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Abstract

Modeling and Analysis of Falling Liquid Films

By

Yadong Ruan

Claremont Graduate University: 2020

In this work, we consider the dynamics of falling liquid films in various geometries. We first ex-

amine the dynamics of a thin film formed by a distributed liquid source on a vertical solid wall.

The mathematical model is derived using the lubrication approximation and includes the effects

of gravity, upward airflow and surface tension. When surface tension is neglected, a critical source

strength is found below which the film flows entirely upward due to the airflow, and above which

some of the flow is carried downward by gravity. In both cases, a steady state is established

over the region where the finite source is located. Shock waves that propagate in both directions

away from the source region are analyzed. Numerical simulations are included to validate the

analytical results. For models including surface tension, numerical simulations are carried out.

The presence of surface tension, even when small, causes a dramatic change in the film profiles

and the speed and structure of the shock waves. These are studied in more detail by examining

the traveling wave solutions away from the source region. Next, we present several analytical

results pertaining to the thin film equation when it includes a source term. The existence of weak

solutions, the long-time behavior of solutions for a constant initial condition, and the general qual-

itative behavior of solutions are all considered. The thin film equation with a source is a highly

simplified version of the model derived earlier in the thesis. Finally, we consider a separate model

describing the axisymmetric flow corresponding to a falling liquid film around a vertical circular

fiber. Recent experimental results have shown that a film exiting a nozzle at the top and falling

down a vertical fiber can give rise to individual “droplets,” i.e., thicker liquid regions, separated

by much thinner zones. The droplets that traverse the circular fiber may exhibit several distinct

regimes. Depending on nozzle diameter and flow rate, they may appear as uniformly distributed

uniformly sized droplets, as large droplets separated by a series of small droplets in between, or as

non-uniformly distributed non-uniformly sized droplets. We present and qualitatively analyze a



novel mathematical model of such flows to supplement this experimental analysis, one capable of

showing the convective regime where faster moving droplets collide and sometimes merge with

slower moving ones initially, but with a steady travelling state emerging eventually. While previ-

ous models of such flows have focused on the slow laminar viscous regime, our model assumes

high Reynolds number flow and takes the flow profile to be a plug-flow, but with a thin boundary

layer near the fiber providing the drag force on the film. We compare these models and provide

various simulations using both inflow-outflow and periodic boundary conditions. We also ana-

lyze the linear stability of an initially uniform state and show that there exists a finite range of

wavenumbers, including a unique wavenumber with the maximum growth rate, for which the

uniform system is unstable.
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Chapter 1

Thin liquid film resulting from a

distributed source

1.1 Introduction

The motivation for this work was an industrial problem presented by W. L. Gore and Associates at

the Mathematical Problems in Industry (MPI) workshop that took place in Claremont, CA in June

of 2018. The problem concerned modeling dense porous catalysts in which a gaseous reaction

produces liquid in the interior of the catalyst, which gradually pushes its way out to the exterior

surface, forming drops or films of liquid on that surface. These block the gaseous reactants from

entering the pores and slow down the reaction. In order to remove the liquid drops or films from

the surface, one option being considered was to temporarily increase the flow of gas past the

surface in the hope of blowing off the liquid film.

In this work, in order to gain insight into some of the underlying physics of that problem, we

undertook to model a thin liquid film on a vertical wall, being generated by a finite distributed

source of liquid on the wall to represent the liquid that oozes out of the porous catalyst onto the

surface. We included the effects of gravity which causes the film to flow downward along the

wall, as well as an upward airflow that, if strong enough, could drag the film up the wall. We also

included the effects of surface tension in our model.

The evolution of film thickness driven by various external driving forces is of much interest

1



given its applications in many different areas of physics and engineering involving coating flows.

In such flows, if the film is thin in one dimension compared to the others, the so-called lubrication

approximation provides a simpler model for analysis, as opposed to solving the full Navier-Stokes

equations that govern viscous fluid flow. A review of lubrication theory is provided in [44]. Mod-

els in higher dimensions are also being investigated, such as the three-dimensional gravity-driven

thin liquid film flow on an inclined plane described in [39].

In some of the thin film mathematical models, solutions of particular form can be constructed,

including travelling wave, similarity and steady state solutions. These solutions provide insights

for further analysis. For instance, in [23], the authors provided a similarity solution for viscous

source flow on inclined plane. Certain properties of the derived thin film model, such as the

speed of drop spreading, are also important. For example, analyse of the minimum wetting rate

and the corresponding minimum liquid film thickness were presented in [25] and validated with

experimental data.

Another aspect of these problems that has received a lot of attention is the stability of the film

under different perturbations as well as methods to stabilize the film. Stability of thin wavy films

flowing down an inclined plate was studied in [43] and [38]. In [21] and [22], the author introduced

several functions for deformed walls to stabilize the film surface with respect to time-dependent

perturbations, reporting numerical results. The stability of liquid flow down a heated inclined

plane was examined in [1]. References [17] and [16] respectively studied thin viscoelastic liquid

films flowing down a vertical wall and a vertical cylinder. In [56], the stability of liquid film flow

on a porous inclined plane was examined, while the film stability on a wavy surface was studied

in [68].

Many experiments and theoretical analyses have been done on the motion of thin films with

a given initial condition. For instance, an accelerating laminar thin-film flow along a vertical

wall was investigated in [51], laminar flow on a wavy inclined surface was studied in [10], and

liquid films falling vertically on the outer wall of a circular tube were studied experimentally in

[63]. Several characteristics of thin film flow on inclined surfaces were studied in [11]. Three-

dimensional droplet models and wave dynamics on inclined and vertical walls were studied in

[58] and [46], respectively. Experimental studies of viscous, particle-laden thin films were reported

in [67]. Flows under obstacles were examined in [9].
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Few authors have considered source terms in the thin film equation. In [33], a numerical

method for the Reynolds equation for a steady liquid layer flowing down a slightly inclined plate

from a point source is presented. In [40], the flow of a viscous fluid from a point or line source on

an inclined plane is analyzed. The effect of surface tension was neglected in [40]. In our present

work, we model thin films formed from a finite source region along a vertical solid wall while

considering the effects of gravity, airflow and surface tension. This case is important since some

industrial gaseous chemical reactions that occur in porous catalysts give rise to liquids on the

exterior surfaces that fit within this model.

Some research has also covered non-Newtonian fluids, including thin-film flow of a power-law

liquid on an inclined plate in [42] and stability analysis of travelling wave solutions of power-law

liquid films in [49]. A exact solution of the thin film flow problem for a third grade fluid on an

inclined plane is provided in [32].

In this work, we derive a mathematical model for film motion along a solid vertical wall in

the form of a partial differential equation for film thickness h(x, t) as a function of distance x

increasing downward and time t. The final model after scaling turns out to be

ht + (h3 − h2 + αhxxx)x = S(x) , (1.1)

where α > 0 is a dimensionless parameter that characterizes the effect of surface tension. Terms

h3 and −h2 represent the downward flux due to gravity and the upward flux due to airflow,

respectively. The right-hand side in this equation is the distributed source which we take to be of

the form

S =


S0 if x ∈ (0, 1)

0 otherwise.
(1.2)

The main results for this chapter are in two parts. In the first part we consider the case α = 0,

which is the case where surface tension can be ignored. In many practical conditions, the dimen-

sionless surface tension parameter is indeed very small. The model then reduce to

ht + (h3 − h2)x = S(x) . (1.3)
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For this first order nonlinear partial differential equation, we use the method of characteristics

to analyze its dynamics. With the source given by Eq. (1.2), shock waves will form, with their

number and structure depending on S0. For all values of S0, an upward propagating shock wave

will form as the film is carried up by the airflow. However, we obtain a critical source value Sc,

so that if S0 > Sc, a second downward propagating shock wave will also form, as the excess fluid

falls downward due to gravity. A steady state solution over the source region (0, 1) is also derived,

with dramatically different form depending on whether the source strength is below or above the

threshold value. A numerical solution is also obtained to validate the results from the method of

characteristics.

In the second part of this work, we consider the full model with surface tension effects. Nu-

merical simulations are carried out for various S0 and α values. The numerical results indicate

potential connections between the solutions of the full model (1.1) with travelling wave solutions

of the thin film equation without source. Importantly, we find that even for quite small values of

the surface tension parameter α, there is a significant change in the profile of the thin film and the

speed of the shock waves, as compared to the case with zero surface tension.

1.2 Model Derivation

We model a thin-film driven by gravity and external airflow under the lubrication approximation.

We assume the flow to be two-dimensional with coordinate x along the wall and y normal to

the wall, with respective velocity components u and v, and take the wall to make angle α with

the horizontal direction, which for a vertical wall will become α = π/2. Let us start with the

Navier-Stokes equations with constant viscosity µ and density ρ:

ρ(
∂~u
∂t

+ ~u · ∇~u) = ρ~g−∇p + µ∆~u . (1.4)

Denote the scale of fluid velocity components ~u = (u, v)T by U and V respectively, the scale of

film thickness by H, and that of the x domain by L. To apply lubrication approximation, we need

ε =
H
L
� 1 . (1.5)
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The continuity equation for an incompressible liquid reads

∇ · ~u = 0 ⇒ ∂u
∂x

+
∂v
∂y

= 0 . (1.6)

Since the continuity equation needs to be satisfied exactly, upon balancing the respective scales of

the two terms we find

U
L

=
V
H

⇒ V =
H
L

U = εU . (1.7)

Now from the x-component of equation (1.4):

ρ
∂u
∂t

+ ρu
∂u
∂x

+ ρv
∂u
∂y

= ρg sin α− ∂p
∂x

+ µ(
∂2

∂x2 +
∂2

∂y2 )u , (1.8)

and using T as the scale for time t and P as that for pressure p, the scales of the seven terms in that

equation, in order, become

ρU
T

,
ρU2

L
,

ρVU
H

, ρg ,
P
L

,
µU
L2 ,

µU
H2 . (1.9)

Since H/L � 1, the last term on the RHS of (1.8) is dominant with scale µU/H2, and the term

µU/L2 is smaller by a factor of ε2. To keep the pressure term in balance with the dominant term,

we need the scale P for pressure to be

P =
µUL
H2 =

µU
ε2L

. (1.10)

Also for the gravity term to be of similar magnitude:

ρg ∼ µU
H2 ⇒ U =

ρgH2

µ
(1.11)

which determines the scale U of velocity in the x direction under the model that includes gravity.

On the LHS of (1.8), the second and third terms have scales ρU2/L by using the result from

5



(1.7). We choose the time scales T as

T =
L
U

(1.12)

which is the characteristic time for the flow to traverse a distance L at speed U. As such, all the

LHS terms have scale ρU2/L and the ratio of the LHS to RHS scales turns out to be

ρU2/L
µU/H2 = (

H
L
)2 ρUL

µ
= ε2ReL , (1.13)

where ReL = ρUL/µ is the Reynolds number. Under the assumption that ε2ReL � 1, the inertia

terms on the LHS of the momentum equation are negligible compared to the terms on the RHS.

Hence, to leading order, we can approximate the x-momentum equation by:

ρg sin α− ∂p
∂x

+ µ
∂2u
∂y2 = 0 . (1.14)

Similarly, the y-component of equation (1.4) with the same scaling applied to all the terms results

in the leading order equation:

0 = −ρg cos α− ∂p
∂y

. (1.15)

We now discuss the boundary conditions on the solid-liquid (y = 0) and liquid-air (y = h(x, t))

interfaces. No-slip and no-penetration conditions at the solid-liquid interface would normally

require:

u(x, 0, t) = 0, v(x, 0, t) = 0 . (1.16)

However, when a steady fluid source is considered at the interface, with liquid volume emanating

from the porous wall, the condition on the velocity component v changes to v(x, 0, t) = S(x) where

S(x) is the source strength.

At the liquid-air interface y = h(x, t), we have kinematic and dynamic boundary conditions.
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The normal stress balance at the interface reads:

n̂ · [πair − πliquid] · n̂ = σK (1.17)

where n̂ is the normal vector pointing from the liquid towards the air, and K is the local curvature

of interface, and we have

πair = −patm I, πliquid = −pI + µ

 2ux vx + uy

vx + uy 2vy


The normal vector is well approximated by the unit vector in the y-direction since ∂h/∂x has scale

H/L = ε� 1:

n̂ =
∇(y− h(x, t))
|∇(y− h(x, t))| =

1√
1 + ( ∂h

∂x )
2

− ∂h
∂x

1

 ≈
0

1

 (1.18)

For curvature K we have

K = ∇ · n̂ ≈ −∂2h
∂x2 (1.19)

Substituting into (1.17), we find

−patm + p− 2µ
∂v
∂y

= −σ
∂2h
∂x2 . (1.20)

In order for the surface tension term not to be negligible, we need the scale for last term to be

comparable to pressure terms; that is, we must have

σH
L2 ∼

1
ε2

µU
L

⇒ µU
σ
∼ ε3 . (1.21)

This corresponds to having a very small capillary number, requiring surface tension to be rela-

tively large compare to viscous effects. Under this scaling and recognizing that the normal viscous

7



stress µ(∂v/∂y) is also small compared to the other terms, the normal stress balance simplifies to

p− patm = −σ
∂2h
∂x2 . (1.22)

Now consider the tangential stress balance at the interface which reads

n̂ · πliquid · t̂ + τ = 0 (1.23)

where τ is the upward wind stress exerted by the external airflow and t̂ ≈ (1, 0)T is the unit

tangent at the interface. This equation reduces to

µ(
∂u
∂y

+
∂v
∂x

) = −τ , (1.24)

which, given that the scale of ∂u/∂y is much larger than that of ∂v/∂x, simplifies to

µ
∂u
∂y

= −τ . (1.25)

The kinematic boundary condition at the interface requires

D
Dt

(y− h(x, t)) = 0 ⇒ (y− h(x, t))t + ~u · ∇(y− h(x, t)) = 0 . (1.26)

This results in

∂h
∂t

= v− u
∂h
∂x

. (1.27)

Based on the scales we determined earlier, including the one for time t, we see that all three terms

have comparable scales εU.

Summarizing all the equations and boundary conditions and specializing to the case when the

8



wall is vertical, i.e., α = π/2, we have:

0 =
∂p
∂y

(1.28)

0 = ρg− ∂p
∂x

+ µ
∂2u
∂y2 (1.29)

0 =
∂u
∂x

+
∂v
∂y

(1.30)

which respectively represent the y- and x-components of the momentum equation and the conti-

nuity (incompressibility) equation, subject to boundary conditions at y = 0:

u = 0 (1.31)

v = S(x) (1.32)

and those at y = h(x, t):

p = patm − σ
∂2h
∂x2 (1.33)

µ
∂u
∂y

= −τ . (1.34)

Differentiating (1.33) with respect to x, we find

∂p
∂x

= −σ
∂3h
∂x3 . (1.35)

This term is also independent of y because of equation (1.28). Integrating (1.29) with respect to y

twice, we obtain

u(x, y, t) =
1
µ
(−σ

∂3h
∂x3 − ρg)

y2

2
+

1
µ

C1(x, t)y + C2(x, t) . (1.36)

Using (1.31), we have C2(x, t) = 0 and using (1.34), we find

C1 =
h
µ
(ρg + σ

∂3h
∂x3 )−

τ

µ
.

Integrating (1.30) at a fixed location x with respect to y from 0 to h(x, t), and making use of (1.32)

9



and (1.27) yields:

∂h
∂t

+
∂q
∂x

= S(x) , (1.37)

where the volume flux q has been defined as q =
∫ h

0 u(x, y, t)dy. The latter can be found from the

velocity profile given above to have the explicit form:

q =
ρg
3µ

h3 − τ

2µ
h2 +

σ

3µ

∂3h
∂x3 h3 . (1.38)

The first term on the RHS represents the downward flow due to gravity and the second term the

updard flow due to the airflow. If surface tension is not as large in magnitude as required by the

scaling (1.21), we can ignore the effects of surface tension and drop the last term in the expression

for the flux.

While we derived the above conservation equation and flux expression in dimensional form,

albeit guided by the scaling analysis which indicated which terms could be neglected, at this point

we can go ahead and nondimensionalize the system. Define the starred dimensionless variables

by

h = Hh∗, x = Lx∗, t = Tt∗, S = SscaleS∗ (1.39)

with

H =
3τ

2ρg
, T =

4µρgL
3τ2 , Sscale =

9τ3

8µρ2g2L
. (1.40)

Here, length scale H corresponds to the film thickness at which the downward flux due to gravity

exactly balances the upward flux due to the wind stress associated with airflow; i.e., the film

thickness at which the first two terms in the expression for flux q balance each other exactly. The

length scale L is associated with the distance along the wall, for instance the length of the region

over which the source is nonzero. By assumption, ε = H/L � 1. The time scale T in the above

can be shown to be equivalent to T = 3L/U with velocity scale U given by U = ρgH2/µ. The

scale for the source emerges naturally from equating the orders of magnitude of the terms in
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the conservation equation. Substituting these and and dropping the superscript star from the

dimensionless variables for clarity, we finally have

ht + (h3 − h2 + α h3hxxx)x = S(x) (1.41)

where α = σH/(ρgL3) = ε3/Ca, where Ca = µU/σ is the capillary number based on the velocity

scale U = ρgH2/µ. As indicated earlier, in order for surface tension not to be negligible, the

Capillary number needs to be small, of order ε3, which would make dimensionless parameter

α of order unity. The model we derived here is similar to the thin film model with gravity and

Marangoni effects in [62] and [7]. In the next section, we first analyze the case where surface

tension effects are negligible, by taking coefficient α to be zero. However, since that coefficient

multiplies the highest order spatial derivative, one can expect a somewhat singular behavior so

that the solution in the presence of α, no matter how small, might be qualitatively different from

that in the complete absence of surface tension. We will see that this is indeed the case in a later

section where surface tension effects are added back in.

1.3 Model without Surface Tension

To ignore the effect of surface tension, parameter α is set to zero. Furthermore, the source strength

S(x) is assumed to be uniform over a finite domain of dimensionless length 1, and zero elsewhere,

namely:

S(x) =


S0 if x ∈ [0, 1]

0 otherwise

In this case, we can derive certain results through analysis. We will find that if the source strength

S0 is less than a threshold, the liquid is carried upward by the airflow and none of it falls down

due to gravity. The upper front of the film propagates as a shock front, whose speed we can

predict. When the source strength exceeds the threshold, some of the liquid produced is still

carried upward by the airflow, while the rest falls down due to gravity. Over the region where

the source is nonzero, a steady film profile is achieved in both cases. A numerical solution of the

nonlinear film equation produces results that agree with the analytical predictions.
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1.3.1 The Simplified Model

In the absence of surface tension, the expression for the flux becomes q(h) = h3 − h2 and the film

thickness h(x, t) satisfies the simplified equation:

∂h
∂t

+ (3h2 − 2h)
∂h
∂x

= S(x) ,

with initial condition

h(x, 0) = 0 ,

corresponding to not having any liquid on the wall initially. It will be helpful to notice that as h

increases away from zero, the flux q(h) is initially negative (corresponding to upward flow due

to airflow), reaches a minimum of −4/27 when the height reaches h = 2/3 and then increases

back to zero at h = 1 and into positive values beyond that (corresponding to downward flow due

to gravity). At the same time, the wave speed q′(h) = 3h2 − 2h also initially decreases from zero

at h = 0 to a minimum of −1/3 at h = 1/3, increasing beyond that point and changing sign,

becoming positive, as h passes the value h = 2/3.

1.3.2 Characteristic equations

Define z(s) ≡ h(x(s)) and write the above equation along characteristics parameterized by vari-

able s as

dt
ds

= 1 (1.42)

dx
ds

= 3z2 − 2z (1.43)

dz
ds

= S(x(s)) (1.44)

If x remains in the range [0, 1] for which S(x) = S0, where S0 > 0 is constant, and replacing s with

t by assuming s = 0 when t = 0, we have:

z(t) = S0t (1.45)

x(t) = S2
0t3 − S0t2 + x0 (1.46)
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where x0 is the initial point along the x-axis where the characteristic starts, for now taken to be

in the range [0, 1]. This solution remains valid until x(t) reaches one of the boundaries x = 0 or

x = 1.

Starting at any value of x0 in our range, the solution x(t) reaches its minimal value at time

t = 2/(3S0), which is independent of x0. For the characteristic that starts at the bottom point

x0 = 1, this minimum would be at x = 0 if S0 = 4/27. Therefore, as long as

S0 ≤
4

27

all characteristic lines that start with x0 ∈ (0, 1) do cross the line x = 0 at some finite time. Under

this assumption, define t∗ to be the time at which a characteristic line that start within (0, 1) first

reaches x = 0. Once the characteristic line crosses x = 0, it becomes a straight line and it will not

cross the x = 0 line again. We can calculate the straight line expression for t > t∗. Since we are

now in the range x ∈ (−∞, 0) where S(x) = 0, the characteristic equations for t > t∗ become

dH
dt

= 0 (1.47)

dx
dt

= 3H2 − 2H (1.48)

where H is the height function in that region, with initial conditions

H(t∗) = St∗ (1.49)

x(t∗) = 0 . (1.50)

Solving these two ODEs, we have

x(t) = (3S2
0(t
∗)2 − 2S0t∗)t− 3S2

0(t
∗)3 + 2S0(t∗)2 .

At a given time t, we can treat the equation above as a third order polynomial with respect to

t∗, and solve for t∗ for the given t and x. Since these characteristics collide with the horizontal

characteristics which emanate from the region x ∈ (−∞, 0), a shock forms right away at location

(x, t) = (0, 0). If the x-coordinate of the shock is denoted by c(t), the Rankine-Hugoniot condition
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Characteristic line for S = 4/27

Figure 1.1: A sketch of characteristic lines with S0 = 4/27; note that the vertical axis is the distance
x increasing downward, and the horizontal axis represents time t. The red line is the shock curve
formed through the intersection of the blue and green characteristics. The blue characteristics
emanate outside the source region and are horizontal. The green characteristic curves emanate
from the source region and upon passing x = 0 become straight lines. The yellow characteristics
represent an expansion fan emanating from x = 1.

for the shock curve can be used to obtain the speed of the shock, in this case yielding:

dc
dt

= S0t∗(S0t∗ − 1)

with c(0) = 0 and with t∗ a function of t and c, obtained by solving the cubic equation given above.

We applied a forward Euler method to calculate the position of the shock wave numerically. For

each iteration in t, we solve the cubic equation to find t∗ and update the position of the shock.

Figure 1.1 provides a complete picture of the characteristic curves when the source strength has

its threshold value of S0 = 4/27. The numerical results show that as t→ ∞, the shock propagate

at a constant speed of 1/4; this is consistent with our numerical simulations of the nonlinear PDE

reported below for the given source value.

14



1.3.3 The steady-state solution

If a steady-state solution is reached in the region x ∈ (0, 1), the resulting height function must

satisfy d(h3 − h2)/dx = S0, which produces the cubic equation

h3 − h2 = S0x + C

for h(x). When the source strength S0 < 4/27, the steady-state film height remains zero at x = 1,

which makes the constant C equal to −S0. Solving the cubic equation for h(x) will then produce

the correct steady-state profile over x ∈ (0, 1).

From the method of characteristics, when the source strength exceeds the threshold, i.e., when

S0 ≥
4
27

,

the characteristic emanating from the initial point x0 = 4/(27S0) ∈ (0, 1) becomes tangent to

the horizontal line x = 0 at time t = 2/(3S0), at which point h(0, 2/(3S0)) = 2/3. Beyond that

time, the height at that location remains constant at value 2/3, which enables us to determine the

constant C for that case. Also in that case, the characteristics starting at x0 > 4/(27S0) (but less

than 1), do not reach x = 0 at any time and instead turn around and exist the domain at x = 1,

colliding with the horizontal characteristics that emanate from the region x0 > 1. This leads to a

second shock front that propagates downward, reflecting the fact that at high source values, some

of the flow is carried downward by gravity.

In order for the steady height to remain constant equal to 2/3 at x = 0, the constant C must be

given by:

C = (
2
3
)3 − (

2
3
)2 = − 4

27
.

Then steady-state height profile for S0 ≥ 4/27 would be the solution of the new cubic equation:

h3 − h2 = S0x− 4
27

.

The two cases for S0 below and above the threshold can be combined to write a single cubic
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equation whose solution provides the steady-state film profile h(x):

h3 − h2 = S0x−min{S0,
4
27
} . (1.51)

For source strengths below the threshold 4/27, the steady height remains constant equal to zero

at x=1, and for those above the threshold, the steady height remains constant equal to 2/3 at x=0.

These can be verified from the numerical simulation of the nonlinear PDE which is described next.

Figure 1.2 provides a plot of the family of steady state film profiles over x ∈ (0, 1) for source values

below and above the threshold 4
27 .
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Family of steady state solutions with source range from 0 to 8/27
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S= 0.037037

S= 0.074074
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S= 0.22222

S= 0.25926

S= 0.2963

Figure 1.2: The family of steady state solutions with S0 ranging from 0 to 8/27. The bottom curves
are for source strengths below the threshold and the top curves for those above the threshold.

1.3.4 Numerical simulations

For our simplified model without surface tension, we now describe the Godunov method that

provides a numerical solution for the time evolution of the film thickness.

Godunov method

We discretize the x-domain into N equally-spaced sub-intervals or cells of size ∆x with point xj

referring to the midpoint of the cell j, whose edges are at xj− 1
2
= xj −∆x/2 and xj+ 1

2
= xj + ∆x/2.
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Time domain t is also discretized with time-step ∆t so that tn = n∆t. We denote the average film

thickness over cell j at time level n by

Hn
j =

1
∆x

∫ x
j+ 1

2

x
j− 1

2

h(x, tn)dx .

We integrate the conservation equation ht + qx = S(x) (with q = q(h) = h3 − h2) over the

domain [xj− 1
2
, xj+ 1

2
]× [tn, tn+1] and simplify to obtain

Hn+1
j = Hn

j −
1

∆x

∫ tn+1

tn

q
(
h(xj+ 1

2
, t)
)
− q
(
h(xj+ 1

2
, t)
)
dt +

∆t
∆x

∫ x
j+ 1

2

x
j− 1

2

S(x)dx .

Denote the time-average of the flux crossing the edge xj+ 1
2

over the time interval t ∈ [tn, tn+1] as

Qn
j+ 1

2
=

1
∆t

∫ tn+1

tn

q(u(xj+ 1
2
, t))dt ,

which produces the discrete conservation equation

Hn+1
j = Hn

j −
∆t
∆x

(
Qn

j+ 1
2
−Qn

j− 1
2
+
∫ x

j− 1
2

x
j− 1

2

S(x)dx

)
.

In Godunov’s method, the time-averaged flux Qn
j+ 1

2
is approximated as follows

Qn
j+ 1

2
= Q(Hn

j , Hn
j+1) =


minHn

j ≤θ≤Hn
j+1

q(θ) if Hn
j ≤ Hn

j+1

maxHn
j+1≤θ≤Hn

j
q(θ) if Hn

j > Hn
j+1

relating the flux to the average heights on either side of the edge at time level n. In our case, since

q(h) = h3 − h2 and h ≥ 0, the only minimum in q(h) occurs at h = 2/3 and the formula simplifies

to

Qn
j+ 1

2
= max

(
q
(

max(Hn
j ,

2
3
)
)
, q
(

min(Hn
j+1,

2
3
)
))

.

For numerical stability, one must require the time step to be small enough, according to the stabil-

ity condition
∆t
∆x
≤ 1

2 maxj |q′(Hn
j )|

.
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Figure 1.3: Plot of the numerical solution at time T = 20, with S0 = 5
27 and h0 = 0. The horizontal

axis represents the x-coordinate along the vertical wall, with the positive direction being down-
ward. The vertical axis is the height of fluid film. Since this source value is larger than critical
value 4

27 , we can see two shock waves, one going upward and one downward.

In the simulations presented below, we take ∆t/∆x = 1/8.

Results

In the following, we present results for the case S0 = 5/27, which is above the threshold value of

4/27. We thus expect some of the flow to be carried downward by gravity, while some portion

is still carried upward by the airflow. We simulate the equation over the region x ∈ [−5, 5] with

∆x = 0.025.

Figure 1.3 presents the film profile at time t = 20 starting with no liquid film for a source

strength of S0 = 5/27 acting over x ∈ [0, 1]. The horizontal lines at heights 1 and 2/3 are drawn

for visual references. Once the film height reaches a value of 2/3 at x = 0, it stays at that value,

while the excess liquid is carried upward (toward negative x values) by the airflow. Some of the

liquid also flows downward (toward positive x values) due to gravity although at time t = 20,

only a small amount has gone past the edge x = 1.

Figure 1.4 presents the evolution of the film profile from time t = 0 to t = 20 starting with zero

initial film thickness and with a source strength of S0 = 5/27 confined to the region x ∈ [0, 1]. It is
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Figure 1.4: Evolution of the film profiles from T = 0 to 20 for S0 = 5
27 and h0 = 0. The film height

is plotted as a function of x and t.

seen that the shock traveling upward (toward negative x values) achieves a fairly constant speed

of propagation.

In Figure 1.5 we compare the numerical solution at large times over the range x ∈ [0, 1] to

the steady state solution over that range which solves Eq. (1.51). The two results are in excellent

agreement.

1.4 Model with Surface Tension

In Section 1.2 we derived the model with surface tension in the form of Eq. (1.41) in which dimen-

sionless parameter α = σH/(ρgL3) measured the relative importance of surface tension. While

the previous section analysed the system when α = 0, here we will examine the solution when

that parameter is nonzero.

19



-1 -0.5 0 0.5 1 1.5 2
x

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

h

Solution plot at t = 19701 (S=1, h
0
=0)

steady-state

numerical

Figure 1.5: Comparison of numerical simulation results at large times with the steady state solu-
tion calculated from Eq. (1.51) over the range x ∈ [0, 1].

1.4.1 Numerical Simulations using COMSOL

For the full model with surface tension, we conduct numerical simulations using the software

COMSOL MultiPhysics for various source strengths S0. We observe some similarities with the

simplified model; however, there are significant differences also.

Figure 1.6 provides a series of simulations over the domain (−15, 15) corresponding to weak

source strengths (below the threshold of 4/27 predicted for zero surface tension). In the top pic-

ture, the dashed lines present the early time evolution snapshots for parameter values: S0 = 4/35

and α = 0.001, at times: t = 0.8; 2.8; 5.6. The solid lines present the later time evolution snapshots

at times t = 17.2; 37.2; 54.0. A steady state is established over the source region (0, 1). For these

weak source values, none of the fluid falls due to gravity (i.e., none moves to the right beyond the

edge x = 1). The fluid that gets transported to the left (upward due to airflow) has a leftmost front

that looks like a typical shock, but the relatively flat region next to that front jumps down to a

lower value (more evident in the middle and bottom panels) across an oscillatory front that prop-

agates at a different speed from the leftmost front. The left front wave has height 0.783, moving to

the left at speed 0.166; the second left wave is very slow with a speed of about 0.012 and a peak

height of about 0.845. The height of the left front wave does not depend on the source strength, as
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Figure 1.6: Weak source simulations indicate the propagation of waves in one direction only: to
the left due to airflow. Top picture: S0 = 4/35, α = 0.001; middle picture: S0 = 4/50, α = 0.001;
bottom picture: S0 = 4/50, α = 0.0001. Refer to the text for more detailed descriptions.
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will be seen in the middle panel.

In the middle picture, the dashed lines provide the early time evolution snapshots for S0 =

4/50 and α = 0.001 at times: t = 0.8; 2.4; 6. The solid lines show the later time evolution snapshots

at times: t = 25.2; 36.8; 50.0. The left front wave has height 0.783 and moves to the left with speed

0.173. The second left-going wave is slower with a speed of about 0.107 and a peak height of about

0.845, connecting to a flat part of height 0.384. Changing the source strength does not influence

the height of the left front wave but it moves a bit faster, the height of the second left wave is also

unchanged but it is moving much faster to the left as we decrease the source strength away from

its threshold value.

In the bottom panel, the dashed lines give the early time evolution snapshots for an even

smaller surface tension case, with parameter values: S0 = 4/50 and α = 0.0001 at times: t =

0.4; 1.2; 2.4; 7.2. The solid lines provide the later time evolution snapshots at times t = 24.8; 36.4; 55.2.

The left front wave has height 0.749 and moves with speed 0.188. The second left wave is slower

with a speed of about 0.138 and a peak height of about 0.806, connecting to a flat part of height

0.384. Reducing surface tension speeds up the front left wave and lowers its height, but contrary

to the strong source case (presented next) the second wave also speeds up.

It follows from the simulations that the height of the left front wave is not controlled by the

source term and only depends on the surface tension coefficient, as does its speed. The second

wave speed and direction, however, are controlled by the source strength.

Figure 1.7 presents a set of simulations with stronger source strengths (above the threshold)

that result in two fronts moving in opposite directions. In the top panel, the dashed lines provides

the early time snapshots for parameter values: S0 = 4/15, α = 0.001, at times t = 1.2; 2.0; 2.8; 4.8.

The solid lines are the later time snapshots at t = 16.4; 36.8; 55.6. The left-going front has a height

of approximately 0.783, moving with an approximate speed of 0.168. The right-going front has a

flat part of height 1.132 (peak at 1.573) and it is moving a little slower with a speed of about 0.163.

In the middle panel, the dashed lines are the early time snapshots for parameter values: S0 =

4/15 and α = 0.0001 (a factor of ten smaller than the top panel) at t = 1.2; 2.8; 5.2; 7.2. The solid

lines are the later snapshots for parameter at times t = 15.6; 35.2; 54.8. The left-going front has

an approximate height of 0.749 and moves with an approximate speed of 0.188. The right-going

front has a flat region of height 1.127 (peak at 1.510) and it is moving a little slower at a speed
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Figure 1.7: Strong source simulations indicate propagation of waves in both directions: left-going
due to airflow and right-going due to gravity. Top picture: S0 = 4/15, α = 0.001; middle picture:
S0 = 4/15, α = 0.0001; bottom picture: S0 = 4/25, α = 0.001. Refer to the text for more detailed
descriptions.
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of about 0.143. The ten-fold reduction in surface tension from 0.001 to 0.0001 resulted in a faster

propagation of the left front while lowering its height. The right-moving front also has a lower

height but, contrary to the left wave, it slows down.

In the bottom panel, the dashed lines are the early time snapshots for parameter values: S0 =

4/25 and α = 0.001, at t = 1.2; 2.8; 5.2; 7.2. The solid lines are the later time snapshots at times

t = 16.4; 36.8; 55.6. The left-going front has height 0.783 and moves with speed 0.173. The right-

going front has a flat part of height 1.132 (peak at 1.573) and it moves slower at a speed of about

0.047. Reducing the source from 4/15 to 4/25 does not affect the height of the left-going front but

increases its speed, while the right-moving front does not change its height either, but slows down

appreciably.

By examining both Figures 1.6 and 1.7 combined, it becomes apparent that for weak source

strengths below the threshold, we have the left-going front and the second left-moving wave. The

latter moves to the left more and more slowly as the source strength approaches the threshold and

eventually changes directions and becomes a right-moving wave as the source-strength increases

above the threshold value. While both of these waves exhibit oscillations before connecting two

flat regions, when the wave moves to the right (due to gravity), it connects a flat region of zero,

whereas when it was moving to the left, it connected two flat regions of finite heights.

Another important observation one can make by comparing the results with surface tension

with those in the complete absence of surface tension (i.e., Figure 1.3 from the previous section),

is that even a small amount surface tension (α = 0.001) appreciably slows down the left-moving

front and makes the region behind the left front flat, as opposed to having a clear slope apparent

in Figure 1.3.

To explore the effect of surface tension on the front propagation, we examine the height and

speed of the left-going wave for a larger set of surface tension parameter values α. Figure 1.8

(S0 = 4/15) shows that left-going front speed decreases with height and that as surface tension

parameter α becomes larger, the front height approaches an approximate value of 0.8 (for an even

higher value of α = 0.1 the height is about 0.806, and for α = 0.5 the height is about 0.805). The

relation between the front speed and height seen on the left plot in Fig. 1.8 can be explained by

seeking a traveling wave solution of Eq. (1.41) away from the source region. For a left-going wave,

if we take h(x, t) to have the traveling wave form h(x + ct) with c > 0, the PDE away from the
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Figure 1.8: The plot of the left front wave speed versus its height is on the left and the plot of the
left front wave height versus values of α (surface tension coefficient) is on the right.

source reduces to

ch + (h3 − h2 + αh3h′′′) = constant .

In the flat regions on either side of the front, h′′′ is zero, and to the left of the front, h = 0. This

makes the constant on the RHS equal to zero and for the flat region of height h, the traveling

wave speed is evaluated to be c = h− h2 (see the red curve on the figure). This is in approximate

agreement with the data points plotted in the figure.

1.5 Discussion and Conclusions

Let us first compare the cases with and without surface tension to highlight their key differences.

Figure 1.9 shows two sets of simulations for a source strength of S0 = 4/20 that produces traveling

waves in both direction, with liquid climbing the wall due to airflow (going left in the plots) and

excess liquid falling down due to gravity (going right in the plots). In the top panel, surface tension

is zero (α = 0), while in the bottom panel surface tension is nonzero but rather small (α = 0.001).

The profiles are plotted at the same times indicated in the legend. It is obvious that even for quite

small values of the surface tension parameter, the profiles are strongly affected. In the absence of

surface tension, the left-going waves in the top figure advance at a higher speed and the profiles

behind them have positive slopes that decrease as the front advances. In contrast, in the presence

of surface tension, that front moves left more slowly and behind the front, the profile is flat and

maintains a constant somewhat higher height. On the other hand, the right going waves move
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a little faster when surface tension is present, and the constant part of the profile behind those

waves connects to the zero region in front through an oscillatory section with a large peak, to be

compared to the flat profile of the right-going waves without surface tension in the top figure.

Since the surface tension parameter α multiplies the highest (fourth order) spatial derivative term

in the governing equation, it is not too surprising that from a perturbation standpoint, the problem

is singular and even quite small values of the surface tension parameter α significantly modify the

behavior of the solution.

When the source strength is large enough, this model generates two travelling waves moving

left and right away from the source region, connected through a steady state film profile directly

over the source area. For sub-threshold source strengths, only left-going waves are observed,

but there are two such waves that travel at different speeds. For any of the traveling waves that

connect two flat regions (one possibly of zero height far to the left or right), a Rankine-Hugoniot

equation can be obtained that relates the speed of the moving front to the constant heights on

either side of the traveling “shock.” This is easy to see by substituting a travelling wave ansatz

h(x, t) = h(z), z = x− ct into the PDE

ht + (h3 − h2 + αh3hxxx)x = 0

away from the source region. This yields

−ch′ + (h3 − h2 + αh3h′′′)′ = 0

with the prime denoting a z-derivative. Integrating the equation once, we have

h3 − h2 + αh3h′′′ = ch + C ,

where C is an integration constant. When a travelling wave connects uniform left and right regions

with heights h− and h+, since h(z)′′′ = 0 as z→ ±∞, we find that

h3
− − h2

− − ch− = h3
+ − h2

+ − ch+ = C .
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Figure 1.9: Comparison of models without and with surface tension.
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The wave speed c can thus be obtained:

c =
(h3
− − h2

−)− (h3
+ − h2

+)

h− − h+
= h2

− + h−h+ + h2
+ − h− − h+

This is consistent with the Rankine-Hugoniot condition that c = [[q(h)]]/[[h]], where q(h) is the flux

and double square brackets indicate the jump in the value of their argument from one side to the

other.

From our numerical simulation results, we can verify that the travelling wave speed is indeed

given by this equation. For instance, consider the small source condition depicted in the middle

panel of Figure 1.6. We see two travelling waves both traveling to the left. Denote the flat part of

the height profile from left to right as h1, h2, h3; in that case:

h1 = 0, h2 = 0.783, h3 = 0.384 .

Denote the two wave speed from left to right as c1 and c2. The predicted wave speeds would thus

be:

c1 = h2
1 + h1h2 + h2

2 − h1 − h2 = −0.170

c2 = h2
2 + h2h3 + h2

3 − h2 − h3 = −0.106 .

These values closely match the results obtained from studying the plot and extracting the veloci-

ties.

In order to get some sense of the orders of magnitude of the parameters and the applicability

of the lubrication approximation, let us consider a hypothetical case with the following physical

parameters. Take the liquid and gas to be water and air at 25◦C with respective properties: ρw =

997 kg/m3, µw = 8.9× 10−4 kg/(m s), ρa = 1.18 kg/m3 and µa = 1.85× 10−5 kg/(m s). Take

the upward airflow velocity to be Ua = 15 m/s and suppose that a uniform flow of that speed

encounters the vertical plate, developing a laminar (Blasius) boundary layer, reaching the liquid

film about ` = 5 cm from the bottom of the plate. In that case, the wall shear stress is given from
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the standard expression for a laminar boundary layer on a flat plate, namely:

τ = 0.332ρaU2
a /
√

Re`

in which the Reynolds number for the airflow is defined by Re` = ρaUa`/µa. The resulting shear

stress turns out to be τ = 0.404 kg/(m s2). The characteristic thickness of the film which is deter-

mined by a balance of gravity and airflow is thus calculated to be

H =
3τ

2ρwg
≈ 62 microns

and if the length of the source region is taken to be L = 1 cm, the lubrication parameter will be

ε = H/L ≈ 0.0062 � 1. The velocity scale for the downward draining of the water film under

gravity is given by U = ρwgH2/µw ≈ 0.042 m/s, making the Reynolds number for water flow

to be Re = ρwUL/µw ≈ 472. While this value is not small, the product ε2Re = 0.018 � 1, so

the neglect of inertial terms in the thin film equation can be justified. Based on these values, the

dimensional threshold value for the source strength is found to be

S0 =

(
4
27

)(
9τ3

8µwρ2
wg2L

)
≈ 12.9 microns per second.

Finally, for the dimensionless parameter α = σH/(ρwgL3) to have value 10−4, the surface tension

would have to be σ = 0.0158 kg/s2, or ten times higher if α = 10−3. This is in the right range for

water which has a surface tension of about 0.072 kg/s2. So, although the dimensionless surface

tension parameter α is indeed small for water, our analysis shows that the thin films that advance

upward due to airflow, or fall due to gravity are still significantly affected by surface tension.

1.6 Appendix

1.6.1 MATLAB implementation of Godunov method for solving the simplified model

1 % Godunov scheme

2 S_0 = 5/27;
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3 h_0 = 0 ;

4

5 xmin = −5;

6 xmax = 5 ;

7 dx = 0 . 0 2 5 ;

8 N = ( xmax−xmin ) /dx ;

9 x = l i n s p a c e ( xmin , xmax ,N+1) ;

10

11 x1 = l i n s p a c e ( xmin−dx , xmax+dx ,N+3) ;

12

13 u = x . * 0 ;

14 f o r i = 2 : length ( x1 ) −1

15 R = min ( x1 ( i ) , 1 ) ;

16 L = max( x1 ( i −1) , 0 ) ;

17 i f R < L

18 u ( i −1) = 0 ;

19 e l s e

20 u ( i −1) = 1/dx * (R − L ) * h_0 ;

21 end

22

23 end

24

25

26 dt = 1/8*dx ;

27 T = 2 0 ;

28 t _ s t e p = T/dt ;

29

30 [X , Y] = meshgrid ( x , 0 : dt : T ) ;

31

30



32 U_mesh = zeros ( s i z e (X) ) ;

33 U_mesh ( 1 , : ) = u ;

34 f o r i = 1 : t _ s t e p

35 f o r j = 2 :N

36 R = min ( x ( j +1) , 1 ) ;

37 L = max( x ( j ) , 0 ) ;

38 i f R >= L

39 u ( j ) = u ( j ) − dt/dx * ( Q( u ( j ) , u ( j +1) ) − Q( u ( j −1) , u ( j ) ) −

(R − L ) * S_0 ) ;

40 e l s e

41 u ( j ) = u ( j ) − dt/dx * ( Q( u ( j ) , u ( j +1) ) − Q( u ( j −1) , u ( j ) ) ) ;

42 end

43 U_mesh ( i +1 , j ) = u ( j ) ;

44 end

45 end

46

47 % f i g u r e ;

48 % p l o t ( x , u )

49 % xlim ( [ −5 , 5 ] )

50 % ylim ( [ 0 , 1 . 2 ] )

51 % ax = gca ; % current axes

52 % ax . FontSize = 1 6 ;

53 % l = l i n e ( [ − 5 , 5 ] , [ 2 / 3 , 2 / 3 ] ) ;

54 % l . Color = ’ r ’ ;

55 % l 2 = l i n e ( [ − 5 , 5 ] , [ 1 , 1 ] ) ;

56 % l 2 . Color = ’g ’ ;

57 % t i t l e ( [ ’ So lut ion p l o t a t t = ’ , num2str ( T, ’%d ’ ) , ’ ( S = ’ , num2str ( S_0 )

, ’ , h_0 = ’ , num2str ( h_0 , ’%d ’ ) , ’ ) ’ ] )

58 % saveas ( gcf , [ ’ . . / . . / f i g u r e / f i n a l _ s t e p _ p l o t _ ( T= ’ , num2str ( T, ’%d ’ ) , ’|S
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= ’ , num2str ( S_0 ) , ’| h_0 = ’ , num2str ( h_0 ) , ’ ) . png ’ ] )

59

60 % mesh p l o t

61 % s u r f (X , Y , U_mesh )

62 f i g u r e ;

63 mesh (X , Y , U_mesh )

64 colormap ( j e t ) % change c o l o r map

65 shading i n t e r p
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Chapter 2

Analysis of thin film equation with

source

2.1 Introduction

The initial-boundary value problem:


ht = −(hnhxxx)x in Ω× (0, T),

hx = hxxx = 0 on ∂Ω× (0, T),

h(·, 0) = h0 in Ω

(2.1)

is widely used to model time-evolution of the thickness h(x, t) of a viscous liquid droplet spread-

ing over a flat substrate. The value of the exponent n depends on a boundary condition imposed

at the solid-liquid interface. For example, n = 3 corresponds to a no-slip boundary condition [45].

The case n = 1 appears in the modelling of the Darcy’s flow inside the Hele-Shaw cell [30]. Differ-

ent values of n ∈ (1, 3) are also suggested to introduce the effects of strong or weak slippage [31].

Because the non-linear coefficient for the fourth-order derivative can be equal to zero (that corre-

sponds to a dry area or a touchdown point) the problem above belongs to the wide class of higher

order degenerate parabolic equations and has been studied extensively over last 30 years. The

existence of generalized non-negative weak solutions, their qualitative behaviour, and regularity

were rigorously analysed in [2, 3, 4, 6, 47]. The asymptotic properties of classical and weak solu-
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tions for this thin-film model were obtained in [12, 13, 14]. Existence and qualitative behaviour

of self-similar solutions were considered in [60, 61]. Thin-film equations on graphs were recently

studied in [64]. One of the most well known and still open questions is the uniqueness of strong

non-negative solutions (non-negative weak solutions with extra regularity properties). Some re-

sults in this direction, for particular classes of initial data, can be found in [18, 19]. Finite speed

of the support propagation for the solution h(x, t) and the existence of waiting time phenomenon

were proved in [8, 48, 26, 27, 29].

Some modeling and experimental results were obtained for thin viscous liquid flows spreading

from different type of sources. In [40], the author considered long-time and short-time asymptotic

behaviour of a viscous flow down an inclined plane with point and line type sources. Numerical

simulations in [40] were compared with experimental results. In [59], an evolution model was de-

rived to fit data obtained from experiments with two fluids of different viscosity spreading over

a solid surface with varying inclination angles from point sources. In [57], thin-film type model

and numerical simulations were presented for the time-dependent three dimensional viscous liq-

uid flow spreading down an inclined plane and originated from a continuous injection of liquid

through a circular source.

Our motivation for introducing an additional source term to the classical thin-film model (2.1)

originated from an industrial problem presented on the Mathematical Problems in Industry (MPI)

workshop (Claremont, CA, June 2018). The problem concerned modelling dense porous catalysts

in which a gaseous reaction constantly produces liquid in the interior of the catalyst (the source

term), through the pores this liquid finds its way to the exterior surface, that results into form-

ing and spreading droplets all over the surface. These droplets block the gaseous reactants from

entering the pores and slow down the reaction.

To the best of the authors knowledge qualitative properties of weak solutions for an initial-

boundary value problem for a thin-film equation with a source term has not been rigorously stud-

ied before. For the rest of this article, we are concerned with the following thin-film problem

(one-dimensional version of the thin-film model with a source that was derived in [57]):

ut + (unuxxx)x = S(x) in QT, (2.2)
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ux = uxxx = 0 on ∂Ω× (0, T), (2.3)

u(x, 0) = u0(x), (2.4)

where Ω ⊂ R1 is bounded domain, n > 0 and T > 0. Assume that

0 6 u0(x) ∈ H1(Ω), S(x) ∈ H1(Ω). (2.5)

Let us denote the initial total mass byM :=
∫̃
Ω

u0(x) dx and the total source by S :=
∫
Ω

S(x) dx.

Integrating (2.2) in Qt and using boundary conditions, we obtain the total liquid mass at time

t: ∫
Ω

u(x, t) dx =M+ t S . (2.6)

The chapter is structured as follows: in Section 2 we prove existence of weak solutions for

n > 0 and show that under some restrictions on initial data these solutions can not deviate from

a linear function. We provide an explicit example of initial data which satisfy our conditions. In

Section 3 we consider a special case of a constant source term S(x) = S0 and derive a long-time

asymptotic behaviour of the non-negative solution. In Section 4 we study interface propagation

properties for 1 < n < 2. Numerical simulations of main results are presented in Section 5.

2.2 Existence of weak solutions

In this section, we define a generalized weak solution and prove its existence under some restric-

tions on the L2-norm of the gradient of initial data. We do not assume positivity of the source term

S(x). Following [4] we define a weak solution.

35



Definition 2.2.1. A generalized weak solution of problem (2.2)–(2.4) is a function u(x, t) satisfying

u ∈ C1/2,1/8
x,t (QT) ∩ L∞(0, T; H1(Ω)), (2.7)

ut ∈ L2(0, T; (H1(Ω))∗), (2.8)

u ∈ C4,1
x,t (PT), |u|

n
2 uxxx ∈ L2(PT), (2.9)

where PT = QT \ ({u = 0} ∪ {t = 0}) and u satisfies (2.2) in the following sense:

T∫
0

〈ut(·, t), φ〉(H1)∗,H1 dt−
∫∫
PT

|u|nuxxxφx dxdt =
∫∫
QT

S(x)φ dxdt (2.10)

for all φ ∈ L2(0, T; H1(Ω));

u(·, t)→ u(·, 0) = u0 strongly in H1(Ω) as t→ 0, (2.11)

(2.3) hold at all points of the lateral boundary, where {u 6= 0}. (2.12)

Let us denote by G0(z) the following function

G0(z) :=



z2−n

(n−1)(n−2) +
A1−nz
n−1 + A2−n

2−n if n 6= {1, 2},

z ln( z
A )− z + A if n = 1,

z
A − ln( z

A )− 1 if n = 2,

(2.13)

where A is a positive constant.

Theorem 1. Let n > 1. Then problem (2.2)—(2.4) has a weak solution u(x, t) defined in QT for any

T > 0, in the sense of Definition 1. Assume that the initial function u0 satisfies

∫
Ω

G0(u0) dx < ∞ and ‖u0,x‖2 < M
|Ω| (

π
|Ω| )

1
2 .

Then there exists Tloc > 0 such that u ∈ L2(0, Tloc; H2(Ω)) is non-negative, where Tloc = +∞ if ‖S′‖2 <
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S
|Ω| (

π
|Ω| )

1
2 . Moreover, if S > 0 then there exists a constant K0 > 0 such that

‖u− M|Ω| − t S|Ω|‖H1(Ω) 6 K0 ∀ t > 0. (2.14)

Note that, in the case of S(x) > 0, the condition ‖u0,x‖2 < M
|Ω| (

π
|Ω| )

1
2 and the restriction ‖S′‖2 <

S
|Ω| (

π
|Ω| )

1
2 can be eliminated.

Remark 2.2.1. To compare to the existence result for the classical thin-film equation without a source

term our Theorem 1 imposes the additional restrictions for the initial data and the source term in order

to construct more regular (strong) non-negative solutions. This restrictions can be omitted in the proof

of existence of weak solutions. The condition ‖u0,x‖2 < M
|Ω| (

π
|Ω| )

1
2 is true, for example, if u0(x) = A +

B sin(x) in Ω = (−π, π) with A > |B|
√

2π.

Proof. Following [4], for a given ε > 0 we consider the following regularized problem:

ut + ( fεδ(u)uxxx)x = Sε(x) in QT, (2.15)

ux = uxxx = 0 on ∂Ω× (0, T), (2.16)

u(x, 0) = u0,εδ(x), (2.17)

where

fεδ(z) := |z|n+4

|z|4+δ|z|n + ε, Sε(x) ∈ C4+γ(Ω̄),

u0,εδ(x) > u0(x) + δθ , u0,εδ(x)→ u0(x) strongly in H1(Ω) as ε, δ→ 0,

Sε(x)→ S(x) strongly in H1(Ω) as ε→ 0,

where γ ∈ (0, 1) and θ ∈ (0, 1
2 ).

The existence of classical solutions for the regularized parabolic equation follows from [24].

To pass to the limits ε → 0, δ → 0 we first need to obtain uniform in ε, δ a priori estimates [4].
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Integrating (2.15) in Qt, we get

∫
Ω

(u− Mεδ

|Ω| − t Sε

|Ω| ) dx = 0. (2.18)

By (2.18) and the Poincare inequality we find that

|u− Mεδ

|Ω| − t Sε

|Ω| | 6 ( |Ω|π )
1
2

(∫
Ω

u2
x dx

) 1
2
, (2.19)

∫
Ω

(u− Mεδ

|Ω| − t Sε

|Ω| )
2 dx 6 ( |Ω|π )2

∫
Ω

u2
x dx. (2.20)

Multiplying (2.15) by −uxx and integrating over Ω, we obtain

1
2

d
dt‖ux‖2

2 +
∫
Ω

fεδ(u)u2
xxx dx = −

∫
Ω

Sε(x)uxx dx 6 ‖S′ε‖2‖ux‖2. (2.21)

Next, a solution of inequality (2.21) compares with the corresponding equation. As a result, we

deduce that

‖ux‖2 6 ‖u0εδ,x‖2 + t ‖S′ε‖2 ∀ t > 0. (2.22)

By (2.19), (2.20), and (2.22) we get

‖u‖2
H1(Ω) 6 (1 + ( |Ω|π )2)(‖u0εδ,x‖2 + t ‖S′ε‖2)

2 + (Mεδ+t Sε)2

|Ω| ∀ t > 0, (2.23)

νεδ(t) := Mεδ

|Ω| + t Sε

|Ω| − ( |Ω|π )
1
2 (‖u0εδ,x‖2 + t ‖S′ε‖2) 6 u(x, t) 6

Λεδ(t) := Mεδ

|Ω| + t Sε

|Ω| + ( |Ω|π )
1
2 (‖u0εδ,x‖2 + t ‖S′ε‖2) ∀ t > 0. (2.24)

Next, we will assume that

νεδ(t)→ νδ(t) > 0 as ε→ 0. (2.25)

Hence,

if Mεδ

|Ω| > ( |Ω|π )
1
2 ‖u0εδ,x‖2 and Sε

|Ω| > ( |Ω|π )
1
2 ‖S′ε‖2 then (2.25) is true for all t > 0;
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if Mεδ

|Ω| > ( |Ω|π )
1
2 ‖u0εδ,x‖2 and Sε

|Ω| < ( |Ω|π )
1
2 ‖S′ε‖2 then (2.25) holds for all 0 6 t 6 T∗,

where T∗ :=
Mεδ
|Ω| −(

|Ω|
π )

1
2 ‖u0εδ,x‖2

( |Ω|π )
1
2 ‖S′ε‖2− Sε

|Ω|

. Note that T∗ 6 −Mεδ
Sε

if Sε < 0.

Let us denote by

Gεδ(z) :=
z∫

A

v∫
A

ds dv
fεδ(s)

> 0 : G′εδ(z) =
z∫

A

dv
fεδ(v)

6 0 ∀ z 6 A, G′′εδ(z) =
1

fεδ(z)
∀ z ∈ R1,

where A > 0. Multiplying (2.15) by G′εδ(u) and integrating over Ω, we obtain

d
dt

∫
Ω

Gεδ(u) dx +
∫
Ω

u2
xx dx =

∫
Ω

Sε(x)G′εδ(u) dx.

Note that if S > 0 and n > 1 then

∫
Ω

S(x)G′0(u) dx = 1
n−1

∫
Ω

S(x)(A1−n − u1−n) dx 6 0⇔

A1−nS 6
∫
Ω

S+(x)u1−n dx +
∫
Ω

S−(x)u1−n dx 6 ν1−n(t)
∫
Ω

S+(x) dx+

Λ1−n(t)
∫
Ω

S−(x) dx = Λ1−nS + (ν1−n(t)−Λ1−n(t))
∫
Ω

S+(x) dx provided A = Λ(t).

Similarly, if S < 0 and n > 1 then ∫
Ω

S(x)G′0(u) dx > 0.

As

|G′εδ(u)| 6 Lεδ(t) := 1
|n−1| (ν

1−n
εδ (t) + A1−n) + δ

3 (ν
−3
εδ (t) + A−3)

then we find that

∫
Ω

Gεδ(u) dx +
∫∫
Qt

u2
xx dxdt 6

∫
Ω

Gεδ(u0,εδ) dx + ‖Sε‖1

t∫
0

Lεδ(s) ds. (2.26)

In the case of S > 0, we can refine (2.26). Really, if we take A = Λ(t) then

∫
Ω

Gεδ(u) dx +
∫∫
Qt

u2
xx dxdt−

∫∫
Qt

Sε(x)G′εδ(u) dxdt =
∫
Ω

Gεδ(u0,εδ) dx. (2.27)
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Letting ε → 0, due to (2.22) and (2.26) (or (2.27)), we obtain an unique classical solution uδ > 0 in

QTloc .

Following [4], we will refine (2.22) for uδ > 0, in the case S > 0. Applying [66, Lemma 1] to

uδ > 0, due to (2.27) with ε = 0, we have

9
16

(∫
Ω

u2
x dx

)2
6
∫
Ω

fδ(u)u2
xxx dx

∫
Ω

u2

fδ(u)
dx 6 Cn

∫
Ω

Gδ(u0,δ) dx
∫
Ω

fδ(u)u2
xxx dx. (2.28)

Let us denote by

J[u] :=
∫
Ω

u2
x dx.

Also, following [66], we can show that there exists C1 > 0 such that

∫
Ω

fδ(u)u2
xxx dx > C1 J[u]. (2.29)

Using (2.21) with ε = 0, due to (2.29), we deduce that

d
dt J[u] + 2C1 J[u] 6 2‖S′‖2 J

1
2 [u]. (2.30)

Next, a solution of inequality (2.30) compares with a one of Bernoulli equation. By (2.30) it follows

that

‖ux‖2 6 e−C1t‖u0δ,x‖2 +
‖S′‖2

C1
(1− e−C1t)→ ‖S′‖2

C1
as t→ +∞. (2.31)

By (2.20) and (2.31) the estimate (2.14) follows.

2.3 Long-time behaviour of solutions for the constant source

In this section, for a special case when the source term is a constant, we obtain stronger results for a

long-time asymptotic behaviour of a solution. We would like to point out that due to non-linearity

the constant source term can not be eliminated by some simple change of variables.

Let S(x) = S0 and us(t) be such that

us(t) = M
|Ω| + t S0, where S0 > 0. (2.32)
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If S0 < 0 and a weak solution u(x, t) is non-negative then, due to (2.6), we obtain that

u(x, t)→ 0 as t→ T∗ := − M
S0|Ω|

that means that the thin-film will completely dry out over the finite time T∗.

Theorem 2. Let us be defined in (2.32), and u be a weak solution from Theorem 1. Then

u(x, t)→ us(t) strongly in H1(Ω) as t→ +∞.

Proof. We want to show the following convergence

w(x, t) := u(x, t)− us(t)→ 0 as t→ +∞. (2.33)

Note that w = wδ(x, t) is a solution to the following problem

wt + ( fδ(u)wxxx)x = 0 in QT, (2.34)

wx = wxxx = 0 on ∂Ω× (0, T),

w(x, 0) = w0δ(x) := u0δ(x)− Mδ

|Ω| .

Also, we have ∫
Ω

w(x, t) dx = 0. (2.35)

Multiplying (2.34) by −wxx, we obtain

1
2

d
dt

∫
Ω

w2
x dx +

∫
Ω

fδ(u)w2
xxx dx = 0. (2.36)

As

‖ux(t)‖2 6 ‖u0δ,x‖2

then by (2.19)

u(x, t) > νδ(t) := Mδ

|Ω| + t S0 − ( |Ω|π )
1
2 ‖u0δ,x‖2 > 0 (2.37)
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for all

t > T0 := S−1
0
[
( |Ω|π )

1
2 ‖u0,x‖2 − M|Ω|

]
+

.

Applying the Poincaré inequality twice, we find that

∫
Ω

w2
x dx 6 ( |Ω|π )4

∫
Ω

w2
xxx dx. (2.38)

Now, using (2.37) and (2.38), by (2.36) we get

d
dt

∫
Ω

w2
x dx + aδ(t)

∫
Ω

w2
x dx 6 0 ∀ t > T0, (2.39)

where

aδ(t) := ( π
|Ω| )

4 fδ(νδ(t)).

From (2.39) we find that

∫
Ω

w2
x dx 6 ‖wx(T0)‖2

2 e
−

t∫
T0

aδ(s) ds
6 ‖u0δ,x‖2

2 e
−

t∫
T0

aδ(s) ds
∀ t > T0. (2.40)

By (2.40) and the Poincaré inequality we deduce that

‖w(t)‖2
H1 6

(
1 + ( |Ω|π )2)‖u0δ,x‖2

2 e
−

t∫
T0

aδ(s) ds
∀ t > T0. (2.41)

Hence, letting δ→ 0 in (2.41), we have

‖w‖2
H1 6 A e−B(t) → 0 as t→ +∞,

where

A :=
(
1 + ( |Ω|π )2)‖u0x‖2

2, B(t) :=
t∫

T0

a0(s) ds.

As a result, we obtain that

w(x, t)→ 0 strongly in H1(Ω) as t→ +∞.
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2.4 Qualitative behaviour of solutions

In this section, we will prove finite speed of support propagation and also find sufficient condi-

tions for a waiting phenomenon.

2.4.1 Local entropy estimate

Let us denote by

G̃δ(z) :=
z∫

A

v∫
A

sα ds dv
fδ(s)

> 0 : G̃′δ(z) =
z∫

A

vαdv
fδ(v)

6 0 ∀ z ∈ [0, A], G̃′′δ (z) =
zα

fδ(z)
∀ z ∈ R+.

Lemma 2.4.1. Let n ∈ (0, 2). Let be ζ ∈ C1,2
t,x (Q̄T) such that supp ζ ⊂ Ω, (ζ4)′ = 0 on ∂Ω. Assume that

− 1
2 < α < 1, and α 6= 0. Then there exist constants Ci (i = 1, 2) dependent on α and n, independent of

Ω, such that for all T > 0

∫
Ω

v
2(α−n+2)

α+2 ζ4(x, T) dx−
∫∫
QT

v
2(α−n+2)

α+2 (ζ4)t dxdt + C1

∫∫
QT

v2
xxζ4 dxdt−

∫∫
QT

S(x)v
2(α−n+1)

α+2 ζ4 dxdt 6
∫
Ω

v
2(α−n+2)

α+2
0 ζ4(x, 0) dx + C2

∫∫
QT

v2(ζ4
x + ζ2ζ2

xx) dxdt (2.42)

for any α ∈ (max{− 1
2 , n− 1}, 1), where v := u

α+2
2 .

Proof. Let u := uδ > 0. Multiplying (2.2) by G̃′δ(u)ϕ and integrating over Ω, we have

d
dt

∫
Ω

G̃δ(u)ϕ dx−
∫
Ω

G̃δ(u)ϕt dx +
∫
Ω

uαu2
xx ϕ dx− α(α−1)

3

∫
Ω

uα−2u4
x ϕ dx−

∫
Ω

S(x)G̃′δ(u)ϕ dx = α
6

∫
Ω

uα−1u3
x ϕx dx + 1

2

∫
Ω

uαu2
x ϕxx dx. (2.43)

Note that

α
6

∫
Ω

uα−1u3
x ϕx dx 6 ε1

∫
Ω

uα−2u4
x ϕ dx + C(ε1)

∫
Ω

uα+2 ϕ4
x

ϕ3 dx ∀ ε1 > 0,
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1
2

∫
Ω

uαu2
x ϕxx dx 6 ε2

∫
Ω

uα−2u4
x ϕ dx + C(ε2)

∫
Ω

uα+2 ϕ2
xx
ϕ dx ∀ ε2 > 0.

Using these estimates in (2.43), we obtain

d
dt

∫
Ω

G̃δ(u)ϕ dx−
∫
Ω

G̃δ(u)ϕt dx +
∫
Ω

uαu2
xx ϕ dx + ( α(1−α)

3 − ε1 − ε2)
∫
Ω

uα−2u4
x ϕ dx−

∫
Ω

S(x)G̃′δ(u)ϕ dx 6 C(ε1)
∫
Ω

uα+2 ϕ4
x

ϕ3 dx + C(ε2)
∫
Ω

uα+2 ϕ2
xx
ϕ dx. (2.44)

As

uαu2
xx = ( 2

α+2 )
2(u

α+2
2 )2

xx − αuα−1u2
xuxx − ( α

2 )
2uα−2u4

x

then

∫
Ω

uαu2
xx ϕ dx = ( 2

α+2 )
2
∫
Ω

(u
α+2

2 )2
xx ϕ dx− α

∫
Ω

uα−1u2
xuxx ϕ dx−

( α
2 )

2
∫
Ω

uα−2u4
x ϕ dx = ( 2

α+2 )
2
∫
Ω

(u
α+2

2 )2
xx ϕ dx + ( α(α−1)

3 − ( α
2 )

2)
∫
Ω

uα−2u4
x ϕ dx+

α
3

∫
Ω

uα−1u3
x ϕx dx > ( 2

α+2 )
2
∫
Ω

(u
α+2

2 )2
xx ϕ dx + ( α(α−4)

12 − ε)
∫
Ω

uα−2u4
x ϕ dx−

Cε(α)
∫
Ω

uα+2 ϕ4
x

ϕ3 dx. (2.45)

By (2.45), using in the case α ∈ [0, 4] \ {1} the following estimate

∫
Ω

uα−2u4
x ϕ dx 6 C(α)

∫
Ω

uα+2 ϕ4
x

ϕ3 dx + 9(1+ε0)
(α−1)2

∫
Ω

uαu2
xx ϕ dx ∀ ε0 ∈ (0, 1), (2.46)

we have

( 2
α+2 )

2(1 + 9(1+ε0)
(α−1)2 (

α(α−4)
12 )+)

−1
∫
Ω

(u
α+2

2 )2
xx ϕ dx− C(α)

∫
Ω

uα+2 ϕ4
x

ϕ3 dx 6
∫
Ω

uαu2
xx ϕ dx. (2.47)
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Using (2.47) in (2.44), we deduce that

d
dt

∫
Ω

G̃δ(u)ϕ dx−
∫
Ω

G̃δ(u)ϕt dx + C1

∫
Ω

(u
α+2

2 )2
xx ϕ dx−

∫
Ω

S(x)G̃′δ(u)ϕ dx 6

C2

∫
Ω

uα+2( ϕ4
x

ϕ3 +
ϕ2

xx
ϕ ) dx (2.48)

provided α ∈ (0, 1). If α 6 0 then, using (2.46) in (2.44), we get (2.48) provided

1− α(α−1)
3

9(1+ε0)
(α−1)2 = 1+α(2+3ε0)

1−α > 0⇒ α > − 1
2+3ε0

.

After integrating (2.48) in time, we have

∫
Ω

G̃δ(u)ϕ dx−
∫∫
QT

G̃δ(u)ϕt dxdt + C1

∫∫
QT

(u
α+2

2 )2
xx ϕ dxdt−

∫∫
QT

S(x)G̃′δ(u)ϕ dxdt 6

∫
Ω

G̃δ(u0)ϕ(x, 0) dx + C2

∫∫
QT

uα+2( ϕ4
x

ϕ3 +
ϕ2

xx
ϕ ) dxdt (2.49)

for any α ∈ (− 1
2 , 1). Taking ϕ(x, t) = ζ4(x, t) in (2.49) and letting δ→ 0, we obtain (2.42).

2.4.2 Finite speed of propagation

Let Ω = (−a, a). Assume that

supp u0 ⊆ Ω \ (−b, b), and supp S(x) ⊆ Ω \ (−b, b), b ∈ (0, a). (2.50)

Theorem 3. Let 1 < n < 2. Assume that 0 6 u0 ∈ H1(Ω) and 0 6 S(x) ∈ H1(Ω) satisfy (2.50).

Then the solution u of Theorem 1 has finite speed of propagation for all t > 0, i. e. there exists a continuous

function Γ(t), Γ(0) = b such that supp u(t, .) ⊂ Ω \ (−Γ(t), Γ(t)).

Proof. For an arbitrary s ∈ [0, a) and δ ∈ (0, s) we consider the families of sets

Ω(s) := {x ∈ Ω̄ : |x| 6 s}, QT(s) = (0, T)×Ω(s),

KT(s, δ) = QT(s) \QT(s− δ).
(2.51)
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We introduce a non-negative cut-off function η(τ) from the space C2(R1) with the following prop-

erties:

η(τ) =


1 if τ 6 0,

−τ3(6τ2 − 15τ + 10) + 1 if 0 < τ < 1,

0 if τ > 1.

(2.52)

Next we introduce our main cut-off functions ηs,δ(x) ∈ C2(Ω̄) such that 0 6 ηs,δ(x) 6 1 ∀ x ∈ Ω̄

and possess the following properties:

ηs,δ(x) = η
(
|x|−s+δ

δ

)
=


1 , x ∈ Ω(s− δ),

0 , x ∈ Ω \Ω(s),

|(ηs,δ)x| 6 15
8δ , |(ηs,δ)xx| 6 5(

√
3−1)
δ2

(2.53)

for all s ∈ [0, a) and δ ∈ (0, s). Taking into account

∫∫
QT(s)

S(x)v
2(α−n+1)

α+2 ζ4 dxdt 6 ε sup
t∈(0,T)

∫
Ω(s)

v
2(α−n+2)

α+2 ζ4 dxdt+

C(ε)Tα−n+2
∫

Ω(s)

Sα−n+2(x)ζ4 dx

and choosing ζ4(x, t) = ηs,δ(x)e−
t
T in (2.42), we arrive at

sup
t∈(0,T)

∫
Ω(s−δ)

v
2(α−n+2)

α+2 (t) dx + C
T

∫∫
QT(s−δ)

v
2(α−n+2)

α+2 dxdt + C1

∫∫
QT(s−δ)

v2
xx dxdt

6 e
∫

Ω(s)

v
2(α−n+2)

α+2
0 dx + C2

δ4

∫∫
KT(s,δ)

v2 dxdt + C3Tα−n+2
∫

Ω(s)

Sα−n+2(x) dx (2.54)

for all s ∈ [0, a) and δ ∈ (0, s), where α ∈ (n− 1, 1).
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By (2.50) from (2.54) we deduce that

∫
Ω(s−δ)

v
2(α−n+2)

α+2 (T) dx + C
T

∫∫
QT(s−δ)

v
2(α−n+2)

α+2 dxdt+

C1

∫∫
QT(s−δ)

v2
xx dxdt 6 RT(s) := C2

δ4

∫∫
QT(s)

v2 dxdt (2.55)

for all s ∈ [0, b], δ ∈ (0, s), and for any α ∈ (n− 1, 1).

We apply Lemma A.1 in the region Ω(s− δ) to a function v with a = d = j = 2, b1 = 2(α−n+2)
α+2 ,

k = 0, N = 1, and θ1 = n
4(α+2)−3n . Integrating the resulted inequality with respect to time and

taking into account (2.55), we arrive at the following relation:

AT(s− δ) 6 C T1−θ1
(

RT(s)
)1+κ1 + C T

(
RT(s)

)1+κ2 , (2.56)

where

AT(s) :=
∫∫

QT(s)

v2dxdt, κ1 = n(1−θ1)
α−n+2 = 4n

4(α+2)−3n , κ2 = n
α−n+2 .

By (2.56) we have

AT(s− δ) 6
C0 T1−θ1

δ4(1+κ1)
A1+κ1

T (s), (2.57)

where C0 is independent of T. Applying Lemma A.2 to (2.57), we deduce that

AT(s) ≡ 0 ∀ s 6 b− 2
1+κ1

κ1 (C0 T1−θ1)
1

4(1+κ1) A
κ1

4(1+κ1)

T (b).

As

AT(b) 6 AT(a) 6 C0 T1−θ1(‖u0‖α−n+2
α−n+2 + C3Tα−n+2‖S‖α−n+2

α−n+2)
1+κ1

then

AT(s) ≡ 0 ∀ s 6 Γ(T) := b− C̃0 T
1−θ1

4 (‖u0‖α−n+2
α−n+2 + C3Tα−n+2‖S‖α−n+2

α−n+2)
κ1
4 ,

whence

u(x, t) ≡ 0 ∀ (x, t) ∈ [−Γ(T), Γ(T)]×R+.
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Letting α→ n− 1, we get

Γopt(T) = b− C̃0 T
1

n+4 (‖u0‖1 + T‖S‖1)
n

n+4 .

Remark 2.4.1. Without the source term (for S(x) = 0) the exact exponent is 1
n+4 (for small time values

) and the exact exponent is 1 that corresponds to a travelling wave behaviour (for long time values). The

exact exponent 1
n+4 was previously obtained for self-similar solutions in [5]. We can also see that the source

term S(x) > 0 speeds up propagation of the interface to compare to the classical thin-film equation.

2.4.3 Waiting time phenomenon

Assume that

h0(s) :=
∫

Ω(s)

uα−n+2
0 (x)dx + C3Tα−n+2

∫
Ω(s)

Sα−n+2(x)dx 6 χ(s− R0)
σ−4 (2.58)

∀ s ∈ [R0, a], R0 ∈ (0, b], where

χ > 0 and σ > 4 + 4(α+2)−3n
n = 5 + 4(α−n+2)

n .

If u0, S ∈ C(Ω̄) then (2.58) can be reduced to

min
x∈Ω(s)

u0(x) + C3Tα−n+2 min
x∈Ω(s)

S(x) 6 χ0(s− R0)
σ0 ∀ s ∈ [R0, a], χ0 > 0, σ0 > 4

n . (2.59)

The exact exponent 4
n was previously obtained asymptotically for a thin-film equation without a

source in [8].

Theorem 4. Let 1 < n < 2. Assume that 0 6 u0 ∈ H1(Ω) and 0 6 S(x) ∈ H1(Ω) satisfy (2.50),

meas{Ω(s)∩ supp u0} = ∅ and meas{Ω(s)∩ supp S(x)} = ∅ for all s ∈ [0, b], and the flatness condition

(2.58) holds. Then there exists T∗ > 0, depending on R0 and χ, such that for the solution u of Theorem 3

holds the following

supp u(t, ·) ∩Ω(R0) = ∅ ∀ t > [0, T∗]. (2.60)

48



Proof. Choosing in (2.42) the test function ζ (up to some smooth approximation) in the following

form:

ζ(x, t) = (s− |x|)+ =


s− |x| if x ∈ Ω(s),

0 if x ∈ Ω \Ω(s),

we arrive at

∫
Ω(s)

(s− |x|)4v
2(α−n+2)

α+2 dx + C1

∫∫
QT(s)

(s− |x|)4v2
xx dxdt 6

∫
Ω(s)

(s− |x|)4v
2(α−n+2)

α+2
0 dx+

C2

∫∫
QT(s)

v2 dxdt + C3Tα−n+2
∫

Ω(s)

(s− |x|)4Sα−n+2(x)dx. (2.61)

As Ω(s− δ) ⊂ Ω(s) then s− |x| > δ⇔ |x| 6 s− δ, and from (2.61) we find that

δ4
∫

Ω(s−δ)

v
2(α−n+2)

α+2 dx + C1δ4
∫∫

QT(s−δ)

v2
xx dxdt 6

∫
Ω(s)

(s− |x|)4v
2(α−n+2)

α+2
0 dx+

C2

∫∫
QT(s)

v2 dxdt + C3Tα−n+2
∫

Ω(s)

(s− |x|)4Sα−n+2(x)dx, (2.62)

whence

∫
Ω(s−δ)

v
2(α−n+2)

α+2 dx + C1

∫∫
QT(s−δ)

v2
xx dxdt 6 C

δ4

( ∫
Ω(s)

(s− |x|)4v
2(α−n+2)

α+2
0 dx+

C3Tα−n+2
∫

Ω(s)

(s− |x|)4Sα−n+2dx +
∫∫

QT(s)

v2 dxdt
)

. (2.63)

Using (2.63), similar to (2.57) we find that

AT(s− δ) 6 C0 T1−θ1

δ4(1+κ1)

(
AT(s) +

∫
Ω(s)

(s− |x|)4v
2(α−n+2)

α+2
0 dx+

C3Tα−n+2
∫

Ω(s)

(s− |x|)4Sα−n+2dx
)1+κ1

(2.64)
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for all s ∈ [R0, a] and δ ∈ (0, s). Using the assumption (2.58), we have

∫
Ω(s)

(s− |x|)4v
2(α−n+2)

α+2
0 dx + C3Tα−n+2

∫
Ω(s)

(s− |x|)4Sα−n+2dx 6

(s− R0)
4
[ ∫
Ω(s)

v
2(α−n+2)

α+2
0 dx + C3Tα−n+2

∫
Ω(s)

Sα−n+2dx
]
6 χ (s− R0)

σ

for all s ∈ [R0, a], where

σ > 4(1+κ1)
κ1

= 4 + 4(α+2)−3n
n = 1 + 4(α+2)

n .

So, we get

AT(s− δ) 6 C0 T1−θ1

δ4(1+κ1)

(
AT(s) + χ(s− R0)

σ
)1+κ1

(2.65)

for all s ∈ [R0, a]. Applying Lemma A.3 to AT(s) satisfying (2.65), we obtain that AT(R0) = 0

provided

R4(1+κ1)
0 > C0 T1−θ12

4(1+κ1)
2

κ1 (1 + 2
4(1+κ1)

κ1
−σ

)1+κ1(AT(a) + χ(a− R0)
σ)κ1 .

As

AT(a) 6 C0 T1−θ1 h1+κ1
0 (a) 6 C0 T1−θ1 χ1+κ1(a− R0)

σ

then

R4(1+κ1)
0 > C0χκ1 T1−θ12

4(1+κ1)
2

κ1 (1 + 2
4(1+κ1)

κ1
−σ

)1+κ1(C0χκ1 T1−θ1 + 1)κ1(a− R0)
σκ1 .

As a result, u(x, t) = 0 for all (x, t) ∈ Ω(R0)× [0, T∗].

Remark 2.4.2. Note that even though the source term S(x) > 0 changes the speed of the support propaga-

tion to compare to the classical thin-film equation it does not influence the flatness condition for the waiting

time phenomenon to occur.

2.5 Numerical Simulations

In this section, we present numerical simulations to illustrate some of our main analytical re-

sults. All numerical computations below are done using a general PDE module in COMSOL

Multiphysics, i.e the finite-element method is used to obtain solutions. To set up the numerical
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simulations, we take n = 1.5 in the thin-film equation with a source:

ut + (unuxxx)x = S(x) (2.66)

with boundary conditions

ux = uxxx = 0 on ∂Ω× (0, T) (2.67)

on the domain Ω = (−L, L) with L = 10. Numerical time interval is taken as t ∈ [0, 2]. The initial

data correspond to a dry wall as u0 = 0 and the source function S(x) is defined as an H1-smooth

approximation of a step function:

S̃(x) =


1 if x ∈ (−10,−5) ∩ (5, 10)

0 otherwise
.
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Figure 2.1: Time-evolution of a numerical solution for the equation (2.66) with u0 = 0 and S(x) =
S̃(x).

From our numerical simulations presented in Figure 1 we can roughly estimate how the radius

of the support of a numerical solution changes with time (numerical spreading rate) and compare

it with Γ(t) upper bound that was derived in Theorem 3.
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Figure 2.2: Plots of the numerical support propagation versus the upper bound Γ(t).

Figure 2 on the top shows the radius of solution’s support over time t, in the middle one we

plot both the numerical radius of solution’s support and Γ(t) from the Theorem 3. The graph

shows that the size of the numerical support at any time t is bounded by Γ(t). Since the de-

rived bound is growing very fast in time it might not be clear that at smaller times the support is

bounded by Γ(t) as well. The zoomed for smaller times bottom plot provides a better view on the

time period near 0. This last plot shows a tighter upper bound as t values are getting closer to 0.

To illustrate another analytical result from Theorem 1 that ‖u − M
|Ω| − t S|Ω|‖H1(Ω) is bounded
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by some constant K0 we should replace the previously chosen initial value u0 = 0, that does not

satisfy a sufficient boundness condition from Theorem 1, with u0 = 1 ( we use the same source

function as above). We also reduce the size of the space domain to L = 5, then run simulations

until T = 250. The source function used in this simulation is

S̃(x) =


1 if x ∈ (−0.1, 0.1)

0 otherwise
.

Below are time snapshots for the numerical solution. From the numerical time-evolution of the
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Figure 2.3: Time evolution of the numerical solution for the equation (2.66) with u0 = 1.

solution presented in Figure 3 we can now calculate a numerical approximation for ‖u − M
|Ω| −

t S|Ω|‖H1(Ω) at each time step. Below is the graph obtained.

Figure 4 shows the plot of ‖u − M
|Ω| − t S|Ω|‖H1(Ω) and provides a numerical evidence that the

bound K0 does exist. From this plot we can clearly see a constant bound K0 = 4.0 since the value

of the norm reaches its maximum around t = 15.

Now we would like to illustrate a convergence result given in Theorem 2, i.e we want to show

that the solution in long run converges to M
|Ω| + tS0. We use S0 = 1 with u0 = 1 + cos( 4πx

L ) for

these numerical simulations. Figure 5 below presents time snapshots of the numerical solution.

Using the numerical results presented in Figure 5 we can calculate ||u− M
|Ω| − tS0||H1(Ω). Figure 6

shows the numerical convergence as t→ ∞.

53



Figure 2.4: Plot of ‖u− M|Ω| − t S|Ω|‖H1(Ω) over time t

Figure 2.6: Plot of ||u− M|Ω| − tS0||H1(Ω) versus time t.

We did not explore all possible ranges of the non-linearity exponent n but we believe that our

analytical and numerical finite speed propagation results could be extended to 2 < n < 3. Some

interesting future research can also be done by removing the positivity restriction on the source

term S(x). For the opposite sign-definite case S(x) < 0 (sink term) one can study a shrinkage of

the interface and the most complicated case to consider would be a sign indefinite S(x).
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Figure 2.5: Time snapshots of the numerical solution for the equation (2.66) with u0 = 1+ cos( 4πx
L )

and S0 = 1.

2.6 Appendix

Here we list several theorems and lemmas used in this chapter. The proof can be found in several

sources.

1. Stampacchia’s lemma: Let f ≥ 0 be nonincreasing in [x̄, ∞). Assume f satisfies, for some

C > 0, p > 0, γ > 1 :

(y− x)p f (y) ≤ C f (x)γ, for y ≥ x ≥ x̄

Then f (y) = 0 for y ≥ x̄ + d, where: dp = C f (0)γ−12
pγ

γ−1

Proof. We may assume x̄ = 0. Letting g = ( f / f (0))1/p and A =
(
C f (0)γ−1)1/p we find:

(y− x)g(y) ≤ Ag(x)γ for y > x, g(0) = 1

Fix y > 0, and let xn = y
(
1− 1

2n

)
, n ≥ 0, so xn ↑ y. Then g (x0) = 1 and:

g (xn+1) ≤
A
y

2n+1g (xn)
γ
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Inductively we find, for n ≥ 1 :

g (xn) ≤
(

A
y

)1+γ+...+γn−1

2Sn , Sn = n + (n− 1)γ + . . . + γn−1

It is an exercise to compute the sum:

Sn =
n−1

∑
j=0

(n− j)γj =
γn+1 + n− (n + 1)γ

(γ− 1)2 , n ≥ 1

Suppose y
A = 2

β
γ−1 . Then: (

A
y

) γn−1
γ−1

= 2
−β γn−1

(γ−1)2

while:

γn+1 + n− (n + 1)γ− β (γn − 1) = (γn − 1) (γ− β)− n(γ− 1)

This means that if we choose β = γ, we have, for the choice y = d = 2
γ

γ−1 A

0 ≤ g(d) ≤ g (xn) ≤ 2−
n

γ−1 , n ≥ 1

Letting n→ ∞, we see g(d) = 0, hence f (d) = 0, where dp = C f (0)γ−12
pγ

γ−1

2. Minkowski inequality: Assume 1 ≤ p ≤ ∞, and u, v ∈ Lp(U). Then

‖u + v‖Lp
≤ ‖u‖Lp

+ ‖v‖Lp

Proof:

First we show that u + v ∈ Lp,

∫
(u + v)pdx ≤

∫
(|u|+ |v|)pdx ≤

∫ 1
2
(2|u|)p +

1
2
(2|v|)pdx = 2p−1

∫
(|u|p + |v|p)dx ≤ ∞
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‖u + v‖p
Lp

=
∫
(u + v)pdx ≤

∫
(u + v)p−1(|u|+ |v|)dx

≤ (
∫
(u + v)pdx)

p−1
p ((

∫
|u|pdx)

1
p + (

∫
|v|pdx)

1
p )

= ‖u + v‖p−1
Lp

(‖u‖Lp
+ ‖v‖Lp

)

Rearrange we have

‖u + v‖Lp
≤ ‖u‖Lp

+ ‖v‖Lp
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Chapter 3

Dynamics of liquid films falling down a

vertical fiber

3.1 Introduction

Thin viscous liquid flows along vertical cylindrical fibers exhibit complex and unstable interfacial

dynamics with distinct regimes. Driven by the effects of Rayleigh-Plateau instability and gravity,

a wide range of dynamics can be observed experimentally. These include the formation of discon-

tinuous bead-like droplets, travelling wave-like patterns, and irregularly coalescing droplets. The

study of these dynamics has widespread applications in heat and mass exchangers, desalination

[55], and particle capturing systems [54], attracting much attention over the past two decades.

Depending on flow rate, liquid choice, fiber radius, and inlet geometry, three typical flow

regimes have been observed [36, 35]: (a) the convective instability regime, where bead coalescence

happens repeatedly; (b) the traveling wave regime, where a steady train of beads flow down the

fiber at a constant speed; and (c) the isolated droplet regime, where widely spaced large droplets

are separated by small wave patterns. If other system parameters are fixed, and flow rate is varied

from high to low, this can lead to flow regime transition from (a) to (b), and eventually to (c).

Further analysis of the travelling wave patterns in regime (b) is expected to provide insights into

many engineering applications that utilize steady trains of beads.

For small flow rates, classical lubrication theory is typically used to model the dynamics of
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axisymmetric flow on a cylinder. When the fluid film thickness is significantly smaller than the

cylinder radius, Frenkel [28] proposed a weakly nonlinear thin-film equation to calculate the evo-

lution of film thickness h (or the height of the film) and capture both stabilizing and destabilizing

effects of the surface tension in the dynamics. This evolution equation was further studied by

Kalliadasis & Chang [36], Chang & Demekhin [15], and Marzuola, Swygert & Taranets [41]. Cras-

ter & Matar [20] developed an asymptotic model which relaxes the thin film assumption, instead

requiring that the film thickness be smaller than the capillary length. In 2000, Kliakhandler [37]

extended the thin film model to consider thick layers of viscous fluid by introducing fully non-

linear curvature terms, leading to the following evolution equation for the film thickness h(x, t):

ht +
1

h+r0

[
σ−1Q(h)

( hxx
(1+h2

x)
3/2 − 1

(h+r0)(1+h2
x)

1/2

)
x + Q(h)

]
x
= 0, (3.1)

where σ > 0 is the Bond number (ratio of surface tension to gravity forces), r0 > 0 is the dimen-

sionless fiber radius, and the flow rate Q(h) takes the form

Q(h) = 1
16

[
4(h + r0)

4 log
( h+r0

r0

)
− h(3h3 + 12r0h2 + 14r2

0h + 4r3
0)
]
. (3.2)

The last Q(h) term in (3.1) corresponds to the draining flow due to gravity, while the terms hxx
(1+h2

x)
3/2

and 1
(h+r0)(1+h2

x)
1/2 describe the stabilizing and destabilizing roles of the surface tension due to axial

and azimuthal curvatures of the interface, respectively.

Recently in 2019, Ji et al. [34] investigated a family of full lubrication models that incorporate

slip boundary conditions, fully nonlinear curvature terms, and a film stabilization mechanism.

The film stabilization term,

Π(h) = − A
h3 , A > 0, (3.3)

is motivated by the form of disjoining pressure widely used in lubrication equations [50] to de-

scribe the wetting behavior of a liquid on a solid substrate, and the scaling parameter A > 0 is

typically selected based on a stable liquid layer in the coating film dynamics. Numerical investi-

gations of experimental results in [34] showed that compared to previous studies, the combined

physical effects better describe the propagation speed and the stability transition of the moving

droplets. For higher flow rates, coupled evolution equations of both the film thickness and local
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flow rate are developed [53, 52, 65]. These equations incorporate inertia effects and streamwise

viscous diffusion based on the integral boundary-layer approach. Recently, Ji et al. [35] further

extended a weighted-residual integral boundary-layer model to incorporate the film stabilization

mechanism to address the effects of the inlet nozzle geometry on the downstream flow dynamics.

In this work we derive a new model that can simulate many of the experimentally observed

regimes based only on an assumption of a plug flow velocity profile, which corresponds to high

Reynolds number turbulent flows in which due to lateral mixing, the velocity profile approaches

a uniform state. A thin boundary layer on the fiber surface imparts the viscous drag upon the

liquid film. We analyze linear and nonlinear stability of an initially uniform film on the fiber and

use scientific computing and simulations to study their long-term dynamics.

3.2 Model Derivation via Control Volume Analysis

In this section we derive our model for an axisymmetric liquid film flowing down an infinitely

long cylindrical fiber. The primary difference between the current model and earlier ones is that

we assume the velocity profile within the film represents a plug flow, being uniform within the

film cross section. Still, we account for a drag force exerted between the solid surface of the fiber

and the flowing film, proportional to the flow velocity, with a constant coefficient. Such a model

should be more appropriate for rapid, potentially turbulent flow at high Reynolds numbers, in

contrast to the case of highly viscous thin liquid films whose velocity profile is far from uniform

and which flow much more slowly. Before deriving the model, it helps to compare and contrast

these two cases in more detail, in the simpler situation when the flows are fully developed.

3.2.1 Fully-Developed Flow

Plug Flow

This case is simple to analyze. Consider a cylindrical fiber of radius R and a liquid film whose

interface is at distance H from the fiber axis, resulting in a liquid film of thickness H− R. Suppose

that the fluid is falling down the fiber under the influence of gravity at uniform speed U. At

steady state (terminal draining velocity), the weight of any portion of the liquid between two
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axial locations is balanced by the drag force exerted by the solid surface of the fiber on the liquid.

The weight of the liquid between two axial locations x1 and x2, with ∆x = x2 − x1, is given by

ρgπ(H2− R2)∆x. If the shear stress at the fiber surface is denoted by τrx, the drag force exerted on

that portion of liquid would be 2πRτrx∆x. From a dimensional reasoning, the form of the shear

stress could be assumed to be

τrx =
µU
`

,

in which parameter ` is some quantity with units of length. It could be thought of as some measure

of an extremely thin boundary layer thickness that might be separating the plug flow region with

velocity U from the fiber surface on which a no-slip boundary condition would exist. Of course,

we ignore the boundary layer region when assuming plug flow, but still account for the drag force

that the fiber exerts on the liquid. By balancing the weight of the liquid with the drag force, we

can obtain a relationship between the flow speed U and the film thickness H. The result is

U =
ρgR`

2µ
(h2 − 1) ,

in which h = H/R is the ratio of liquid film radius to the fiber radius. If we assume parameter ` to

be constant, the velocity scale can be chosen to be Uo = ρgR`/2µ and the dimensionless draining

velocity u = U/Uo would be given by u = f (h) = h2 − 1. We will compare this quadratic

expression for the draining velocity as a function of h with the result for fully developed viscous

flow obtained below. We will find that this function f (h) increases much more rapidly with h as

compared to the situation with viscous laminar flow.

Viscous Laminar Flow

For the case of fully-developed laminar flow down the fiber, the velocity profile u(r) can be ob-

tained by integrating the axial component of the Navier-Stokes equation which reads

µ

r
d
dr

(r
du
dr

) + ρg = 0 .
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The boundary conditions are that u(R) = 0 (no slip on the fiber surface) and u′(H) = 0 (zero shear

stress at the free surface). The resulting velocity profile is given by

u(r) =
ρgR2

4µ

[
1− (

r
R
)2 + 2(

H
R
)2 ln(

r
R
)

]
.

The mean velocity U can be calculated using the definition

U =

∫ H
R ru(r)dr∫ H

R rdr

resulting in

U =
2ρgR2

µ

I(h)
(h2 − 1)

with h = H/R and

I(h) =
1
16

(
4h4 ln(h)− 3h4 + 4h2 − 1

)
.

The shear stress on the fiber surface τrx = µu′(R) can be expressed as before in the form

τrx =
µU
`(h)

but with length parameter ` now depending on h and given by

`(h)
R

=
4I(h)

(h2 − 1)2 .

As such, the main difference between the plug flow model and the viscous laminar flow one is

that in the former, ` is treated as a constant, whereas in the latter, it depends on the film thickness.

With the proportionality constant between the shear stress and the mean velocity being dependent

on h, the functional form of the dependence of the mean draining velocity versus film thickness

is quite different. In particular, the dimensionless mean velocity, now scaled with velocity scale

U1 = 2ρgR2/µ, would be given by

u(h) =
U
U1

=
I(h)

h2 − 1
= f1(h) ,
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Figure 3.1: Flux function comparison

which can be compared to the result for plug flow, which was u(h) = f (h) = h2 − 1. Figure

3.1 shows simultaneous plots of the two functions f (h) and f1(h) for h ranging from 1 (which

corresponds to a film thickness of zero) to 1.5. As apparent in the figure, for the plug flow case,

the mean velocity increases with film thickness much more than it would in the case of viscous

laminar flow. This difference makes a large difference in the behavior of the falling film when it is

not fully developed and uniform.

3.2.2 Control Volume Analysis

In order to derive the equations of motion for a falling film in which the film thickness varies

with axial distance and time, i.e., H = H(x, t), we use a control volume approach as depicted in

Figure 3.2. We assume the velocity in the film to remain as plug flow, but allow the latter to vary

with axial location and time as well: U = U(x, t). We consider a control volume consisting of the

portion of the fluid between two axial locations x and x + ∆x, as shown in the figure. Denote the

cross-sectional area of the fluid at any axial position and time x by A(x, t) = π(H2(x, t)− R2).

The integral form of the conservation of mass in the region between x and x + ∆x reads

d
dt

∫ x+∆x

x
ρA(x, t)dx = ρAU|x − ρAU|x+∆x ,
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Figure 3.2: Schematic plot of the film on fiber

equating the rate of change of mass to the rate at which mass enters the control volume at position

x minus the rate at which it leaves at position x + ∆x. The left-hand side of this equation can be

written as ∫ x+∆x

x
ρ

∂A
∂t

(x, t)dx = ρ
∂A
∂t

(ξ, t)∆x ,

where ξ is somewhere in the interval [x, x + ∆x]. Dividing both sides of the equation by ∆x and

taking the limit ∆x → 0 results in the equation

∂A
∂t

+
∂(UA)

∂x
= 0 ,

for conservation of volume as expected. Since A(x, t) = π(H2(x, t) − R2), we can rewrite this

equation as

2H
∂H
∂t

+
∂(U(H2 − R2))

∂x
= 0 .

Moving on to the conservation of linear momentum equation in the axial direction, one can

similarly equate the rate of change of total linear momentum in the control volume to the net rate

at which momentum flows into the control volume plus the sum of the forces in the axial direction
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acting on the fluid in that volume. This equation takes the form

ρ∆x
∂

∂t
(AU)|ξ =ρ(AU2)|x − ρ(AU2)|x+∆x + ρg∆xA|ξ ′

+ (pA)|x − (pA)|x+∆x + (Aτxx)|x+∆x − (Aτxx)|x

− 2πR∆x τrx|ξ ′′ + 2πσ(H cos(θ))|x+∆x − 2πσ(H cos(θ))|x .

The terms on the right-hand side of this equation have the following physical interpretations: The

first two terms provide the net rate at which momentum enters the control volume across the two

boundaries, the next term is the weight of the volume of fluid in the control volume, the next

two capture the contribution from the pressure force acting on the two cross-sections, followed

by the two terms that account for any viscous normal stress at those same cross-sections, the next

term is the drag force exerted on the fluid by the solid surface of the fiber, and finally, the last two

terms capture the effect of surface tension acting on the perimeter of the free surface (since surface

tension is tangent to the interface, to project it onto the axial direction, we need the cosine of the

angle that the tangent vector makes with the axial direction in those terms). Upon dividing this

equation by ∆x and taking the limit ∆x → 0, we get the differential equation

ρ
∂(AU)

∂t
+ ρ

∂(AU2)

∂x
= ρgA− ∂(pA)

∂x
+

∂(τxx A)

∂x
− 2πRτrx + 2πσ

∂(H cos θ)

∂x
.

Using the conservation of volume equation, the left-hand side of the last equation can be simplified

to ρA(∂U/∂t + U∂U/∂x). Also, we substitute µU/` for the shear stress τrx and 2µ∂U/∂x for the

normal viscous stress τxx. Upon dividing the entire equation by the cross-sectional area A(x, t) we

thus obtain

ρ(
∂U
∂t

+ U
∂U
∂x

) +
1
A

∂(pA)

∂x
= ρg +

2µ

A
∂

∂x
(A

∂U
∂x

)− 2πµRU
`A

+
2πσ

A
∂(H cos θ)

∂x
.

In this equation, the cross-sectional area is given by A(x, t) = π(H2(x, t)− R2), and since tan(θ) =

∂H/∂x (the slope of the free surface), the cosine of that angle is given by cos(θ) = 1/
√

1 + H2
x in

which subscript refers to a partial derivative. The pressure within the film, p(x, t), is taken to be

uniform in the cross section and related by the Young-Lapalce equation to the curvature of the free
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surface, namely p(x, t) = σκ(x, t), in which σ is the surface tension and the curvature κ is given

by

κ(x, t) =
(1 + H2

x − HHxx)

H(1 + H2
x)

3/2 ,

with subscripts referring to partial derivatives. Note that ordinarily the pressure in the fluid would

be written as p = po + σκ in which po is the constant pressure in the air outside the interface.

However, in calculating the force on the control volume, the contribution of the force due to po

acting all around the control volume (including on the curved free surface) integrates to zero, so

that constant part of the pressure is omitted.

The pressure term in the momentum equation can be written as a sum of two terms:

1
A

∂(pA)

∂x
=

∂p
∂x

+ σκ
1
A

∂A
∂x

.

Interestingly, the second term on the right-hand side is exactly equal to the surface tension term

on the right-hand side of the momentum equation, namely the term

2πσ

A
∂(H cos θ)

∂x
,

so those two terms cancel each other leaving simply ∂p/∂x on the left-hand side of the momentum

equation. The above cancellation is a consequence of a relationship that appears to be purely

geometrical, involving the curvature κ and the rates of change of area and the perimeter multiplied

by the cosine factor, namely: κ∂A/∂x = 2π∂(H/
√

1 + H2
x)/∂x in which cos θ = (1 + H2

x)
−1/2.

After this simplification, the momentum equation further divided by density ρ becomes

∂U
∂t

+
∂

∂x

(
1
2

U2 + σκ

)
= g− 2πνRU

`A
+

2ν

A
∂

∂x
(A

∂U
∂x

) .

Here ν = µ/ρ is the kinematic viscosity of the fluid. Since A = π(H2 − R2) = πR2(h2 − 1) =

πR2 f (h), upon choosing the velocity scale Uo = gR`/2ν and defining the dimensionless velocity

u = U/U0, and upon scaling time with Uo/g, i.e., with t̂ = gt/Uo, the first term on the left-hand

side and the first two terms on the right-hand side would yield a dimensionless equation of the
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form
∂u
∂t̂

= 1− u
f (h)

.

Such an equation would hold if all x-derivatives were absent. It would suggest that for a given

dimensionless film thickness h, the velocity of the film would relax exponentially in time to its

terminal velocity f (h) = h2 − 1 with a relaxation time of order one in terms of the dimensionless

time t̂.

Carrying the scaling further by nondimensionalizing the axial distance x and curvature κ with

the fiber radius R so that x̂ = x/R and κ̂ = Rκ, we obtain the fully nondimensional form of the

axial momentum equation which, upon dropping the hats for clarity, reads

ut + (au2/2 + bκ)x = [1− u/ f (h)] + c(h2 − 1)−1[(h2 − 1)ux]x ,

in which subscripts represent partial derivatives. The dimensionless curvature appearing in this

equation is given by

κ =
(1 + h2

x − hhxx)

h(1 + h2
x)

3/2 .

Three dimensionless parameters, called a, b and c, also appear in this equation, given respectively

by:

a =
U2

o
Rg

, b =
σo

ρR2g
, c =

2νUo

R2g
.

Using the definition of velocity scale Uo, parameters a and c can also be expressed as

a =
gR`2

4ν2 , c =
`

R
.

In its original form, parameter a is seen to be the square of the Froude number and parameter b is

the reciprocal of the Bond or Eotvos number. Parameter c is the ratio of the characteristic boundary

layer thickness to the fiber radius.

Using the same scaling, the dimensionless form of the conservation of volume equation takes

the form:

2hht + a[u(h2 − 1)]x = 0 .
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To sum up, we have the system of PDE with respect to u(x, t) and h(x, t)


ut + (au2/2 + bκ)x = [1− u/ f (h)] + c(h2 − 1)−1[(h2 − 1)ux]x

2hht + a[u(h2 − 1)]x = 0
(3.4)

where

κ =
(1 + h2

x − hhxx)

h(1 + h2
x)

3/2 , f (h) = h2 − 1, a, b, c > 0

for x ∈ Ω = [0, L] and t ∈ [0, T] with a periodic boundary condition. Parameter a, b, c is the

coefficients of the inertia, surface tension and viscous drag terms correspondingly.

3.3 Linear Stability Analysis

In this section, we conduct a linear stability analysis about constant solutions of the system in 3.4.

Note that any constant h0 and u0 that satisfy u0 = f (h0) is a solution of the system. We define the

perturbed solution in the form below,

h(x, t) = h0 + εh1(x, t) + O(ε2) (3.5)

u(x, t) = u0 + εu1(x, t) + O(ε2) (3.6)

and h0 and u0 are constants satisfying u0 = f (h0). Small parameter ε is introduced for bookkeep-

ing purposes. We derive a linearized system for the leading perturbations as

∂u1

∂t
+

∂

∂x
[au0u1 − b(

h1

h2
0
+

∂2h1

∂x2 )] =(
h1 f ′(h0)

f (h0)
− u1

f (h0)
) + c

∂2u1

∂x2

∂h1

∂t
+

∂

∂x
[u0h1 +

1
2

u1(h0 −
1
h0

)] = 0

Using the following form of h1, u1 defined,

h1 = <{Heikx+σt} (3.7)

u1 = <{Ueikx+σt} (3.8)
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Figure 3.3: Plots of Re(σ1) and Re(σ2) against the wave number k under the constant solution
h0 = 1.1, u0 = f (h0) with parameter a = 1, b = 0.01, c = 0.1. while Re(σ2) stays negative for all k,
σ1 has a positive real part for small k.

we obtain the linear system

 i(2aku0) + 2σ ika(h0 − 1
h0
)

i(− kb
h2

0
+ bk3)− f ′(h0)

f (h0)
i(aku0) + σ + ck2 + 1

f (h0)


H

U

 = 0

To have a non-trivial solution of the system for H and U, the determinant of the coefficient matrix

needs to be zero. This provides a quadratic equation for the growth rate σ, and we can solve for

σ given k, h0, u0. Figure 3.3 shows the relationship between wave number k and the real part of

σ. If that real part is positive, those particular waves grow and the system is unstable. In the

figure, σ1, σ2 represent the two roots that are obtained numerically. The results show that constant

solutions are unstable to long waves or small wavenumbers.

The stability result can be checked against simulations. We did a comparison between two sim-

ulations, one using the full nonlinear model and the other being the linearized one to see the effects

of nonlinearity on the film thickness evolution. In the simulation, we have h0 = 1.1+ 0.001 sin(kx)

and the domain is set as L = 2π
k . Here we set k = 3.05, the most unstable wavenumber for h0 = 1.1.

The results show the rate of increase of the maximum film height is slower in the original nonlin-

ear models as compared with the linearized model. From figure 3.4b we see that after we take the

logarithm of the maximum film thickness over domain, the linear model follows an exponential
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(a) (b)

Figure 3.4: Plots of maxx∈Ω(h(x, t)) and log(maxx∈Ω(h(x, t))) over time.

growth rate while the nonlinear model slowly deviate from the exponential growth at later times.

The linearized model follows an exponential growth rate, we estimate the slope for log(h− h0)

as the growth rate. The estimated growth rate is σ ≈ 0.044.

3.4 Short-time and Long-time Dynamics

In this section, we discuss about the long-time dynamics of the system of equations. The simula-

tion displayed in this part is done in the domain Ω = [0, 5]. The initial value is set as a perturbation

consisting of multiple sine waves: here we use h(x, 0) = 1.1 + ε ∑3
n=1 sin( 2nπx

5 ). We separate the

simulation into two phases. The early phase from t = 0 to around t = 500 shows an instability

developing at the beginning and forming two major waves with different heights, and we can see

the maximum wave height of the two increasing over time and then dropping back to some fix

height. For t larger than 1000, we can see that the solution reaches a steady state which contains

two equal height traveling wave, and the maximum height is not changing over time. A snapshot

of solutions at the early phase and the steady phase is displayed in Figure 3.7. The maximum

height of fluid over time could better illustrate the dynamics of the two phases and the transition

between them, we display the result in Figure 3.8.

To see how our model with plug flow differs from the laminar viscous case, We change the

expression for the flux function from f (h) = h2 − 1 to f (h) = (h − 1)2, which more closely ap-

proximates the laminar flow profile. In the future, an interpolation between these two functions
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Figure 3.5: Film thickness h(x, t) for model with f (h) = (h− 1)2 at various time step t.

for small and large h might capture the transition between the two regimes better. This new flux

function leads to different dynamics as those two functions behave differently when h is close to

1. A comparison for those two functions near point h = 1 is shown in Figure 3.1

The simulation of the model using f (h) = (h− 1)2 is displayed in Figure 3.5. We can see the

growth of wave height is almost unnoticeable compare to the f (h) = h2 − 1 case. The stability

analysis shows a long wave instability like before but with a very small real part with magnitude

close to 10−6, indicating a much slower growth rate. The stability analysis result is visualized in

Figure 3.6

3.5 Additional Simulations

In this section, we include several additional simulations carried out for the full model and the

linearized model with different parameters. First we plot the simulation results for the linearized

model and compared the maximum film height over time with the nonlinear model to see the

effect of the nonlinear terms.

Figures 3.9 and 3.10 show the simulation for h0 = 1.1 + 0.001 sin(kx) with k = 3.05 for the

system of equation and the linearized around h0 = 1.1 model.

We also show a simulation with an initial condition which is a Gaussian shape located at x = 1

71



Figure 3.6: Plots of Re(σ1) against the wave number k under the constant solution h0 = 1.1, u0 =
f (h0) with parameter a = 1, b = 0.01, c = 0.1 and f (h) = (h− 1)2.

Figure 3.7: Left Plot shows the film thickness h(x, t) over domain x at t = 0, 100, · · · , 500 and the
right plot shows the long time dynamics of the solution at t = 8000, 9000, 10000
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Figure 3.8: Plots of the max film thickness h(x, t) over domain x over time.

Figure 3.9: Plots of the solution h(x, t) of the linearized system over domain x over time step 70 to
100
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Figure 3.10: Plots of solution h(x, t) over domain x over time step 70 to 100.

with a standard deviation of 0.5. The result shows that the initial Gaussian shape wave will form

multiple waves that propagate at different speeds. The Wave height keeps increasing during the

simulation. The film profile at different time steps are shown in Figure 3.11

Another type of simulation is shown in Figure 3.12. This case uses Dirichlet boundary condi-

tions at the left and right ends, namely hl = 1.1 and hr = 1.05. We use a smoothed step function

s(x) built to smoothly connect hl and hr as the initial condition for h and the initial condition for u

is set to s(x)2− 1. The simulation generates a similar pattern for the case with the Gaussian initial

conditions.

Simulations under different initial conditions form similar shape film profiles at long times.

The wave profile shown in Figure 3.13 is extracted from a simulation run to t = 3000 with an

initial condition set as h0 = 1.1 + 0.1g(x), where g(x) is a Gaussian function with µ = 5 and

σ = 0.5.

3.6 Discussion

While most of the models describing films on a fiber assume laminar viscous flows, the model we

derived here is primarily applicable under the assumption that the flows around the vertical fiber

is a well-mixed turbulent flow with a plug-flow profile. To see whether this is physically feasible,
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Figure 3.11: Plots of solution h(x, t) over domain x over time step 0, 50, · · · , 150.

Figure 3.12: Plots of solution h(x, t) over domain x over time step 0, 50, · · · , 200.
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Figure 3.13: Plots of a droplet profile extracted from a solution at t = 3000.

assume that the fiber radius R is 2 mm and the film thickness T = H − R is about the same size

as the fiber radius. We can approximate the corresponding Reynolds number for the steady state

flow of this type. The mean wall shear stress τ is expressed in terms of the Darcy–Weisbach friction

factor fD and average fluid velocity U as

τ =
1
8

fD ρU2

The force balance between the drag force from the wall and gravity gives us

2πRτ = ρgπ((R + T)2 − R2)

which can be solved to obtain τ = 78.4 Pa (we take the density of water to be ρ = 1000 kg/m3

and its viscosity to be µ = 0.001 kg/(m s)). The Colebrook–White correlation for a smooth surface

relates the friction factor to the Reynolds number by

1√
fD

= −2 log(
2.51

Re
√

fD
)
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We substitute the expression for fD in terms of τ and U, and Re = ρUT
µ and obtain a transcendental

equation for U, whose solution yields the mean velocity and corresponding Reynolds number as

U = 11.31m/s, Re = 45240 .

The result shows that under some practical assumptions, the film flow on fiber could be in a

turbulent regime. Under the assumptions above, the parameters a, b, c in our model would have

values

a ≈ 102, b ≈ 1.84, c ≈ 0.072 .

Exploration of such turbulent regimes and their experimental investigations are left for future

researchers.

3.7 Appendix

3.7.1 Derive the Film on Fiber Model Using Depth Averaging Method

In cylindrical coordinates, we have the divergence as

∇ · u =
∂uz

∂z
+

1
r

∂(rur)

∂r
+

1
r

∂uθ

∂θ

Hence, the continuity equation for imcompressible fluid ∇ · ~u = 0 becomes

∂uz

∂z
+

1
r

∂(rur)

∂r
+

1
r

∂uθ

∂θ
= 0

For axisymmetric flow, we have ∂uθ
∂θ = 0, then,

∂uz

∂z
+

1
r

∂(rur)

∂r
= 0

Introduce dimensionless variables as

uz = Uzũz, r = Rr̃, ur = Urũr, z = Zz̃
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We have
Uz

Z
∂uz

∂z
+

Ur

R
1
r

∂(rur)

∂r
= 0

Since continuity equation need to balance exact, we have

Uz

Z
∼ Ur

R

Now from the z-component of Navier-Stokes equation, we have

ρ(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
) = −∂p

∂z
+ µ[

1
r

∂

∂r
(r

∂uz

∂r
) +

∂2uz

∂z2 ] + ρgz

The scales for each term is

ρ
Uz

T
, ρ

UrUz

R
, ρ

U2
z

Z
,

P
Z

,
µUz

R2 ,
µUz

Z2 , ρg

Here if we make assumptions that R
Z � 1, then uUz

Z2 terms will be dominated by uUz
R2 . Selecting

scale for T and P as below, we have,

T =
Z
Uz

, P =
µUzZ

R2

Since we want to keep the effect of gravity, then the scale for Uz is determined as

µUz

R2 = ρg→ Uz =
ρgR2

µ

Now the LHS scale is

LHSscale = ρ
U2

z
Z

, RHSscale =
µUz

R2

So we have
LHSscale

RHSscale
=

ρUzZ
µ

ε2 = ε2ReZ

Let α := ε2ReZ, we have the equation becomes

α(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
) = −∂p

∂z
+

1
r

∂

∂r
(r

∂uz

∂r
) + 1
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From the r-component of Navier-Stokes equation, we have,

ρ(
∂ur

∂t
+ ur

∂ur

∂r
−

u2
θ

r
+ uz

∂ur

∂z
) = −∂p

∂r
+ µ[

∂

∂r
(

1
r

∂

∂r
(rur)) +

∂2ur

∂z2 ]

Since Ur =
R
Z Uz = εUz, then ∂p

∂r terms scale would be

P
R

=
PZ
RZ

=
P

Zε

And all terms on the LHS would be ε times the scale smaller than scale of P
Z , the second terms on

the right would dominate the third terms, and its scale is

µ
Uz

ZR
= µ

Uz

R2 ε

Hence, from the assumptions we used when nondimensionlize z-component of NS, we have, the

terms except pressures on r-component NS can be ignored. Hence, we have

∂p
∂r

= 0

In summary, we have

α(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
) = −∂p

∂z
+

1
r

∂

∂r
(r

∂uz

∂r
) + 1 (3.9)

∂uz

∂z
+

1
r

∂(rur)

∂r
= 0 (3.10)

∂p
∂r

= 0 (3.11)

where α := ε2ReZ.

Now we need to determine the pressure term p, consider the normal stress balance on liquid-air

interface, we have

~n · [πair − πliquid] ·~n = σ(
1

R1
+

1
R2

)

where R1, R2 are the principal radii of curvature and πair, πliquid is stress tensor corespondingly. Let

h(z, t) denote the fluid locations (fluid thickness plus fiber raduis R), From normal stress balance,
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we have
2µ

1 + ( ∂h
∂z )

2
[
∂h
∂z

(
∂uz

∂r
+

∂ur

∂z
)− ∂ur

∂r
− ∂uz

∂z
(

∂h
∂z

)2] + p =
−σ ∂2h

∂z2

(1 + ( ∂h
∂z )

2)
3
2

Let film thickness has characteristic height H, then h = (H + R)h̃, assume that H
Z � 1 we have the

scale for each terms are

µ
Uz

Z
R + H

R
, µ

Uz

Z
R(R + H)

Z2 , µ
Ur

R
=

µUz

z
,

µUz(R + H)2

Z3 =
µUz

z
(

H + R
Z

)2, P,
σ(R + H)

Z2

Now if we assume film thickness and fiber radius is about the same scale, then R = H, scales

above simplified to

µ
Uz

Z
, µ

Uz

Z
R2

Z2 , µ
Ur

R
=

µUz

z
,

µUz(R + H)2

Z3 =
µUz

z
(

R
Z
)2, P,

σR
Z2

From previous steps we have determined the pressure scale as

µUzZ
R2 =

µUz

Z
Z2

R2 =
µUz

Z
1
ε2

Hence, all terms on the left except pressure can be ignored, we arrive at

p = −σ(−1
h
+

∂2h
∂z2 )

Introduce parameter σ = βσ̂, This require

µUz

Z
1
ε2 = 2

βσR
Z2 =

βσ

Z
ε→ µUz

σ
= βε3

Plug this into the set of equations, we have

α(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
) = β(

1
h2

∂h
∂z

+
∂3h
∂z3 ) +

1
r

∂

∂r
(r

∂uz

∂r
) + 1 (3.12)

∂uz

∂z
+

1
r

∂(rur)

∂r
= 0 (3.13)

where α := ε2ReZ, β = µUz
σε3 = CaZ

ε3 .
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Now consider fiber radius r0 = R, under the scale R, we have r0 = 1, and let

〈uz〉 :=
∫ h

r0

uzrdr =
∫ h

r0

uzrdr

Integrate over continuity equation by
∫ h

r0
uzrdr, we have,

∂

∂z

∫ h

r0

uzrdr− (uzr)|h
∂h
∂z

+
∫ h

r0

∂(rur)

∂r
dr = 0

using new variables 〈uz〉 and kinematic BC: ur|h = ∂h
∂t +

∂h
∂z uz|h, we have

∂〈uz〉
∂z

+ h
∂h
∂t

= 0

Now integrate over NS equations, we have

∫ h

r0

α(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
)dr =

∫ h

r0

∂3h
∂z3 +

1
r

∂

∂r
(r

∂uz

∂r
) + 1dr

First term on the left, we have

∫ h

r0

α
∂uz

∂t
rdr = α(

d
dt

∫ h

r0

uzrdr− huz|h
∂h
∂t

) = α
∂〈uz〉

∂t
− αhuz|h

∂h
∂t

Second terms ∫ h

r0

αur
∂uz

∂r
rdr = αhuz|h(

∂h
∂t

+
∂h
∂z

uz|h) +
α

2

∫ h

r0

∂u2
z

∂z
rdr

Third terms ∫ h

r0

αuz
∂uz

∂z
rdr =

α

2

∫ h

r0

∂u2
z

∂z
rdr

To sum up the LHS, we have,

α(
∂〈uz〉

∂t
+ h(uz|h)2 ∂h

∂z
+
∫ h

r0

∂u2
z

∂z
rdr) = α(

∂〈u〉
∂t

+ h(uz|h)2 ∂h
∂z

+
∂〈u2

z〉
∂z
− h

∂h
∂z

u2
z |h) = α(

∂〈u〉
∂t

+
∂〈u2

z〉
∂z

)

Now we deal with terms on the RHS, first term,

∫ h

r0

∂3h
∂z3 rdr =

β

2
(

1
h2

∂h
∂z

+
∂3h
∂z3 )(h

2 − r2
0)
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Second term, ∫ h

r0

∂

∂r
(r

∂uz

∂r
)dr = −r0

∂uz

∂r
|r0

Third term, ∫ h

r0

rdr =
1
2
(h2 − r2

0)

To sum up the RHS, we have,

β

2
(

1
h2

∂h
∂z

+
∂3h
∂z3 )(h

2 − r2
0)− r0

∂uz

∂r
|r0 +

1
2
(h2 − r2

0)

Hence, the equation becomes

α(
∂〈uz〉

∂t
+

∂〈u2
z〉

∂z
) =

β

2
(

1
h2

∂h
∂z

+
∂3h
∂z3 )(h

2 − r2
0)− r0

∂uz

∂r
|r0 +

1
2
(h2 − r2

0) (3.14)

∂〈uz〉
∂z

+ h
∂h
∂t

= 0 (3.15)

The part remain unknown is

u2
z |h, uz|h

∂uz

∂r
|r0 , 〈u2

z〉

We derive an approximated expression for those terms from a fully developed flow model.

3.7.2 Fully developed flow on fiber

For fully developed flow, we have,

ur = 0, uθ = 0,
∂uz

∂t
= 0

Then continuity and NS equation reduce to

∂uz

∂z
= 0

−1 =
1
r

∂

∂r
(r

∂uz

∂r
)

Rearrange we have,
∂

∂r
(r

∂uz

∂r
) = −r

82



Integrate with respect to r twice, we have,

uz = −
1
4

r2 + C1 log r + C2

Since we have uz = 0 at r = r0, and duz
dr = 0 at r = h(z, t), plug in, we get

C1 =
h2

2
, C2 =

1
4

r2
0 −

h2

2
log r0

Under the proper scale, we also have r0 = 1, hence, we have,

C1 =
h2

2
, C2 =

1
4

Calculate flux 〈uz〉, we have

〈uz〉 =
1

16

(
4h4 log (h)− 3h4 + 4h2 − 1

)

expressing uz in terms of 〈uz〉, we have,

uz = 〈uz〉
8h2 log(r)− 4r2 + 4

4h4 log h− 3h4 + 4h2 − 1
= f1(r, h)〈uz〉

From this, we have

uz|h = f1(h, h)〈uz〉

u2
z |h = f 2

1 (h, h)〈uz〉2

∂uz

∂r
|r0 =

∂ f1(r0, h)
∂r

〈uz〉

〈u2
z〉 = 〈 f 2

1 (r, h)〉〈uz〉2 = f2(h)〈uz〉2

f2(h) = 〈 f 2
1 (r, h)〉, we leverage on symbolic calculations for the long expressions of f1 and f2.

Since r0 = 1, both f1, f2 can be simplified to

f1(r, h) =
4
(
2h2 log (r)− r2 + 1

)
4h4 log (h)− 3h4 + 4h2 − 1
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f2(h) =
4
(

24h6 log2 (h)− 36h6 log (h) + 17h6 + 24h4 log (h)− 30h4 + 15h2 − 2
)

3
(

16h8 log2 (h)− 24h8 log (h) + 9h8 + 32h6 log (h)− 24h6 − 8h4 log (h) + 22h4 − 8h2 + 1
)

Now we plug those expression into our original equations, we have

α(
∂〈uz〉

∂t
+

∂( f2(h)〈uz〉2)
∂z

) =
β

2
(

1
h2

∂h
∂z

+
∂3h
∂z3 )(h

2 − r2
0)− r0

∂ f1(r0, h)
∂r

〈uz〉+
1
2
(h2 − r2

0) (3.16)

∂〈uz〉
∂z

+ h
∂h
∂t

= 0 (3.17)

where f1 and f2 has the expression we derived above.

3.7.3 COMSOL settings for long time simulation of droplets on fiber model

Here we attach the screenshots to show the COMSOL model inputs and settings.
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Figure 3.14: COMSOL model equation
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Figure 3.15: COMSOL model boundary conditions
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Figure 3.16: COMSOL model initial conditions
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Figure 3.17: COMSOL model mesh setting
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Figure 3.18: COMSOL model parameters
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Figure 3.19: COMSOL model time dependent solver seeting
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Chapter 4

Conclusions

In the first chapter of this thesis, we examined the dynamics of a thin film formed by a distributed

liquid source on a vertical solid wall. The model was derived using the lubrication approximation

and includes the effects of gravity, upward airflow and surface tension. When surface tension is

neglected, a critical source strength is found below which the film flows entirely upward due to

the airflow, and above which some of the flow is carried downward by gravity. In both cases, a

steady state is established over the region where the finite source is located. Shock waves that

propagate in both directions away from the source region are analysed. Numerical simulations

are included to validate the analytical results. For models including surface tension, numerical

simulations are carried out and the effects of surface tension is highlighted.

We then present several analytical results in chapter two for the thin film equation with source

including existence of weak solutions, long-time behavior of solutions for the constant initial con-

dition and qualitative behavior of solutions. The thin film equation with source can be treated as

a simplified version of the model obtained in the first part.

Finally we consider a model for axisymmetric liquid film falling along a circular fiber. Re-

cent experimental results have shown that as droplets form and vertically traverse the circular

fibers, they fall into three unique regimes. Depending on nozzle diameter they appear as either

uniformly distributed uniformly sized droplets, as large droplets separated by a series of small

droplets, or as non-uniformly distributed non-uniformly sized droplets. In this thesis, we present

and qualitatively analyze a mathematical model to supplement this experimental analysis, one

capable of simulating (a) the convective regime where faster moving droplets collide with slower
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moving ones for short to medium time scale, and then (b) Rayleigh-Plateau regime where sta-

ble traveling wave propagates without any collisions for long time simulations. Additionally, we

study the linear stability of uniform fluid coatings for the fiber, and apply scientific computing

tools to study their long-term dynamics.

92



Bibliography

[1] S George Bankoff. “Stability of liquid flow down a heated inclined plane”. In: International

Journal of Heat and Mass Transfer 14.3 (1971), pp. 377–385.

[2] E. Beretta, M. Bertsch, and R. Dal Passo. “Non-negative solutions of a fourth-order nonlinear

degenerate parabolic equation”. In: Archive for Rational Mechanics and Analysis 129.2 (1995),

pp. 175–200.

[3] F. Bernis. “Finite speed of propagation and continuity of the interface for thin viscous flows”.

In: Adv. Differential Equations 1.3 (1996), pp. 337–368.

[4] F. Bernis and A. Friedman. “Higher order nonlinear degenerate parabolic equations”. In: J.

Differential Equations 83.1 (1990), pp. 179–206.

[5] F. Bernis, L. A. Peletier, and S. M. Williams. “Source type solutions of a fourth order nonlin-

ear degenerate parabolic equation”. In: Nonlinear Analysis, Theory, Methods and Applications

18.3 (1992), pp. 217–234.

[6] A. L. Bertozzi and M. Pugh. “The lubrication approximation for thin viscous films: regularity

and long-time behavior of weak solutions”. In: Comm. Pure Appl. Math 49.2 (1996), pp. 85–

123.

[7] Andrea Bertozzi, A Munch, and Michael Shearer. “Undercompressive Shocks in Thin Film

Flows”. In: Physica D: Nonlinear Phenomena 134 (June 1999). DOI: 10.1016/S0167-2789(99)

00134-7.

[8] J. F. Blowey, J. R. King, and S. Langdon. “Small- and waiting-time behavior of the thin-film

equation”. In: SIAM Journal on Applied Mathematics 67.6 (2007), pp. 1776–1807.

93

https://doi.org/10.1016/S0167-2789(99)00134-7
https://doi.org/10.1016/S0167-2789(99)00134-7


[9] MG Blyth and C Pozrikidis. “Film flow down an inclined plane over a three-dimensional

obstacle”. In: Physics of Fluids 18.5 (2006), p. 052104.

[10] V Bontozoglou and G Papapolymerou. “Laminar film flow down a wavy incline”. In: Inter-

national journal of multiphase flow 23.1 (1997), pp. 69–79.

[11] Neima Brauner and David Moalem Maron. “Characteristics of inclined thin films, wavi-

ness and the associated mass transfer”. In: International Journal of Heat and Mass Transfer 25.1

(1982), pp. 99–110.

[12] E. A. Carlen and S. Ulusoy. “An entropy dissipation-entropy estimate for a thin film type

equation”. In: Communications in Mathematical Sciences 3.2 (2005), pp. 171–178.

[13] E. A. Carlen and S. Ulusoy. “Asymptotic equipartition and longtime behavior of solutions

of a thin-film equation”. In: Journal of Differential Equations 241.2 (2007), pp. 279–292.

[14] J. A. Carrillo and G. Toscani. “Long-Time Asymptotics for Strong Solutions of the Thin Film

Equation”. In: Communications in mathematical physics 225.3 (2002), pp. 551–571.

[15] Hsueh-Chia Chang and Evgeny A. Demekhin. “Mechanism for drop formation on a coated

vertical fibre”. In: Journal of Fluid Mechanics 380 (1999), pp. 233–255.

[16] Po-Jen Cheng, Cha’o-Kuang Chen, and Hsin-Yi Lai. “Nonlinear Stability Analysis of Thin

Viscoelastic Film Flow Traveling Down along a Vertical Cylinder”. In: Nonlinear Dynamics

24.3 (Mar. 2001), pp. 305–332. ISSN: 1573-269X. DOI: 10.1023/A:1008304906043. URL: https:

//doi.org/10.1023/A:1008304906043.

[17] Po-Jen Cheng, Hsin-Yi Lai, and Cha'o-Kuang Chen. “Stability analysis of thin viscoelastic

liquid film flowing down on a vertical wall”. In: Journal of Physics D: Applied Physics 33.14

(2000), p. 1674.

[18] M. Chugunova, J. R. King, and R. M. Taranets. “Uniqueness of the regular waiting-time type

solution of the thin film equation”. In: European Journal of Applied Mathematics 23.4 (2012),

pp. 537–554.

[19] M. Chugunova and R. M. Taranets. “New dissipated energy for non-negative weak solution

of unstable thin-film equations”. In: Communications in Pure and Applied Analysis 10.2 (2011),

pp. 613–624.

94

https://doi.org/10.1023/A:1008304906043
https://doi.org/10.1023/A:1008304906043
https://doi.org/10.1023/A:1008304906043


[20] R. V. Craster and O. K. Matar. “On viscous beads flowing down a vertical fibre”. In: Journal

of Fluid Mechanics 553 (2006), pp. 85–105.

[21] LA Dávalos-Orozco. “Nonlinear instability of a thin film flowing down a smoothly de-

formed surface”. In: Physics of Fluids 19.7 (2007), p. 074103.

[22] Luis A Dávalos-Orozco. “Instabilities of thin films flowing down flat and smoothly de-

formed walls”. In: Microgravity Science and Technology 20.3-4 (2008), pp. 225–229.

[23] BR Duffy and HK Moffatt. “A similarity solution for viscous source flow on a vertical plane”.

In: European Journal of Applied Mathematics 8.1 (1997), pp. 37–47.

[24] S. D. Èı̆del’man. Parabolic systems. London. North-Holland Publishing Co., Amsterdam: Trans-

lated from the Russian by Scripta Technica, 1969.

[25] Mohamed S El-Genk and Hamed H Saber. “Minimum thickness of a flowing down liquid

film on a vertical surface”. In: International Journal of Heat and Mass Transfer 44.15 (2001),

pp. 2809–2825.

[26] J. Fischer. “Optimal lower bounds on asymptotic support propagation rates for the thin-film

equation”. In: J. Differ. Equ 255.10 (2013), pp. 3127–3149.

[27] J. Fischer. “Upper bounds on waiting times for the thin-film equation: the case of weak

slippage”. In: Archive for Rational Mechanics and Analysis 211.3 (2014), pp. 771–818.

[28] A. L. Frenkel. “Nonlinear theory of strongly undulating thin films flowing down vertical

cylinders”. In: EPL (Europhysics Letters) 18 (1992), p. 7.

[29] L. Giacomelli and G. Günther. “Lower bounds on waiting times for degenerate parabolic

equations and systems”. In: Interfaces and Free Boundaries 8.1 (2006), pp. 111–129.

[30] L. Giacomelli and F. Otto. “Variatonal Formulation For The Lubrication Approximation Of

The Hele-Shaw Flow”. In: Calculus of Variations 13 (2001), pp. 377–403.

[31] H. P. Greenspan. “On the motion of a small viscous droplet that wets a surface”. In: Journal

of Fluid Mechanics 84.1 (1978), pp. 125–143.

[32] T Hayat, R Ellahi, and FM Mahomed. “Exact solutions for thin film flow of a third grade

fluid down an inclined plane”. In: Chaos, Solitons & Fractals 38.5 (2008), pp. 1336–1341.

95



[33] FJ Higuera. “Steady creeping flow down a slope”. In: Physics of Fluids 7.11 (1995), pp. 2918–

2920.

[34] H. Ji et al. “Dynamics of thin liquid films on vertical cylindrical fibres”. In: J. Fluid Mech 865

(2019), pp. 303–327.

[35] H. Ji et al. “Modeling film flows down a fibre influenced by nozzle geometry”. In: Journal of

Fluid Mechanics 901 (Oct. 2020).

[36] Serafim Kalliadasis and Hsueh-Chia Chang. “Drop formation during coating of vertical fi-

bres”. In: Journal of Fluid Mechanics 261 (1994), pp. 135–168.

[37] I. L. Kliakhandler, S. H. Davis, and S. G. Bankoff. “Viscous beads on vertical fibre”. In: J.

Fluid Mech 429 (2001), pp. 381–390.

[38] William B Krantz and SL Goren. “Stability of thin liquid films flowing down a plane”. In:

Industrial & Engineering Chemistry Fundamentals 10.1 (1971), pp. 91–101.

[39] Hai Lan et al. “Developing laminar gravity-driven thin liquid film flow down an inclined

plane”. In: Journal of Fluids Engineering 132.8 (2010), p. 081301.

[40] John R Lister. “Viscous flows down an inclined plane from point and line sources”. In: Jour-

nal of Fluid Mechanics 242 (1992), pp. 631–653.

[41] J. L. Marzuola, S. R. Swygert, and R. Taranets. “Nonnegative weak solutions of thin-film

equations related to viscous flows in cylindrical geometries”. In: Journal of Evolution Equa-

tions (2019). URL: https://doi.org/10.1007/s00028-019-00553-1.

[42] S Miladinova, G Lebon, and E Toshev. “Thin-film flow of a power-law liquid falling down

an inclined plate”. In: Journal of non-Newtonian fluid mechanics 122.1-3 (2004), pp. 69–78.

[43] AA Nepomnyashchii. “Stability of wavy conditions in a film flowing down an inclined

plane”. In: Fluid Dynamics 9.3 (1974), pp. 354–359.

[44] S. B. G. O’Brien and Leonard W. Schwartz. “Theory and modeling of thin film flows”. In:

Encyclopedia of surface and colloid science 1 (2002), pp. 5283–5297.

[45] A. Oron, S. H. Davis, and S. G. Bankoff. “Long-scale evolution of thin liquid films Rev”. In:

Mod. Phys 69.3 (1997), pp. 931–980.

96

https://doi.org/10.1007/s00028-019-00553-1


[46] CD Park and T Nosoko. “Three-dimensional wave dynamics on a falling film and associated

mass transfer”. In: AIChE Journal 49.11 (2003), pp. 2715–2727.

[47] R. Dal Passo, H. Garcke, and G. Grün. “On a fourth-order degenerate parabolic equation:

global entropy estimates, existence, and qualitative behavior of solutions”. In: SIAM journal

on mathematical analysis 29.2 (1998), pp. 321–342.

[48] R. Dal Passo, L. Giacomelli, and G. Grün. “ Waiting time phenomenon for thin film equa-

tions”. In: Ann. Scuola Norm. Sup. Pisa 30.2 (2001), pp. 437–463.

[49] Carlos A Perazzo and Julio Gratton. “Steady and traveling flows of a power-law liquid over

an incline”. In: Journal of non-newtonian fluid mechanics 118.1 (2004), pp. 57–64.

[50] B. Reisfeld and S. G. Bankoff. “Non-isothermal flow of a liquid film on a horizontal cylin-

der”. In: Journal of Fluid Mechanics 236 (1992), pp. 167–196.

[51] TR Roy. “On laminar thin-film flow along a vertical wall”. In: ASME J. Appl. Mech 51 (1984),

pp. 691–692.

[52] C. Ruyer-Quil et al. “Film flows down a fiber: Modeling and influence of streamwise viscous

diffusion”. In: The European Physical Journal Special Topics 166.1 (2009), pp. 89–92.

[53] C. Ruyer-Quil et al. “Modelling film flows down a fibre”. In: Journal of Fluid Mechanics 603

(2008), pp. 431–462.

[54] A. Sadeghpour, Z. Zeng, and Y. S. Ju. “Effects of nozzle geometry on the fluid dynamics of

thin liquid films flowing down vertical strings in the Rayleigh-Plateau regime”. In: Langmuir

33 (2017), pp. 6292–6299.

[55] A. Sadeghpour et al. “Water vapor capturing using an array of traveling liquid beads for

desalination and water treatment”. In: Science advances 5 (2019), p. 4.

[56] I Mohammed Rizwan Sadiq and R Usha. “Thin Newtonian film flow down a porous inclined

plane: stability analysis”. In: Physics of Fluids 20.2 (2008), p. 022105.

[57] L. W. Schwartz and E. E. Michaelides. “Gravity flow of a viscous liquid down a slope with

injection”. In: The Physics of fluids 32.10 (1988), pp. 2739–2741.

[58] LW Schwartz, D Roux, and JJ Cooper-White. “On the shapes of droplets that are sliding on

a vertical wall”. In: Physica D: Nonlinear Phenomena 209.1-4 (2005), pp. 236–244.

97



[59] Sanat A Shetty and Ramon L Cerro. “Spreading of liquid point sources over inclined solid

surfaces”. In: Industrial & engineering chemistry research 34.11 (1995), pp. 4078–4086.
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