
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

10-1-1970

On Maximally Parallel Schemata
Robert M. Keller
Harvey Mudd College

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more
information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Keller, R.M. "On maximally parallel schemata." Proceedings of the Eleventh Annual IEEE Symposium on Switching and Automata
Theory (October 1970): 32-50. DOI: 10.1109/SWAT.1970.13

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

ON MAXll4ALLY PARALLEL SCHEMATA

Robert M. Keller

Princeton University*
Princeton, New Jersey

Summary

A model for parallel computation called a
schema is presented. This model is similar to
that presented in the recent work of Karp and
Miller2 • Section 1 presents a description of the
model, and some results on the characterization
of computations within it. Section 2 stunIIlarizes
some results on determinacy and equivalence.
Section 3 presents a ~ormalization of the
property of maximal parallelism in schemata.
Several alternate characterizations are shown to
be equivalent for certain classes. Section 4
presents results on the complexity of
a maximally parallel schema equivalent to a given
schema.

Introduction

A mathematical model for parallel computa
tion is the basis of this study. The definition
of this model has been motivated by various pro
posed and existing methods for introducing
parallelism into contemporary computing systems.
By "parallelism" it is meant that several inter
acting processes may be simultaneously engaged in
a computation.

The control of such parallel processes will
be studied in the framework of parallel program
schemata. The concept of a parallel program
schema is derived from two historically distinct
concepts: parallel program, and program schema.

The term "parallel program" was apparently
first introduced by S. Gil1 3, although the con
cept of parallelism had been used earlier. The
use of special instructions for the control of
parallel processes within programs appears first
in the literature (to the author's knOWledge) in
Richards 4 • Similar instructions were called
"fork" and "join" by Conway5. Instructions of a
slightly different nature, such as "lock" and
"unlock"6 allow two strings to be executed in
either order, but not simultaneously. Control of
this type is called "non-persistent", in the
terminology to be presented. In the present
work, the concern will be with control of the
persistent type. The model to be presented is of
sufficient generality to make the use of specific
instructions, such as fork and join, unnecessary.
This allows a number of problems in specifying
the control to be circumvented7 •

Given a way of expressing parallelism in
,programs, it is desirable ,to be able to convert a

* This research was completed while the author
was an NSF Graduate Fellow at the University of
California, Berkeley. The results presented
here are taken from the author's doctoral
dissertation1.

32

conventional program, ioe o one without explicit
parallelism, to an equivalent parallel program.
Such a conversion would permit the time required
for a computation to be reduced, providing
sufficient computational resources are available.
This problem is of central interest here.

Bernstein8 has observed that the problem of
determining whether two consecutive blocks of a
program can be executed in parallel is generally
undecidable 0 This fact provides part of the
motivation for introducing parallel program
schemata, as will be seen.

The conce~t of a program schema was intro
duced by Yanov. A program schema structurally
resembles a program, but the specific functions
associated with the elements of the program,
e.g. the operations of addition, multiplication,
etc., are replaced by abstract function-symbols.
A program schema can therefore be thought of as a
representation of a family of programs, each
member of which is obtained by specifying
functions in place of the abstract symbols.

The motivation for considering schemata is
t~at they provide a way of simplifying analysis
techniques, such as those required for removing
inessential parts of programs. Moreover, they
sometimes help avoid problems of undecidability.
For example, it is well known that the problem
of deciding whether two programs compute the same
function is unsolvable. However it was shown by
Yanov that the equivalence problem for his formu
lation of schemata is solvable. By equivalence
of schemata it is meant that the programs result
ing from assigning functions to the abstract
operation symbols are equivalent, regardless of
the particular assignment.

Recently various authors 10 ,11,12 have
studied refinements of Yanov's original concept.
These refinements differ essentially 'in the
amount of information assumed about the memory.
For example Yanov's formulation considers the
entire memory as a single undifferentiated cell.
The work of Luckham, Park and Paterson lO allows
the memory to be divided into a number of cells.
It is notable that they showed that the 'equiva
lence problem is undecidable for schemata with
two or more cells.

The schema concept can be combined with
parallel programs in an effort to simplify the
analysis of properties connected with parallel
ism. Work of this sort was first reported in
Karp and Miller2

0 The authors show that parallel
program schemata provide a fruitful approach to
the problem of determinacy, a problem which does
not exist when parallelism is absent. The schema
approach will be shown to be useful in the

.present work in avoiding undeciable problems of
the type observed by Bernstein.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

Notation

Let f: A ~ B be a partial function. For any
a£A, (f(a)) means that f is defined for a. For
A'~A fl A, denotes the restriction of f to A'.

The set of all natural numbers {O,1,2,3, ••• }
is denoted by w.

If r is any set, r* denotes the set of all
finite strings of elements in E. If x,YEE*, xy
denotes the concatenation of x and y. The string
of len@th 0 is denoted o.

L denotes the set uf all countably-infinite
strings of elements in L. r denotes L*U LW •

Concatenation is extended to map E*xf ~ Ein the
obvious fashion. If X£L* and y£f, x ~ y means
~z£E x=yz. x~< y means x ~ Y and x # y.

For any X£L and nEw, if Ixi ~ n, let nX

denote the first n components of x, i.e. the Y£Ln

such that Y ~ x. xn denotes the n-th component
of x.

For an~ xEf,~O£L, define o£x (0 "occurs in"
x) if 3 YEL 3ZEL x=yoz. The same symbol will
be used for set membership. The specific usage
should be clear from context.

Let l.:'~ L. For any x£f, let E(L' ,x) denote
the string x' 08tRined by deleting all occur
rences of elements of L-L' from x.

1. Parallel Program Schemata

This section presents the basic definitions
and results for the model, to be used throughout
the remainder of this work. Of particular con
cern will be the method of controlling parallel
computations and the characterization of these
computations in terms of strings of abstract
symbols.

It should be noted that the definitions to
be presented are not necessarily the most general.
Indeed they represent a compromise of the desire
to give the model sufficient generality to yield
non-trivial results, yet not so general as to
make the ex~osition cumbersome. An attempt is
made to model those aspects which are felt
significant in studying parallelism, as opposed
to some other aspect of an algorithmic process.

1.1 Schemata and Interpretations

Definition An operation set is a finite set A=
{a,b,c, •••• } of elements called operations, togeth
er with the following for each a£A:

(1) a unique symbol a called the initiator of a
(2) a non-empty finite set of unique symbols

~={al,a2,•••• ,aK(a)} called terminators

of a
(3) a finite set D(a)C:w called the domain of a
(4) a non-empty finite set R(a)C:w called the

range of a
In addition, for any B~A define ~{a I a£B},
B= U a, and E = AUA. For any O£L let <cr> be

aEB - -

the operation a£A such that O=a or O£a.

An interpretation for an operation set A is a

33

quadruple I=(V,do,F,G) where

V is a set called the universe
d sV

w
is called the initial assignmento

for each aEA

F :vD(a) ~ vR(a) is a total function
a

Ga:vD(a) ~ a is a total function

Int(A) will denote the class of all interpreta
tions for A.

A schema is a pair S=(AtT) where A is an
operation set and T=(Q,qo,f,¢) is the transducer,
where

(1) Q is a countable set of states
(2) qoEQ. is the initial state

(3) f: QxA ~ Qis a partial function, the
state-transition function

(4) ¢: Q -+ 2A is a total function, the
output function

In addition, every transducer must satisfy the
following:
Axiom 1 VqsQ VasA (f(q,o)) iff <o>£<p(q).
Axiom '2 'viqsQ VasA if (f(q,cr))

then (<p(q):-{<o>})~¢(f(q,cr)).
It will be useful t~ define the auxiliary output
function g: QxA -+ 2 by

- {¢(f(q,O))-(cp(q)-{<o>}) if
V(q,cr)sQx~ g(q,cr)= (f(q,o))

undefined otherwise
Finally, Bo will always denote cp(qo)' the

initial-operation set.
The set of natural numbers w is intended to

be the index set of a set of memory cells, each
capable of being assigned some value from the
universe of an interpretation. Each operation a
may be thought of as a "black box" with corre
sponding input (domain) and output (range) con
nections to the memory cells.

A schema S=(A,T) together with an inter
pretation I for A may be called a program (8,1)0
Under an interpretation, the operation a
"computes" two functions, Fa and Gao The

function Fa is a "data-processing" function which

performs a transformation on the memory, whereas
G is a "decision" function which gives informa
t~on about the memory to the transducer in the
form of an element of the set ~={al,a2'•••• }.
The transducer is responsible for ass~ilating

this information, and based upon it, allows new
operations to begin. Hence it may be thought of
as a "sequential machine" which makes transitions
as defined by f. For any state q, ¢(q) is the
set of operations which are enabled to be active,
i.e. "computing", while the transducer is in
state q. The auxiliary function g tells how ¢
is ""updated" as new terminators occur. Hence, g
rather than cp may be considered as the actual
"output" of the transducer.

Axioms I and 2 are introduced to prevent an
operation from being re-initiated while it is
active. A transition from state q via a symbol (J

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

is defined if and only if the operation of which
a is a terminator can be active when T is in
state q. Furthermore, no operation can be removed
from ¢(q) until it actually tenninates.
Parallelism in the model is possible because the
transducer may. allow several operations to be
active concurrently; i.e. for same state q,
I¢(q) I > 1.

Figure 1 shows a simple example of a trans-
ducer. The customary use of labelled graphs is
assumed 13 • The nodes (states) are labelled
q/~(q). The arcs are labelled with a£A. The
reader may wish to verify that the P~ioms 1 and 2
are satisfied.

The initiation and termination of an opera
tion will be called events. The occurrence of
these events in time will be sufficient to com
pletely describe all relevant activity in the
model. By allowing an initiator to symbolize the
initiation of an operation and allowing a
terminator to symbolize the termination of an
operation, activity within a schema may be repre
sented by a sequence of initiators and termina
tors, providing it is assumed that at most one
event can occur at a single instant. It will be
come obvious that this is not too stringent an
assumption. I.loreover, any disadvantages due to
this assumption are outweighed by what is gained
in tractability. Nothing will be assumed about
either the time interval required for an opera
tion to start once it is enabled, or for the time
interval in which an operation is active_

The following describes the interaction of
an operation a with the memory. For simplicity,
it will be assumed that an operation a retrieves
values from its domain D(a) only at the moment it
initiates, and stores values in its range R(a)
only at the moment it terminates. In the interim,
there is no interaction with memory. Since the
operation is to compute functions Fa and Gat the
particular set of values, one assigned to each
domain cell, at the time of initiation will be
designated by ~(a). A physical interpretation
might be that ~(a) is a buffer. vfuen an opera
tion is not active, this buffer will be assigned
the empty string, o. A formal definition of the
behavior of a program is given below.

Definition Let S=(A,T) be a schema and I£Int(A).
Conf(S,I) denotes the set of I-configurations for
S, i.e. quadruples of the form a=(q,B,d,~) where

(1) q£Q,
(2) BS:A
(3) d£Vw

(4) u assigns to each a£A either
(i) 0, the empty st£tng

or (ii) an element of V ~a)

More precisely, Conf(S,r) is defined in the
following way: Define

(.t;~(qo,Bo,do,oA) to be the initial I-configura-

tion, where qo is the initial transducer state,
Bo=¢(qo) is the initial operation set, do is the
initial assignment, and oft. is that function ~ such
that Va£A ~ (a)=o. ThenConf(S,1) is defined to
be the smallest set containing a~ and closed
under the set of partial functions {(-a) I a£L}

34

to be defined below.
Suppose a=(q,B,d,~). Then
(1) If a£A, (a·a) iff

(i) <a>£B
and (ii) ~«a»=o.

In this case, a·a=(q,B-{<a>},d,~')where

{
~ (a) if a#<a>

Va£A ~'(a)=

diD (a) if a= <0 >

(2) If o£~, (aea) iff
(i) <a>iB

(ii) ~«a»#o

and (iii) (r(q,a)).
In this case, aea=(f(q,a),BUg(q,a),d',~')

where

[d(m) if miRe <a»
Vm£w d' (m)=

F<a> (~«o»)(m)

if m£R«a»

Va£A t(;; if a#<o>
p' (a)=

a=<a>

The formal description above is meant to
indicate how a given program (8,1) behaves. A
single configuration a=(q,B,d,~) completely
describes the relevant properties of (S,1) at a
single instant • Those o£L such that (a ea)

describe the possible transitions to a new con
figuration. The set B may be thought of as a
"pool" of operations which may begin. The set
{a I ~(a)#o} is the set of active operations. As
defined above, an operation cannot be both active
and in the pool simultaneously. The following
algorithm, which is not necessarily deterministic
or terminating, should complete the intuitive
picture of howIa program oPirat~s.

(1) Set a=ao=(qo,Bo,do'o), l.e. the pool
initially contains Bo ' the state is qo'
the assignment is do, and ~(a)=o for
ever-J a.

(2) If for some a£L, (a-a), fix a and go to
step (3)- Otherwise stop.

(3) Replace a with a-a. Go to step (2). The
explanation of this step is in two cases.
In the first case a=acA. Then a is in the
pool and ~(a)=o_ Remove a from the pool,
put the values dID(a)into the buffer ~(a)

and go to step (2). In the second case
a=aj£~. Change the state to f(q,a j), add
g(q,aj) to the pool, replace the memory
cells in R(a) with new values computed by
F' (~(a)), set ~(a)=o, and go to step (2).

a

Since a transition between configurations a
and a' may be represented by a-o=a' for some o£r.,
it is appropriate to represent a sequence of
transitions by sequences of elements of l:. This
is done formally in the next definition.

Definition Let S=(A,T) be a schema, I£Int(A).
For each x£r* define a partial function (ex)
mapping Conf(S,I) ~ Conf(S,I) inductively:

(1) Va£Conf(S,1) aeo=a
(2) 'v'X£L* Vocr 'v'a£Conf(S,I) (a-(xo)) iff

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

The class of repetition-free schemata will
play an important role in this development,
because of the ease with which certain properties
may be characterized for schemata in this class.

(of the first) if for every terminator 0 occur
ring in v is R«o»nD(a)=~. A schema is called
repetition-free if no repetitions occur in any
computation.

a.x=a' and. (a' 00 1 , and. then a- (xo)=(a·x)-o=a' -a.

defined to be the 'subset of f
for S, where xcE is in

Comp(S,I) is
of I-computations
Comp(S,I) iff

(1) '\Iy s x
(2) If XCL*

(3) If XCL
W

z ~

The reason for condition (1) is obvious.
Condition (2) says that a computation terminates
only if no further transitions can occur.
Condition (3), called the finite-delay property 2,
says that a possible transition (either the
initiation or termination of an operation) cannot
be delayed forever.

Definition A schema (A,T) is called finite-state
if the state set of T is finite.

Theorem 1 It is decidable whether a finite-state
schema is repetition-free.

1.2 Transducers

Define Pref(S,I)={y I y ~ x, xcComp(S,I)}=
the set of all prefixes of I-computations for S.
Define Comp(S)= U {Comp(S,I) I IcInt(A)}, and
Fref(S)= U{Pref(S,I) I IcInt(A)}.

Examnle Let A={a,b,c} be the operation set with
1~1=1~1=2, Icl=l and D and R given by the table
below.

D R

a {I} {2}
b {l} {3}
c {2,3} {I}

Let S=(A,T) be the schema such that T is the
transducer of Figure 1. Possible computations
for two different interpretations II and 12 are
as follows (It is left to the reader to invent
the actual specifications for II and 12.):
For (S, II) :

a alb blc cl

b 8. albIc cl

The transducer of a schema has been defined
in a form similar to the. familiar Moore-type
sequential machine, possibly with an infinite
state set. Because the transition function f is
partial, the machine is in a sense incomplete.
However, in applying certain known automata
theoretic results, it will be treated as a com
plete machine by implicitly defining a new state
to which every undefined transition must go. The
next definition extends the available notation
for describing transducers.

Definition Let (A,T) be a schema vlith
T=(Q,qo,f,¢). f is extended to a partial func
tion f: QXA* ~ Q by. the following induction:

(1) Vq£Q f(q,ol=q
(2) VqcQ Vx£A'\Io£A if f(q,x)=q' and

f(q',o)=q" then f(q-;-xo)=q", otherwise
f(q,xo) is undefined. *

Also, define a partial function f o : ~. ~ Q by
VX£A* fo(x)=f(qo,x).
Define a partial function ¢: A* ~ 2A called the
behavior of T (distinguishabl; from ¢: Q ~ 2A by
context) to be

{

<1>(fo(x)) if (fo(X)~
'v'x£A* <t>(x)=

undefined otherwise

a alb b28. alb b2a alb b2•••

a b a l b 2a b b
2

a l a b a l b 2 _••

However, the following is not a computation for
any interpretation:

a alb b 2a alb blc cI

This is true because successive initiations of b
must operate on the same values, since
R(a)n D(b)=0, and hence the outcome b2 followed
by the outcome bl is inconsistent with the
functionality of Gb for any interpretation. This
phenomenon will be called a "repetition",
precisely defined in the following.

Definition Let S=(A,T) be a schema, xcComp(S).
Suppose x=uavaw for some acA. The second
indicated occurrence of a is called a repetition

The transducer of a schema has been defined
to have a countable, but not necessarily finite,
set of states. To have physical significance it
is usually desirable that infinite transducers
have a "finite presentation". Examples of trans
ducers of this sort appearing in the literature
are Turing machines, pushdown machines, etc.

In applying any ·results of the aforemention
ed literature, two special properties are of
interest. The first is known as the "on line"
property. Interpreted in the present model, it
means that the transducer produces one output
B£2A in resnonse to each input o£A. This
property is~ a consequence of the definition of a
transducer already given. A second property is
called "real time". A transducer has the real
time property if it is on line and if it changes
its "internal configuration" at most once for
each input. While this property is not necessary
for transducers as they have been defined, it is
a desirable one for investigation, since the
ultimate goal is to speed up the overall execution

35

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

of operations.
As an example of an infinite-state transducer

having the real-time property, consider a
"real-time counter transducer" which is a finite
state transducer augmented by a fixed number k of
counters, each capable of recording a natural
number. The transitions depend only on whether
the counters have value 0 or not, and either
increment, decrement, or leave unchanged any
counter accordingly. A formal definition is
omitted for brevity. It is shown in Section 4
that transducers of this type exhibit a rather
gross inadequacy for controlling schemata in a
maximally parallel fashion.

Transducers which employ counters are men
tioned because much of the literature on parallel
programs 2 ,4,5,6,14,15 concerns models with
counters. The class of schemata with real-time
counter transducers subsumes the class of
"counter schemata"2 and "flowgraph sChemata"15,
if the properties of "perSistence" and "permuta
bility" are assumed for compatibility with the
present model.

Observation 1 One final form of a transducer
which will have great utility later is the
labelled tree. Although this tree may be infinite
and not have a finite presentation, it is still
well-defined. Let S=(A,T), T=(Q,qo,f,¢) be any
schema. Define a transducer (Q',qo',f',¢'),
where Q' is to be the set of nodes of a tree and
for a£A there is an arc (q,q') with label a if
f(q,a)~~'. This can be done simply by letting
Q'={x£~ I (fo(x)'}; q~ =0 (the root of the tree);
if q=x£~*, then f(q,o)=xo, if (fo(XO)'; a~d
finally $'(x)=$(fo(x)). Note that for the tree,
the output function ¢' and the behavior ¢' are
identical.

1.3 Transduction Sets

It is useful to have a description of allow
able computations which is free of the internal
workings of transducers and of references to
interpretations. The following is a first step
toward this goal.

Definition Let S=(A,T) be a schema with
T=(Q,qo,fA¢). Define a partial functioR
T: Qx 2Ax2 XL ~ Qx 2 X2A by ~(q,B,H)£QX2 X2A

(1) VO£A

[

(q,B- { <a> } ,HU{<0> }) if
<o>€B and Bn H=~

T(q,B,H,a)=
undefined otherwise

{

(f(q,a) ,EU g(q,a) ,H-{<o>})
if <a>e:H, Bn H=¢ and

T(q,B,H,a)= (f(q,o)'

undefined otherwise

T is then extend~d to T: Q.X2Ax2Ax L* ~ QX 2Ax2
A by

~(q,B,H)e:QX~X2
(1) T(q,BiH,o)=(q,B,H)
(2) ~XEr. 'Voc.r. if -r(q,B,H,x)=(q' ,B' ,H') then

36

[

T(q',B',H',o) if defined
T(q,B,H,xo)=

undefined otherwise

Define the transduction set of T to be the set of
x£i* such that 'T(q ,E ,0,x)). Denote this set
by LT. 0 0

An allowed sequence of T is an element of LT.
A continuation of an allowed sequence x is a
string y such that xy is an allowed sequence.

Observation 2 Upon comparing the behavior of -r
with the definition of the transition between
configurations of an interpreted schema, it will
become clear that an allowed sequence is a string
which could possibly be a prefix of a computation
if the memory interconnections are ignored, i.e.
it is a string satisfying the constraints which
are due to the transducer only

An element (q,B,H)£Qx 2Ax 2Ais intended to
represent an instant in time when

(1) The transducer is in state q.
(2) B~A is the set of operations waiting to

initiate.
(3) H~A is the set of operations which have

initiated, but not terminated.
This connection will be made precise in Lemma 1.
The function T is closely related to the function
T of 2, if the states in the latter case are
defined to be the set QX2Ax2A•

The following definitions provide useful
terminology for describing transduction sets.

Definition For any X£L, let ~ be the subsequence
of x consisting of all and only those terminators
in Xl i.e. !.=E(~,x). For any P~L* define
P={x x£P}, e.g. Pref(S), Comp(S).
- - Define r to be those strings X£L* such that
for every y ~ x and every a€A, the number of
initiators a in y minus the number of terminators
of a in y is 0 or 1, i.e. 0 ~ (IE({a},y)\-
IE(!.,y) I) ~ 1. _ _

Define n: L ~ 2A such that for any Xe:L, n(x)
is the set of a£A such that the number of
initiators a in x minus the number of terminators
of a in x is exactly 1, i.e. -
n(x)={a£A I IE({!.} , x) I-I E(~,x) I=I} •

Hence if a sequence of events has occurred
which is represented by x, n(x) is the set of
operations which have initiated but not
tenninated.

Definition Suppose x£r such that x=uav for some
a£A, u,v£L*. Then an occurrence of an element 0

of ~ in v, if one exists, is called the~ of a
if v=v'ov" and no n€v' is nEa. Similarly, the
indicated occurrence of a is-called the mate
of 0.

Hence mates are pairs of symbols which
correspond to a single activation of an
operation.

Lemma 1 Let T be a transdUCer and let T be as
defined above. Let x£r*. Then

(1) xc.r.T iff
(i) xe:r

(ii) (fo(~))

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

2.1 Definitions

2. Determinacy and Equivalence

Theorem 3 Let S=(A,T) be a repetition-free
schema. Then Pref(S)=rT•

The following type of schema is determinate
in a very trivial way.

81 and
if

2.2 Serial Schemata

Let Sl=(A,Tl), 82=(A,T2) be schemata.
82 are called equivalent (written Sl = 82)
V'!e:Int (A) {oi)i (x) Ixe:Comp (SI. I)}=
{~(y)lycComp(S2,I)}.8land 82 are called
congruent (written 81 ~ 82) if ~Iclnt(A)

Comp(Sl,I)=Comp(S2,IJ.

Definition Let 8=(A,T) be a schema, IcInt(A),
xcComp(8,I). Then x is said to be a serial
computation if \:;fy < x, letting a~·y=(qtB,dtlJ)'
there is at m03t one acA such that lJ(a)~o.

coroll~ 2 If S is repetition-free and *
x ,ycPrefS) such that f 0 (~)=f0 (r) then '\IZC!
~z£Comp (S) iff xzcComp (S).

Let S=(A,T) be a schema, IEInt(A). For any
mEw, x£Comp(8,I) ~(x) denotes the sequence of
elements stored into cell m. (Note that the
elements of ~(x) are in one-to-one correspondence
with terminators a occurring in x such that
mtR«o».) S is called ditermi¥ate if 'iIEInt(A)
~x,ycComp(S,I) 'fmcw n (x)=Q (y).

m m

Theorem 4 Let Sl=(A,Tl), S2=(A,T2) be schemata.
The following are equivalent:

(i) Comp(Sl)=Comp(S2)
(ii) Pref(Sl)=Pref(S2)

(iii) '\IIcInt(A) Pref(Sl,I)=Pref(S2,I)
(iv) '\I IcInt (A) Comp(Sl,I)=Comp(82 ,I)

1bis section defines the notions of equiva
lence and determinacy of schemata. A syntactic
characterization of these properties is presented
for the class of repetition-free schemata.

The final result of this section demonstrates
further the relation between computations and
prefixes. It will be used in ~ rather tacit
fashion in the sequel.

Corollary 1 If S is repetition-free and
x,ycPref(Sl such that T(qo,Bo,¢,X)=T(~,Bo'¢'Y)
then '\IzcE xzcComp(S) iff yzcComp(S).

Lemma 3 Let S=(A,T) be a schema, IcInt(A). Then
xcPref(S,I) iff xcPref(SI,I) and XErT•o

A
It can be noted that So allows any computa-

tion, as long as it is "consistent" with an inter
pretation. Hence the-interpretation of this lemma
fs that the set of prefixes of computations of a
schema 8=(A,T) for an interpretation I is deter
mined by two constraints:

(1) The transduction set ET•
(2) The interpretation I.

This section states results which show that
the prefixes of computations determine the com
putations themselves. The precise relation of
transduction sets to prefixes is also determined.

1.4 Prefix Characterizations

Lemma 2 Let S=(A,T) be a schema, Iclnt(A).
Let XEr*. Then xEPref(S,I) iff laI .x1 •

o
ADefinition For any operation set A, let 8
0

be a
schema (A,To) such th~t TO=({qo},qo,f,<t» where
<P(qo)=A and \1crE~ f(qo,o)=qo.

Remark An explanation for the named properties
is in order. The unifold property means that
there must be one and only one initiation of each
operation before each termination. (The name
evolved from a more general model which allowed
up to n copies of an operation to be active con
currently, this being called "n-fold".) The
immediate property means that a terminator is
allowed to occur immediately after its mate. The
persistent property means that an event, once
enabled for occurrence, cannot be disabled by an
event fro~ a different operation. The permutable
property means that an initiation cannot be
enabled solely by another initiation. The semi
commutative property prevents the order of
occurrence between initiators and other symbols
from affecting the occurrence of other initiators.
It is related to the "commutative" property of 2.
'rhe terms "persistent" and "permutable" are taken
from 2

(iii) Vy ~ x n(Y)~<P(l)
and (2) if x£rT, letting

T(qo,Bo,¢,x)=(q',B',H')
(iv) q'=fo(x)

(v) H'=n(xT
(vi) H'UB'=<t>(x)

The interpretation of (1) is that x is an
allowed sequence if and only if (i) no termina
tors occur in x before corresponding initiators,
(ii) ~ is a valid input to the transducer, and
(iii) the initiators occurring are only those
which are allowed by the transducer. Properties
(ii) and (iii) may be verified for a string x by
inspecting the description of the transducer.
The interpretation of (2) is exactly as promised
in Observation 2. The proof involves a rather
tedious induction on the length of x.

'rheorem 2 Let A be an operation set, P~L*, P~~.
Then there exists a transducer T such that p=r
if an~ only if the following are true for all
X,Y£L , o,n£r, and a,bcA:

(1) p~~ (Unifold property)
(2) x£P and y < x implies yEP (Prefix-closed

property)
(3) xacP and oca implies xao£P (Immediate

property) -
(4) xo£P and XTI£P where <o>#<n> implies XOTI£P

(Persistent proierty)
(5) xabcP implies xb£P (Permutable property)
(6) xanb£P and xnacP implies xnab£P

(Semi-commutative property).
The proof is omitted.

37

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

A schema is called serial if every computation is
serial.

A flowchart is a serial, finite-state schema o

Tne alternate representation, of a flowchart as
shovm in Figure 2 will be frequently used here
after. This representation should be self
explanatory. Its validity is derived from the
next lemma.

Lemma 4 Let S,I,x be as ~)oveo The following
are equivalent:

(1) x is serial
(2) 'Vy<x 1¢(y)1 ~ 1
(3) I:B I < lind Vya<x OE~ implies

g(fo(l) ,0) I ~ I
o is serial if and only if for each IEInt(A),
Comp(S,I) has exactly one element o

The proof is left to the reader.

Lemma 5 A schema is determinate if and only if
it is equivalent to a serial schema o

Proof If a schema is equivalent to a serial
schema, it is determinate by definition of the
latter property, and Lemma 4. Conversely, suppose
S=(A,T) is determinate, where T=(Q,qo,f,¢). A
second schema S'will be defined which has, for
any interpretation, the same cell-sequence as S
(there is only one for each mEw) and which is
serial. This is done simply by embedding the
behavior of T in a second transducer T' which only
allows one operation to become active at a time.
Furthermore, the operations become active in a
"round-robin" fashion, so that no operation is
discriminated against for an arbitrarily long
time, emulating the finite-delay requirement for
S. Hence the computation for S' is one of the
computations of S, and since S is determinate,
S :: S'. Formally, T' is defined by
(Q,xp,(qo,po),f',¢') as follows: For any set B~A,

let- ! be the operations of B listed in an
arbi trar'J orde r, each operation appearing exactly
once. P is defined to be the set of all such
lists. Po is defined to. be Boo For any
(q,p)EQXP, ¢'(q,p) is defined to be the first
component of the list p.

(f (q,o) ,p') if (f (q,o)), where
V(q,p)EQXP p' is formed by deleting

the first symbol of p and
concatenating g(q,o) to

f'((q,p),o)= the opposite end of the
list remaining.

undefined otherwise
By the unifold property of'S, no operation will
ever appear twice in the list p.

Corolla~f 3 Every finite-state, determinate
schema is equivalent to a flowchart.

Definition Let XE~o Define the canonical
sequence corresponding to x, denoted i, by the
following induction:

(i) 6=0
(ii) __ {Y.... <O>O if oEA

YO=
y if (JEA

For example, if x=abcalclcclblcd then
x=aalcclcclbbl •

38

Corollary 4 Let S be a determinate schema. Let
xEPref(S). Then there exists an equivalent
serial schema Sf such that xcPref(S').
Proof The construction is similar to that above,
except that it must be guaranteed that ~

canonical sequence corresponding to x is ~he

prefix of a computation. The details are left to
the reader.

2.3 Characterizations of Determinacy

Presented here are results on determinacy of
several different classes of schemata. The
proofs, many of which are reminiscent of 2, are
omitted.

Definition Let A be an operation set. Define a
relation p~AxA by V(a,b)e:AxA (a,b)e:p iff at
least one·of the following is true:

(1) R(a)nD(b)¢~.
(2) R(b)n D(a)#¢.
(3) a~b and R(a)nR(b)#¢.

The notation apb means (a,b)cp. apb or (a,b)e:p
means (a,b)E(AxA)-p. (a,b)e:(p-I) means (a,b)EP
and a#b. (Note: "I" should not be confused with
an interpretation in this case.) If (a,b)e:(p-I),
a and b may be said to conflict.

Definition A schema S=(A,T) is called conflict
free if VXEPref(S) V'(a,b)c(p-I) {a,b}if=.cp(-!.).·

Definition A schema S=(A,T), T=(Q,qo,f,¢) is
called commutative if Vqe:Q Va, nEA if
<o>#<n> and {<o>,<n>}~cp(q) then f(q:on)=f(q,on).

Definition Let A be an operation set. For x,ye:E
define x ~ y to hold iff

(1) Va£A E({aJ,x)=E({a},y) and
(2) V(a,b)cp E({a,b},x)=E({a.,b},y)

Let S=(A,T) be a schema. S is said to be
syntactically determinate if VIcInt(A)
Vx,y£Comp(8,I) x ~ y.

Table I summarizes the known characteriza
tions of determinacyl.

2.4 Characterization of Equivalence

This section presents, without proof, a
syntactic characterization of equivalence for
repetition-free schemata.

Lemma 6 Let Sl=(A,T~), S2=(A,T2). If 81 = 82
then 81 and 82 are elther both repetition-free or
neither is.

Definition Schemata Sl=(a,Tl) and S2=(A,T2) are
said to be syntactically equivalent iff
VI£Int(A)

(1) VaEA {E({a},x) Ixccomp... (SI,I)}=
{E({a},y) lEComp(82 ,I)} and

(2) V(a,b) e: p { E({a,b },x)Ixc Comp (81 ' I) }=
{E({a,b},y) ycComp(S2,I)}

Theorem 5 Let Sl=(A,Tl), 82=(A,T2) be determi
nate, repetition-free schemata. Then 81 = 82 if
and only if 81 and 82 are syntactically
equivalent.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

The flowcharts of Figure 3 show that the
repetition-free hypothesis cannot be eliminated
from the preceding theorem.

3. Defining Maximal Parallelism

Formal definitions will first be given which
describe the relative parallelism between
schemata. These definitions will then be shown
to be in harmony with an alternate characteriza
tion incorporating "time assignments".

Definition Let Sl=(A,Tl), S2=(A,T2) be equivalent
schemata. Define a relation 81 ~ 82 to hold if
VI£Int (A) Comp (81 , I)~ Comp (82~). Define
81 < 82 to hold if 8l ~ 82 and ~I£Int(A)

Comp(Sl,I)#Comp(82 ,I).

A schema Sl=(A,Tl) is called closed if
V82=(A,T2) 82 = 81 implies 82 ~ 81 •

A schema 8l =(A,Tl) is called a closure of
82=(A,T2) if 81 is closed and 81 = 82.

81 < S2 means 82 is "more parallel" than SJ,.
A schema is closed if it is "maximally parallel
among all equivalent schema. A schema 82 is a
closure of 81 if it is a "maximally parallel
equivalent" of 81.

of 0, and i is the number of occurrences
of a in x.

If S, I, and 1 are as above, a string
xEPref(S,I) Comp(S,I) is said to be consistent
with 1 if t(lx) ~ t(2x) ~ t(3x) ~

Remark The interpretation of t(x) is obviously
the sequence of times at which events occur in x.
For simplicity, previous assumptions are modified
slightly to allow some events to occur simultane
ously. Also, for any 1 there is always at least
one consistent computation, e.g. any serial com
putation.

Definition Let S, I, and 1 be as above, and
suppose z£Pref(S,I)UComp(8,I) is consistent with
1. Define the timing of z (relative to T) to be
the set s~={szIaEA}, where 'tIaEA s~: w -+ V+ is
defined by

{

t(UO) where ua ~ z is such that a is
the i-th terminator of a in z,

sa(i)= if any
z

undefined otherwise

Hence if there is an i-th occurrence of a in
z, s~(i) is the time at which this occurrence
terminates and stores its range values.

The proofs of the following are left to the
reader.

Lemma 8 Closures of equivalent schemata are
congruent, i.e. they have exactly the same compu
tations for each interpretation.

The previous definitions will now be justi
fied 'by an alternate relation on schemata based
on timing. Certain limitations, such as deter
minacy, etc. will be applied for brevity. This
argument is not essential for an understanding of
the rest of the paper.

Definition Let S=(A,T) be a schema, I£Int(A),
TETA(A). Define a function t: Pref(S,I) ~ V
inductively as follows:

(i) t(o)=O
(ii) t (xa)=t (x)

(iii) If a£~ then t(xcr)=t(u)+Ta(i), where u and
i are such that x=uav with a the mate

Define Sz < sz' (z is

Theorem 6 Let 81= (A, Tl), 82= (A ,rr2) be equivalent,
commutative, repetition-free, determinate
schemata. Then 81 ~ 82 iff 81 ~S2' and 81 < 82
iff 81 -< 8 2 •

-::J A sa < a
..:J a£ z sz' •
Definition Let Sl=(A,Tl), 82=(A,T2) be equiva
lent, determinate schemata. Define 81 ~ 82 (82
is as fast as 81) iff 'tIEInt(A) 'tTETA(A)
~z€Comp(81,I) if z is consiste?t with T then

c3z'£Comp(S2,I) sz' ~ sz. DefIne 81 ~ 82 (u2 is
faster than 81) iff 81 ~ S2 and ~I£Int(A) .
31E:TA(A) 3z£Comp(82 ,I) such that z is conSIS
tent with 1 and 't~£Comp(Sl,I) if ~ is consistent
with 1 then Sz < s~.

The following clearly demonstrates the
duality between timing and parallelism.

Presented in the following are several
alternate characterizations of maximal parallel
ism. Incorporated in this presentation is a
series of results which show how the parallelism
of a schema can be increased by a "look-ahead"

faster than z', with respect to 1) iff s~ ~ s~, and

to T) iff VaEA sa < az - sz'·

Definition Let Sl=(A,Tl), S2=(A,T2) be equiva
lent, determinate schemata. Let I£Int(A),
T£TA(A), z€Comp(81 ,I), and z'EComp(S2,I) such that
z and z' are consistent with T. For any a£A
define s~ ~ s~, iff ViEW s~(i) ~ s~,(i). Define

sa < sa, iff sa ~ sa
z

' and 3i£w sa(i) < sa,(i).
z z z z z

Define Sz ~ sz' (z is as fast as z', with respect

8 is closed if
U Comp (8' , I) •

8'=8

Lemma 7 Let S=(A,T) be a schema.
and only if VI£Int(A) Comp(S,I)=

Definition V denotes the set of non-negative real
numbers. V+ denotes V-{O}.

Let A be an operation set. A time assignment
for A is a set 1={1a la£A} where Va£A 1a : w ~ V
and 3M£V+ '7a£A '7i€w 1a (i) > M. TA(A) denotes
the set of all time assignments-for A.

The meaning of 1 will be as follows: If
there is an i-th activation of oneration a in a
computation then 1a (i) is the t~e interval of
this activation, i.e. the time elapsed between the
occurrence of a and its mate. The number M is a
pos i tive lower bound on all time intervals.

39

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

procedure.

Definition Let S=(A,T) be a schema. Define a
predicate Ults on AxPref(S) by

~b£A 'lx£Pref(S) UltS(b,~) iff

~z£Comp(S) if x < z then3 y£l:* xy < z and

b£¢(~) and ~u < y 'v'as¢(~~~) bpa.

The subscript "s" may be omitted when S is
understood.

Informally, in view of the finite-delay
property, Ult(b,x) is true iff for every computa
tio~ z with prefIx either (i) b occurs in x un
mated; or (if) b will ultimately occur in z after
x and no conflicting operations will become ac
tive in the meantime; and in both cases no con
flicting operations are concurrently active with
b. For Ult to be well-defined, the definition
must be shown to be dependent only on x, rather
than x. It is simple to show that, if-x,x'sPref
(8) are such that ~ = ~~ then for any IsInt(A),

aIox and aI.x' differ only with regard to which
o~erationsoin ¢(x) have initiated. It follows
that if either (i) or (ii) holds for x, then (i)
or (ii) holds for x'.

If bs¢(x) then Ult(b,x). The importance of
this predicate is that ifUlt(b,x) but bi<t>(x),
then it will be possible to modify the sche;a S so
that b is enabled in st'ate' f (x) , without having
the effect of changing the c~ll sequences.

Definition A schema S=(A,T) is called globally
complete if ~xEPref(S) ~bEA Ult(b,~) implies
be:¢(!.) •

Hence a schema is globally complete if no
operations can be enabled by looking ahead, other
than those already enabled.

The following is the first part of a syntac
tic characterization of closed schemata.

Theorem 7 Every closed schema is globally
complete.
Proof Suppose S=(A,T) is not globally complete.
Let xe:Pref (S), be:A be such that Ult (b,x) and
b¢¢(x). A new schema S=(A,T) will be constructed
such-that S = Sand § < S, thereby showing that
S is not closed. By Observation 1, it may be
assumed without loss of generality that T is a
tree. From S, the const~uction of § proceeds
according to

Construction 1 Let T=(Q,qo,f,¢). Define qx =

f 0 (!.). Q will be decomposed into Q1U Q2UQ3,
where each pair of subsets is disjoint.
Ql and Q2 are defined inductively by the
following rules:
Ql:

(i) qxe:Ql

(ii) If qe:Q1and ~aE! q'=f(q,a) and bi¢(q')

then q v eQl

40

(iii) The only elements of Ql are those
obtained by a finite number of appli
cations of the above rules.

(i) If qeQl and ~ae:~ q'=f(q,a) and be:¢(q'),
then q 'e:Q2.

(ii) If qe:Q2 and ~ae:(~-~) q'=f(q,a), then
q'e:Q2.

(iii) The only elements of Q2 are those
obtained by a finite number of appli
cations of the above rules.

In summary, Ql is the set*of states reachable
from qx by a sequence ye:ll such that bi¢ (!y) but
Ult(b,xy). Q2 is the set of states reachable
from states in Ql for which the ultimate b
actually becomes enabled.

Under the assumption that T is a tree, Ql, Q2
and Q3 are clearly disjoint, since if, Y1y' then
f(qgy)#f(q,y').

The plan now is to construc~ a schema S
which behaves as S, except that S enables b when
in state qx. To do so, account must 2e taken for
the possibility that b terminates in S prior to
the point at which it would terminate in S. ~~e

corresponding terminator of b must be "recorded"
in additionai states of S, until the point is
reached in schema S where a transition with this
terminator would normally be defined. rfhus for
each qe:Q2 and each TIe:b, the termination of b will
be recorded in a new state named qTI. Define Q4 =
{qTIlqe:Q2, ne:b}. Define T=(Q,qo,f,$), where
Q=Q.4U Q and rand f are given in Table 11 0 A
formal proof of the equivalence of § and S is
omitted. This construction is demonstrated in
Figures 4 and 5.

For the repetition-free case, every allowed
sequence is the prefix ofa computation. This
fact provides for the use of Construction 1 on
repetition-free schemata of arbitrary (not neces
sarily tree.) structure. This will be shown by the
lemmas to follow.

Lemma 9 If UltS(bt~) and y is such that x < y,
ye:Pref(S), and no terminator of b occurs in y,
then UltS(b,L). The proof is an immediate con
sequence of the definition of Ult.
Lemma 10 If S is repetition-free, the value of
UltS(b,~) for a given b depends only on fo(~)' i.e.
fo(~)=fo(~) implies Ult(b,~) iff Ult(b,;[).
The proof follows from the definition of Ult and
Corollary 4

Definition Let S=(A,T) be a repetition-free
schema, q a state of T, beAG Define UltS(b,q) to
be true iff ~ xe:Pref (S) f 0 (!)=q and ~lts (b ,!) .

Corollary 5 (Lemma 10) If S is repetition-free,
UltS(b,q) iff ~xe:Pref(S) fo(~)=q implies
UltS(bt~)o

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

Lemma 11 Let S=(A,T) be any repetition-free,
determinate schema which is not globally complete.
Let x£Pref(S), b£A be such that Ult(b,x) and
bi~(x). The result of applying Construction 1 to
S yields 8, an equivalent schema such that S < s.
Moreover if S is commutativ~, so is 8. If S is
finite-state, so is S.
~ It is necessary to show that for the set
Q of the construction, any continuation from a
particular q£QI is independent of how q was
reached. rrhis follows from Corollary 1. (This is
not generally true in the non-repetition-free
case. This is why the tree representation was
assumed in Theorem 7, for then the statement is
true.) Fro~ Lemma 9 and Corollary 5, it follows
that if q£Q, then UltS(b,q).

To show that commutativity is preserved, it
is necessary to enumerate the different cases in
the definition of r. Only one case will be demon-

· 1strated here. Suppose qEQ. , 11'EQ f a an arbitrarY
element of A-b. Assume (f(q,an) and (f(q,na)l.
Then f(q,naT ~ f(qn,a) =

{

f(q,a)n if f(q,a)£Ql} A

= f(q,an)
f(q,an) if f(q,a)£Q2

Finiteness is clearly preserved since only
finitely many new states are added if Q is
finite. Figure 6 shows the construction for this
special case.

One final result will prove sufficient for
characterizing closed, repetition-free schemata.
Lemma 12 Let S, S' be equivalent, determinate,
repetition-free schemata. If x£Pref(S)nPref(S')
and b£A such that UltS(b,!.), then Ults,(b,~).
TIle proof follows from Theorem 5 and the
definition of Vlt.

Theorem 8 Let S be a determinate, repetition-free
schema. S is closed if and only if S is globally
complete.
Proof S closed implies S globally complete is
Theorem 7. Suppose S=(A,T) is a determinate,
repetition-free schema and S is not closed. Let
S'~(A,1J.I') be such that 8':::8 and for some I£Int(A)
Comp(S' ,I)iComp(S,I). Let x£Pref(S')-Pref(S)
such that x is minimal with respect to ~. Then
x=ya where y£Pref(S')n Pref(S) and aEL. a is an
initiator, since if a were a terminator, then yOE
Pref(S')nPref(S), a contradiction. Let a=b.
'rhen bt¢(x), but b£¢' (x), where ~, <P' are the
behaviors-of S, S ' respectively. Then UltS ' (b ,!.) ,
and by Lemma 12, UltS(b,~); therefore S is not
globally complete.

The schema S of Figure 3 shows that the
repetition-free hypothesis cannot be eliminated,
since this schema is not closed, but is globally
complete.

Definition A schema S=(A T) is called locally
complete if \tx£Pref(S) '1(a,b)£P if a£<p(x) and
'\ta£a b£<P (xa) then b£ep (x).
(Local completeness is analogous to being in
"maximum parallel form" in 15.)

Theorem 9 Let S=(A,T) be a repetition-free,
determinate schema. S is globally complete if and
only if S is locally complete.

41

Proof Suppose S is not locally complete. Let
x£Pref(S), (a,b)£ p be such that a£<p(~) and
\tOEa b£$(xa) but b¢cp(x). Clearly Ult(b,x) since
b will always occur sometime after the termination
of a, by Theorem 5. Since bt¢(~), S is not
globally complete. Conversely, suppose S is not
globally complete, but S is locally complete.
Let xEPref(S), b£A such that UltS(b,~) and bi¢(~).

Assume, without loss of generality, that T is a
tree, by Observation 1. Let ~ be the subtree of T
rooted at x and truncated at any path u such that
b£<p (xu). -
Claim 3VEA* 38.£A '\t7T£~ vn is a maximal path
in ~. This-claim is the same is saying that
3v£A* 38£A seb and '\t7T£a b£<p (xvn), by the
definition of~. Since bi¢Txv), this would
contradict the assumption that S is locally com
plete. If the tree ~ is finite then the claim is
obvious. Suppose that ~ is infinite and the
claim is false. Then for any finite path v from
the root of ~, for all c£ep(xv) there must be at
least one y£c such that bt<pTxvy), otherwise the
claim would be true. In the-manner of construct
ing an infinite path in the proof of Konig's
Lemma16 , an infinite path w in ~ may be con
structed such that '\fw' < w bicp(xw'). By
jUdiciously choosing the operatio; c at each step
of the construction, i.e. in the "round robin"
fashion (see Lemma 5), the canonical sequence
corresponding to path xw satisfies the finite~

delay property and therefore is a computation.
("Canonical sequence" was defined only for finite
strings. It is extended to infinite strings in
the obvious way.) By construction, b does not
occur in this computation after x, therefore
not UltS(b,~) contradicting the hypothesis.

Corollary 6 A repetition-free, determinate
schema is closed if and only if it is locally
complete.

An application of this Corollary is
Theorem 10 It is decidable whether a repetition
free, determinat~, finite-state schema is closed.
Proof Such a schema S is closed iff it is locally
complete, by Corollary 6. S is not locally
complete iff for some reachable state q and some

'a£<p(q) 3bi¢{q) such that bpa and
'\fo£~ b£<p{f(q,cr)). This is clearly decidable.

Theorem 11 Let 8 be a determinate, repetition
free schema. ~ben a closure of S exists. In fact
a commutative closure of Sexists.

Before presenting the proof, it will be use
ful to agree on a convention for Construction I
which makes it a single-valued transformation on
schemata.
Convention Let S be a non-closed, repetition
free schema. Unless otherwise specified, the
notation S will be agreed to mean the result of
applying Construction 1 to S, such that
(1) x is a least length prefix such that for some

bEA UltS(b,!.) and bi¢(!.)
(2) If there is a choice of b or x in (1), then

they are chosen by some fixed ordering of A
and E respectively.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

free, determinate schemata, since several helpful
characterizations of closed schemata for this
class are available.

Theorem 12 Let S be a determinate, repetition
free, finite-state schema. The predicate Ults is
recursive, i.e. it is decidable given xepref(S),
beA, whether UltS(b,x).
Proof By Corollary 4 and Lemma 12, it is suffi
cient to prove this for the case that S is a flow
chart. This is done by

qx is the initial frontier node and the root
of the tree.
If there is ~o frontier node then stop.
Otherwise let n be such a node and let q be
its label.
If there is a predecessor of n with label q,
then n becomes an end node. In this case
go to step 2. Otherwise continue.
If there is a a such that (f(q,o)', go to
step 5. Otherwise n becomes an end node.
Go to step 2.
For each a such that rf(q,o)~ add to the
tree a new son of n labelled with the state
f(q,o), which becomes a frontier node. n
now becomes a neutral node. Go to step 2.

3.

2.

5.

4.

Construction 2 Let S=(A,T), T=(Q,qo,f,~), be a
repetition-free flowchart. Let x£Pref(S), bEA,
and qx=fo(~). Construct a tree ~ with nodes
labelled from Q with ~ as the root. At each
stage of the construction the nodes are in one of
three classes: neutral, frontier, and gng. The
following algorithm is that for the construction
of ~.

1.

Figure 7 shows ~ for a particular flowchart and a
particular x after the construction is complete.
Observe that the construction has duplicated the
behavior of the transducer until either a cycle
occurs, or until a state q is reached for which
<p(q)=~, hence the construction always terminates.
It is claimed that Ult(b,x) can be computed for
any b from ~ as follows. -
Claim Ult(b,x) if and only if (*) on every path
from the root-of ~ there is a node with label q
such that bE¢(q) and for no predecessor n' of n
with label q' is there an at,(q') such that apb.
Proof Suppose (*) holds. Then clearly every com
putation with prefix x is such that b occurs after
x (or b is unmated in x), and moreover, no opera
tion which is p-related to b can occur prior to b.
Formally stated, this is precisely the case that
Ult(b,x). Conversely, suppose (*) fails. Then
there Is a path with no node labelled q such that
be:¢(q), or for some path with such a node, an op
eration p-related to b occurs prior to the first
occurrence of b. In the latter case it is clear
that not Ult(b,x). In the ~ormer case there are
two subcases. If the last node of the path has
label q where <p(q)=¢, then there is a finite com
putation in which 0 does not occur after x. If
the last node has a predecessor n' with the same
label, then there is a cycle in the graph of the
transducer in which no state q' occurs with
be:<P(q'). Since every path on a repetition-free
flowchart corresponds to a computation, there i§
an infinite computation with prefix x in which b

The previous section demonstrated the exist
ence of a closure for any repetition-free deter
minate schema, regardless of the complexity of
the transducer. In this section, the complexity
of closures of the finite-state schemata will be
investigated. The emphasis will be on repetition

!~. Complexity of Closures

For i EW let P i= Pref (S .) and cP. be the behavior
of S i. By Lemma 4, Vi ~w Pi~ ~ i +1, and S i is
repetition-free, determinate, commutative, and
equivalent to 8. Define P= UPi. It is now

iEw

Proof of Theorem 11 Let 8 be a repetition-free,
determinate schema. Without loss of generality,
by Lemmas 8 and 10, it suffices to let 8 be a
serial schema and therefore S is commutative.
Define an infinite sequence of schemata
SO,81 ,88 , ••• by letting 80=S and, having defined
8., defIne { 8. if 8. is closed
1·11

Si+l= A

8. otherwise
1

claimed that
(i) P is the transduction set of a commutat

ive schema S.
(ii) S is repetition-free.

(iii) S is determinate.
(iv) 8=8.

(v) S is closed.
To show (i) it suffice~ to show that P satisfies
the conditions (1)-(6) of Theorem 2 and commutat
ivity. Since each Pi~~' also P~~ and (1) is
satisfied. If xcP then for some i, xcPi, and
Vy<x YEP i , therefore yeP and (2) is satisfied.
lne nroofs of (3)-(6) and commutativi ty are
similar. To show (ii) that 8 is repetition-free,
suppose there is a computation of 8 with a repe
tition. ~hen there is a prefix of 8 with a repe
tition, hence a prefix of some 8 i with a repeti
tion. However 8i is repetition-free, so this is a
contradiction. rro show (iii) it will be shown
that S is conflict-free, determinac~followingby
the results of Section 2. Suppose ~xcPref(S)

3(a,b)E(O-I) and {a,b}~¢(x). Then for some 8i'
{a,b}~¢i(~)' contradicting-the determinacy of 8 i •
For (iv) assume S~S. Then ~IcInt(A)
3xcComp(S,I) 3ycComp(S,I) 3meu) n (x)#n (y).
Since every prefix of y is in Pref(S),malso m
YEComn(S,I). However this is cpntrary to the
deter~inacy of S. Finally it must be shown that
(v) S is closed. Suppose not. Then S is not
globally complete, i. e. 3 xe:Pref(S) 3 beA
Ult~(b,x) and bi~(x). Fixing x and b, let iew be
such th;t xe:Pi. since there are only a finite
number of strings of length ,less that or equal to
x, for some ,j 2: i, x is the minimal prefix such
th,at Ults~(b,~) and b¢¢_;(~).~ TIlen by definition
of S. l' te:~j I(X)' hen~e bE¢(x), a contradiction.

,J+ + - -

To see that the repeti tion-_free hypothesis
cannot be eliminated, observe 81 of Figure 5. By
enumerating computations, the only other eq~iva

lent schema is S , hence the set of computations
of a closure m~st be {aalbbl~claal' aalcclaalbbl }.
However there IS no schema wltli only tl1ese com
putations. Hence no closure of 81 exists.

42

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

does not occur after x. Hence not Ult(b,x). This
proves the claim and the theorem for the case of
flowcharts.

The preceding theorem will now be used to
show that there is at least some hope for obtain
ing the closure of a repetition-free, determinate,
finite-state schema.

Theorem 13 Let S=(A,T) be a repetition-free,
detenninate, finite-state schema. Let S be the
closure of S and ~ the behavior of S. Then ~ is
total recursive in the following sense: For any
string x£A* it is decidable whether (~(x)), and if
so then it is decidable for any b£A whether
b£~(x).
Proof Referring to the proof of Theorem 11, note
that the sequence of schemata 8=80 ,81,82' ••• is
such that each schema is finite-state and can be
effectively constructed from its predecessor.
Note also that this sequence adds prefixes which
belong to the closure in order of increasing
length. Therefore, for any given x, at some stage
i either Si will have x as a valid input or x will
not be a valid input in the closure. In fact,

this stage i is such that i ~ I~II!.I.

Remark 8uppose that 8 is a finite-state schema
and that somehow it is known that 8 possesses a
finite-stat~ closure. Consider the procedure of
constructing the sequence of finite-state schemata
8=80 ,81 ,82 ,... as in Theorem 11, stopping at each
stage to test whether 8i is closed (using the
local completeness criterion, for example). Hope
fully this procedure would yield a closure of 80
at some stage j, i.e. 8j = S. The example of
Figure 8 shows that this is not the case. The
flowchart 8 has the one-state closure as shown;
however the procedure outlined produces the
infinite sequence 81 ,82 , ••• , none of which are
closed. One case is known, however, when the
procedure always converges. This is given in

Theorem 14 Let 8=(A,T) be a finite-state, deter
minate, repetition-free schema, whereT is an
acyclic transducer. A closure of 8 may be
effectively constructed having these same
properties.
Proof 8ince there is a uniform bound for the
length of all computations of such a schema (and
hence of any equivalent schema), the procedure of
constructing 8=80 ,81 ,82 ,... always reaches a
stage where 8i = 8i +l which is the closure of 8.

Clearly there are finite-state schemata with
cycles which are also closed; e.g. any schema for
which p=AxA is closed. As motivation for consid
ering transducers of greater complexity than
finite-state, the following is presented.

Theorem 15 The repetition-free flowchart So of
Figure 9 has no finite-state closure.
Proof Consider the infinite family of finite-
state schemata {8n } of Figure 9. A simple

ne:w

induction suffices to show ~ne:w 8n = 8. If S is
is a closure of 8, then it must include the

43

computations of every Sn. It is then ~asy to see
that the domain of ~I the behavior of S, includes
the set P={x£{al,bl } I IE({al}'x) I z: IE({bl},x) I}.
For any x£P

{

{a,b} if IE({al},x)1 > IE({bl},x)1
¢(x)=

{ a} if IE({al }, x) I = IE({b1 }, x) I
If there is a finite-state transducer for St then
the equivalence relation = on {al,b1 }* defined by
x = y iff ~we:{al,bl}* ¢(xw)=~{yw) must be of
finite rank1 3. However this is not the case,
since letting x{m)=al •••• al , n < m implies

~
m-times

x(n)~x(m), since ¢(x(n)bl •••• bl)={a}; whereas
~

n-times
¢(x(m)bl••••bl)={a,b}. Hence = is of infinite
~

n-times
rank.

~is is a possibly surprlslng result because
it shows that although the number of operations is
finite, an infinite amount of storage (in the
transducer) may still be required to schieve
maximal parallelism. It can be shown that there
is a closure of S with a real-time counter trans
ducer with one counter. However such schemata are
not of sufficient generality to realize the
closure of an arbitrary repetition-free finite
state schema, as the following shows.

Theorem 16 The repetition-free flowchart 8 of
Figure 10 has no closure' with a real-time counter
transducer.
Proof From an argument similar to the previous
example, it is easy to see that any
y£{cl ,c2 ,a

t
,bl }* such that 'tx ~ y

IE({cl}'x) ~ IE({a1}rx) I and
E({c },x)1 ~ IE({b },x)1 is

a valid input to the trans~ucer of the closure.
For any natural number n, Let Xn be t~y set of
inputs

ro
r l ,r2 , •••• ,rne:{1,2}}t where (cl) 1 means clclo •• c l -

~

ri-times
Now an appeal is made to the following definition
and lemma from 17.

Definition For any natural number n, define an
equivalence relation

~ on A* by 'tx,ycA* x ~ y
iff ~w£~* Iwl ~ n implies~(xw)=¢(yw)~

Lemma 17 (Fischer, Meyer, and Rosenbergl 7) If ¢
is realizable by a real-time counter transducer
then there exist constants c,k such that for any

new the number of equivalence classes of ~ does
not exceed cnk •

To continue the proof, let x,y be distinct
words from Xn , i.e.

x=(cl)r1 c
2

(c
l

)r2 c
2

•••• (c
1

)rn c
2

and

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

r' r' r'
Y=(Ct) 1 C2 (Cl) 2 C2 •••• (Cl) n c2. all
ri,r.£{1,2i. Since x and y are distinct, there
is s~me i such that r i # r!. Let i be the least
such number. Assume withoUt loss of generality
that ri < rl. Letting

Z=(al)r l bl (al)r2 b ()ri 1() { }1•••• al , ~ xz = a,c

while ~(yz)={b,c}. Since each string in Xn is of
length no ~reater than 3n, and noting from above
that Izi ~Ixl and Izi ~ Iyl for x,y£Xn , it follows

3n
that x~y implies not x =y. It is obvious that
Ixn l=2n , so that the number of equivalence

classes of 3J1 is at least 2n • Now supposing
that ¢ is realizable by a counter transducer,
~c,k such that ~n the number of classes is not
greater than cnk • Hence 2n ~ c(3n)k. This
implies there exist constants c',k such that ~n
2n < c'nk • This is an obvious contradiction
sin~e 2n/c'nk is unbounded as n increases without
limit.

A real-time realization of the closure of S
can be obtained using a single "queue", i.e.
first-in-first-out list which essentially records
the outcomes of c. This is a special case of a
real-time "queue transducer" which is basically a
multi-tape Turing machine with one read head and
one write head per tape. All heads move in the
same direction. Transducers of this type are
useful for realizing closures of a sizable class
of repetition-free flowcharts l • Space does not
permit a detailed description of this class. The
essential property of this class which is
exploited is that, in the closure, no two opera
tions with more than one terminator will ever be
simultaneously active. There is a procedure for
deciding membership in this class l • Moreover the
closure can be effectively constructed for members
of this class.

The question of the sufficiency of real-time
queue transducers for the realization of the
closure of an arbitrary repetition-free flowchart
is open as of this writing.

4.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Richards, P., Parallel Programming, Technical
Operations Incorporated, Report No. TO-B 69
27,1960

Conway, M. E., A Multiprocessor System
Design, Proc. FJCC 1963

Dennis and Van Horn, Progranuning Semantics
for Multiprogrammed Computations, CACM,
Vol. 9, No.3, March 1966

Keller, R.M., Analysis Of Implementation
Errors in Digital Computing Systems,
Washington University Computer Systems
Laboratory, Tech. Rept. No.\ 6, March 1968

Bernstein, A.J., Analysis of Programs for
Parallel Processing, Trans. IEEE, Vol. EC-15

Yanov, Yu. I., The Logical Schemes of
Algorithms, Problems of Cybernetics, Vol. 1,
1960

Luckham, Park, and Paterson, On Formalised
Computer Programs, Journal of Computer and
Systems Sciences, June 1970

Manna, Z. Propeties of Programs and the
First-Order Predicate Calculus, JACM, Vol.
16, No.2, April 1969

Kaplan, D.M., The Formal Theoretic Analysis
of Strong Equivalence for Elemental
Programs, Stanford University Tech. Rept.
No. CS 101, June 1968

Harrison, M.A., Introduction to Switching
and Automata Theory, McGraw-Hill, 1965

Dijkstra, E.W., Cooperating Sequential
Processes, in Programming Languages,
Genuys, ed., Academic Press 1968

Slutz, D.R., The F10wgraph Schemata Model
of Parallel Computation, MIT Project MAC,
Report MAC-TR-53 (Thesis), Sept. 1968

Konig, D., Theorie der Endlichen und
Unendlichen Graphen, Akademische
Verlagsgese1lschaft, Leipzig, 1936

References

1. Keller, R.M., Closures of Parallel Program
Schemata, University of California,
Berkeley, 1970 (Unpublished thesis)

2. Karp and Miller, Parallel Program Schemata,
Journal of Computer and Systems Sciences,
Vol. 3, No.2, May 1969

3. Gill, S., Parallel Programming, Computer
Journal, Vol. 1, April 1958

44

17. Fischer, Meyer, and Rosenberg, Counter
Machines and Counter Languages, Mathematical
Systems Theory, Vol. 2, No. 3

Acknowledgement

The author wishes to express his gratitude
to Professor Richard M. Karp for numerous helpful
suggestions concerning this material.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

V
e
rb

a
l

D
e
s
c
ri

p
ti

o
n

:
.A

ll
ov

T
o

p
e
ra

ti
o

n
s

a
a.

nd
b

to

T
ab

le
I

C
h

ar
ac

te
ri

za
ti

o
n

s
o

f
D

et
er

m
in

ac
y

A
rb

it
ra

ry
C

om
m

ut
at

iv
e

R
e
p

e
ti

ti
o

n
-f

re
e

sc
he

m
a

sc
he

m
a

sc
he

m
a

C
o

n
fl

ic
t-

fr
e
e

im
p

li
es

d
et

en
n

in
at

e
N

o
Y

es
N

o

D
et

er
m

in
at

e
im

p
li

es
c
o

n
fl

ic
t-

fr
e
e

N
o

N
o

Y
es

S
y

n
ta

c
ti

c
a
ll

y
d

et
er

m
in

at
e

im
p

li
es

d
et

er
m

in
at

e
Y

es
Y

es
Y

es

D
et

er
m

in
at

e
im

p
li

es
sy

n
ta

c
ti

c
a
ll

y
d

et
er

m
in

at
e

N
o

N
o

Y
es

T
ab

le
Ii

-
D

e
fi

n
it

io
n

o
f

~,
f.

+'
"

[
~(

q)
U

{b
}

if
qe

Q
l

\J
'I

V
'qe

:Q
~(
q)

=
<p

(q
)

if
qE

Q
2
U

Q
3

ct
>(

q)
if

q
=

q'J
T E

Q
4

V
'q

eQ
V

'y
el

l

f(
q

,y
)

If
y
£
~

I
If

yt:
!?.

If
q£

Q
l

qY
I

f(
q

,y
),

if
d

e
fi

n
e
d

.

b
1

b
1

,b
2

8
2

A
=

fa
,b

tC
}

!!
=

fa
1

'S
2J

C
1

£
=

fb
1

,b
21

g,
=

{
el

i

If
qe

:Q
2 U

Q
3

-1
T

4
If

q
=

q
EQ

f(
q

,y
),

if
d

e
fi

n
e
d

.
I

f(
q

,y
),

if
d

e
fi

n
e
d

.

{

f
(q

,y
)'J

T
i
f
f

(q
,y

)e
Q

l}

u
n

d
ef

in
ed

I
f(

q,
y'

JT
)

if
f(

q
,y

)£
Q

2

u
n

d
ef

in
ed

o
th

er
w

is
e

p
ro

ce
ed

si
m

u
lt

a
n

e
o

u
sl

y
.

If
th

e
p

a
ir

e
d

o
u

te
o

m
es

o
f

a
an

d
b

a
re

re
sp

e
c
ti

v
e
ly

(a
t

,b
i

),
(a

2
.b

l)
'

o
r

(a
z,b

2
),

th
e
n

d
o

c
an

d
st

o
p

.
O

th
er

w
is

e
s
ta

rt
sg

a
in

fr
O

!f
l

th
e

b
e
g

in
n

in
g

.

F
ig

.
1

.
T

ra
n

sd
u

ce
r

T
.

A
ut

ho
riz

ed
 li

ce
ns

ed
 u

se
 li

m
ite

d
to

: t
o

th
e

C
la

re
m

on
t C

ol
le

ge
s!

. D
ow

nl
oa

de
d

on
 J

un
e

11
, 2

00
9

at
 1

9:
26

 fr
om

 IE
E

E
 X

pl
or

e.
 R

es
tr

ic
tio

ns
 a

pp
ly

.

s.
1-

+
--

j

m
ea

.n
s

D
(a

)=
fl

}

H
(a

)=
[j

l

8
1

c
2

,3
-+

-4

a
1

-+
-2

a
2

b
1

c
2
t
3
~
4

b
1
~
3

b
2

a b

1.
....

..2

2
--

+
-)

L
.

(3
;0

c
4

-+
-2

P
=

(A
X

A
)-

I

F
ig

.
3

.
N

o
n

-r
e
p

e
ti

ti
o

n
-f

re
e
,

e
q

u
iv

a
le

n
t

fl
o

w
c
h

a
rt

s.

,
~

~
-
+
2

l
~ en

1
D

R
-
-

-
-
-
-
-
-
-

.
3

J
~
:
'
-
;
j

(b
2-
-3
~

a
I

/1
l

{2
1

0
"

a
'
"

a
2

/..
.

i

b
I

f1
1

J3
J

k
:

f
n

f
)
n

l
\

C
I

{2
,3

1
f4

}
8

1
8

2

F
ig

.
2

.
T

he
to

p
d

ia
g

ra
m

sh
ow

s
an

a
lt

e
rn

a
te

re
p

re
se

n
ta

ti
o

n
o

f
th

e
fl

o
w

ch
ar

t
on

th
e

b
o

tt
o

n
,

A
ut

ho
riz

ed
 li

ce
ns

ed
 u

se
 li

m
ite

d
to

: t
o

th
e

C
la

re
m

on
t C

ol
le

ge
s!

. D
ow

nl
oa

de
d

on
 J

un
e

11
, 2

00
9

at
 1

9:
26

 fr
om

 IE
E

E
 X

pl
or

e.
 R

es
tr

ic
tio

ns
 a

pp
ly

.

D R PIabe

a ~ 1} f21 a I 0 1 0

b 1[2] {21 b 1 1 0

c \31 ~3J c 0 0 1

'al=2 'bl~lcl=l1-· , 1_ 1_

Comp(S) = fS181b1cl' a 1a 1c 1b t , a t b l e t e1, a21 ~ Ult(al,c).

Q1 = fQ1,Q4,Q5,Qa,Q101
2

Q = fQ 3,Q6,Q91
3

Q =rQo ,Q2,Q7,Ql1,Q12,Q131

Fig. 4. A schema which is not globally complete.

Fig. 5. Construction 1 applied to Fig. 4.

47

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

A
=

fa
,b

,d
,e

J

°2

1£1
=

1

p
=

I
A

~
I

==
1£1

=
1£

1:
:2

A
=

[a
,b

,c
,d

J

a
1

e
1

d
1

a
1

I~
I=

2

I!!:
I=

1£1
=

I~
I

=
1

p=
=

I
A

S
ch

em
a

S
S

ch
em

a
S

A
ss

um
e

i
t

1
s

k
n

o
N

n
th

a
t

U
lt

(d
,o

).

T
h

en
q

x
=

q
o

'
Q

l=
fq

o
.q

21.
Q

2
=

lq
l 1

•
Q

J=
0

.
Q4

=[
q~

.q
2l

.

F
ig

.
6

.
C

o
n

st
ru

ct
io

n
1

ap
p

li
ed

to
a

co
m

m
ut

at
iv

e,
fi

n
it

e
-s

ta
te

sc
he

m
a.

+" (X
)

C%
?~

~b
l

8
1

d
1

b
1

S
ch

em
a

S

d
1

b
2

8
1

a
l

L
et

x
=

a
a
le

c
lc

°1
Q

x=
Q

5.

D
et

er
m

in
e

th
o

se
o

p
e
ra

ti
o

n
s

e
su

ch
th

a
t

U
lt

(e
,x

).

A
n

sw
er

:
[d

,a
,c

1

q
5

/f
d1 ~

q
o

/
fa

1

/
~

Q
l/

fc
J

q
2

/f
bJ

/
~
/
~

q
J/

{
c
}

q
6

1
{b

}
Q

31
[c

l
Q

4
/

fc
}

t
~

t
.
~

t
~

q
5

/f
dJ

q
6
/
~
g
J

q
7

/
¢

q
5

/
fd

}
q

6
/!

b
}

Q
51

{d
1

Q
4/

fc1

~
~
~
n
d
~
/

t
~

~
q

7
/

¢
q

7
/

¢
q

7
/

¢
q

?
/

¢
g

1
1

d
e
n

d
en

d.
e

n
d

F
ig

.
7.

C
om

pu
tin

g
U

lt
fo

r
a

re
p

e
ti

ti
o

n

fr
ee

fl
o

w
ch

ar
t.

A
ut

ho
riz

ed
 li

ce
ns

ed
 u

se
 li

m
ite

d
to

: t
o

th
e

C
la

re
m

on
t C

ol
le

ge
s!

. D
ow

nl
oa

de
d

on
 J

un
e

11
, 2

00
9

at
 1

9:
26

 fr
om

 IE
E

E
 X

pl
or

e.
 R

es
tr

ic
tio

ns
 a

pp
ly

.

A = fatb}

A closure of S
o

Sohema So

Fig.- 8. The flowchart So has the single state
closure shown. However, after 2n iterations of
Construction 1, the result S2n above is not
closed.

49

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

Flowchart S
o

Fig. 9. A flowchart with no finite-state
closure. Sn is the n-th of infinitely
many equivalents.

Schema Sn

Fig. 10. A flowchart with no closure realizable
by a real-time counter transducer.

50

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.

	Claremont Colleges
	Scholarship @ Claremont
	10-1-1970

	On Maximally Parallel Schemata
	Robert M. Keller
	Recommended Citation

