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Abstract

Moduli spaces provide a useful method for studying families of mathematical
objects. We study certain moduli spaces of algebraic curves, which are
generalizations of familiar lines and conics. This thesis focuses on the dual
boundary complex, Δ(𝑟,𝑛), of the moduli space of genus-zero cyclic curves.
This complex is itself a moduli space of graphs and can be investigated with
combinatorial methods. Remarkably, the combinatorics of this complex
provides insight into the geometry and topology of the original moduli
space. In this thesis, we investigate two topologically invariant properties of
Δ(𝑟,𝑛). We compute its Euler characteristic, and we provide a conjecture and
multiple possible proof techniques for calculating its homotopy type. Finally,
we briefly discuss additional questions that might provide interesting future
investigation of this complex.
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Chapter 1

Introduction

When studying some mathematical object, rather than just focusing one one
specific instance of that object, it may be more useful to study all objects of
that type and learn how they behave as a family. For example, given a linear
map 𝐹 : ℝ𝑚 → ℝ𝑛 , we may want to learn which points get mapped to ®0.
Rather than just one point, we often group all such points into the subset
of the domain known as the null space or kernel. This type of reasoning
motivates the idea of a moduli space.

Definition 1.1 (Informal). A moduli space is a geometric space whose points
represent isomorphism classes of algebraic or geometric objects.

In other words, moduli spaces provide a concise way to describe unique
instances of some class of mathematical objects. To gain some intuition,
consider the following example of a moduli space.

Example 1.1. Consider the moduli space of circles in ℝ2 centered at the origin,
where we consider two circles to be equivalent if they have the equal radii. A circle
with radius 𝑟 is given by the equation

𝐶𝑟 : 𝑥2 + 𝑦2 = 𝑟2

where 𝑟 > 0. Thus, the moduli space of these circles is the positive real numbers,
ℝ+, where each 𝑟 ∈ ℝ2 represents the circle with radius 𝑟. We can extend this to
circles in ℝ2 centered at any point. At first, it might seem more difficult to find
this moduli space since these circles are harder to compare than the subset of those
centered at the origin. Note, however, that translating the circles does not affect
their radii, and therefore does not change which ones we consider to be equivalent.
By translating each circle to be centered at the origin, we can apply the same process
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described previously. Thus, the moduli space of all circles in ℝ2 is ℝ+. (See Figure
1.1)

Figure 1.1 Two circles and their representative points in ℝ+.

Example 1.2 (Brandt). For a slightly more complex example, consider the moduli
space of triangles in ℝ2, where we consider similar triangles to be equivalent (i.e.
two triangles are equivalent if they only differ by scaling and rotating. Equivalent
triangles have the same angles and ratios of side lengths). To compare and these
triangles in a way that doesn’t change which ones we consider to be equivalent,
rotate, scale, and translate each triangle so its shortest side is the line segment from
(0, 0) to (0, 1). Then, a triangle is formed by choosing some point (𝑥, 𝑦) as the
third vertex. Does this mean the moduli space of triangles is ℝ2? Sadly, it is not
quite that simple. Because we want a unique point in our moduli space to represent
classes of equivalent triangles, there are a few redundancies we need to consider.

(1) If the third vertex is located on the 𝑦-axis, we end up with a straight line, not
a triangle. Thus, 𝑥 = 0 is not in this moduli space.

(2) Triangles with third vertex (−𝑥, 𝑦) and (𝑥, 𝑦) are similar since they only
differ by a reflection across the 𝑦−axis. Thus, we only consider points where
𝑥 > 0 in this moduli space.
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(3) Similarly, triangles with the third point (𝑥, 𝑦) and (𝑥,−(𝑦−1)) are equivalent,
since they only differ by a reflection across 𝑦 = 0.5, the midpoint of the shortest
side. Therefore, we only consider points where 𝑦 ≥ 0.5 in this moduli space.

(4) Finally, since we established the line segment (0, 0) to (0, 1) to be the shortest
side of the triangle, we do not consider any points within Euclidean distance
1 of (0, 0) or (0, 1).

Thus, the moduli space of triangles in ℝ2 can be visualized as the highlighted space
shown in Figure 1.2.

In algebraic geometry, a commonly studied moduli space is that of stable,
𝑛-pointed rational curves,ℳ0,𝑛 , which we can visualize as 𝑛 distinct marked
points on a sphere. These curves and this moduli space will be described in
more detail in Chapter 2. We consider two of these spheres to be equivalent
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Figure 1.2 The moduli space of triangles in ℝ2.

if there exists an automorphism that maps the marked points from one
sphere to that of the other. An automorphism is an invertible function that
maps a mathematical object to itself. Automorphisms of a sphere are Möbuis
transformations (see Chapter 2 for the definition of a Möbius transformation).
A curve inℳ0,𝑛 is considered to be stable when it has only finitely many
automorphisms. Notice that this is not true when it has two or fewer marked
points (i.e. 𝑛 ≤ 2). By situating these points at the same point or two
diametrically opposed points on the sphere, any rotation in which those
points are the poles is an automorphism (of which there are infinitely many).
Thus, only when 𝑛 ≥ 3 do we considerℳ0,𝑛 to be stable.

Now, consider a situation in which two marked points try to coincide.
Because we defined the marked points to be distinct, any sequence of points
approaching each other will not have a limit. This underlies the fact thatℳ0,𝑛
is not a compact space. Compactness is a desirable feature of topological
spaces as it guarantees many properties that make the space easier to work
with. Thus, mathematicians have been motivated throughout the years to
discover various ways to compactifyℳ0,𝑛 .

This thesis studies one such compactification, ℒ𝑟𝑛 , which is a generaliza-
tion of Losev-Manin space and was recently defined by Clader et al. (2022).
Points in ℒ𝑟𝑛 represent pointed cyclic curves satisfying a number of condi-
tions, which will be explored in Chapter 2. Equivalently, ℒ𝑟𝑛 parameterizes
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the dual graphs of these curves, which lend themselves to combinatorial
exploration. We can visualize the whole space of dual graphs with Δ(𝑟,𝑛),
the dual boundary complex of ℒ𝑟𝑛 . This can be thought of as a geometric
realization of the set of dual graphs, and presents itself as an simplicial
complex. A simplicial complex is a space built from simplices, which are
𝑛-dimensional generalizations of triangles. For example, a 0-dimensional
simplex is a point, a 1-dimensional simplex is a line, a 2-dimensional simplex
is a triangle, a 3-dimensional simplex is a tetrahedron, etc. An 𝑛-dimensional
simplex is constructed from simplices that are degree 𝑛 and below; Δ𝑟𝑛 is an
(𝑛 − 1)-dimensional simplicial complex.

In this thesis, we use combinatorial methods to explore a variety of
geometric and topological properties of Δ𝑟𝑛 , notably, its Euler characteristic
and homotopy type.

The Euler characteristic, denoted 𝜒, was originally defined for surfaces
of polyhedra according to the formula 𝜒 = 𝑉 − 𝐸 + 𝐹, where 𝑉, 𝐸, and 𝐹

represent the number of vertices, edges, and faces of the given polyhedron
respectively. It is additionally a commonly used formula to identify planar
graphs. In general, the Euler characteristic is a topological invariant and can
be applied to simplicial complexes as follows.

Definition 1.2. Let 𝑋 be a simplicial complex and let 𝑋[𝑘] be the set of 𝑘-
dimensional simplices in 𝑋. Then, the Euler characteristic, 𝜒 of 𝑋 is defined
as

𝜒(𝑋) =
dim(𝑋)∑
𝑘=0
(−1)𝑘 |𝑋[𝑘]|

In other words, it is the alternating sum of the number of 𝑚-dimensional simplices
in 𝑋 for all 𝑚 = 0, 1, . . . , 𝑑𝑖𝑚(𝑋).

Homotopy type is a property of a topological space that provides insight
into its general structure. If two spaces have the same homotopy type, we
should be able to continuously deform one space to the other by compressing,
dilating, and translating its parts, but without cutting, gluing, or ripping its
parts. For example, we can continuously map ℝ2 \ {(0, 0)} to a unit circle by
sending each 𝑥 ∈ ℝ2{(0, 0)} to the nearest point on the circle (see Figure 1.3).

Thus, ℝ2 \ {(0, 0)} and the unit circle have the same homotopy type.
What if we did include the origin and instead tried to deform ℝ2 to to unit
circle? Notice that a unit circle has one hole while ℝ2 does not. There is no
way to continuously deform ℝ2 to a circle without "ripping" it somewhere to
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Figure 1.3 A continuous deformation from ℝ2 \ {(0, 0)} to 𝑆1.

create that hole. Thus, ℝ2 and the unit circle do not have the same homotopy
type.

In Chapter 2, this thesis will start by giving additional background on
moduli spaces, specifically moduli spaces of stable marked curves, then,
in Chapter 3, explain how we can use various combinatorial and graph
theoretical representations to describe the boundary of these spaces. Chapter
4 provides example calculations of the dual graphs and Δ(𝑟,𝑛) for small 𝑟, 𝑛.
In Chapter 5, we delve into the investigation of the Euler characteristic of
Δ(𝑟,𝑛). We provide and prove that conjecture that 𝜒(Δ(𝑟,𝑛) = 1 − (1 − 𝑟)𝑛 .
Chapter 6 details the homotopy type of Δ(𝑟,𝑛). Although we do not prove
its homotopy type, we provide a conjecture and discuss two possible proof
techniques. We conclude with Chapter 7, which discusses future work for
calculating the homotopy type, as well as other interesting questions about
Δ(𝑟,𝑛) that could be explored.



Chapter 2

Moduli Spaces of Stable
Marked Curves

In this chapter, we take what we learned about moduli spaces in the previous
chapter and introduce a few examples relevant to this thesis. We start by
formulating projective space as a moduli space, then

we will introduce the concept of a moduli space, then provide examples
of moduli spaces of stable, marked curves that build to the space studied in
this thesis, ℒ𝑟𝑛 , which is the generalization of the Losev-Manin space.

2.1 ℙ1 as a Moduli Space

Consider two distinct lines in the real, Euclidean plane. At how many
points do they intersect? This depends, because if the lines are not parallel,
they intersect at one point, but if they are parallel, they do not appear to
intersect. By Bézout’s theorem, for two curves 𝐶1 and 𝐶2 of degree 𝑚 and
𝑛 respectively, we expect 𝑚𝑛 intersection points (counting multiplicity).
However, some might appear missing because they coincide, are complex,
or, as in the case of the two parallel lines, occur at infinity.

Curves intersecting at infinity might sound unintuitive or impossible
at first in the geometries we commonly work with. Thus, these examples
motivate projective geometries, in which points at infinity are considered
"normal" points and are handled in a uniform way. For example, consider
the complex projective line, or ℙ1

ℂ
(from now on, we omit the ℂ when referring

to this space). The complex projective line extends the complex numbers by
adding a point at infinity. Essentially, ℙ1 = ℂ1 ∪ {∞}.
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Definition 2.1. ℙ1 is defined as a moduli space of lines in ℂ2 through the origin.
Then,

ℙ1 = {(𝑥 : 𝑦) ∈ ℂ2 | (𝑥 : 𝑦) ≠ (0 : 0)}/∼
where where (𝑥 : 𝑦) ∼ (𝜆𝑥 : 𝜆𝑦) for any 𝜆 ≠ 0 in ℂ.

To understand ℙ1, consider the geometry of the subset𝑈 ⊂ ℙ1 such that
𝑥 ≠ 0. Then, there exists a bĳection 𝑓 from𝑈 to ℂ,

𝑓 : 𝑈 → ℂ

(𝑥 : 𝑦) ↦→ 𝑦/𝑥.

We see that 𝑓 adheres to the equivalence relation, as 𝑓 ((𝜆𝑥 : 𝜆𝑦)) = 𝜆𝑦/𝜆𝑥 =

𝑦/𝑥. This bĳection has inverse

𝑓 −1 : ℂ→ 𝑈

𝑧 ↦→ (1 : 𝑧).

Now, consider ℙ1 \ 𝑈 . Since 𝑥 = 0, these ordered pairs have the form
(0 : 𝑦). Scaling by 1/𝑦, we see that this subset is equivalent to just one point
(0 : 1) ↦→ 1/0.

Taking the union of these two subsets, we see that ℙ1 = ℂ ∪ (0 : 1).
Topologically, the complex plane is equivalent to ℝ2, so how do we visualize
ℝ2 plus a point?

Definition 2.2 (Weisstein). The stereographic projection is a bĳective map obtained
by projecting points 𝑃 on an 𝑛-dimentional sphere, 𝑆𝑛 , from its north pole, 𝑁 , to
an 𝑛-dimensional plane, ℝ𝑛 , tangent to its south pole with

𝑆𝑛 \ {𝑁} ←→ ℝ𝑛

(𝑥1 , . . . , 𝑥𝑛+1) ↦−→
(

𝑥1
1 − 𝑥𝑛+1

, . . . ,
𝑥𝑛

1 − 𝑥𝑛+1

)
(

2𝑦1

(∑ 𝑦2
𝑖
) + 1

, . . . ,
2𝑦𝑛

(∑ 𝑦2
𝑖
) + 1

,
(∑ 𝑦2

𝑖
) − 1

(∑ 𝑦2
𝑖
) + 1

)
←−[ (𝑦1 , . . . , 𝑦𝑛).

See figure 2.1 for a visualization.

Under the stereographic projection, every point on 𝑆2 except𝑁 is mapped
to a point on ℝ2, so ℝ2 is topologically equivalent to a sphere minus a point.
Applying this to ℙ1, we note that the subset 𝑈 is topologically equivalent
to 𝑆2 minus a point, 𝑁 . However, ℙ1 has the additional point (0 : 1), so we
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Figure 2.1 The stereographic projection from 𝑆2 to ℝ2.

can define this point as mapping to and from 𝑁 . Thus, ℙ1 is topologically
equivalent to the 𝑆2, and will be visualized as such for the in this thesis.
Additionally, we consider the point (0 : 1) to be the point at infinity. To see
why, note that trying to project 𝑁 = (0 : 1) to ℝ2 using the stereographic
projection, we get a line that runs parallel to the plane. In other words, we
could say that (0 : 1) projects toℝ2 at infinity.

2.2 Moduli Space of 𝑛 Points on ℙ1

ℳ0,𝑛 is the moduli space of 𝑛-marked smooth curves of genus zero up to some
isomorphism class. Equivalently,ℳ0,𝑛 is a moduli space of isomorphism
classes of 𝑛 ordered distinct marked points on ℙ1. Formally,

ℳ0,𝑛 = {(𝑝1 , 𝑝2 , . . . , 𝑝𝑛) ∈ ℙ1 | 𝑝𝑖 ≠ 𝑝 𝑗 for 𝑖 ≠ 𝑗},

under an equivalence relation, ∼, such that consider (𝑝1 , 𝑝2 , . . . , 𝑝𝑛) ∼
(𝑞1 , 𝑞2 , . . . , 𝑞𝑛) if and only if there exists some automorphism of ℙ1, Φ, such
that Φ(𝑝𝑖) = 𝑞𝑖 for all 𝑖. We denote the set of all automorphisms of ℙ1 as
Aut(ℙ1). In general, automorphisms of ℙ1 are Möbius transformations.

Definition 2.3. Möbius transformations are rational functions from ℙ1 to ℙ1 of
the form

𝑧 → 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ,

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑧 ∈ ℂ and 𝑎𝑑 − 𝑏𝑐 ≠ 0. Geometrically, Möbius transformations
first apply the inverse stereographic projection from ℙ1 to 𝑆2, moving and rotating
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Figure 2.2 Visualization of a point inℳ0,5

the sphere to a new orientation, then applying the stereographic projection to get
back to ℙ1.

We can also think of automorphisms of ℙ1 as a part of the projective
linear group 𝑃𝐿𝐺2(ℂ).
Definition 2.4. The projective linear group 𝑃𝐿𝐺2(ℂ) consists of 2 × 2 invert-
ible matrices with nonzero determinant under an equivalence relation such that
transformations scaled by some 𝜆 ∈ ℂ∗ are isomorphic. In other words,(

𝑎 𝑏

𝑐 𝑑

)
∼

(
𝜆𝑎 𝜆𝑏
𝜆𝑐 𝜆𝑑

)
where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ. Then, a point (𝑥 : 𝑦) ∈ ℙ1 is transformed to (𝑎𝑥 + 𝑏𝑦 :
𝑐𝑥 + 𝑑𝑦).

An element Φ ∈ Aut(ℙ1) is uniquely determined by its action on three
distinct points. In other words, for 𝑝1 , 𝑝2 , 𝑝3 ∈ ℙ1 and Φ,Φ′ ∈ Aut(ℙ1), if
Φ(𝑝1) = Φ′(𝑝1), Φ(𝑝2) = Φ′(𝑝2), and Φ(𝑝3) = Φ′(𝑝3), then Φ = Φ′. Addition-
ally, for some 𝑞1 , 𝑞2 , 𝑞3 ∈ ℙ1, there exists a unique Φ ∈ Aut(ℙ1) such that
Φ(𝑝1) = 𝑞1, Φ(𝑝2) = 𝑞2, and Φ(𝑝3) = 𝑞3. Thus, we can see thatℳ0,3, for
example, is a single point. This point is typically delineated {(0, 1,∞)}. As a
further example, we can see that

ℳ0,4 = ℙ1 \ {0, 1,∞}.
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In other words, given four points (𝑝1 , 𝑝2 , 𝑝3 , 𝑝4) ∈ ℙ1, we can always perform
the unique automorphism of sending (𝑝1 , 𝑝2 , 𝑝3) to (1, 0,∞). Then, the
isomorphism class is determined by where 𝑝4 is sent. Note that 𝑝4 cannot be
sent to 0, 1, or∞, as we defined 𝑝𝑖 ≠ 𝑝 𝑗 when 𝑖 ≠ 𝑗. Going a step father, a
point inℳ0,5 has equivalence class Representative

(0, 1,∞,Φ(𝑝4),Φ(𝑝5)),

where Φ ∈ Aut(ℙ1). Thus,

ℳ0,5 = (ℳ0,4 ×ℳ0,4) \ {diagonal},

where the diagonal refers to points in which Φ(𝑝4) = Φ(𝑝5). In general,

ℳ0,𝑛 = (

𝑛−3 times︷                 ︸︸                 ︷
ℳ0,4 × · · · ×ℳ0,4) \ {all diagonals}.

As an additional way to formulateℳ0,𝑛 , we can turn to configuration
spaces.

Definition 2.5. For a topological space 𝑋, the configuration space Conf𝑛(𝑋) is the
set of ordered 𝑛-tuples of distinct points on 𝑋.

We can alternatively defineℳ0,𝑛 as the quotient space Conf𝑛(ℙ1)/∼, where
(𝑝1 , 𝑝2 , . . . , 𝑝𝑛) ∼ (𝑞1 , 𝑞2 , . . . , 𝑞𝑛) if and only if there exists an automorphism
Φ of ℙ1 such that (Φ(𝑝1),Φ(𝑝2), . . . ,Φ(𝑝𝑛)) = (𝑞1 , 𝑞2 , . . . , 𝑞𝑛). In general,

ℳ0,𝑛 � Conf𝑛−3(ℙ1 \ {0, 1,∞})

for 𝑛 ≥ 4.

2.3 Compactifications ofℳ0,𝑛

For all 𝑛 ≥ 4,ℳ0,𝑛 is not compact. Notably, there are missing "limit points;"
for example,ℳ0,4 is missing the points 0, 1, and ∞. Importantly, points
are not allowed to coincide. Therefore, any sequence in which a point is
approaching a missing point or two points are approaching each other does
not have a limit.

There are many reasons that compactness is a desirable quality for moduli
spaces; as an example, compact spaces are better suited for intersection
theory, which then allows for their use in enumerative geometry (Cavalieri,
2016). Thus, several compactifications ofℳ0,𝑛 have been proposed over the
years.
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2.3.1 ℳ0,𝑛

Discovered by Deligne and Mumford (1969), one way to compactifyℳ0,𝑛 is to
allow points that are trying to coincide to "bubble off" onto a new component
(i.e. a new copy of ℙ1). When this occurs, the resulting curves are called
degenerations. The point at which components in these degenerations meet is
called a double point. This provides us with the spaceℳ0,𝑛 . More formally,
we can defineℳ0,𝑛 as the moduli space of stable rational 𝑛-pointed curves.

Definition 2.6. Cavalieri A stable rational 𝑛-pointed curve is a tuple (𝐶, 𝑝1 , . . . , 𝑝𝑛)
such that

(1) C is a connected curve of genus 0 whose only singularities are double points,

(2) (𝑝1 , . . . , 𝑝𝑛) are distinct points of 𝐶 and are not located at the singularities,
and

(3) the only automorphism of 𝐶 that preserves the marked points is the trivial
automorphism.

Condition (3) of Definition 2.6 requires that, in order for a curve inℳ0,𝑛
to be stable, each component must have at least three special points, where a
special point is either a double point or one of the marked points.

Example 2.1. Figure 2.3 pictures all unique degenerations inℳ0,4. Any further
degenerations are not stable (i.e. at least one component has fewer than three special
points).

Example 2.2. Figure 2.4 shows degenerations inℳ0,5. The figure is not exhaustive.

2.3.2 Hasset Space

Hassett (2003) presented an alternate compactification ofℳ0,𝑛 that assigns
weights to each of the marked points. This producesℳ0,𝑤 , which is the
moduli space of weighted stable rational curves.

Definition 2.7. Let 𝑤 ∈ ℚ𝑛 be a weight vector with 0 < 𝑤𝑖 ≤ 1 for all 𝑖 =
1, 2, . . . , 𝑛. A weighted stable rational curve is a tuple (𝐶, 𝑝1 , . . . , 𝑝𝑛) such that

(1) C is a curve of genus 0,

(2) 𝑝1 , . . . , 𝑝𝑛 are 𝑛 smooth points of 𝐶 and if two points 𝑝𝑖 and 𝑝 𝑗 coincide,
𝑤𝑖 + 𝑤 𝑗 < 1, and
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Figure 2.3 Stable degenerations inℳ0,4.

(3) on each component of 𝐶, the number of nodes plus the sum of the weights
must be strictly greater than 2.

2.3.3 Losev-Manin Space

The Losev-Manin space, ℒ𝑛 was proposed by Losev and Manin (2000) as
another compactification ofℳ0,𝑛 . It generalizes Hasset spaces, which are
recovered in the special case when the weight data 𝑤 = (1, 1, 𝜖, 𝜖, . . . , 𝜖).
The points with weight 1 are "heavy"—they are not allowed to coincide with
other marked points—and the 𝑛 points with weight 𝜖 are "light"—they are
allowed to coincide with other light points.

2.3.4 Generalizations of Losev-Manin Space

Batyrev and Blume (2009) extended the work of Losev and Manin by
constructing the moduli space ℒ2

𝑛 with an involution 𝜎, two fixed light
points of 𝜎, one heavy orbit of marked points, and 𝑛 light marked points.
Recently, Clader et al. (2022) generalized this to ℒ𝑟𝑛 .

Definition 2.8. In ℂ, 𝑧𝑟 = 1 has 𝑟 solutions of the form 𝑒2𝑘𝜋𝑖/𝑟 for 𝑘 ∈
{0, 1, . . . , 𝑟}. These are the 𝑟𝑡ℎ roots of unity. They form a cyclic group of
order 𝑟 under multiplication, which is generated by 𝑒2𝑘𝜋𝑖/𝑟 when gcd(𝑘, 𝑟) = 1.
These are called the primitive roots of unity.
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Figure 2.4 Stable degenerations inℳ0,5.

The space ℒ𝑟𝑛 parameterizes 𝑛 orbits of light marked points of points on
ℙ1 under the action by the 𝑟th roots of unity, 𝜇𝑟 . There also exists an (𝑛 + 1)th
heavy orbit. The fixed points {0,∞} (often denoted {𝑥+ , 𝑥−}) may coincide
with the light orbits, but must remain separate from the heavy orbit.

Using similar intuition as to that behind the fact thatℳ0,𝑛 isn’t compact,
we find that ℒ𝑟𝑛 is not compact as well. We note that a sequence of points
trying to coincide with any point in the heavy orbit will not have a limit.
Thus, the following compactification is presented.

Definition 2.9 (Clader et al.). An 𝑟-pinwheel curve is a tree of projective lines
meeting at nodes, consisting of a central ℙ1 from which 𝑟 equal-length chains of
ℙ1s (called spokes) emanate. If the spokes have length 𝑘, we say that the pinwheel
curve has length 𝑘 (See figure 2.5).

Definition 2.10 (Clader et al.). An (𝑟, 𝑛)-curve consists of

(1) an 𝑟-pinwheel curve 𝐶,
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Figure 2.5 A 3-pinwheel curve of length two.

(2) an automorphism 𝜎 = 𝐶 → 𝐶 of order 𝑟 rotation,

(3) two distinct fixed points 𝑥+ and 𝑥− of 𝜎,

(4) 𝑛 labeled orbits of 𝜎, (𝑧0
1 , . . . , 𝑧

𝑟−1
1 ), . . . , (𝑧0

𝑛 , . . . , 𝑧
𝑟−1
𝑛 ) such that 𝜎(𝑧 𝑗

𝑖
) =

𝑧
𝑗+1(mod𝑟)
𝑖

, and

(5) an additional orbit (𝑦0 , . . . , 𝑦𝑟−1) such that 𝜎(𝑦 𝑙) = 𝑦 𝑙+1(mod𝑟) which are
distinct from one another as well as from the 𝑧 𝑗

𝑖
’s and the fixed points.

An (𝑟, 𝑛)-curve is stable if each component of 𝐶 contains at least two
heavy points (nodes or 𝑦 𝑙) and any components with exactly two heavy
points must contain at least one of 𝑥± or 𝑧 𝑗

𝑖
. This forces the requirement that

(1) 𝑦0 , . . . , 𝑦𝑟−1 must lie on the 𝑟 leaves of the pinwheel curve,

(2) the automorphism 𝜎 must be a rotation taking each spoke to another,
and

(3) the fixed points 𝑥± must lie on the central component.
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Figure 2.6 A stable (3,3)-curve.

Then, ℒ𝑟𝑛 , the compactification of ℒ𝑟𝑛 , is the moduli space of stable (𝑟, 𝑛)-
curves.



Chapter 3

Combinatorics of the Boundary

In this chapter, we explore the ways in which the boundary ofℳ0,𝑛 and ℒ𝑟𝑛
can be defined combinatorically. We define the boundary of some space 𝑋
as 𝑋 \ 𝑋, or in other words, the elements in the compactification that are
not in the original space 𝑋. We will introduce dual graphs, then show how
those can be used to construct the dual boundary complex for bothℳ0,𝑛

and ℒ𝑟𝑛 .

3.1 Dual Graphs ofℳ0,𝑛

Definition 3.1. An 𝑛-marked tree is a connected finite tree𝑇 together with bĳection

leaves(𝑇) ←→ {1, . . . , 𝑛}

where leaves(𝑇) refers to the set of vertices in 𝑇 with degree 1.

We can represent points in the boundary ofℳ0,𝑛 as n-marked stable trees
in which

(1) each component and marked point is represented by a vertex,

(2) there is an edge between a marked point and the components in which
it is contained, and

(3) there is an edge between components that share a double point Chan.

Thus, an 𝑛-marked tree being stable implies no vertices of degree two;
each marked point corresponds to a leaf and each component should have
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degree at least three. Any vertex with degree two implies a component with
only two special points, which is not stable.

These 𝑛-marked stable trees give us the dual graphs of the boundary of
ℳ0,𝑛 . The set of all these dual graphs is denoted Γ0,𝑛 .

Example 3.1. The boundary points ofℳ0,4 can be represented with the following
4-marked stable trees:

Example 3.2. The following are examples of 5-marked stable trees for the boundary
points ofℳ0,5.

3.2 Dual Graphs of ℒ𝑟𝑛
Similarly, we can define the boundary of ℒ𝑟𝑛 using dual graphs as well.
These graphs are (𝑟, 𝑛)-trees, in which there are
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(1) nodes for each component,

(2) edges between the connected components (i.e. components that share
a node), and

(3) leaves for each point on an orbit and both fixed points.

The stability conditions for (𝑟, 𝑛)-curves listed in the previous chapter induce
stability conditions for (𝑟, 𝑛)-trees. For an (𝑟, 𝑛)-tree to be stable,

(1) no node can be of degree two (the marked and fixed points are leaves
with degree one and the nodes representing components must have
degree at least three),

(2) the heavy orbit (𝑦0 , . . . , 𝑦𝑟−1) must be incident to the outermost modes,

(3) the fixed points 𝑥+ , 𝑥− must be incident to the central vertex, and

(4) there must be at least one light marked point 𝑧 𝑗
𝑖

on each of the non-
central nodes.

The length of a tree is the number of internal edges (i.e. edges between
components) that emanate from the central component on each of the 𝑟
spokes. The stability conditions imply that stable (𝑟, 𝑛)-trees range in length
from 1 to 𝑛.

Figure 3.1 A stable (3,2)-tree of length two.

The set of all dual graphs of the boundary of ℒ𝑟𝑛 is denoted Γ(𝑟,𝑛).
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3.3 Dual Boundary Complex ofℳ0,𝑛

There exists a bĳection between boundary strata inℳ0,𝑛 and isomorphism
classes of 𝑛-marked stable trees with at least one internal edge.

Let Δ0,𝑛 be the topological space defined by

Δ0,𝑛 =

(𝑇, 𝑙) | 𝑇 ∈ Γ0,𝑛 , 𝑙 : Internal Edges(𝑇) → ℝ≥0 ,
∑

𝑒∈IE(𝑇)
𝑙(𝑒) = 1

 .
In other words, Δ0,𝑛 is the space of 𝑛-marked stable trees with at least one

internal edge such that these internal edges are labeled with nonnegative
real numbers that all sum to one.

Example 3.3. Let 𝑇 be the following tree in Γ0,5:

Then, we want to know the space of all length functions of the internal edges 𝑥 and
𝑦 such that 𝑥 + 𝑦 = 1. This space is given by

{(𝑥, 𝑦) ∈ ℝ2 | 𝑥, 𝑦 ≥ 0, 𝑥 + 𝑦 = 1}.
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We can see that this space is a 1-simplex.

Definition 3.2. A standard simplex is given by

𝜎𝑛 =

{
(𝑥1 , . . . , 𝑥𝑛) | 𝑥𝑖 ≥ 0,

∑
𝑥𝑖

= 1

}
.

We can think of simplices as generalizations of triangles. For example,
a 0-simplex is a point, a 1-simplex is an line, a 2-simplex is a triangle, a
3-simplex is a tetrahedron, etc. The simplex defined by any subset of the
𝑛 + 1 points that define an 𝑛-simplex is a face of that simplex.

Definition 3.3. A simplicial complex 𝐾 is a topological space that is built from a
set of simplices under the following conditions:

1. The faces of each simplex 𝜎 ∈ 𝐾 are also in 𝐾.

2. Any nonempty intersection of two simplices 𝜎1 , 𝜎2 in 𝐾 is a face of each.

For example, a graph is a 1-dimensional simplicial complex.

In general, if 𝑇 ∈ Γ0,𝑛 with 𝑘 + 1 internal edges, then the space 𝜎(𝑇) of
length functions on the internal edges of 𝑇 of total length one is a standard
𝑘-simplex.

We can define Δ0,𝑛 as

Δ0,𝑛 =
©­«

⊔
𝑇∈Γ0,𝑛

𝜎(𝑇)ª®¬ /∼
where ∼ is the equivalence relation such that an internal edge that is labeled
with a 0 is the same as that edge being contracted (Chan, 2017).

Figure 3.2 An example of two equivalent dual graphs
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In general, Δ0,𝑛 is an (𝑛 − 4)-dimensional simplicial complex. We call
Δ0,𝑛 the dual boundary complex of ℒ𝑟𝑛 .

Example 3.4. The dual boundary complex of ℳ0,4, Δ0,4, is a 0-dimensional
simplicial complex consisting of three vertices. The vertices are labeled with the
dual graphs they represent.

Example 3.5. The dual boundary complex ofℳ0,5 is a 1-dimensional simplicial
complex (i.e. a graph). A partial construction is shown below, where the vertices
and edges are labeled with the dual graphs they represent.
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When completed, Δ0,5 is isomorphic to the Petersen graph.

3.4 Dual Boundary Complex of ℒ𝑟𝑛
Similarly, we can define the dual boundary complex of ℒ𝑟𝑛 , which is the
geometric realization of Γ(𝑟,𝑛).

Let Δ(𝑟,𝑛) be the topological space defined by

Δ(𝑟,𝑛) = {(𝐺, 𝑙) | 𝐺 ∈ Γ𝑟𝑛 , 𝑙 : Internal Edges(𝐺) → ℝ≥0}/∼

Additionally, the metric function 𝑙 must satisfy the following conditions:

(1) 𝑙 is constant on orbits of edges, that is, 𝑙 assigns the same value to
edges in the same orbit, and

(2) the sum of the total metrics is fixed to 𝑟. Combined with the first
condition, this forces the metrics of edges of each spoke to add to 1.

Figure 3.3 An example of two equivalent dual graphs with labeled edge
lengths.

In general,Δ𝑟𝑛 is a (𝑛−1)-dimensional simplicial complex. Dual graphs cor-
responding to (𝑟, 𝑛)-curves of length 𝑘 are represented by (𝑘−1)-dimensional
simplices. These simplices are adjacent if there exists an (𝑟, 𝑛)-stable tree
such that contracting one orbit of edges produces an (𝑟, 𝑛)-stable curve that
is isomorphic to the other.
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Figure 3.4 An example of how simplicies in Δ(2,2) are connected by edge
contractions of the dual graphs they represent.

Examples of Δ(𝑟,𝑛) are presented in the next chapter.



Chapter 4

Example Calculations

In this chapter, we present calculations of Γ(𝑟,𝑛) and Δ(𝑟,𝑛) for small 𝑟, 𝑛.
We also present a proposition about the number of maximal trees in Γ(𝑟,𝑛).
Note that in this chapter, we do not label the fixed points 𝑥+ and 𝑥− on
the (𝑟, 𝑛)-trees; they are the unlabeled leaves on the central component.
Additionally, when calculating the number of trees of each length in sections
4.3, 4.4, and 4.5, we assume that the component to which each 𝑦 𝑖 is incident
is fixed (see figure 4.1 for an example). Figures showing the result of all of
these calculations are given in section 4.6.

4.1 When 𝑛 = 1

With only one orbit of light marked points, all trees in Γ(𝑟,1) are length one.
Each tree is uniquely determined by the component on which 𝑧0

1 is located
(i.e. with which 𝑦 𝑖 it shares a node), as the automorphism 𝜎 will determine
where the rest of the points in the orbit are sent. Thus, there are 𝑟 trees of
length 1 in Γ(𝑟,1), and Δ(𝑟,𝑛) consists of 𝑟 0-simplices.

4.2 Maximal trees in Γ(𝑟,𝑛)

For any 𝑛, the longest a tree in Γ(𝑟,𝑛) is length 𝑛. Based on If the length 𝑘 was
larger than 𝑛, we would have 𝑛 orbits for 𝑘 > 𝑛 components on each spoke,
so by the Pigeonhole principle, at least one component will not contain a
light marked point. This goes against the stability conditions.
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Figure 4.1 Δ(3,1) consists of three vertices that correspond to length one trees.

The only way to create a stable tree of length 𝑛 is with exactly one light
orbit 𝑧 𝑗

𝑖
on each non-central component.

Proposition 4.1. There are 𝑟𝑛 · 𝑛! trees of length 𝑛 in Γ(𝑟,𝑛).

Proof. There are 𝑛! distinct ways to order the 𝑛 orbits (𝑧0
𝑖
, . . . , 𝑧𝑟−1

𝑖
) on the

𝑛 components. Then, consider 𝑧0
𝑖

for each of the 𝑛 orbits of points. There
are 𝑟 spokes on which to assign this point; the rest are determined by the
involution 𝜎. Thus, there are 𝑟𝑛 · 𝑛! distinct trees of length 𝑛 in Γ(𝑟,𝑛) as
desired. □

4.3 Calculation of Γ(2,2) and Δ(2,2)

With two orbits of light marked points, trees in Γ(2,2) will be either length
two or length one. There are two different options of what trees of length
one could look like.

(1) We could assign both orbits of points to the outside components. Then,
for both orbits, there are two choices for which point to assign to the
same component as 𝑦0. Thus, there are four of those length-one trees.

(2) Alternatively, we can assign one orbit of points to the central component
and the other to outside components. In this case, there are two choices
for which orbit to assign to the outside component, and another two
choices for which point to assign to the same component as 𝑦0.

Thus, there are eight total trees of length one in Γ(2,2)

The length two trees in Γ(2,2) are maximal, so we can use Proposition 4.1
to calculate that there are 22 · 2! = 8 trees of length two.
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Calculating the connections between simplices in Δ(2,2) using edge con-
tractions as described in the previous chapter, we find that Δ(2,2) is a one-
dimensional simplicial complex that is isomorphic to 𝐶8, the cycle graph on
eight vertices (see section 4.6.1).

4.4 Calculation of Γ(3,2) and Δ(3,2)

As in the previous section, these curves have two orbits of light marked
points, so trees in Γ(3,2) will be either length one or two. Starting with the
length one trees, similar to our calculation of length one tree in Γ(2,2) there
are two options for what these trees could look like.

(1) We can assign both orbits to the outside components. In this case, there
are three choices for each of the orbits of which of the three points to
assign to the same component as 𝑦0. Thus there are nine total trees of
this type.

(2) Otherwise, we can assign one orbit to the central component and one
orbit to the outside components. Then we have the choice of which of
the two orbits to assign to the outside, as well as which of the three
points in that orbit assign to the same component as 𝑦0. Thus, there
are six trees of this type.

Trees of length two are maximal, so we use Proposition 4.1 to calculate
that there are 32 · 2! = 18 trees of length two.

Calculating the connections between simplices in Δ(3,2) using edge con-
tractions as described in the previous chapter, we find that Δ(3,2) is a one-
dimensional simplicial complex that is isomorphic the graph shown in
section 4.6.2.

4.5 Calculation of Γ(2,3) and a partial calculation ofΔ(2,3)

The curves in ℒ2
3 have three orbits of light marked points, so trees in Γ(2,3)

are either length three, two, or one. Starting with length one trees, there are
three options for what these trees could look like.

(1) If we assign all three orbits to the outside components, then there are
two options for each of which of their points to assign to the same
component as 𝑦0. Thus, there are 23 = 8 trees of this type.
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(2) If we assign two orbits to the outside components and one orbit to the
central component, then there are

(3
2
)

options for which two to assign
to the outside components. Then, there are two options for each of
those two orbits on which point to assign to the same component as
𝑦0. Thus, there are

(3
2
)
· 22 = 12 trees of this type.

(3) If we assign one orbit of points to the outside components and the
other two to the central components, then there are three options for
which orbit to assign to the outside components. Then, for that orbit,
there are two choices of the point that will be assigned to the same
component as 𝑦0. Thus, there are 3 · 2 = 6 length one trees of this type.

In total, there are 26 trees of length one in Γ(2,3). For length two trees, there
are again three options as to what these trees could look like.

(1) We could assign one orbit to the outside components, one to the middle
components, and one to the central component. There are 3! unique
ways to make these assignments. Then, for the orbit on the middle and
outside components, there are two choices for which point to assign to
the same spoke as 𝑦0. Thus, there are 3! · 22 = 24 length two trees of
this type.

(2) Alternatively, we could assign two orbits to the outside components
and one orbit to the middle components. There are

(3
2
)

ways to assign
two orbits to the outside components. Then, for all three orbits, there
are two choices for which point to assign to the same spoke as 𝑦0. Thus,
there are

(3
2
)
· 23 = 24 length two trees of this type.

(3) We could also assign two orbits to the middle components and one
orbit to the outside components. This is the same calculation as (2),
just with the middle and outside components switched. Thus, there
are

(3
2
)
· 23 = 24 length two trees of this type.

In total, there are 72 trees on length two in Γ(2,3). Length three trees are
maximal, so we can use Proposition 4.1 to calculate that there are 23× 3! = 48
trees of length three in Γ(2,3).

Since 𝑛 = 3, the dual boundary complex is a two-dimensional simplicial
complex, which is harder to visualize than the graphs that we calculated in
the previous sections, we provide a partial construction of Δ(2,3) in section
4.6.3.
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4.6 Figures

4.6.1 Γ(2,2) and Δ(2,2)

There are eight length one trees in Γ(2,2) which are shown below.

There are eight length two trees in Γ(2,2) which are shown and labeled below.

The dual boundary complex, Δ(2,2) is isomorphic to the cycle graph on eight
vertices, 𝐶8. Labels on the simplices indicate their corresponding dual
graphs as labeled in the images above.
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4.6.2 Γ(3,2) and Δ(3,2)

There are 15 length one trees in Γ(3,2) which are shown and labeled below.
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There are 18 length two trees in Γ(3,2) which are shown and labeled below.
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The dual boundary complex, Δ(3,2), is a one-dimensional simplicial
complex isomorphic to the graph shown below. Labels on the simplicies
indicate their corresponding dual graphs as labeled above.

4.6.3 Γ(2,3) and Δ(2,3)

There are 48 length-three trees in Γ(2,3) which are shown and labeled below.



Figures 33



34 Example Calculations

There are 72 length-two trees in Γ(2,3) which are shown and labeled below.
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There are 26 length-one trees in Γ(3,2) which are shown and labeled below.
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The dual boundary complex, Δ(2,3), is a two-dimensional simplicial
complex. We provide a partial construction by calculating the maximal
simplices and their faces. Labels on simplicies indicate their corresponding
dual graph as labeled above.
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Chapter 5

Euler Characteristic of Δ(𝑟,𝑛)

In this chapter, we use combinatorial techniques to compute the Euler
characteristic of Δ(𝑟,𝑛). An introduction to the Euler characteristic is provided
in Chapter 1, but to summarize, the Euler characteristic is a topological
invariant that is defined for simplicial complexes as follows.

Definition 5.1. Let 𝑋 be a finite simplicial complex and let 𝑋[𝑘] be the set of
𝑘-dimensional simplices in 𝑋. Then, the Euler characteristic of 𝑋 is defined as

𝜒(𝑋) =
dim(𝑋)∑
𝑘=0
(−1)𝑘 |𝑋[𝑘]|.

In other words, it is the alternating sum of the number of 𝑚-dimensional simplices
in 𝑋 for all 𝑚 = 0, 1, . . . , 𝑑𝑖𝑚(𝑋).

By deriving a generating function for the number of 𝑘-dimensional
simplices in Δ(𝑟,𝑛), we are able to prove that

𝜒(Δ(𝑟,𝑛)) = 1 − (1 − 𝑟)𝑛 .

5.1 Recursive Relation for |Δ(𝑟,𝑛)[𝑘]|
Since the Euler characteristic is the alternating sum of the number of 𝑘-
dimensional simplices in a given simplicial complex, we need a way to
count the number of 𝑘-dimensional simplices in Δ(𝑟,𝑛). This is equivalent to
counting the number of length-(𝑘 + 1) trees in Γ(𝑟,𝑛). To do this, we define
the following relation that is recursive on 𝑛:
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Proposition 5.1. Let 𝑟, 𝑛 > 0 and −1 ≤ 𝑘 ≤ 𝑛, and let |Δ(𝑟,𝑛)[𝑘]| denote
the number of 𝑘-dimensional simplices in Δ(𝑟,𝑛). Then, the following recursive
relationship on 𝑛 holds.

|Δ(𝑟,𝑛)(𝑘)| = 𝑟(1 + 𝑘)|Δ(𝑟,𝑛−1)[𝑘 − 1]| + (𝑟(𝑘 + 1) + 1)|Δ(𝑟,𝑛−1)[𝑘]|. (5.1)

Proof. Since 𝑘-dimensional simplices correspond to length 𝑘 + 1 trees in
Γ(𝑟,𝑛), (5.1) equivalently counts the number of length 𝑘 + 1 trees in Γ(𝑟,𝑛). Let
𝑇 be some length 𝑘 + 1 tree in Γ(𝑟,𝑛). We want to count the ways in which we
can obtain 𝑇 by adding an orbit to a tree in Γ(𝑟,𝑛−1). We have two base cases.

(1) When 𝑘 = −1, |Δ(𝑟,𝑛)[−1]| = 1. This base case corresponds to a tree of
length 0, of which there is only one for all 𝑟, 𝑛 (each marked point leaf
is incident to the center node).

(2) When 𝑛 = 0, |Δ(𝑟,𝑛)[𝑘] = 0. This base case corresponds to a tree with
no orbits of light points. Unless 𝑘 = −1, there are no stable trees of this
form.

We proceed in cases.

• Case 1: Let 𝑇1 be a length 𝑘 tree in Γ(𝑟,𝑛−1). To obtain a length 𝑘 + 1 tree,
we must choose a corresponding vertex on each spoke from which to
extend another edge and vertex. There are 𝑘 + 1 options for this, as
we could choose any of the 𝑘 vertices on a given spoke or the center
vertex. This new vertex will only have two incident edges, so to meet
the stability conditions, we must add an 𝑛th orbit, 𝑧0

𝑛 , . . . , 𝑧
𝑟−1
𝑛 to these

vertices. Choose one of the 𝑟 new vertices to ascribe 𝑧0
𝑛 . Then, the

rest are determined by the automorphism 𝜎. Thus, there are 𝑟(𝑘 + 1)
unique ways to create 𝑇 from 𝑇1 and |Δ(𝑟,𝑛−1)[𝑘 − 1]| possible 𝑇1 from
which to choose.

• Case 2: Let 𝑇2 be a length 𝑘 + 1 tree in Γ(𝑟,𝑛−1). Then, we can choose a
vertex on which to add 𝑧0

𝑛 . Then, 𝑧1
𝑛 , . . . , 𝑧

𝑟−1
𝑛 will be sent to vertices

according to the automorphism 𝜎. There are 𝑟(𝑘 + 1) + 1 vertices on
𝑇2. Thus, there are (𝑟(𝑘 + 1) + 1) unique ways to create 𝑇 from 𝑇2, and
|Δ(𝑟,𝑛−1)(𝑘)| possible 𝑇2 from which to choose.

Adding these two cases together, we see that |Δ(𝑟,𝑛)(𝑘)| = 𝑟(1+ 𝑘)|Δ(𝑟,𝑛−1)(𝑘 −
1)| + (𝑟(𝑘 + 1) + 1)|Δ(𝑟,𝑛−1)(𝑘)| as desired. □

Figure 5.1 illustrates this proof by showing how we can get a length 3
tree in Γ(3,4) from a length 2 and a length 3 tree in Γ(3,3)
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Figure 5.1 The two methods in which we can create a length 3 tree in Γ(3,4)

from trees in Γ(3,3).

5.2 Generating Function for |Δ(𝑟,𝑛)[𝑘]|
Now that we have defined a recursive relation that counts the number of
𝑘-dimensional simplices in Δ(𝑟,𝑛), we will use this to obtain a generating
function.

Definition 5.2. A generating function is a way to represent the elements of an
infinite sequence as coefficients of a formal power series.

In our case, the coefficients represent |Δ(𝑟,𝑛) | where 𝑟 and 𝑘 are fixed and
𝑛 increases with each term. We define both an ordinary and exponential
generating function, the latter of which will be used in our final proof of the
Euler characteristic.

5.2.1 "Ordinary" Generating Function

Define the generating function by

𝐹𝑟,𝑘(𝑥) =
∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘]|𝑥𝑛 . (5.2)
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The coefficient of the 𝑥𝑛 term of this power series represents the number of
𝑘-dimensional simplices in Δ(𝑟,𝑛). Multiplying (5.2) by 𝑥(𝑟(𝑘 + 1) + 1) we get

𝑥(𝑟(𝑘 + 1) + 1)𝐹𝑟,𝑘(𝑥) = 𝑥(𝑟(𝑘 + 1) + 1)
∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘]|𝑥𝑛

= (𝑟(𝑘 + 1) + 1)
∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘]|𝑥𝑛+1.

Reindexing, we get

(𝑟(𝑘 + 1) + 1)
∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘]|𝑥𝑛+1 = (𝑟(𝑘 + 1) + 1)

∞∑
𝑛=2
|Δ(𝑟,𝑛−1)[𝑘]|𝑥𝑛

Now, we have a generating function that for which the coefficients are
𝑘-dimensional simplices in Δ(𝑟,𝑛−1). Similarly, we can multiply 𝐹𝑟,𝑘−1(𝑥) by
𝑥(𝑘 + 1)𝑟 to get

𝑥(𝑘 + 1)𝑟𝐹𝑟,𝑘−1(𝑥) = 𝑥(𝑘 + 1)𝑟
∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘 − 1]|𝑥𝑛

= (𝑘 + 1)𝑟
∞∑
𝑛=2
|Δ(𝑟,𝑛−1)[𝑘 − 1]|𝑥𝑛

which provides us with a generating function that counts the number of
(𝑘 − 1)-dimensional simplices in Δ(𝑟,𝑛−1). Motivated by (5.1), we define the
following equation for 𝐹𝑟,𝑘(𝑥):

𝐹𝑘,𝑟(𝑥) = 𝑥(𝑘 + 1)𝑟𝐹𝑟,𝑘−1(𝑥) + 𝑥(𝑟(𝑘 + 1) + 1)𝐹𝑟,𝑘(𝑥).

Solving for 𝐹𝑟,𝑘(𝑥) yields

𝐹𝑟,𝑘(𝑥) =
𝑥(𝑘 + 1)𝑟

1 − 𝑥(𝑟(𝑘 + 1) + 1)𝐹𝑟,𝑘−1(𝑥). (5.3)

Proposition 5.2. 𝐹𝑟,𝑘(𝑥) has non-recursive solution

𝐹𝑟,𝑘(𝑥) =
(
𝑘+1∏
𝑛=1

𝑟𝑛𝑥

1 − 𝑥(𝑟𝑛 + 1)

)
· 1

1 − 𝑥 . (5.4)
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Proof. Let |Δ(𝑟,𝑛)[−1] | be the number of length 0 trees in Γ(𝑟,𝑛). For all 𝑟, 𝑛,
|Δ(𝑟,𝑛)[−1] | = 1, where every marked point lies on one central component.
Note that this tree is not included in our construction of Δ(𝑟,𝑛) (there is no
such thing as a -1 degree simplex), but it provides a useful initial condition
for (5.3). Then, we can define

𝐹−1,𝑟(𝑥) =
∞∑
𝑛=0
|Δ(𝑟,𝑛)[−1]|𝑥𝑛

=

∞∑
𝑛=0

𝑥𝑛

=
1

1 − 𝑥
With this initial condition, we proceed with a proof by induction. For the
base case, let 𝑘 = 0. Then, from (5.3) we know

𝐹(𝑟,0)(𝑥) =
𝑥𝑟

1 − 𝑥(𝑟 + 1)𝐹𝑟,−1(𝑥)

=
𝑥𝑟

1 − 𝑥(𝑟 + 1) ·
1

1 − 𝑥

=

(
1∏
𝑛=1

𝑟𝑛𝑥

1 − 𝑥(𝑟𝑛 + 1)

)
· 1

1 − 𝑥 .

as desired. Thus, the base case holds. Assume that for 𝑘 = 𝑗, it holds that

𝐹𝑟, 𝑗(𝑥) =
(
𝑗+1∏
𝑛=1

𝑟𝑛𝑥

1 − 𝑥(𝑟𝑛 + 1)

)
· 1

1 − 𝑥 .

From (5.3), we know that

𝐹𝑟, 𝑗+1(𝑥) =
𝑥(𝑗 + 2)𝑟

1 − 𝑥(𝑟(𝑗 + 2) + 1)𝐹𝑟, 𝑗(𝑥)

=
𝑥(𝑗 + 2)𝑟

1 − 𝑥(𝑟(𝑗 + 2) + 1) ·
(
𝑗+1∏
𝑛=1

𝑟𝑛𝑥

1 − 𝑥(𝑟𝑛 + 1)

)
· 1

1 − 𝑥

=

(
𝑗+2∏
𝑛=1

𝑟𝑛𝑥

1 − 𝑥(𝑟𝑛 + 1)

)
· 1

1 − 𝑥

as desired. Thus, the inductive step holds and Proposition 5.2 holds for all 𝑟
and 𝑘. □
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5.2.2 Exponential Generating Function

Define the exponential generating function by

𝐹
exp
𝑟,𝑘
(𝑥) =

∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘]| 𝑥

𝑛

𝑛! . (5.5)

Similar to the "ordinary" generating function, the coefficients of 𝑥𝑛

𝑛! in this
power series represent the number of 𝑘-dimensional simplices in Δ(𝑟,𝑛).
Taking the integral of (5.5), we get∫

𝐹
exp
𝑟,𝑘
(𝑥)𝑑𝑥 =

∫ ∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘]| 𝑥

𝑛

𝑛! 𝑑𝑥

=

∞∑
𝑛=1

1
𝑛 + 1 |Δ

(𝑟,𝑛)[𝑘]| 𝑥
𝑛+1

𝑛!

=

∞∑
𝑛=1
|Δ(𝑟,𝑛)[𝑘]| 𝑥

𝑛+1

𝑛 + 1! .

Then, re-indexing, we get∫
𝐹

exp
𝑟,𝑘
(𝑥)𝑑𝑥 =

∞∑
𝑛=2
|Δ(𝑟,𝑛−1)[𝑘]| 𝑥

𝑛

𝑛! .

Similar to the process used with the ordinary generating function, we can
use these calculations to rewrite (5.1) in terms of the exponential generating
function as so:

𝐹
exp
𝑟,𝑘
(𝑥)𝑑𝑥 = 𝑟(1 + 𝑘)

∫
𝐹

exp
𝑟,𝑘−1(𝑥)𝑑𝑥 + (𝑟(𝑘 + 1) + 1)

∫
𝐹

exp
𝑟,𝑘
(𝑥)𝑑𝑥.

Differentiating both sides, we get

𝑑

𝑑𝑥
𝐹

exp
𝑟,𝑘
(𝑥) = 𝑟(𝑘 + 1)𝐹exp

𝑟,𝑘−1(𝑥) + (𝑟(𝑘 + 1) + 1)𝐹exp
𝑟,𝑘
(𝑥), (5.6)

which is a first-order differential equation.

Proposition 5.3. By solving the differential equation given by (5.6), we get

𝐹
exp
𝑟,𝑘
(𝑥) =

𝑘+1∑
𝑛=0
(−1)𝑘−𝑛+1

(
𝑘 + 1
𝑛

)
𝑒𝑛𝑟𝑥+𝑥 (5.7)

as a non-recursive solution for 𝐹exp
𝑟,𝑘
(𝑥).
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Proof. Let |Δ(𝑟,𝑛)[−1] | be the number of length 0 trees in Γ(𝑟,𝑛). For all 𝑟, 𝑛,
|Δ(𝑟,𝑛)[−1] | = 1, where every marked point lies on one central component.
Note that this tree is not included in our construction of Δ(𝑟,𝑛) (there is no
such thing as a -1 degree simplex), but it provides a useful initial condition
for (5.6). Then, we can define

𝐹
exp
𝑟,−1(𝑥) =

∞∑
𝑛=0
|Δ(𝑟,𝑛)[−1]| 𝑥

𝑛

𝑛!

=

∞∑
𝑛=0

𝑥𝑛

𝑛!

= 𝑒𝑥 .

We now proceed by induction. For the base case, let 𝑘 = 0. Additionally, for
simplicity of notation, let 𝑦 = 𝐹

exp
𝑟,0 = Then, we know from (5.7) that

𝑦′ = 𝑟𝑒𝑥 + (1 + 𝑟)𝑦.

We can solve this first-order differential equation using the integrating factor
method. Our integrating factor is

𝜇 = 𝑒
∫
−(1−𝑟)𝑑𝑥 = 𝑒−𝑟𝑥−𝑥 .

Multiplying through by 𝜇, we get

𝑒−(𝑟𝑥+𝑥)𝑦′ − 𝑒−(𝑟𝑥+𝑥)(1 + 𝑟)𝑦 = −𝑟𝑒−𝑟𝑥 .

Then, integrating both sides, we get∫
(𝑒−(𝑟𝑥+𝑥)𝑦′ − 𝑒−(𝑟𝑥+𝑥)(1 + 𝑟)𝑦)𝑑𝑥 =

∫
−𝑟𝑒−𝑟𝑥𝑑𝑥

𝑒−(𝑟𝑥+𝑥)𝑦 = 𝑒−𝑟𝑥 + 𝐶
𝑦 = 𝐶𝑒𝑟𝑥+𝑥 − 𝑒𝑥 .

To determine𝐶, we use the base case |Δ(𝑟,0)[𝑘] = 0. In our generating function,
𝑛 = 0 corresponds to the constant term, so when we plug in 𝑥 = 0 to 𝐹𝑟,𝑘(𝑥),
we should get 0. Thus,

0 = 𝐶 − 1,

so 𝐶 = 1. Then, we check

𝑦 = 𝑒𝑟𝑥+𝑥 − 𝑒𝑥 =
1∑
𝑛=0
(−1)1−𝑛

(
1
𝑛

)
𝑒𝑛𝑟𝑥+𝑥
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as desired, so the base case holds. Now, assume that for 𝑘 = 𝑗 − 1, it holds
that

𝐹𝑟, 𝑗−1(𝑥)exp =

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

)
𝑒𝑛𝑟𝑥+𝑥 .

Then, let 𝑘 = 𝑗. Again, for simplicity of notation, let 𝑦 = 𝐹
exp
𝑟, 𝑗

. The differential
equation for 𝑦 given by (5.6) is

𝑦′ = 𝑟(𝑗 + 1)
𝑗∑

𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

)
𝑒𝑛𝑟𝑥+𝑥 + (𝑟(𝑗 + 1) + 1)𝑦.

Again, we solve this using the integrating factor method. Our integrating
factor is

𝜇 = 𝑒−
∫
(𝑟(𝑗+1)+1)𝑑𝑥 = 𝑒−𝑥𝑟(𝑗+1)−𝑥 .

Multiplying through by 𝜇, we get

𝜇𝑦′ − 𝜇(𝑟(𝑗 + 1) + 1)𝑦 =

(
𝑟(𝑗 + 1)

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

)
𝑒𝑛𝑟𝑥+𝑥

)
𝑒−𝑥𝑟(𝑗+1)−𝑥 .

Then, integrating both sides,∫
(𝜇𝑦′ − 𝜇(𝑟(𝑗 + 1) + 1)𝑦) 𝑑𝑥 =

∫ (
𝑟(𝑗 + 1)

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

)
𝑒𝑛𝑟𝑥+𝑥

)
𝑒−𝑥𝑟(𝑗+1)−𝑥𝑑𝑥

𝑒−𝑟𝑥(𝑗+1)−𝑥𝑦 =

∫ (
𝑟(𝑗 + 1)

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

)
𝑒𝑛𝑟𝑥+𝑥

)
𝑒−𝑟𝑥(𝑗+1)−𝑥𝑑𝑥.

Because our sum is finite, we can swap the integral and the sum. We can
also pull 𝜇 into the sum since it does not depend on 𝑛. Then,

𝑒−𝑟𝑥(𝑗+1)−𝑥𝑦 = 𝑟(𝑗 + 1)
𝑗∑

𝑛=0

∫
(−1)𝑗−𝑛

(
𝑗

𝑛

)
𝑒𝑛𝑟𝑥−(𝑗+1)𝑥𝑑𝑥

= 𝑟(𝑗 + 1)
𝑗∑

𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

) ∫
𝑒𝑛𝑟𝑥−(𝑗+1)𝑥𝑑𝑥
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= 𝑟(𝑗 + 1)
𝑗∑

𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

)
1

𝑟𝑛 − 𝑟(𝑗 + 1) 𝑒
𝑛𝑟𝑥−(𝑗+1)𝑥 + 𝐶

=

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗

𝑛

)
𝑟(𝑗 + 1)

𝑟𝑛 − 𝑟(𝑗 + 1) 𝑒
𝑛𝑟𝑥−(𝑗+1)𝑥 + 𝐶

=

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
𝑒𝑛𝑟𝑥−(𝑗+1)𝑥 + 𝐶.

Multiplying each side by 𝑒𝑟𝑥(𝑗+1)+𝑥 , we get

𝑦 =

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
𝑒𝑛𝑟𝑥+𝑥 + 𝐶𝑒𝑟𝑥(𝑗+1)+𝑥 . (5.8)

To determine 𝐶, use the base case that |Δ(𝑟,0)[𝑘]| = 0. In our exponential
generating function, 𝑛 = 0 corresponds to the constant term, so when we
plug in 𝑥 = 0 to 𝐹exp

𝑟,𝑘
(𝑥), we should get 0. So,

0 =

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
+ 𝐶.

By the binomial theorem,

(−1 + 1)𝑗+1 =

𝑗+1∑
𝑛=0

(
𝑗 + 1
𝑛

)
(−1)𝑗+1−𝑛(1)𝑛

0 =

𝑗+1∑
𝑛=0

(
𝑗 + 1
𝑛

)
(−1)𝑗+1−𝑛 .

Dividing both sides by -1,

0 =

𝑗+1∑
𝑛=0

(
𝑗 + 1
𝑛

)
(−1)𝑗−𝑛

=

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
+

(
𝑗 + 1
𝑗 + 1

)
(−1)𝑗−𝑗+1

=

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
− 1.
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Thus, we have shown

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
+ 𝐶 =

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
− 1,

so 𝐶 = −1. Plugging this into 5.8, we get

𝑦 =

𝑗∑
𝑛=0
(−1)𝑗−𝑛

(
𝑗 + 1
𝑛

)
𝑒𝑛𝑟𝑥+𝑥 − 𝑒𝑟𝑥(𝑗+1)+𝑥

=

𝑗+1∑
𝑛=0
(−1)𝑗+1−𝑛

(
𝑗 + 1
𝑛

)
𝑒𝑛𝑟𝑥+𝑥

as desired. Thus, the inductive step holds, and Proposition 5.3 is true for all
𝑟 and 𝑘. □

5.3 Calculation of the Euler Characteristic

With a non-recursive solution for the exponential generating function of
|Δ(𝑟,𝑛)[𝑘]|, we are now ready to prove the Euler characteristic of Δ(𝑟,𝑛).
Remember that the formula for the Euler characteristic is

𝜒(Δ(𝑟,𝑛)) =
𝑛−1∑
𝑘=0
(−1)𝑘 |Δ(𝑟,𝑛)[𝑘]|.

In the previous sections, we defined an exponential generating function
𝐹

exp
𝑟,𝑘
(𝑥) for |Δ(𝑟,𝑛)[𝑘]|, so by taking the alternating sum of the coefficients

of 𝐹exp
𝑟,𝑘
(𝑥), we obtain an exponential generating function in which the

coefficients are the Euler characteristic of Δ(𝑟,𝑛) for given 𝑟 where 𝑛 increases
with each term. Let

𝐺
exp
𝑟 (𝑥) =

∞∑
𝑘=0
(−1)𝑘𝐹exp

𝑟,𝑘
(𝑥)

be this generating function.
We’ll first present a lemma that will be useful in our proof of the Euler

characteristic.

Lemma 5.1. Let 𝑢 = 𝑒𝑥 . Then,

𝐹
exp
𝑟,𝑘
(𝑥) = 𝑢(𝑢𝑟 − 1)𝑘+1.
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Proof. By the binomial theorem,

𝑢(𝑢𝑟 − 1)𝑘+1 =

𝑘+1∑
𝑛=0

(
𝑘 + 1
𝑛

)
(𝑢𝑟)𝑛(−1)𝑘+1−𝑛

=

𝑘+1∑
𝑛=0
(−1)𝑘+1−𝑛

(
𝑘 + 1
𝑛

)
(𝑢𝑟)𝑛 · 𝑢

=

𝑘+1∑
𝑛=0
(−1)𝑘+1−𝑛

(
𝑘 + 1
𝑛

)
(𝑢𝑟)𝑛 · 𝑢𝑟𝑛+1

= 𝐹
exp
𝑟,𝑘
(𝑥)

as desired. □

Theorem 5.1. The Euler characteristic of Δ(𝑟,𝑛) is given by

𝜒(Δ(𝑟,𝑛)) = 1 − (1 − 𝑟)𝑛 .

Proof. We calculate a non-recursive solution for 𝐺exp
𝑟 (𝑥). By lemma 5.1,

𝐺
exp
𝑟 (𝑥) =

∞∑
𝑘=0

𝑢(𝑢𝑟−1)𝑘+1

=
1

1 + (𝑢𝑟−1)
· 𝑢(𝑢𝑟−1)

=
𝑢(𝑢𝑟−1)
𝑢𝑟

.

Now, reversing our change of variables and replacing 𝑢 with 𝑒𝑥 , we get

𝑢(𝑢𝑟−1)
𝑢𝑟

=
𝑒𝑥(𝑒𝑟𝑥 − 1)

𝑒𝑟𝑥

=
𝑒𝑟𝑥+𝑥 − 𝑒𝑥

𝑒𝑟𝑥

= 𝑒𝑥 − 𝑒(1−𝑟)𝑥 .

Now, our conjecture is that 𝜒(Δ(𝑟,𝑛)) = 1 − (1 − 𝑟)𝑛 . This has exponential
generating function

∞∑
𝑛=0
(1 − (1 − 𝑟)𝑛)𝑥

𝑛

𝑛! = 𝑒(1−(1−𝑟))𝑥

= 𝑒𝑥 − 𝑒(1−𝑟)𝑥 .
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The exponential generating function for the Euler characteristic, 𝐺𝑟 , and the
exponential generating function for our conjectured result are equivalent.
Thus,

𝜒(Δ(𝑟,𝑛)) = 1 − (1 − 𝑟)𝑛

as desired. □



Chapter 6

Homotopy Type of Δ(𝑟,𝑛)

In this chapter, we provide a conjecture for the homotopy type for Δ(𝑟,𝑛).
While we will not prove this conjecture, we explore two possible proof
techniques: contractible subcomplexes and shellings.

Homotopy type is introduced in Chapter 1, but as a summary, it is
a property of topological spaces that provides insight into the space’s
general structure. If two spaces have the same homotopy type (i.e. they are
homotopy equivalent), we may continuously deform one space into the other
by compressing, dilating, and translating its parts, but without "cutting",
"gluing", or "ripping" its parts.

Definition 6.1. A homotopy between two continuous functions 𝑓 , 𝑔 from topo-
logical space 𝑋 to topological space 𝑌 is a continuous function ℎ : 𝑋 × [0, 1] such
that 𝐻(𝑥, 0) = 𝑓 (𝑥) and 𝐻(𝑥, 1) = 𝑔(𝑥) for all 𝑡 ∈ [0, 1].
Two topological spaces 𝑋 and 𝑌 are homotopy equivalent if there exists two
continuous maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 such that 𝑓 ◦ 𝑔 is homotopic to
the identity map on 𝑌 and 𝑔 ◦ 𝑓 is homotopic to the identity map on 𝑋.

Before presenting the conjecture on the homotopy type of Δ(𝑟,𝑛), we
introduce a few important definitions.

Definition 6.2. Let 𝑋 and 𝑌 be two topological spaces with points 𝑥0 and 𝑦0
respectively. The wedge sum of 𝑋 and 𝑌, denotes 𝑋 ∨𝑌, is the disjoint union of 𝑋
and 𝑌 where 𝑥0 is identified with 𝑦0, i.e.

𝑋 ∨ 𝑌 = (𝑋 ⊔ 𝑌)/∼

where 𝑥0 ∼ 𝑦0. In other words, the wedge sum of 𝑋 and 𝑌 obtained by gluing 𝑋
and 𝑌 together at a single point.
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This definition can be extended to any number of finite topological spaces.
Our conjecture for the homotopy type of Δ(𝑟,𝑛) involves the wedge sum

of spheres, also called a bouquet of spheres.

Example 6.1. Let 𝑋 and𝑌 both be circles. Then, 𝑋 ∨𝑌 is given by a figure-eight.

Figure 6.1 The wedge sum of two circles

Conjecture 6.1. The homotopy type of Δ(𝑟,𝑛) is a wedge sum of (𝑟 − 1)𝑛 spheres of
dimension 𝑛 − 1.

To gain some evidence for why this might be true, we can look at two
brief examples.

Example 6.2. Take Δ(2,2), which is isomorphic to 𝐶8, the cycle graph on eight
vertices. It is not too difficult to imagine how, by rounding out the edges, we could
continuously deform Δ(2,2) into the wedge sum of one sphere of degree 1 (i.e. a circle,
see figure 5.2).

Figure 6.2 Δ(2,2) is homotopy equivalent to the wedge sum of one circle.

Example 6.3. Consider Δ(3,2). This graph contains 4 cycles. We can imagine
continuously deforming Δ(3,2) to a bouquet of four one-dimensional spheres by
rounding out the edges and shrinking some of the edges until the four cycles meet
at a single point.

Additionally, our result for the Euler characteristic of Δ(𝑟,𝑛) provides
evidence that our conjecture of the number of spheres in the wedge sum is
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Figure 6.3 Δ(3,2) is homotopy equivalent to a wedge sum of four circles.

correct. Since it is a topological invariant, the Euler characteristic of Δ(3,2)
and the wedge sum of spheres of dimension (𝑛 − 1) should be equal.

Let𝑊𝑚,𝑘 denote the wedge sum of 𝑘 spheres of dimension𝑚. It is known
that 𝜒(𝑊𝑚,𝑘) = 1 + (−1)𝑚𝑘 (nLab authors (2024)). So, setting this (where
𝑚 = 𝑛 − 1) equal to our result for the Euler characteristic of Δ(𝑟,𝑛), we can
solve for 𝑘.

1 − (1 − 𝑟)𝑛 = 1 + (−1)𝑛−1𝑘

−(1 − 𝑟)𝑛 = (−1)𝑛−1𝑘

Multiplying both sides by -1,

(1 − 𝑟)𝑛 = (−1)𝑛𝑘

𝑘 =
(1 − 𝑟)𝑛
(−1)𝑛

= (𝑟 − 1)𝑛

Thus, we expect that the number of spheres in each wedge sum will be
(𝑟 − 1)𝑛 .

6.1 Approach 1: Contractible Subcomplexes

This approach is inspired by Robinson and Whitehouse (1996), who were
able to prove that the space of fully grown trees, 𝑇𝑛 , is homotopy equivalent
to a wedge sum of spheres of dimension 𝑛 − 3. This space is very closely
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related to Γ0,𝑛 ; in fact, 𝑇𝑛 � Γ0,𝑛+1, the set of dual graphs of curves in
ℳ0,𝑛+1. Robinson and Whitehouse prove this using the idea of contractible
subcomplexes.

Definition 6.3. A topological space is contractible if it is homotopy equivalent to
a point. In other words, the space can be continuously deformed to a single point.

Example 6.4. Consider topological spaces in that resemble the letters A and G. The
letter G is contractible because it could be continuously shrunk to a single point.
The letter A, however, is not contractible. Notice that, since A has a hole, we can
not continuously deform it to a single point without ripping points apart or gluing
points together to close the hole.

Robinson and Whitehouse defined subcomplexes of 𝑇𝑛 that were con-
tractible and proved that their union is either also contractible or empty,
Thus, the union of these contractible subcomplexes are also contractible, and
contracting this union leaves a space that is homotopy equivalent to a wedge
of spheres of dimension 𝑛 − 3.

Our conjectural approach for proving the homotopy type of Δ(𝑟,𝑛) using
contractible subcomplexes is the same. We want to 1) find contractible
subcomplexes of Δ(𝑟,𝑛), 2) prove that their non-empty intersections must also
be contractible, and 3) prove that when the union of those subcomplexes
are contracted, the result is homotopy equivalent to a wedge of spheres of
dimension 𝑛 − 1.

To find these contractible subcomplexes, we consider subsets of trees in
Γ(𝑟,𝑛) that are defined by a property that is closed under edge contraction.

Example 6.5. Consider Γ(3,2). Figure 5.3 shows the subset of seven trees for which
𝑧1

0 is on the same node as 𝑦1. We claim that this subset is closed under edge
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contraction, and that all of these trees can contract to tree 14 (as labeled in section
4.6.2).

Figure 6.4 The subset of Γ(3,2) for which 𝑧0
1 and 𝑦1 are on the same node.

Then, by assigning a metric to each of the edges in these trees, we can define a
function on this metric that will continuously deform each tree into tree 14. For
trees that are length two in this subset (e.g. tree 24 as shown in figure 6.5), assign
metric 𝑥 ∈ [0, 1] to the inside edge on each spoke and metric 1−𝑥 to the outside edge
on each spoke. Then, on interval 𝑡 ∈ [0, 1], we can continuously deform the inside
edges with 𝑥(1− 𝑡) and the outside edges with (1−𝑥)+ 𝑡𝑥. At time 𝑡 = 1, the inside
edges and outside edges will have their metric equal to zero and one respectively.
Recall from Definition 3.4 that we consider an edge with metric equal to zero to
be equivalent to that edge being contracted. Thus, tree 24 contracts to tree 14 as
desired.

Trees that are length one in this subset (e.g. tree 9 as labeled in figure 6.4),
are considered to be equivalent to length 2 trees for which one of the orbits of edges
is assigned a metric of zero. Thus, for tree 9, we can separate 𝑦𝑖 and 𝑧 𝑖1 from 𝑧 𝑖2
on each spoke with an edge with metric equal to zero. The inside edges are thus
assigned a metric of one. Then, similar to above, on the interval 𝑡 ∈ [0, 1], we can
continuously deform the inside edges with (1 − 𝑡) and the outside edges with 𝑡. At
time 𝑡 = 1,the inside edges and outside edges will have metric equal to zero and one
respectively. Thus, tree 9 contracts to tree 14 as desired (see figure 6.5).

Now, we know this subset of trees is contractible to tree 14, so their correspond-
ing simplices on Δ(3,2) must form a contractible subcomplex that contracts to the
vertex representing tree 14. This is shown in figure 6.6.
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Figure 6.5 Each tree in this subset can be contracted to tree 14.

Figure 6.6 A contractible subcomplex on Δ(𝑟,𝑛).

6.2 Approach 2: Shelling

We start this approach by introducing a few important definitions.

Definition 6.4. A 𝑘-dimensional simplicial complex is called pure if its maximal
simplices all have dimension 𝑘.

Definition 6.5. Let 𝑋 be a finite or countably infinite simplicial complex and let
𝐶1 , 𝐶2 , . . . be an ordering of the maximal simplicies of 𝑋. Then, this ordering is a
shelling if the complex

𝐵 𝑗 =

(
𝑗−1⋃
𝑖=1

𝐶𝑖

)
∩ 𝐶 𝑗

is pure and of dimension dim𝐶 𝑗−1 for all 𝑗 = 2, 3, . . . . If 𝐵 𝑗 is the entire boundary
of 𝐶 𝑗 , then 𝐶 𝑗 is called spanning.

A simplicial complex that admits a shelling is called shellable. It is known
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that if a simplicial complex is shellable, then it is homotopy equivalent to
a wedge sum of spheres (one for each spanning simplex of corresponding
dimension) (Francisco et al. (2014)). Thus, to find the homotopy type of
Δ(𝑟,𝑛) using this approach, we want to find a procedure that will produce a
shelling for any Δ(𝑟,𝑛).
Example 6.6. Consider Δ(3,2). Its maximal simplices are of dimension one (edges).
Figure 6.7 shows the edges labeled 𝐶1 through 𝐶18. We can see that for all 𝑗 =
1, . . . , 18, 𝐶 𝑗 either intersects the previously labeled edges at one vertex or two,
the latter of which makes 𝐶 𝑗 a spanning simplex. Either way, each 𝐵 𝑗 is a pure
simplicial complex, so this labeling admits a shelling.

Figure 6.7 The labelling of the edges of Δ(3,2) above admits a shelling.

There are multiple possible shellings for any given Δ(𝑟,𝑛).
Example 6.7. All of the labellings shown in figure 6.8 are shellings of Δ(𝑟,𝑛)
(in this figure, the 𝐶 is dropped and each maximal simplex is labeled with just a
number). The spanning simplices are highlighted. We see that for each, there are
four spanning simplices. Thus, as conjectured in Example 6.3, Δ(3,2) is homotopy
equivalent to a wedge sum of four spheres of dimension one (i.e. four circles).

We conjecture that it is sufficient that if the next maximal simplex you
label is adjacent to one that has already been labeled, then the resulting
labeling will be a shelling.
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Figure 6.8 Four shellings of Δ(3,2) with spanning simplices highlighted.

To get a procedural labeling of the maximal simplicies in Δ(𝑟,𝑛), one
approach we tried was to "swap" pairs of orbits on the maximal trees in
Γ(𝑟,𝑛). For example, in Γ2,3, consider the 2-simplex that corresponds to the
following length 3 tree to be 𝐶1.

Then, we can swap the components to which 𝑧 𝑖1 and 𝑧 𝑖2 are incident, resulting
in the following length three tree, whose corresponding two-simplex we
label as the next maximal simplex in our shelling 𝐶2.



Approach 2: Shelling 61

This kind of swapping and labeling procedure guarantees that 𝐶𝑖 and
𝐶𝑖+1 are adjacent simplices in Δ(𝑟,𝑛) which we conjectured above as being
sufficient for a shelling. Figure 6.7 shows the steps of a specific swapping
procedure we tried, in which we cycle through swapping the outer two
components, inner two components, and center two components. However,
this procedure ultimately did not work. Any labeling procedure needs to
hit all of the maximal simplicies before hitting repeats. Otherwise, some
maximal simplicies will never be labeled. This causes challenges when
complexes contain many cycles, as this kind of swapping procedure often
takes us around one of the cycles and we are forced to repeat a simplex
before covering them all.

Figure 6.9 Swapping procedure that results in adjacent simplicies.

For example, Δ(3,2) is a graph with no Eulerian path (i.e. a path that visits
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every edge exactly once with repeat visits to vertices allowed). Thus, the
swapping procedure described above will not work for Δ(3,2).

As of yet, we have not been able to find a procedural way to label the
maximal simplicies of Δ(𝑟,𝑛) such that 𝐶𝑖 and 𝐶𝑖+1 are always adjacent and
all maximal simplicies are covered.



Chapter 7

Future Work

In this chapter, discuss next steps for calculating the homotopy type and
leave you with some questions about Δ(𝑟,𝑛) that might be interesting to
explore in the future work.

7.1 Homotopy Type

The most immediate future work is to prove the conjecture of the homotopy
type of Δ(𝑟,𝑛) using one (or both) of the two methods presented in chapter 6.

If using the contractible subcomplexes approach, we need to find a way to
construct Δ(𝑟,𝑛) as a union of contractible subcomplexes for all 𝑟, 𝑛, such that
the intersection of these subcomplexes are either empty or also contractible.
Then, we will know Δ(𝑟,𝑛) is itself contractible, and must show it contracts to
a wedge sum of (𝑟 − 1)𝑛 spheres of dimension 𝑛 − 1.

With the shelling approach, any procedure that provides a valid shelling
for any 𝑟, 𝑛 (i.e. a sequence of adjacent maximal simplices in Δ(𝑟,𝑛) such that
each maximal simplex is covered once) will immediately prove the desired
result.

7.2 Other Interesting Questions

In addition to the Euler characteristic and homotopy type, there are a few
other characteristics of Δ(𝑟,𝑛) that would be interesting to investigate.
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7.2.1 Automorphism Group

Calculating the homotopy type of Δ(𝑟,𝑛) will provide a lot of information
about its general structure, but there are properties that we cannot learn
from its homotopy type. For example, what are the symmetries of Δ(𝑟,𝑛)?
This motivates future work into calculating the automorphism group of
Δ(𝑟,𝑛)

Definition 7.1. The automorphism group of some space 𝑋 is the group consisting
of automorphisms of𝑋. In other words, it is the group consisting of transformations
that map 𝑋 back to itself.

7.2.2 Flag Complex

Definition 7.2. A flag complex is a simplicial complex 𝑋 that is completely
determined by its 1-skeleton. In other words, the maximal simplicial complex that
the set of one-dimensional simplices outlines must be equivalent to 𝑋.

Example 7.1. In figure 7.1, simplicial complex 𝐴 is not a flag complex, but
simplicial complex 𝐵 is. We see that the maximal simplex outlined by the 1-skeleton
of 𝐴 is note equivalent to 𝐴. If this were the case, 𝐴 would contain two 2-simplicies
instead of just one.

Figure 7.1 Simplicial complex 𝐵 is a flag complex, while simplicial complex𝐴
is not.

It is known that Δ0,𝑛 is a flag complex (Giansiracusa, 2016). Can we
conclude the same thing about Δ(𝑟,𝑛)?

If Δ(𝑟,𝑛) is a flag complex, this could help calculate its automorphism
group, since the automorphism group of a flag complex is the same as the
automorphism group of its one-skeleton.
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