of the model does not change.

These results suggest that the location of women in the model does not
play a significant role in the long-term fractions of women in the corporation.
However, they do show that the probability of being a female node does
have a large impact on the behavior of the model. As the probability of being
a female node increases, the fraction of women on each layer increases.

4.3.2 Different random assignment of genders

The next thing we want to test is how the probabilistic reassignment of
genders affects the overall trends. To do this, similar to Section 4.3.1, we
keep the graph structure the same for both runs of the simulation. However,
instead of keeping the number of female and male nodes the same and
changing their locations in the graph, we reassign gender to each node using
the same probability of being a female node, 𝑝𝑤 . This allows us to observe
another source of difference between initial graphs. We keep the fraction
of female nodes to be roughly the same but have some variance in these
numbers. This test shows us how small changes in the number of women
on each layer influence the outcome of the model.
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a. 𝑝𝑤 = 0.5 and modularity of initial network
of −0.12.

b. 𝑝𝑤 =0.5 and modularity of initial network
of −0.11.

c. 𝑝𝑤 = 0.3 and modularity of initial network
of −0.13.

d. 𝑝𝑤 =0.3 and modularity of initial network
of 0.01.

e. 𝑝𝑤 = 0.1 and modularity of initial network
of 0.2.

f. 𝑝𝑤 = 0.1 and modularity of initial network
of 0.28.

Figure 4.3 Three pairs of simulations run with the locations of the female and
male nodes shuffled throughout each layer, varying 𝑝𝑤 , the probability of being
a female node. The dashed lines represent the average value ± the variance
over the trials. We ran these with three layers, initially having 50, 20, and 10
people. The simulation was run for 20 trials, 200 years each, and had no bias.
The probability of any two nodes in the network being adjacent, 𝑝𝑔 , was 0.05.
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Figure 4.4 shows the results of this test. We note that the higher the layer,
the smaller the number of nodes in that layer. Due to the larger number of
nodes, we see an increase in the variance of the fraction of women in higher
layers of the network. Similar to the findings when we shuffled the genders,
the quantitative behavior of the two simulations is not exactly the same, yet
the qualitative behavior is the same. We note that when 𝑝𝑤 = 0.5, we find
that all of the layers quickly tend to have about half female and half male
nodes. This is seen in Figures 4.4a and 4.4b. Although the exact fluctuations
from steady state in the fractions of women may be different, the overall
trends are the same.

In Figures 4.4c and 4.4d, when 𝑝𝑤 = 0.3, we note the similar quantitative
behavior between the two trials. Again note that the top layer has the most
women, tending toward a proportion of 0.4 women, which is higher than
the probability of women that are being hired. The middle layer hovers
around a proportion of 0.3, while the fraction of women in the lowest layer
rises above and falls below a value of about 0.1, seeming to stay close to that
value.

Finally, we note that when 𝑝𝑤 = 0.1, we have similar behavior between
the two initial graphs with reassigned gender in Figure 4.4e and 4.4f. The
bottom layer converges to a proportion of women of 0.2, which is higher
than our 𝑝𝑤 value of 0.1, while the middle layer oscillates around roughly
0.05. There are hardly any women in the top layer at all, and when one is
hired, she quits in about one to five years.

These simulations suggest that the long-term behavior of this model isn’t
significantly affected by slight changes in the number and location of female
and male nodes. We can only draw this conclusion in the context of the
𝐺(𝑛, 𝑝) network model that we use.

4.3.3 Different Initial Network Structures

The final source of change we want to analyze is the difference between
different initial network structures. We keep the number of nodes the same
in both of these networks but initialize two different networks which are two
different realizations of the 𝐺(𝑛, 𝑝) network model. When we compare these
results with those of the two previous sections, the results of this simulation
give us some intuition on how the structure of the network impacts the
overall outcome.

Figure 4.5 shows the results of running this test. In each subfigure, a
different initial network was used, helping to mitigate the fear that we simply
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a. 𝑝𝑤 = 0.5 and modularity of initial network
of 0.03.

b. 𝑝𝑤 =0.5 and modularity of initial network
of 0.03.

c. 𝑝𝑤 = 0.3 and modularity of initial network
of 0.04.

d. 𝑝𝑤 =0.3 and modularity of initial network
of 0.09.

e. 𝑝𝑤 = 0.1 and modularity of initial network
of 0.24.

f. 𝑝𝑤 = 0.1 and modularity of initial network
of 0.16.

Figure 4.4 Three pairs of simulations run with the locations of the female and
male nodes reassigned probabilistically throughout each layer, varying 𝑝𝑤 , the
probability of being a female node. The dashed lines represent the average
value ± the variance over the trials. We ran these with three layers, initially
having 50, 20, and 10 people. The simulation was run for 10 trials, 200 years
each, and had no bias. The probability of any two nodes in the network being
adjacent, 𝑝𝑔 , was 0.05. These trials included calculated quitting probabilities.
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chose two initial networks that yielded similar results. Regardless of the
probability of being a female node, all pairs of graphs have qualitatively
similar results. We observe the same trends as seen when we probabilistically
reassigned gender in the previous two sections, as seen in Figure 4.3 and
Figure 4.4.

These results suggest that the network structure may not have a significant
impact on the long-term behavior of the model, and they are consistent
with the analytical calculation done in Section 3.5 that found that the
network structure should have no impact on average behavior. However, it is
important to recognize that the model behavior could be highly sensitive to
the type of network model used. Here, we use the 𝐺(𝑛, 𝑝) network model to
create initial graphs and new connections while hiring. If we use a different
type of network model, the influence of network structure may change
significantly.

When observing the effects of different types of changes in the network
structure, we don’t see any qualitative differences regardless of the type of
change that we make. However, we do see that the probability that a node
is assigned female, 𝑝𝑤 , has a large effect on the long-term behavior of the
model.
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a. 𝑝𝑤 = 0.5 and modularity of initial network
of 0.0.

b. 𝑝𝑤 =0.5 and modularity of initial network
of 0.15.

c. 𝑝𝑤 = 0.3 and modularity of initial network
of −0.01.

d. 𝑝𝑤 =0.3 and modularity of initial network
of −0.13.

e. 𝑝𝑤 = 0.1 and modularity of initial network
of 0.17.

f. 𝑝𝑤 = 0.1 and modularity of initial network
of 0.15.

Figure 4.5 Three pairs of simulations run with different initial multilayer net-
works, varying 𝑝𝑤 , the probability of being a female node. The dashed lines
represent the average value ± the variance over the trials. These were all run
with three layers, initially having 50, 20, and 10 people. We ran the simulation
for 10 trials, 200 years each, and had no bias. The probability of any two nodes
in the network being adjacent, 𝑝𝑔 , was 0.05. These trials included calculated
quitting probabilities.
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Results of Biased Model

5.1 Incorporating Bias

In this model, we incorporate bias by scaling the probability of promotion
from the applicant pool to the next layer, but only for female nodes. To add
bias in this way, we set the probability of being promoted is𝑃(promoted|pool)
for male nodes and 𝑃(Promoted | Pool) ∗ 𝑏 for women. The bias constant
ranges from 0 to 1, where 𝑏 = 0 represents complete bias, where no female
nodes will be promoted, and 𝑏 = 1 represents no bias, and female and male
nodes are equally likely to be promoted. We chose this form taking influence
from Clifton et al. (2019), who incorporated bias as a constant term that
affected the ratio of women to men promoted. We similarly wanted to affect
this ratio. While incorporating it in a way that universally affects all women
may not be the most accurate, it is a simple way to include an additional
disadvantage that women may face.

We expect that having a bias of 𝑏 = 0 will have no female nodes promoted.
To validate that the model is working as intended, we include a graph of
this case in Figure 5.1. We note that the fraction of women in layers 1 and
2 quickly drops to zero as women quit the organization and at no point
during the entire simulation are women hired to replace them. We also see
that in layer 0, the fraction of women is higher than 0.5. Because women
are being hired in and quitting at the same rate as men, but men are being
promoted, we are left with more women than men in the lowest layer of the
organization. This result could show an instance of what is known as the
“glass ceiling” effect, which describes an unofficial barrier to entering more
advanced professional roles Sharma and Kaur (2019).
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Figure 5.1 A simulation with complete bias against women. When having
complete bias, 𝑏 = 0 and no women are hired at all. This simulation was run
with 𝑝𝑤 = 0.5.
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5.2 Simulation Results

To isolate the effect of bias on this model, we run multiple simulations on
the same initial graph while varying the bias constant. In Figure 5.2, we
see the results of a test where the probability of being a woman is 0.5. We
notice that as the bias constant decreases, the fraction of women at the top
layer of the organization decreases. This is consistent with our intuition that
because women won’t be hired as frequently and will quit at the same rate,
we won’t replace as many women as men and the long-term behavior of the
top layer will have a fraction much lower than 0.5.

As the bias constant decreases, the bottom layer of the organization tends
to have a larger fraction of women. This could be because women and men
are being hired and quitting at the same rate, but men are promoted more
often than women. This leaves more women than men in the bottom layer.

Interestingly, in all four of the simulations run with bias, the fraction of
women in the middle layer seems to fluctuate around 0.5, seen in Figure 5.2.
The steady state fraction of women in this layer may decrease slightly from
0.5 as the bias constant 𝑏 decreases. This could be due to the increase in
women on the lowest layer and the decrease in women on the top layer.
Because there are more women in the bottom layer, the lower promotion
rate may balance out with the fact that there are fewer men and a higher
promotion rate.

Overall, we can conclude that the bias strongly has a strong relationship
with the fraction of women on each layer. The fraction of women in the top
layer drops by 0.2 as the bias goes from 𝑏 = 1 to 𝑏 = 0.5, while the fraction
of women in the bottom layer increases by a smaller amount as the bias
constant decreases.



38 Results of Biased Model

a. 𝑏 = 1 and modularity of initial network of
-0.12.

b. 𝑏 = 0.9 and modularity of initial network
of 0.06.

c. 𝑏 = 0.7 and modularity of initial network
of 0.06.

d. 𝑏 = 0.5 and modularity of initial network
of 0.06.

Figure 5.2 Four simulations run with probability 𝑝𝑤 = 0.5 of being a woman,
varying 𝑏, the bias constant. The simulations were run with three layers, initially
having 50, 20, and 10 people. We ran each for 20 trials, 200 years each, and 𝑝𝑔 ,
the probability of any two nodes in the network being adjacent, was 0.05.
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Conclusion

Gender bias and inequality continue to be significant issues facing society
today. In this thesis, we had the goal of investigating some of the factors
which influence gender balance. We used multilayer networks to create a
model of professional structures and examined how our different factors
influenced the overall behavior of the model. We found that the probability
of a node being assigned female and bias had an impact on overall model
behavior, but the initial network structure didn’t influence our model at all
when we used the 𝐺(𝑛, 𝑝) network model.

We used networks to encode individual progression through the profes-
sional structure. Progression itself was determined probabilistically by a few
parameters. These parameters were 𝑝𝑤 , the probability of being a female
node, which was used to initialize node genders and the gender of hired
nodes, and 𝑏, the bias constant which negatively impacted all female nodes
throughout the organization. As the probability of being assigned to be a
female node decreased, the fraction of women at the highest levels of the
organization decreased. Middle layers oscillated around a constant fraction
of women of roughly 𝑝𝑤 , whereas the fraction of women on the bottom layer
was slightly higher than 𝑝𝑤 . These conclusions can be found in Table 6.1

Bias affects the model in a similar way. As the bias constant decreases,
the fraction of women at the highest level of the organization decreases as
well. The fraction of women at the middle layer is roughly the same, while
the bottom layer has slightly more women than the proportion of women
that were coming into the organization.

There are many possible future directions for this project. It would be
particularly interesting to investigate how different initial networks affect
long-term behavior. The lack of an effect on the dynamics from the network
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structure could be due to the choice of using a 𝐺(𝑛, 𝑝) network model. The
𝐺(𝑛, 𝑝) structure isn’t the most realistic social model because all nodes have
the same probability of adjacency with other nodes. Using other types
of initial network structures that more closely model social relationships
could reveal interesting dynamics, such as dependence on the initial network
structure.

There are also many more simulations to run in addition to the com-
parisons done in this work. Simulating different policy changes, such as
starting to hire more women into the organization, would yield interesting
conclusions. For example, running the model by initially starting with some
fraction of female nodes but hiring female nodes at a different rate may
suggest that long-term behavior depends on the fraction of hired nodes that
are female.

Parameter Impact

𝑝𝑤 As 𝑝𝑤 decreases, fraction of women decreases
𝑏 As 𝑏 decreases, fraction of women decreases

𝐺(𝑛, 𝑝) network model No impact

Table 6.1 Parameters investigated and their impact on model dynamics.
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Pseudocode
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Algorithm 1 initGraph()
Inputs: a list of the number of nodes per layer 𝑛𝑝𝑙, the probability of two
nodes being adjacent 𝑝𝑔 , and the probability of being female 𝑝

𝑡𝑜𝑡𝑁𝑜𝑑𝑒𝑠 =
∑

𝑛𝑝𝑙

Initialize list 𝑔𝑟𝑎𝑝ℎ𝑠
for 𝑛 ∈ 𝑛𝑝𝑙 do

𝐺 = 𝐺(𝑛, 𝑝𝑔)
Append 𝐺 to 𝑔𝑟𝑎𝑝ℎ𝑠

end for
Initialize multilayer network 𝑀

for each layer 𝑙 do
Add nodes in 𝑔𝑟𝑎𝑝ℎ𝑠[𝑙] to 𝑙

for 𝑒 ∈ 𝑔𝑟𝑎𝑝ℎ𝑠[𝑙].𝑒𝑑𝑔𝑒𝑠 do
Add edge 𝑒 to 𝑙

end for
end for
Initialize list 𝐴𝐷

for 𝑛 ∈ 𝑡𝑜𝑡𝑁𝑜𝑑𝑒𝑠 do
Initialize list 𝑛𝑜𝑑𝑒𝐴𝑡𝑡𝑠
𝑙𝐵𝑜𝑢𝑛𝑑 = 0
𝑢𝐵𝑜𝑢𝑛𝑑 = 𝑛𝑝𝑙[0]
𝑛𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑.𝑐ℎ𝑜𝑖𝑐𝑒((𝑝, 1 − 𝑝), (𝐹, 𝑀)
for each layer 𝑙 do

Initialize dictionary 𝑙𝑎𝑦𝑒𝑟𝐴𝑡𝑡𝑠

𝑛𝑜𝑑𝑒𝐿𝑎𝑦𝑒𝑟𝐴𝑡𝑡𝑠[𝑔𝑒𝑛𝑑𝑒𝑟] = 𝑛𝐺𝑒𝑛𝑑𝑒𝑟

if not in first layer then
𝑙𝐵𝑜𝑢𝑛𝑑 += 𝑛𝑝𝑙[𝑙 − 1]
𝑢𝐵𝑜𝑢𝑛𝑑 += 𝑛𝑝𝑙[𝑙]

end if
if 𝑙𝐵𝑜𝑢𝑛𝑑 ≤ 𝑙 < 𝑢𝐵𝑜𝑢𝑛𝑑 then 𝑙𝑛𝑜𝑑𝑒𝐿𝑎𝑦𝑒𝑟𝐴𝑡𝑡𝑠[𝑎𝑐𝑡𝑖𝑣𝑒] = 𝑇𝑟𝑢𝑒

else𝑛𝑜𝑑𝑒𝐿𝑎𝑦𝑒𝑟𝐴𝑡𝑡𝑠[𝑎𝑐𝑡𝑖𝑣𝑒] = 𝐹𝑎𝑙𝑠𝑒

end if
Append 𝑛𝑜𝑑𝑒𝐿𝑎𝑦𝑒𝑟𝐴𝑡𝑡𝑠 to 𝑛𝑜𝑑𝑒𝐴𝑡𝑡𝑠

end for
Append 𝑛𝑜𝑑𝑒𝐴𝑡𝑡𝑠 to 𝐴𝐷

end for
for 𝑛 ∈ 𝑡𝑜𝑡𝑁𝑜𝑑𝑒𝑠 do

for each layer 𝑙 do
for 𝑛𝑏𝑟 ∈ 𝑛.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

if 𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 = 𝐴𝐷[𝑛𝑏𝑟][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 and 𝑙 = 𝑛𝑏𝑟.𝑙𝑎𝑦𝑒𝑟

then
𝐴𝐷[𝑛][𝑙].ℎ𝑜𝑚 += 1

end if
end for

end for
end for
Return 𝐴𝐷 and 𝑀
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Algorithm 2 promote()
Inputs: multilayer network 𝑀, 2D list of attribute dictionaries 𝐴𝐷, and
probability of edge connection 𝑝𝑔

for each layer 𝑙 except the last do
Reset the list 𝑠𝑒𝑒𝑘𝑃𝑟𝑜𝑚𝑜 to empty
for 𝑛 ∈ 𝑡𝑜𝑡𝑁𝑜𝑑𝑒𝑠 do

if 𝐴𝐷[𝑛][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑇𝑟𝑢𝑒 and 𝐴𝐷[𝑛][𝑙].ℎ𝑜𝑚
𝑛.𝑛𝑏𝑟𝑠

then
Append 𝑛 to 𝑠𝑒𝑒𝑘𝑃𝑟𝑜𝑚𝑜

end if
end for
for 𝑘 ∈ 𝑠𝑒𝑒𝑘𝑃𝑟𝑜𝑚𝑜 do

𝑝𝑁𝑢𝑚 = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑏𝑖𝑎𝑠(𝑔𝑒𝑛) ∗ 𝑝𝑝𝑟𝑜𝑚𝑜𝑡𝑒)
if 𝑝𝑁𝑢𝑚 = 1 then

𝐴𝐷[𝑘][𝑙].ℎ𝑜𝑚𝑜 = 0
𝐴𝐷[𝑘][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐹𝑎𝑙𝑠𝑒

𝐴𝐷[𝑘][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑇𝑟𝑢𝑒

for 𝑛𝑏𝑟 ∈ 𝑘.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
Disconnect 𝑛 and 𝑛𝑏𝑟

end for
for 𝑗 ∈ 𝑡𝑜𝑡𝑁𝑜𝑑𝑒𝑠 do

if 𝐴𝐷[𝑗][𝑙 + 1].𝑎𝑐𝑡𝑖𝑣𝑒 and 𝑘 ≠ 𝑗 and 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝𝑔) = 1
then

Add edge between 𝑘 and 𝑙

Increment 𝐴𝐷[𝑘][𝑙].ℎ𝑜𝑚 by 1
end if

end for
end if

end for
end for
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Algorithm 3 hiring()
Inputs: multilayer network 𝑀, 2D list of attribute dictionaries 𝐴𝐷, proba-
bility of being a woman 𝑝, and probability of edge connection 𝑝𝑔 , hiring
constant ℎ𝑖𝑟𝑒.

for each layer 𝑙 do
𝑎𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝐿𝑜𝑤𝑒𝑠𝑡 = 0
for each node 𝑛 do

if 𝐴𝐷[𝑛][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 then
𝑎𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝐿𝑜𝑤𝑒𝑠𝑡 += 1

end if
end for

end for
𝑛𝑢𝑚𝐻𝑖𝑟𝑒𝑠 = 𝑚𝑎𝑥(𝑃ℎ𝑖𝑟𝑒 ∗ 𝑎𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝐿𝑜𝑤𝑒𝑠𝑡, 1)
for 𝑖 in range(𝑛𝑢𝑚𝐻𝑖𝑟𝑒𝑠) do

Initialize list 𝑛𝑜𝑑𝑒𝐴𝑡𝑡𝑠
𝑛𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑.𝑐ℎ𝑜𝑖𝑐𝑒((𝑝, 1 − 𝑝), (𝐹, 𝑀)).
for each layer 𝑙 do

Create a new dictionary 𝑛𝑒𝑤𝐷𝑖𝑐𝑡

Add node 𝑖 to multilayer Network 𝑀

Assign gender, bias, and activity entries to 𝑛𝑒𝑤𝐷𝑖𝑐𝑡

Initialize homophily as 0 in dictionary
Append 𝑛𝑒𝑤𝐷𝑖𝑐𝑡 to 𝑛𝑜𝑑𝑒𝐴𝑡𝑡𝑠

end for
end for
for 𝑛𝑒𝑤 in range(𝑛𝑜𝑑𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑠) do

for 𝑖 in range(𝑛𝑒𝑤) do
if 𝐴𝐷[𝑖][0] then

if 𝑖 ≠ 𝑛𝑒𝑤 then Edge (𝑖 , 0)(𝑛𝑒𝑤, 0) = binomial(1, 𝑝𝑔)
if 𝐴𝐷[𝑖][0].𝑔𝑒𝑛𝑑𝑒𝑟 == 𝐴𝐷[𝑖][0].𝑔𝑒𝑛𝑑𝑒𝑟 then

𝐴𝐷[𝑖][0].ℎ𝑜𝑚𝑜 += 1
𝐴𝐷[𝑖][0].ℎ𝑜𝑚𝑜 += 1

end if
end if

end if
end for

end for
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Algorithm 4 quit()
Inputs: multilayer network 𝑀, 2D list of attribute dictionaries 𝐴𝐷, list of
quitting probabilities 𝑞𝑢𝑖𝑡𝑃𝑟𝑜𝑏𝑠

for each layer 𝑙 do
𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒 = 0
for each node 𝑛 do

if 𝐴𝐷[𝑛][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 then
𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒 += 1

end if
end for
for each node 𝑛 do

𝑞𝑢𝑖𝑡𝑠 = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑞𝑢𝑖𝑡𝑃𝑟𝑜𝑏𝑠[𝑙])
if 𝑞𝑢𝑖𝑡𝑠 == 1 and 𝐴𝐷[𝑛][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 and 𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒 > 1 then

𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒 −= 1
𝐴𝐷[𝑛][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 = False
𝐴𝐷[𝑛][𝑙].ℎ𝑜𝑚𝑜 = 0
for 𝑛𝑏𝑟 ∈ 𝑛.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

Edge (𝑛, 𝑙), (𝑛𝑏𝑟, 𝑙) = 0
if 𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛 == 𝐴𝐷[𝑛𝑏𝑟][𝑙].𝑔𝑒𝑛 then

𝐴𝐷[𝑛𝑏𝑟][𝑙].ℎ𝑜𝑚𝑜 −= 1
end if

end for
end if

end for
end for
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Algorithm 5 shuffle()
Inputs: multilayer network 𝑀, 2D list of attribute dictionaries 𝐴𝐷, and a
list of the number of nodes on each layer 𝑛𝑝𝑙.
Set 𝑛𝑢𝑚𝐹𝑒𝑚 and 𝑛𝑢𝑚𝑀𝑎𝑙𝑒 to lists of 0s with 𝑙 entries
for each layer 𝑙 do

for each node 𝑛 do
if 𝐴𝐷[𝑛][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 then

if 𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 ==FEM then 𝑛𝑢𝑚𝐹𝑒𝑚[𝑙] += 1
else𝑛𝑢𝑚𝑀𝑎𝑙𝑒[𝑙] += 1
end if

end if
end for

end for
Set list 𝑔𝑒𝑛𝐿𝑖𝑠𝑡 to a list of 𝑛 0s
𝑖𝑛𝑑𝑆ℎ𝑖 𝑓 𝑡 = 0
for every level 𝑙 do

Create a list 𝑛𝑜𝑑𝑒𝐿𝑜𝑐𝑠 of elements 0 through 𝑛𝑝𝑙(𝑙)
Randomly permute 𝑛𝑜𝑑𝑒𝐿𝑜𝑐𝑠

for 𝑖 in range 𝑛𝑜𝑑𝑒𝑠 do
if 𝑖 < 𝑛𝑢𝑚𝐹𝑒𝑚[𝑙] then

𝑔𝑒𝑛𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑆ℎ𝑖 𝑓 𝑡 + 𝑛𝑜𝑑𝑒𝐿𝑜𝑐𝑠[𝑖]] = 𝐹𝐸𝑀

else
𝑔𝑒𝑛𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑆ℎ𝑖 𝑓 𝑡 + 𝑛𝑜𝑑𝑒𝐿𝑜𝑐𝑠[𝑖]] = 𝑀𝐴𝐿𝐸

end if
end for
𝑖𝑛𝑑𝑆ℎ𝑖 𝑓 𝑡 += 𝑛𝑝𝑙[𝑙]

end for
for every node 𝑛 do

for every layer 𝑙 do
if 𝑔𝑒𝑛𝐴𝑟𝑟𝑎𝑦[𝑛] == 𝐹𝐸𝑀 then

𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 = 𝐹𝐸𝑀

else
𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑀𝐴𝐿𝐸

end if
end for

end for
for every node 𝑛 do

for every layer 𝑙 do
𝑛𝑢𝑚𝑆𝑎𝑚𝑒𝐺𝑒𝑛 = 0
for 𝑛𝑏𝑟 ∈ 𝑛.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

if 𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 == 𝐴𝐷[𝑛𝑏𝑟][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 then
𝑛𝑢𝑚𝑆𝑎𝑚𝑒𝐺𝑒𝑛 += 1

end if
end for
𝐴𝐷[𝑛][𝑙].ℎ𝑜𝑚𝑜 = 𝑛𝑢𝑚𝑆𝑎𝑚𝑒𝐺𝑒𝑛

end for
end for
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Algorithm 6 resetGenderProb()
Inputs: multilayer network 𝑀, 2D list of attribute dictionaries 𝐴𝐷, and a
list of the number of nodes on each layer 𝑛𝑝𝑙.
for each node 𝑛 do

𝑛𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑.𝑐ℎ𝑜𝑖𝑐𝑒((𝑝𝑤 , 1 − 𝑝𝑤), (𝐹, 𝑀))
for every layer 𝑙 do

𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑛𝐺𝑒𝑛𝑑𝑒𝑟

end for
end for
for every node 𝑛 do

for every layer 𝑙 do
𝑛𝑢𝑚𝑆𝑎𝑚𝑒𝐺𝑒𝑛 = 0
for 𝑛𝑏𝑟 ∈ 𝑛.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

if 𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 == 𝐴𝐷[𝑛𝑏𝑟][𝑙].𝑔𝑒𝑛𝑑𝑒𝑟 then
𝑛𝑢𝑚𝑆𝑎𝑚𝑒𝐺𝑒𝑛 += 1

end if
end for
𝐴𝐷[𝑛][𝑙].ℎ𝑜𝑚𝑜 = 𝑛𝑢𝑚𝑆𝑎𝑚𝑒𝐺𝑒𝑛

end for
end for



48 Pseudocode

Algorithm 7 modularity()
Inputs: multilayer network 𝑀, 2D list of attribute dictionaries 𝐴𝐷.
𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 = 0
𝑄 = 0
for each node 𝑛 do

for every layer 𝑙 do
𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 += (𝑛, 𝑙).𝑑𝑒 𝑔𝑟𝑒𝑒

end for
end for
𝑡𝑜𝑡𝑎𝑙𝐸𝑑𝑔𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒/2
for every node 𝑚 do

for every node 𝑛 do
for every layer 𝑙 do

if 𝐴𝐷[𝑚][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 and 𝐴𝐷[𝑛][𝑙].𝑎𝑐𝑡𝑖𝑣𝑒 then
𝑘𝑚 = 𝑙𝑒𝑛(𝑚.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
𝑘𝑛 = 𝑙𝑒𝑛(𝑛.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
if 𝐴𝐷[𝑚][𝑙].𝑔𝑒𝑛 == 𝐹𝐸𝑀 then

𝑠𝑚 = 1
else

𝑠𝑚 = −1
end if
if 𝐴𝐷[𝑛][𝑙].𝑔𝑒𝑛 == 𝐹𝐸𝑀 then

𝑠𝑛 = 1
else

𝑠𝑛 = −1
end if
𝐵𝑚,𝑛 = 𝑒𝑑𝑔𝑒(𝑚, 𝑛) − 𝑘𝑚 𝑘𝑛

2𝑡𝑜𝑡𝑎𝑙𝐸𝑑𝑔𝑒𝑠
𝑄 += 𝐵𝑚𝑛𝑠𝑚𝑠𝑛

end if
end for

end for
end for
𝑄 =

𝑄
2𝑡𝑜𝑡𝑎𝑙𝐸𝑑𝑔𝑒𝑠

return 𝑄
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