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Abstract

This thesis explores the connection between physics and machine learning by
using Restricted Boltzmann Machines (RBMs) to study the thermodynamic
properties of the Ising model. The Ising model is a simple but realistic
model that captures the magnetic behavior of a system, where spins occupy
a lattice of sites and different spin configurations correspond to different
energies. The model exhibits phase transitions between ferromagnetic and
paramagnetic phases as a function of temperature. RBMs are two-layered
neural networks that can learn probability distributions over binary spins.

The study generates 2D Ising model data at different temperatures using
Monte Carlo simulations, including the Metropolis algorithm and the Wolff
algorithm. RBMs are trained on this data and validated by studying the
learned weights and filters. We then use the trained RBMs to generate new
Ising configurations. The quality of the RBM-generated configurations is
assessed by comparing their probability distributions to those of the original
configurations using the Wasserstein distance, a measure from optimal
transport theory.

Interestingly, the Wasserstein distance between the generated and original
configurations shows an unexpected trend, with lower values around the
critical temperature and a sharp dip at 𝑇 = 2.0. This suggests that the RBM
is able to capture important features of the Ising model’s thermodynamics,
particularly near the phase transition. The next steps are to further investigate
this finding, such as exploring the learned features in the RBM’s hidden layer
and generating configurations with more hidden units. Overall, this work
demonstrates a promising approach for connecting physics and machine
learning to gain insights into complex systems.
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Chapter 1

Introduction

Imagine a tiny, mythical creature sitting in front of a simple machine with
a button and a clock. Every minute as the clock ticks, the creature faces
a simple yet important choice, as we will see later: to press the button or
not. If it presses the button, the machine outputs 1. If it doesn’t press the
button, the machine outputs 0. Now, if we give it a few hours, the outputs
of the machine will form a sequence of 0’s and 1’s. In a particular case, the
sequence of outputs is

{0, 1, 1, 0, 0, . . . }

After a few days of meticulous button-pressing, the creature arranges the
outputs into a 10 × 10 matrix with 1’s colored black and 0’s left blank. It
reveals this extraordinary image, which looks like a cat!

This may seem like a mundane task, but we will think a bit deeper to see
that it is not. Imagine there are 𝑁 pixels in the image. Before the creature
starts pressing or not pressing the button, each can be either 0 or 1. This
means that there are 2𝑁 possible images. Thus, much like the legendary
Maxwell’s demon, this creature needs to extract meaningful information
from a sea of randomness, a concept at the heart of both statistical physics
and machine learning.

Statistical physics focuses on understanding how simple principles give
rise to complex behaviors. Similarly, machine learning involves creating
algorithms that recognize patterns from data. Advances in one of these areas
often enrich the other, as they are bound together through common ideas.
In this thesis, we explore the dynamics of two frameworks that lie at the
intersection of statistical physics and machine learning: the Ising model and
a type of neural network called the Restricted Boltzmann Machine (RBM).
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Figure 1.1 A binary image created on a 10 × 10 lattice.

1.1 The Ising Model

In his 1924 doctoral thesis, German physicist Ernst Ising proposed the
Ising model — one of the first models in statistical physics that aimed to
understand complex physical phenomena by simplifying the system as
much as possible. The original purpose of the Ising model was to study
phase transitions in magnetic materials. For this thesis, we will focus on the
mathematical construction of the model.

The Ising model consists of "spin" variables, 𝑠, that occupy a lattice of
𝑁 sites. For any given site 𝑖 on the lattice where 𝑖 ∈ {1, 2, . . . , 𝑁}, the spin
variable at that site is denoted by 𝑠𝑖 . The Ising model allows the spins to
orient in only two directions: up or down. We assign the upward spin with
a value of +1 and the downward spin with a value of −1. Thus, the Ising
spin variables are:

𝑠𝑖 = ±1.

A spin configuration {𝑠𝑖} of an Ising model is a specific assignment of +1
and −1 to each of the 𝑁 lattice sites. For a lattice of 𝑁 sites, the total number
of possible spin configurations is 2𝑁 . An example of a spin configuration is
shown in Figure 1.2.

To see how the Ising model captures the magnetic behaviors of a sys-
tem, we need to introduce interactions between the spin variables. These
interactions will result in different spin configurations, producing different
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Figure 1.2 An example of an Ising model configuration. The spin variable
assigned to a lattice site is either upward (indicated by green plus signs), 𝑠𝑖 = +1,
or downward (indicated by red minus signs), 𝑠𝑖 = −1.

energies. In statistical physics, the energy of a system is quantified by the
Hamiltonian. For the Ising model, 𝐻({𝑠𝑖}) is the Hamiltonian of a spin
configuration {𝑠𝑖}. We are mainly concerned with two kinds of interactions
between the spin variables, and they each contribute to a term in 𝐻({𝑠𝑖}).

First, neighboring spins affect each other. This phenomenon is analogous
to the attracting and repelling of two magnets put together. Neighboring
spins will either tend to align or anti-align. For each pair of neighboring
spins, 𝑠𝑖 and 𝑠 𝑗 , we introduce an interaction strength 𝐽𝑖 𝑗 that characterizes
their interaction. Thus, interactions between neighboring spins introduce a
term in the Hamiltonian:

𝐻({𝑠𝑖}) = −
∑
𝑖 𝑗

𝐽𝑖 𝑗𝑠𝑖𝑠 𝑗 .

Here, the minus sign ensures that the spin configuration that minimizes the
energy is preferred.

The second type of interaction is between a spin and an external magnetic
field 𝐵. The external magnetic field affects each spin independently, and
each spin will try to align with the field. Summing over the spins, we obtain
the Ising Hamiltonian with a second term:

𝐻({𝑠𝑖}) = −
∑
𝑖 𝑗

𝐽𝑖 𝑗𝑠𝑖𝑠 𝑗 − 𝐵
∑
𝑖

𝑠𝑖 .
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1.2 Probabilities in the Ising Model

Now that we have the Hamiltonian that quantifies the energy of every
assignment of +1 and −1 to the spin variables, how do we use it to describe
the dynamics of a physical system? In statistical physics, the Hamiltonian is
closely related to the probabilities of different states of the system.

1.2.1 The Boltzmann Factor

In the Ising model, the probability that a given spin configuration {𝑠𝑖}
occurs is proportional to the exponential of −𝐻({𝑠𝑖}). Mathematically, at
temperature 𝑇

𝑃({𝑠𝑖}) ∝ 𝑒
−𝐻({𝑠𝑖 })
𝑘𝐵𝑇 .

Here, 𝑃({𝑠𝑖}) is the probability of the spin configuration {𝑠𝑖}. The exponential

𝑒
−𝐻({𝑠𝑖 })
𝑘𝐵𝑇 is called the Boltzmann factor, where 𝑘𝐵 ≈ 1.38 × 10−23𝐽 · 𝐾−1 is the

Boltzmann constant.
To understand the physical intuition behind this relationship, we can

think of the Boltzmann factor as a measurement of "likelihood." Fundamen-
tally, nature prefers states with lower energy. For instance, we are more
likely to find a ball sitting at the bottom of a slope than lying halfway on the
slope. In the Ising model, a configuration with lower energy (where spins
are more aligned) is more stable and thus more likely to occur than one with
higher energy. Even small changes in energy can result in significant differ-
ences in likelihood. However, the temperature is a randomizing factor that
affects the distribution of states. At higher temperatures, the value of 𝑘𝐵𝑇 is
larger, which means that the exponential term becomes less sensitive to the
differences in energy between states. In other words, higher temperatures
introduce more randomness into the system, allowing it to explore a wider
range of states. Therefore, the exponential nature of the Boltzmann factor
captures this relationship well.

1.2.2 The Partition Function

To convert the expression above to equality, we introduce another essential
property in statistical mechanics: the partition function, 𝑍. The partition
function is the sum of the Boltzmann factors for all states of the system. For
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the Ising model, the partition function is

𝑍 =
∑
{𝑠𝑖}

𝑒
−𝐻({𝑠𝑖 })
𝑘𝐵𝑇 .

The probability of the spin configuration {𝑠𝑖} is

𝑃({𝑠𝑖}) =
𝑒

−𝐻({𝑠𝑖 })
𝑘𝐵𝑇

𝑍
.

We can think of the partition function as a normalization factor, which gives
us normalized probabilities.

1.3 Neural Networks

Now that we have introduced the Ising model, we will transition to introduce
its counterpart in deep learning, which is a subfield of machine learning
based on neural networks. We will start by getting a sense of what neural
networks are.

Modeled loosely after the human brain, neural networks are algorithms
designed to recognize patterns in data. The basic building blocks of neural
networks are neurons. These are individual nodes in the networks that
receive an input and produce an output. A neural network is simply
a collection of neurons arranged into layers. Each neuron in a layer is
connected to neurons in the layers before and after. The first layer that
receives the data is called the input layer, while the last layer that delivers
the final output is called the output layer. The layers between the input layer
and the output layer are the hidden layers. Figure 1.3 is an example of a
neural network with three layers.

How does a neural network learn to recognize patterns in data, such
as images of dogs? It is trained on a dataset of many pictures of cats and
non-cats. When these pictures are input into the neural network, they are
passed from one layer to the next. In this process, each neuron assigns a
weight to its input. At first, the guesses are random. However, the weights
are adjusted later based on the error of previous guesses, producing more
accurate predictions.
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Input Layer

Hidden Layer

Output Layer

Figure 1.3 Diagram of a neural network. The layer with neurons colored red
is the input layer that receives data, while the layer colored blue is the hidden
layer. The layer colored green is the output layer, which delivers the final output.

1.4 Restricted Boltzmann Machines

A type of neural network that has been used extensively to study the Ising
model is the Restricted Boltzmann Machine (RBM). The RBM itself is not a
deep neural network but can be stacked to build deep models. As shown in
Figure 1.4, an RBM consists of two layers of nodes — a visible layer and a
hidden layer.

RBMs are energy-based models. This means that the state of an RBM
is characterized by an energy function akin to the Hamiltonian of physical
systems. We use {ℎ𝑖} to denote the hidden units and {𝑣 𝑗} to denote the
binary data in the visible layer. Therefore, the energy function that models
the interactions between the visible and hidden layers is

𝐸({𝑣 𝑗}, {ℎ𝑖}) = −
∑
𝑗

𝑏 𝑗𝑣 𝑗 −
∑
𝑖

𝑐𝑖ℎ𝑖 −
∑
𝑖 𝑗

ℎ𝑖𝑊𝑖 𝑗𝑣 𝑗 ,

where 𝑏 𝑗 , 𝑐𝑖 , and𝑊𝑖 𝑗 are real-valued, learnable parameters of the model.
Similar to the definition in Section 1.2.2, the probability distribution of a

system with visible units {𝑣 𝑗} and hidden units {ℎ𝑖} is given by

𝑃({𝑣 𝑗}, {ℎ𝑖}) =
𝑒−𝐸({𝑣 𝑗},{ℎ𝑖})

𝑍
,
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Visible Units Hidden Units

Figure 1.4 Restricted Boltzmann Machines (RBMs) are a class of neural net-
works with two layers - the visible layer and the hidden layer. The units (nodes)
across layers are connected, but no two units in the same layer are connected,
which puts the restriction in an RBM.

where the partition function of the RBM is

𝑍 =
∑

{𝑣 𝑗},{ℎ𝑖}
𝑒−𝐸({𝑣 𝑗},{ℎ𝑖}) ,

analogous to the partition function.
Note that the energy-based formulation of RBMs has a striking resem-

blance to the Hamiltonian of the Ising model. In this analogy, the visible
units of the RBM can be interpreted as the spins in the Ising model, taking on
binary values that represent the state of each site in the lattice. The hidden
units, on the other hand, capture the complex interactions and correlations
between the visible units, akin to the coupling term in the Ising Hamiltonian.
This correspondence suggests that RBMs have the potential to learn and
represent the intricate statistical dependencies present in the Ising model
configurations. By training RBMs on Ising model data, we aim to leverage
the representational power of these energy-based models to gain insights
into the collective behavior of the Ising model, opening up new avenues for
the study of phase transitions and critical phenomena in statistical physics.
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1.5 Overview

As summarized by Gu and Zhang (2022), it has been shown that with suffi-
cient hidden units, RBMs can encode the Boltzmann distribution, construct
the thermodynamic behaviors, and generate new configurations of an Ising
model of small systems. However, the mechanism of RBMs’ learning process
has yet to be fully explored.

This thesis aims to numerically study the RBM learning of the Ising
model of a bigger two-dimensional system. Specifically, we demonstrate
the RBM’s effectiveness in learning and generating configurations of the 2D
Ising model at different temperatures in Chapter . In Chapter, we investigate
how RBM-generated configurations capture the critical behavior and phase
transitions of the Ising model. Finally, in Chapter , we use a mathematical
framework called Optimal Transport as a metric to assess the quality of the
RBM-generated Ising configurations.



Chapter 2

Background

As a fundamental model in statistical physics, the Ising model has been
extensively studied for its ability to capture the essential features of phase
transitions and critical phenomena. In this chapter, we dive into the statistical
mechanics of the Ising model and the training and sampling procedures of
RBMs.

2.1 Statistical Thermodynamics of the Ising Model

The Ising model captures the magnetic behaviors of systems, which is highly
dependent on temperatures. In a nutshell, in such a magnetic system with
up-spins and down-spins, up-spins want to be near up-spins, and down-
spins want to be near down-spins. At high temperatures, the spins in the
system are equally likely to be up and down. At low temperatures, the spins
are either mostly up or mostly down. In this section, we will formalize the
statistical mechanics of the Ising model.

2.1.1 Thermodynamic Properties of the Ising Model

As introduced above, temperature plays a crucial role in determining the
system’s behavior and the probability of different spin configurations of the
Ising model. Recall that the energy of an Ising configuration {𝑠𝑖} is given by
the Hamiltonian

𝐻({𝑠𝑖}) = −
∑
𝑖 𝑗

𝐽𝑖 𝑗𝑠𝑖𝑠 𝑗 − 𝐵
∑
𝑖

𝑠𝑖 .
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For simplicity, we only consider the neighboring spin interactions for our
2D Ising model. Then our Ising Hamiltonian is

𝐻({𝑠𝑖}) = −
∑
𝑖 𝑗

𝐽𝑖 𝑗𝑠𝑖𝑠 𝑗 (2.1)

where 𝐽 is the interaction strength between neighboring spins. In 1.2.2, we
also mentioned the probability of the spin configuration {𝑠𝑖} is

𝑃({𝑠𝑖}) =
𝑒

−𝐻({𝑠𝑖 })
𝑘𝐵𝑇

𝑍

where 𝑍 is the partition function given by

𝑍 =
∑
{𝑠𝑖}

𝑒
−𝐻({𝑠𝑖 })
𝑘𝐵𝑇 .

Thus, given temperature 𝑇, the mean energy of the system is

⟨𝐸⟩ =
∑
{𝑠𝑖}

𝑃({𝑠𝑖})𝐻({𝑠𝑖}) =
∑

{𝑠𝑖} 𝐻({𝑠𝑖})𝑒
−𝐻({𝑠𝑖 })
𝑘𝐵𝑇

𝑍𝑇
. (2.2)

Similarly, we have

⟨𝐸2⟩ =
∑
{𝑠𝑖}

𝑃({𝑠𝑖})𝐻2({𝑠𝑖}) =
∑

{𝑠𝑖} 𝐻
2({𝑠𝑖})𝑒

−𝐻({𝑠𝑖 })
𝑘𝐵𝑇

𝑍𝑇
. (2.3)

For an infinitesimal increase in temperature, the increase in the mean energy
is given by the specific heat 𝑐𝑉 , which is

𝑐𝑉 =
𝛽2

𝑁

(
⟨𝐸2⟩ − ⟨𝐸⟩2

)
(2.4)

where we defined 𝛽 = 1
𝑘𝐵𝑇

. The entropy is defined by the Gibbs entropy
equation:

𝑆 = −𝑘𝐵⟨ln(𝑃({𝑠𝑖})⟩ = −𝑘𝐵
∑
{𝑠𝑖}

𝑃({𝑠𝑖}) ln𝑃({𝑠𝑖}). (2.5)

At low temperatures, configurations with neighboring spins aligned in
the same direction are favored to minimize the system’s energy. This leads to
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an ordered ferromagnetic phase, characterized by a non-zero magnetization,
as shown by Kramers and Wannier (1941). The magnetization per spin is

⟨𝑚⟩ = 1
𝑁

〈
𝑁∑
𝑖=1

𝑠𝑖

〉
(2.6)

where 𝑁 is the total number of spins in the system.
On the other hand, at high temperatures, thermal fluctuations become

more significant. The system is in a disordered paramagnetic phase, where
spins are randomly oriented, and the magnetization vanishes. Next, we will
explore this fascinating transition.

2.1.2 Phase Transitions and Critical Phenomena

In statistical physics, phase transitions occur when the system undergoes a
sudden change in its macroscopic properties as a function of temperature.
For the Ising model, the phase transition occurs between a ferromagnetic
phase, characterized by a non-zero magnetization, and a paramagnetic
phase, where the magnetization vanishes.

We see that the magnetization

𝑚 =
1
𝑁

𝑁∑
𝑖=1

𝑠𝑖 (2.7)

is the order parameter that distinguishes the two phases. In the ferromagnetic
phase, below a critical temperature 𝑇𝑐 , the spins tend to align in the same
direction, resulting in a non-zero magnetization. The system exhibits
long-range order, where the spins are correlated over large distances.

As the temperature increases and approaches the critical temperature,
the magnetization decreases. Finally, at the critical temperature, the system
undergoes a continuous phase transition, and the magnetization vanishes.
Fisher (1967) has shown that near the critical point, the magnetization follows
a power-law scaling:

𝑚 ∼ (𝑇𝑐 − 𝑇)𝛽 (2.8)

for𝑇 < 𝑇𝑐 , where 𝛽 is the critical exponent associated with the magnetization.
This emergence of power-law behaviors of certain physical quantities is called
critical phenomena.
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One such quantity is the correlation length 𝜉, which measures the
distance over which the spins are correlated. Near the critical point, the
correlation length diverges as

𝜉 ∼ |𝑇 − 𝑇𝑐 |−𝜈 (2.9)

where 𝜈 is the critical exponent associated with the correlation length, as
shown in Cardy (1996).

2.2 Training RBMs

In 1.4, we introduced the basic structure and formalism of the Restricted
Boltzmann Machine (RBM). In the following section, we will delve into the
architecture of an RBM in more detail, with a focus on the training process.

2.2.1 Sampling Procedures

For an RBM with 𝑛ℎ hidden units and 𝑛𝑣 visible units, we can encode
the two layers with state vectors. The hidden layer corresponds to the
vector h = [ℎ1 , ℎ2 , . . . , ℎ𝑛ℎ ]𝑇 , while the visible layer corresponds to v =

[𝑣1 , 𝑣2 , . . . , 𝑣𝑛𝑣 ]𝑇 . Thus, the total energy of the RBM is given by

𝐸(v, h) = −b𝑇v − c𝑇h − h𝑇Wv. (2.10)

Note that this is the vectorized version of the energy equation we saw in
1.4. Here, b = [𝑏1 , 𝑏2 , . . . , 𝑏𝑛𝑣 ]𝑇 is the visible bias, and c = [𝑐1 , 𝑐2 , . . . , 𝑐𝑛ℎ ]𝑇 is
the hidden bias. The weight matrix W encodes the connection between the
visible and hidden units. The energy function measures the compatibility
between the visible and hidden units, with lower energy configurations
being more probable.

One of the key properties of RBMs is the conditional independence of
the visible and hidden units given the state of the other layer, which allows
for efficient inference and sampling. Since there are no direct connections
between visible units in an RBM, we can easily get an unbiased sample of
the state of a visible unit from a given h:

𝑃(𝑣𝑖 = 1|h) = 𝜎(𝑏 𝑗 +
𝑛ℎ∑
𝑗=1

𝑤𝑖 𝑗ℎ 𝑗) (2.11)
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where the sigmoid function is 𝜎(𝑧) = 1
1+𝑒−𝑧 . Similarly, the conditional

probability to generate h from v is

𝑃(ℎ 𝑗 = 1|v) = 𝜎(𝑐𝑖 +
𝑛𝑣∑
𝑖=1

𝑤𝑖 𝑗𝑣𝑖). (2.12)

See Appendix B for detailed derivation.

2.2.2 Loss Function

The training objective of an RBM is to maximize the likelihood of the
observed data under the model’s probability distribution. Given a dataset
𝒟 = [v(1) , . . . , v(𝑀)] consisting of 𝑀 independent samples, the loss function
is the log-likelihood of the data, given by

ℒ(𝜃) = 1
𝑀

𝑀∑
𝑛=1

ln𝑃(v(𝑛);𝜃) (2.13)

where 𝜃 = {𝑊, a, b} represents the model parameters (weights and biases)
and 𝑃(v;𝜃) is the marginal probability of the visible units, obtained by
summing over all possible configurations of the hidden units:

𝑃(v;𝜃) = 1
𝑍(𝜃)

∑
h

𝑒−𝐸(v,h;𝜃) (2.14)

where the partition function is defined as

𝑍(𝜃) =
∑

v

∑
h

𝑒−𝐸(v,h;𝜃). (2.15)

The gradient of ℒ(𝜃) is given by

∇𝜃ℒ(𝜃) = ⟨∇𝜃ℰ(v)⟩𝑑𝑎𝑡𝑎 − ⟨∇𝜃ℰ(v)⟩𝑚𝑜𝑑𝑒𝑙 (2.16)

where ℰ(v) is the effective energy for visible state v. See Appendix B for
detailed derivation of ℰ(v).

Note computing the exact gradient is intractable due to the exponential
number of terms in the partition function 𝑍(𝜃), except for very small systems
(see Oh et al. (2020)). Therefore, approximate training methods, such as
contrastive divergence (CD), are often used to approximate the gradient.
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2.2.3 Contrastive Divergence (CD)

The learning process of RBMs involves adjusting the weights and biases to
minimize the difference between the true data distribution and the model’s
learned distribution. The most common learning algorithm for RBMs is the
contrastive divergence (CD) algorithm, which approximates the gradient by
replacing the expectation over the model distribution with samples obtained
after a limited number of Gibbs sampling steps, starting from the data
samples.

As demonstrated by Hinton (2012), the CD algorithm uses Gibbs sam-
pling to start from the visible units, update the hidden units based on
the conditional probabilities, and then reconstruct the visible units. Gibbs
sampling is a Markov chain Monte Carlo (MCMC) method that samples from
the joint distribution of the visible and hidden units by iteratively sampling
from the conditional distributions. In the context of RBMs, Gibbs sampling
alternates between sampling the hidden units given the visible units and
sampling the visible units given the hidden units. This process allows the
RBM to generate samples that approximate the learned distribution.

The CD algorithm starts by setting the visible units to a training example
v. Then, it performs one or a few steps of Gibbs sampling to obtain samples
from the model distribution. The sampling steps are based on the conditional
probability distributions specified by Eq. 2.11 and Eq. 2.12.

After obtaining the samples from the model distribution, the weights
and biases are updated based on the difference between the expectations
under the data and model distributions:

Δ𝑤𝑖 𝑗 = 𝜖(⟨𝑣𝑖ℎ 𝑗⟩𝑑𝑎𝑡𝑎 − ⟨𝑣𝑖ℎ 𝑗⟩𝑚𝑜𝑑𝑒𝑙) (2.17)

where 𝜖 is the learning rate, ⟨𝑣𝑖ℎ 𝑗⟩𝑑𝑎𝑡𝑎 represents the expectation under
the data distribution, and ⟨𝑣𝑖ℎ 𝑗⟩𝑚𝑜𝑑𝑒𝑙 represents the expectation under the
model distribution obtained after a few steps of Gibbs sampling.

2.3 Optimal Transport in Machine Learning

Optimal Transport (OT) is a mathematical framework for comparing and
manipulating probability distributions. As summarized by Peyré and Cuturi
(2020), OT has been applied in various fields, including machine learning,
computer vision, and signal processing. In this section, we will introduce
the concept of Optimal Transport and its applications in machine learning,
focusing on the Wasserstein distance and its properties.
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Figure 2.1 Illustration of Optimal Transport. The goal of Optimal Transport
is to find a transportation plan 𝛾 that minimizes the cost of transporting mass
from 𝜇 to 𝜈.

2.3.1 Optimal Transport (OT)

Imagine we have a pile of sand. Our task is to transform the pile of sand into
a different shape, such as a castle, by moving the sand in the most efficient
way possible, as illustrated by Figure 2.1. The efficiency is measured by the
total amount of work required to move the sand, which depends on the
amount of sand being moved and the distance it needs to travel.

Now, let’s think of the piles of sand as probability distributions. The
goal of Optimal Transport is to find the most efficient way to redistribute
the probability from one distribution to another, minimizing the total cost
of transportation. More formally, given two probability measures 𝜇 and 𝜈
defined on measurable spaces 𝒳 and 𝒴, respectively, the goal of Optimal
Transport is to find a transportation plan 𝛾 that minimizes the cost of
transporting mass from 𝜇 to 𝜈. The cost of transportation is defined by a cost
function 𝑐 : 𝒳 ×𝒴 → ℝ+, where 𝑐(𝑥, 𝑦) represents the cost of transporting a
unit of mass from 𝑥 to 𝑦.

The set of all transportation plans between 𝜇 and 𝜈 is denoted as Π(𝜇, 𝜈),
which consists of all joint probability measures on 𝒳 ×𝒴 with marginals 𝜇
and 𝜈. Formally, Π(𝜇, 𝜈) is defined as:

Π(𝜇, 𝜈) = {𝛾 ∈ 𝒫(𝒳 ×𝒴)|𝜋1#𝛾 = 𝜇,𝜋2#𝛾 = 𝜈} (2.18)
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where 𝒫(𝒳 ×𝒴) denotes the set of all probability measures on 𝒳 ×𝒴, and
𝜋1#𝛾 and 𝜋2#𝛾 are the marginal measures of 𝛾 obtained by the projection
maps 𝜋1 : 𝒳 ×𝒴 → 𝒳 and 𝜋2 : 𝒳 ×𝒴 → 𝒴, respectively.

The Optimal Transport problem can be formulated as:

inf
𝛾∈Π(𝜇,𝜈)

∫
𝒳×𝒴

𝑐(𝑥, 𝑦), 𝑑𝛾(𝑥, 𝑦) (2.19)

where the infimum is taken over all transportation plans 𝛾 in Π(𝜇, 𝜈), and
the objective is to find the plan that minimizes the total transportation cost.
See Santambrogio (2015) for detailed derivations.

2.3.2 Wasserstein Distance

When the cost function 𝑐 is a metric on the space 𝒳 = 𝒴, the Optimal
Transport problem gives rise to the Wasserstein distance (also known as
the Earth Mover’s distance by Rubner et al. (2000)). For two probability
measures 𝜇 and 𝜈 on a metric space (𝒳 , 𝑑), the Wasserstein distance between
𝜇 and 𝜈 is defined as:

𝑊(𝜇, 𝜈) = inf
𝛾∈Π(𝜇,𝜈)

∫
𝒳×𝒳

𝑑(𝑥, 𝑦), 𝑑𝛾(𝑥, 𝑦). (2.20)

The Wasserstein distance quantifies the minimum cost of transforming
one probability distribution into another, taking into account the underlying
metric structure of the space. Ambrosio et al. (2005) have shown that the
Wasserstein distance is sensitive to the geometry of the underlying space,
capturing both the similarity in mass and the distance between the supports
of the distributions.

2.3.3 Applications in Machine Learning

Optimal Transport (OT) and the Wasserstein distance have numerous applica-
tions in machine learning, offering a powerful framework for comparing and
manipulating probability distributions. These tools have been particularly
useful in unsupervised learning tasks, where the goal is to learn meaningful
representations and capture the underlying structure of the data without
explicit labels.

In the specific context of studying the Ising model with machine learning
techniques, OT and the Wasserstein distance can be particularly useful.
Specifically, OT and the Wasserstein distance can serve as valuable tools
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for assessing the quality of the learned representations. By comparing the
Wasserstein distance between the generated samples from the trained model
and the true Ising model configurations, we can evaluate how well the RBM
captures the statistical properties and critical behavior of the Ising model.

2.4 Related Literature

Analytical results of the mean energy, specific heat capacity, and magneti-
zation for the 2D Ising model have been derived by Kramers and Wannier
(1941) and Yang (1952), as summarized in Appendix A. The study of phase
transitions and critical phenomena in the Ising model has been a major focus
of statistical physics research. Exact solutions for the one-dimensional and
two-dimensional Ising models, as in Onsager (1944), have provided valuable
insights into the nature of phase transitions.

The energy-based formulation of RBMs shares similarities with the
Hamiltonian of the Ising model. Mehta and Schwab (2014) have found
that visible units can be seen as analogous to the spins in the Ising model,
while the hidden units capture the higher-order interactions and correlations
between the visible units. This connection has motivated the use of RBMs
to study the Ising model and its phase transitions, such as the work of
Morningstar and Melko (2017), as the RBM can learn to represent the
statistical dependencies present in the Ising model configurations.

The applications of OT and the Wasserstein distance extend beyond the
study of the Ising model. As shown by Kolouri et al. (2017), these tools have
been successfully applied to a wide range of machine learning problems,
including domain adaptation, transfer learning, and distributionally robust
optimization.





Chapter 3

Methods

This chapter presents the methodology used by Restricted Boltzmann Ma-
chines (RBMs) to study the Ising model and its critical behavior. We begin by
describing the process of generating 2D Ising model datasets using Monte
Carlo simulations, specifying the dataset parameters and specifications.
Next, we discuss the training of the RBM, including its architecture, hy-
perparameters, and the optimization procedure used. We also outline the
process of generating new configurations from the trained RBM, which will
be crucial for evaluating the model’s performance.

To assess the quality of the generated configurations and the RBM’s
ability to capture the Ising model’s critical behavior, we use the Wasserstein
distance as a metric based on Optimal Transport (OT). This metric provides
insights into the RBM’s performance across different temperature ranges.
We also discuss the comparison of the Wasserstein distance with other
evaluation metrics to validate our findings. By following this methodology,
we aim to systematically investigate the effectiveness of RBMs in modeling
the Ising model and gain new insights into its critical behavior.

3.1 Generating 2D Ising Datasets

To train the RBM and evaluate its performance in modeling the Ising model,
we first need to generate a dataset of 2D Ising model configurations at various
temperatures. In this section, we discuss the process of generating these
datasets using Monte Carlo simulations, namely the Metropolis algorithm
and the Wolff algorithm, which is known for its efficiency in sampling
near the critical temperature. By carefully designing the dataset generation
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process, we ensure that the RBM is trained on a representative set of Ising
model configurations, allowing it to learn the underlying statistical properties
and critical behavior of the model.

3.1.1 Metropolis Algorithm

To generate 2D Ising model configurations, we employ Monte Carlo simula-
tions, which are widely used in statistical physics to sample from complex
probability distributions (see Newman and Barkema (1999) for details). For
temperatures far from the critical point, we use the local Metropolis algo-
rithm. The Metropolis algorithm is a Monte Carlo method for sampling from
a probability distribution, and it is particularly useful when the distribution
is known up to a normalization constant, as is the case with the Boltzmann
distribution in the Ising model.

The Metropolis algorithm works as follows:

1. Start with an initial Ising configuration {𝑠𝑖}

2. Randomly pick a site 𝑖 and attempt to flip the spin at that site by
𝑠𝑖 → −𝑠𝑖

3. Calculate the change in energy Δ𝐸 caused by the proposed flip: Δ𝐸 =

2𝐽𝑠𝑖
∑
𝑗∈nn(𝑖) 𝑠 𝑗 where nn(𝑖) denotes the nearest neighbors of site 𝑖

4. Accept the flip with probability: 𝑃accept = min{1, 𝑒−𝛽Δ𝐸} and update
the configuration if accepted

5. Repeat steps 2-4 to reach equilibrium and obtain independent samples

See Figure 3.1 for a schematic of a local single flip in the Ising model.
The Metropolis algorithm successfully captures the phase transition

between a paramagnetic phase and a ferromagnetic phase. For a 2D Ising
model, Onsager (1944) first solved that this transition occurs at

𝑇𝑐 =
2𝐽

𝑘𝐵 ln(1 +
√

2)
≈ 2.269𝐽/𝑘𝐵

where 𝐽 is the coupling constant between neighboring spins. We plot the
mean absolute magnetization as a function of temperature for 2D Ising
models of sizes 8 × 8, 16 × 16, and 32 × 32 in Figure 3.2. We observe that
the magnetization of the system drops near the critical temperature and
approaches 0 as temperature increases.
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Flip

Figure 3.1 An example of a single-flip in the Metropolis algorithm. Plus signs
indicate spins of +1, and negative signs indicate spins of −1.

Near the critical temperature, the Metropolis algorithm becomes ineffi-
cient. This is because of the significant changes in the total magnetization as
the system transitions from high to low temperatures. At high temperatures,
the distribution is sharply concentrated around zero magnetization. At low
temperatures, the distribution exhibits a distinct double-peaked structure.
However, during the transition between these two regimes, the system passes
through an intermediate state where the magnetization probability distribu-
tion is nearly uniform across almost all possible magnetization values. This
flat distribution poses a significant challenge for single spin-flip algorithms
such as the Metropolis algorithm, making it extremely difficult to sample
the configuration space effectively. For a more quantitative analysis of this
point, see Krauth (2006).

3.1.2 The Wolff Algorithm

Near the critical temperature, we have noticed that the Metropolis algorithm
becomes inefficient due to the presence of long-range correlations and the
phenomenon of critical slowing down. To overcome this issue, we use the
Wolff algorithm proposed by Wolff (1989), a cluster-flipping method that
updates large clusters of correlated spins simultaneously, leading to faster
convergence.

The Wolff algorithm introduces bond variables 𝑏𝑖 𝑗 ∈ {0, 1} between
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Figure 3.2 Mean absolute magnetization per spin ⟨|𝑚 |⟩ as a function of tem-
perature for 2D Ising models of sizes 8 × 8, 16 × 16, and 32 × 32 using the
Metropolis algorithm.

neighboring spins. The joint probability distribution of spins and bonds is
given by:

𝑃({𝑠𝑖}, {𝑏}) =
1
𝑍

∏
⟨𝑖 , 𝑗⟩

[
𝑝𝛿𝑏𝑖 𝑗 ,1𝛿𝑠𝑖 ,𝑠 𝑗 + (1 − 𝑝)𝛿𝑏𝑖 𝑗 ,0

]
(3.1)

where 𝑝 = 1 − 𝑒−2𝛽𝐽 is the probability of a bond being present and 𝛿 is the
Kronecker delta function.

The Wolff algorithm grows clusters of spins connected by bonds and
flips them simultaneously. It works as follows:

1. Choose a random initial spin as the starting point for the cluster

2. Create two lists: one for the cluster sites and another for the pocket
sites. Add the initial spin to both lists

3. Define a probability 𝑝, which determines the likelihood of adding
neighboring spins with the same orientation to the cluster

4. Begin the cluster construction process by selecting a pocket site from
the pocket list and removing it from the pocket
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5. For each neighboring spin with the same orientation as the pocket site,
add it to the cluster and the pocket with probability 𝑝

6. If a neighboring spin is added to the cluster, also add it to the pocket
list

7. Repeat steps 4-6 until the pocket list is empty

8. Once the cluster construction is complete, flip all the spins within the
cluster simultaneously

9. Repeat steps 1-7 to generate a new configuration

See Figure 3.3 for a schematic of a cluster flip in the Ising model.

Flip

Figure 3.3 An example of a cluster-flip in the Wolff algorithm. Plus signs
indicate spins of +1, and negative signs indicate spins of −1.

By following these steps, the Wolff algorithm efficiently generates new
configurations of the system by flipping clusters of spins instead of individual
spins. The approach is particularly efficient near the critical point because
the average cluster size becomes comparable to the system size, allowing for
large-scale updates that effectively decorrelate the configurations.

3.1.3 Dataset Specifications and Parameters

We simulate the 2D Ising model on a square lattice with periodic boundary
conditions. The lattice size is chosen to be 64 × 64. In units of 𝐽/𝑘𝐵, we
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choose a temperature range from 𝑇 = 0.25𝐽/𝑘𝐵 to 𝑇 = 4.0𝐽/𝑘𝐵, with a
step size of Δ𝑇 = 0.25𝐽/𝑘𝐵. The temperature range for the simulations is
selected to cover both the high-temperature paramagnetic phase and the
low-temperature ferromagnetic phase, as well as the critical region around
the phase transition.

For each temperature, we generate an ensemble of 𝑀 = 10000 indepen-
dent configurations, using the Wolff algorithm for near-critical temperatures
𝑇 = 2.0, 2.25, 2.5 and the Metropolis algorithm for other temperatures.
We use 5000 Monte Carlo steps for equilibration and 10000 steps for data
collection.

The generated dataset consists of binary spin configurations, where each
spin is represented by a value of +1 or −1. The configurations are stored in a
tensor of shape (10000, 64, 64) for each temperature.

3.2 Training Specifications of RBM

In this section, we focus on training the Restricted Boltzmann Machine
(RBM) using the dataset of 2D Ising model configurations. We begin by
discussing the architecture of the RBM, including the number of visible
and hidden units and the choice of activation functions. Next, we specify
the hyperparameters used for training, such as the learning rate, batch
size, and the number of training epochs. Finally, we outline the process of
generating new configurations from the trained RBM, which will be essential
for evaluating the model’s performance in capturing the critical behavior of
the Ising model.

3.2.1 RBM Architecture and Hyperparameters

In the context of modeling the 2D Ising model, the visible layer represents
the spin configurations, while the hidden layer captures the underlying
features and correlations present in the data.

For our Ising model on a 64 × 64 square lattice, the visible layer of the
RBM consists of 𝑁𝑣 = 642 units, each corresponding to a single spin. The
visible units are binary, taking values of +1 or -1, consistent with the Ising
spin variables. The number of hidden units, 𝑁ℎ , is a hyperparameter that
can be adjusted to control the RBM’s representational capacity. In this work,
we choose 𝑁ℎ = 900. The RBM code is adapted from Gu and Zhang (2022).

The choice of hyperparameters can significantly impact the RBM’s
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training process and its ability to learn the underlying distribution. In
this work, we use the following hyperparameters:

• Learning rate: The learning rate determines the step size at each itera-
tion. We employ the adaptive learning rate scheme Adam, developed
by Kingma and Ba (2017), with an initial learning rate of 0.0001. This
allows for faster convergence and automatic adjustment of the learning
rate based on the gradient statistics.

• Batch size: The batch size determines the number of training examples
used in each iteration of the optimization process. We use a batch size
of 128.

• Number of training epochs: An epoch is a complete pass through
the entire training dataset. We train the RBM for 200 epochs, which
is sufficient for the model to learn the essential features of the Ising
model configurations, according to Gu and Zhang (2022).

• Weight initialization: The initial values of the weights 𝑤𝑖 𝑗 are drawn
from a Gaussian distribution with zero mean and a standard deviation
of 0.1.

3.2.2 Generating New Configurations

Once the RBM is trained on the Ising model dataset, it can be used as a
generative model to produce new configurations that follow the learned
probability distribution. This is achieved by exploiting the RBM’s ability to
capture the joint distribution of visible and hidden units and by performing
Gibbs sampling to generate new configurations.

To generate new configurations, we start by randomly initializing the
visible layer with binary values of -1 and 1. Next, we perform Gibbs sampling
by iteratively updating the visible and hidden layers based on the learned
weights and biases of the RBM. We first update the hidden layer given the
current state of the visible layer and then update the visible layer given the
new state of the hidden layer. The updated visible layer obtained after the
Gibbs sampling steps represents a new configuration generated by the RBM.

The generated configurations will be used to assess the RBM’s ability to
capture the essential features and statistical properties of the 2D Ising model
in the next chapter.
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Results

In this chapter, we present and analyze the results of training RBMs on
2D Ising model data generated by Monte Carlo algorithms. We start by
examining our Monte Carlo simulation results. We do so by visualizing the
Ising configurations at different temperatures and studying the presence of
critical behavior. Next, we present the RBM training results, focusing on the
model’s learned filters. Finally, we assess the RBM’s ability to generate new
Ising configurations using the Wasserstein distance as a metric for similarity.
Through these analyses, we can gain insights into the effectiveness of RBMs
in capturing the critical behavior of the Ising model.

4.1 Ising Model Simulations

In this section, we present and analyze the results obtained from the Monte
Carlo simulations of the 2D Ising model using the methods discussed in
Section 3.1. These simulations serve as the ground truth for evaluating the
performance of the RBM in capturing the critical behavior of the system.
We begin by visualizing the spin configurations generated at different
temperatures, focusing on the emergence of long-range correlations and
the transition from the paramagnetic to the ferromagnetic phase. We then
investigate the critical temperature and the phase transition behavior by
examining various thermodynamic quantities as a function of temperature.
The simulation results are compared with the exact solution and finite-size
scaling theory to validate the accuracy of our approach and establish a
reliable reference for assessing the RBM’s performance.
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Figure 4.1 Spin configurations of the 64 × 64 Ising model at different temper-
atures generated by Monte Carlo simulations. Black sites correspond to spin-up
(𝑠𝑖 = +1) states, and white sites correspond to spin-down (𝑠𝑖 = −1) states.

4.1.1 Data Visualization

As discussed in Section 2.1, the thermodynamic behavior of the Ising model
heavily depends on the temperature. To gain insights into the system’s
behavior, we start by visualizing the spin configurations generated by the
Monte Carlo simulations at various temperatures.

Figure 4.1 shows a series of representative Ising spin configurations for
our 64 × 64 lattice at different temperatures. At high temperatures (𝑇 ≫ 𝑇𝑐),
the system is in the paramagnetic phase, characterized by disordered spin
orientations (Figure 4.1(a)). The spins fluctuate randomly, and there is no
discernible pattern or structure in the configuration. As the temperature
decreases towards the critical temperature, the system undergoes a phase
transition, and long-range correlations begin to appear (Figure 4.1(b)). As
discussed in Cardy (1996), we can see that clusters of aligned spins start to
form, and the configuration displays a mixture of ordered and disordered
regions.

At the critical temperature (𝑇 ≈ 𝑇𝑐), the system is scale-invariant, with
spin clusters of various sizes coexisting (Figure 4.1(c)). Below the critical
temperature (𝑇 < 𝑇𝑐), the system enters the ferromagnetic phase, where
long-range order dominates (Figure 4.1(d)). The spins align in one of two
possible orientations, forming large domains of either positive or negative
magnetization. The size of these domains increases as the temperature
decreases further, eventually leading to a fully ordered state at very low
temperatures (Figure 4.1(e)).

These visualizations of the spin configurations confirm the effectiveness
of our Monte Carlo simulations and thus can serve as a qualitative reference
for assessing the RBM’s ability to generate Ising configurations that resemble
the true Ising model at different temperatures.
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Figure 4.2 Specific heat 𝑐𝑉 as a function of temperature.

4.1.2 Critical Behavior

A key signature of the Ising model is the phase transition at the critical
temperature𝑇𝑐 , where the system switches from a low-temperature ferromag-
netic phase to a high-temperature paramagnetic phase. We will investigate
the critical temperature and the phase transition behavior by comparing
the Monte Carlo simulation results with the exact solution of the 2D Ising
model.

In Section 3.1.1, we have calculated the mean magnetization of the
generated configurations as a function of temperature, as shown in Figure
3.2. The magnetization exhibits a sharp transition from non-zero values
(ferromagnetic phase) to zero (paramagnetic phase) as the temperature
increases. The transition becomes increasingly sharp as the lattice size
increases, signifying the presence of a phase transition in the thermodynamic
limit, as discussed by Newman and Barkema (1999).

Another way to witness the phase transition is by analyzing the tempera-
ture dependence of the specific heat (𝑐𝑉 ), as we defined in Eq. 2.4, which
measures the system’s response to temperature changes. In the vicinity of
the critical point (𝑇𝑐 ≈ 2.269𝐽/𝑘𝐵), the specific heat exhibits a peak, as shown
in Figure 4.2.
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The analysis of the critical temperature and the phase transition behavior
in the Monte Carlo simulations provides a solid foundation for evaluating
the RBM’s performance. We are now ready to compare the RBM-generated
configurations and their statistical properties with the Monte Carlo results.

4.2 RBM Training Results

In this section, we analyze the results of training the Restricted Boltzmann
Machine (RBM) on the 2D Ising model dataset. We focus on two key aspects
of the training process: the convergence of the training loss and the learned
representations of the RBMs. First, we investigate the training loss and
discuss the convergence behavior. Second, we explore the learned weights
and biases of the RBMs and interpret their physical significance in relation
to the Ising model. The training results lay the foundation for evaluating the
RBM’s performance in generating new configurations in the next chapter.

4.2.1 Training Loss Convergence

During the training process, the RBM adjusts its weights and biases to
minimize the difference between the true data distribution (the Ising config-
urations) and the distribution it learns. This difference is quantified by the
training loss, which we have defined by Eq.2.13. Monitoring the training
loss as a function of the number of epochs, we can assess the convergence
behavior of the RBM and its ability to learn the underlying structure of the
Ising model.

Figure 4.3 shows the training loss curves for RBMs with 900 hidden
units. The losses are plotted on a logarithmic scale with respect to the first
20 epochs. As the training progresses, the loss decreases, indicating that the
RBM is learning to better represent the data distribution.

For temperatures far from the critical point, the training loss converges
quickly. This rapid convergence suggests that the RBM can easily learn the
patterns in the Ising configurations at these temperatures [2]. However, near
the critical temperature (e.g., 𝑇 = 2.0, 2.25), the training loss converges more
slowly, indicating that the RBM faces challenges in capturing the complex
patterns near the critical point, as shown by Mehta and Schwab (2014). This
is due to the complexity of the data distribution near the critical temperature,
which requires the RBM to learn more intricate representations and demands
more iterations.
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Figure 4.3 Training loss curves for RBMs with 900 hidden units at different
temperatures. The losses are plotted on a logarithmic scale against the number
of epochs.

4.2.2 Weights and Filters

Figure 4.4 visualizes the trained weight matrix elements 𝑤𝑖 𝑗 of the RBMs
with 900 hidden units trained below, near, and above the critical temperature
𝑇𝑐 . We can observe that the PDFs follow the Gaussian distribution of zero
mean, with the distribution for 𝑇 = 2.25 having the largest variance. The
distributions here are consistent with the results of Gu and Zhang (2022), but
we do not observe the uniform distribution at low temperatures as shown in
Torlai and Melko (2016).

For our training dataset of Ising configurations, the visible state vectors
v are the Ising spin vectors s. Therefore, the weights w𝑇

𝑖
connecting the

visible units to the hidden units can be interpreted as filters that capture
specific patterns or features in the Ising configurations. Each hidden unit
learns to respond to a particular pattern in the visible units, and the weights
determine the strength and nature of these connections. If we reshape w𝑇

𝑖
to

match the spatial structure of the Ising lattice, we should expect patterns
similar to the representative spin configurations at different temperatures.

In Figure 4.5, we show five sample filters for temperatures below, around,
and above the critical temperatures. Each row of the matrix corresponds
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Figure 4.4 Probability density function (PDF) of the distribution of𝑤𝑖 𝑗 of RBMs
with 900 hidden units and trained at temperatures below, near, and above𝑇𝑐 .

to a hidden unit, and each column corresponds to a visible unit. The color
scale represents the strength and sign of the weights, with red indicating
positive values and blue indicating negative values.

Below the critical temperature (𝑇 = 1.0), the Ising model is in the
ferromagnetic phase, characterized by large domains of aligned spins. The
components of w𝑇

𝑖
tend to be mostly positive or negative. Close to the

critical temperature (𝑇 = 2.25), the Ising model exhibits critical behavior,
with the emergence of scale-invariant correlations. Here, the patterns of w𝑇

𝑖

fluctuate, corresponding to the critical fluctuations of the system. Above
the critical temperature (𝑇 = 3.5), the Ising model is in the paramagnetic
phase, characterized by disordered spin configurations. The filters at this
temperature have roughly equal numbers of well-mixed positive and negative
values, agreeing with Gu and Zhang (2022).

The filter sum of the RBM,
∑𝑛𝑣
𝑗=1 𝑤𝑖 𝑗 , serves a similar role to the magnetiza-

tion 𝑚 in the Ising model. In Figure 4.6, we plot the PDFs of the normalized
filter sums,

∑𝑛𝑣
𝑗=1 𝑤𝑖 𝑗/𝑛𝑣 , of the RBMs trained at 𝑇 = 1.0, 2.25, 3.5. As the

temperature increases, the distribution changes from bimodal to unimodal.
The bimodal distribution at low temperatures (𝑇 < 𝑇𝑐) corresponds to the
two possible magnetization states in the ferromagnetic phase. Near the
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Figure 4.5 Five sample filters w𝑇
𝑖

at temperatures 𝑇 = 1.0, 2.25, 3.5. The
color bar range is set to be two standard deviations of the distribution.

critical temperature (𝑇 ≈ 𝑇𝑐), the bimodal distribution of the filter sums
becomes less pronounced, and the peaks start to merge, reflecting the in-
creased fluctuations and the diminishing long-range order in the phase
transition. At high temperatures (𝑇 > 𝑇𝑐), the unimodal distribution reflects
the random spin orientations in the model with no preferred magnetization
direction. We expect the distribution to be centered at zero. However, the
shifted center of the PDF at 𝑇 = 1.0 may be caused by uneven numbers of
𝑚 > 0 and 𝑚 < 0 configurations in our dataset.

4.3 RBM-Generated Ising Configurations

New data generation is an essential feature of neural networks. Using
our trained RBMs, we generate new Ising configurations that mimic the
statistical properties of the original Ising dataset that we generated using
Monte Carlo simulations. To generate new configurations, we first initialize
the RBM with random initial spin states. Then, we perform five Gibbs
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Figure 4.6 Distribution of the normalized filter sums for RBMs with 900 hidden
units, trained at𝑇 = 1.0, 2.25, 3.5.

sampling steps to update the visible units based on the probabilistic influence
of hidden units and vice versa. The Gibbs sampling procedure allows
the RBM to walk through its representation of the configuration space,
effectively "thermalizing" the learned distribution. Samples of the original
and generated configurations near the critical temperature are shown in
Figure 4.7. In this section, we evaluate the RBM’s ability to capture the
thermodynamic behavior of the Ising model.

Figure 4.7 Samples of original Ising configurations (top row) and RBM-
generated configurations (bottom row) at𝑇 = 2.25.
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4.3.1 Wasserstein Distance

As introduced in Section 2.3.2, the Wasserstein distance is an effective metric
for similarity between two probability distributions. In this section, we
analyze how the Wasserstein distance varies with temperature.

Figure 4.8 shows the Wasserstein distance as a function of temperature.
The Wasserstein distance is computed between the generated configurations
and the true Ising model configurations at each temperature point. We
notice the Wasserstein distance exhibits a distinct behavior near the critical
temperature near the critical temperature.

At temperatures far from the critical temperature, both below and
above, the Wasserstein distance remains relatively high, which means the
generated Ising configurations at these temperatures are less similar to the
true configurations. This suggests that the RBM faces challenges in capturing
the long-range order in the ferromagnetic phase (𝑇 < 𝑇𝑐) and the disordered
paramagnetic phase (𝑇 > 𝑇𝑐).

However, as the temperature approaches 𝑇𝑐 , the Wasserstein distance
experiences a sharp decrease, reaching its minimum at𝑇 = 2.0 and increasing
again at𝑇 = 2.25. This behavior indicates the RBM can effectively capture the
critical fluctuations of the Ising model near the phase transition and generate
configurations that closely resemble the true critical behavior. However,
the model’s performance may be less optimal at temperatures far from
criticality, where the Ising model exhibits simpler patterns and shorter-range
correlations.

4.3.2 Other Evaluation Metrics

To further quantify the similarity between the original and generated Ising
model configurations, we computed the Kullback-Leibler (KL) divergence
and mean energy distance across different temperatures.

Like the Wasserstein distance, the KL divergence measures the differ-
ence between two probability distributions, say, 𝑃 and 𝑄. In the context
of comparing the original and generated Ising model configurations, we
consider 𝑃 as the probability distribution of the original samples and 𝑄 as
the probability distribution of the generated samples. The KL divergence is
defined as:

KL(𝑃 ∥ 𝑄) =
∑
𝑥

𝑃(𝑥) ln
(
𝑃(𝑥)
𝑄(𝑥)

)
(4.1)

where 𝑥 represents the configuration, and the summation is taken over all
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Figure 4.8 Wasserstein distance as a function of temperature for RBMs with
900 hidden units.

possible configurations. 𝑃(𝑥) and 𝑄(𝑥) denote the probabilities of observing
configuration 𝑥 in the original and generated distributions, respectively.

The KL divergence quantifies the amount of information lost when
using the generated distribution 𝑄 to approximate the original distribution
𝑃. A lower KL divergence indicates better agreement between the two
distributions.

The mean energy distance measures the average absolute difference
between the energies of the original and generated configurations. Let 𝐸𝑜(𝑥)
and 𝐸𝑔(𝑥) represent the energy functions of the original and generated Ising
models, respectively. The mean energy distance is defined as:

MED =
1
𝑀

𝑀∑
𝑖=1

��𝐸𝑜(𝑥𝑖) − 𝐸𝑔(𝑥𝑖)�� (4.2)

where 𝑀 is the total number of configurations, and 𝑥𝑖 denotes the 𝑖-th
configuration.

The mean energy distance quantifies the average deviation between the
energies of the original and generated configurations. A lower mean energy
distance indicates that the generated samples more closely resemble the
energy profile of the original Ising configurations.

Figure 4.9 shows the KL divergence and the mean energy distance as
functions of temperature. Notably, although exhibiting a more gradual
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increase when the temperature exceeds 𝑇𝑐 , these metrics both exhibit similar
trends as the Wasserstein distance, with higher values at both low and high
temperatures and a dip around the critical temperature. The consistent
trends observed across these metrics underscore the challenges in generating
accurate samples that are far from the critical point.
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Figure 4.9 KL divergence and mean energy distance as functions of tempera-
ture for RBMs with 900 hidden units.





Chapter 5

Conclusion

In this thesis, we have demonstrated the effectiveness of Restricted Boltzmann
Machines (RBMs) in capturing the critical behavior and phase transition prop-
erties of the 2D Ising model. By training RBMs on equilibrium configurations
generated using Monte Carlo simulations across a range of temperatures, we
have shown that these generative models can learn the patterns, long-range
correlations, and scale-invariant fluctuations that emerge near the critical
temperature. Our analysis of the learned weights, generated samples, and
performance metrics, such as the Wasserstein distance, reveals the RBM’s
ability to compress the thermodynamic information and generate new con-
figurations that resemble the true Ising model. While acknowledging the
limitations of our study, our work highlights the potential of RBMs as a
robust tool for studying critical phenomena and phase transitions in complex
systems.

5.1 Discussion of Key Results

We trained RBMs using equilibrium 2D Ising configurations collected from
Monte Carlo simulations at various temperatures. Our results have shown
that RBMs can effectively capture the essential thermodynamic behavior
and phase transition properties of the Ising model.

One of the key aspects of our work is the successful generation of 2D
Ising model configurations using Monte Carlo simulations. Based on single-
spin flips, the Metropolis algorithm is efficient for simulating the Ising
model at temperatures far from the critical point. However, the Metropolis
algorithm suffers from critical slowing down near the critical temperature. To
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overcome this limitation, we employed the Wolff algorithm, a cluster-flipping
method particularly effective for simulating the Ising model near criticality.
Combining these two algorithms generated accurate and representative
configurations of the 2D Ising model across a wide range of temperatures.

The analysis of the learned weights and representations of the RBM
(Figures 4.4 and 4.5) demonstrates the model’s ability to capture the statistical
properties of the Ising model. The visualization of the learned weights
reveals the RBM’s ability to learn the short-range interactions and critical
fluctuations in the Ising model.

The temperature dependence of the Wasserstein distance, as shown in
Figure 4.8, reveals that the RBM achieves the lowest dissimilarity between
the generated and true configurations near the critical temperature. This
trend in similarity is verified by the KL divergence and mean energy distance
shown in Figure 4.9. This indicates that the RBM can effectively learn the
complex patterns, long-range correlations, and scale-invariant fluctuations
that emerge at criticality. However, the model’s performance may be
less optimal at temperatures far from criticality, which requires further
investigation.

These findings demonstrate the RBMs’ potential as a powerful tool for
studying critical phenomena and phase transitions in complex systems, such
as the Ising model. RBMs can learn the intricate correlations from the dataset
and provide a compressed representation of the system’s behavior, allowing
for the efficient generation of new samples.

5.2 Limitations

While we have demonstrated the RBM’s effectiveness in capturing the critical
behavior of the 2D Ising model, it is important to acknowledge the limitations
of this work.

First, we saw a sharp dip in the Wasserstein distance near the critical
temperature, as shown in Figure 4.8. This result suggests the RBM can
capture the complex patterns near criticality more effectively than the simpler
patterns far from the critical temperature. This rather counterintuitive trend
in the Wasserstein distance suggests further investigations into the data
generation process using the trained RBMs.

The choice of hyperparameters and architecture of the RBM can impact
the results and performance as well. In our study, we mostly analyzed
RBMs with 900 hidden units and selected hyperparameters based on trial
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and error and literature recommendations, such as Hinton (2002). However,
the optimal hyperparameters and architecture may vary depending on the
specific problem and dataset. More rigorous approaches, such as cross-
validation or Bayesian optimization, could be employed to find the optimal
hyperparameters and architecture, as discussed by Bergstra and Bengio
(2012). Additionally, exploring other architectures, such as deep Restricted
Boltzmann machines, may provide further insights and improvements in
capturing the critical behavior of the Ising model (see Mehta et al. (2019) for
examples of training deep RBMs).

Lastly, while we have visualized the learned weights and filters of the
RBMs, the exact physical meaning of the learned features and their corre-
spondence to properties of the Ising configurations still need to be studied.
As summarized by Carleo et al. (2019), it is challenging to analytically study
the learning process of the RBM, and relating physically interpretable infor-
mation of the learned representations and relating them to the underlying
physics is an ongoing effort in the field of machine learning for physics.

In conclusion, while our work has shown promising results in applying
RBMs to study the critical behavior of the 2D Ising model, the approach can
be extended to further ensure the quality of the training and data-generating
procedures.

5.3 Future Work

The results demonstrate the potential of RBMs in capturing the critical
behavior and phase transition properties of the 2D Ising model. However,
there are several open questions and potential directions for future research
that can further enhance our understanding of RBMs and their application
to studying critical phenomena.

One of the most intriguing findings in this work is the unusual trend in
the Wasserstein distance between the generated and true Ising configurations
across different temperatures (Figure 4.8). The sharp dip in the Wasserstein
distance near the critical temperature suggests that the RBM can more
effectively capture the complex patterns and long-range correlations that
occur at criticality compared to the simpler patterns far from the critical
temperature. This counterintuitive behavior demands further investigation
to uncover the underlying mechanisms. Future work could involve a more
detailed analysis of the learned weights and representations of the RBM at
different temperatures. Understanding the factors that contribute to this
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unusual trend could provide valuable insights into the RBM’s learning
process.

Another important direction for future work is to explore the features
learned by the hidden layer of the RBMs and how they relate to the physical
properties of the Ising model. While we have visualized the learned weights
and filters (Figures 4.4 and 4.5), future work could involve developing
methods to visualize and interpret the activations of the hidden units,
such as using dimensionality reduction techniques to project the hidden
representations onto a lower-dimensional space. Additionally, analyzing the
correlations between the hidden unit activations and physical observables,
such as the magnetization or energy, could provide insights into how the
RBM encodes the thermodynamic properties of the system.

Lastly, the quality of the generated Ising configurations can potentially
be improved by increasing the number of hidden units in the model. In
our study, we primarily focused on RBMs with 900 hidden units, which
demonstrated promising results. By systematically varying the number
of hidden units and analyzing the resulting generated samples, we can
investigate the trade-offs between model complexity and performance.

In conclusion, our work has laid the foundation for several exciting
directions for future research in applying RBMs to study critical phenomena.
By investigating the unusual trend in the Wasserstein distance, exploring the
learned features of the hidden layer, and optimizing the model’s learning
capacity, we can deepen our understanding of how RBMs learn and capture
the essential properties of complex systems. These efforts will not only
advance our knowledge of RBMs as a tool for studying critical phenomena
but also contribute to the highly active field of machine learning for physics,
where interpretability, generalization, and physical insights are of paramount
importance.



Appendix A

Thermodynamics of 2D Ising
Model

In this appendix, we show the analytical results of the mean energy, specific
heat capacity, and magnetization for the 2D Ising model derived by Kramers
and Wannier (1941) and Yang (1952).

The 2D Ising model has been solved exactly by Onsager (1944). The
critical temperature is given by:

𝑘𝐵𝑇𝑐 =
2𝐽

ln(1 +
√

2)
. (A.1)

The magnetization per spin below the critical temperature is given by:

⟨𝑚⟩ =
(
1 − sinh−4( 2𝐽

𝑘𝐵𝑇
)
)1/8

. (A.2)

The specific heat capacity near the critical temperature behaves as:

𝐶 ∼ − ln |𝑇 − 𝑇𝑐 |. (A.3)





Appendix B

Energy and Probability of
RBMs

In this appendix, we present the derivations of the energy and probability
of RBMs, which can be found in Murphy (2012).

Starting from the definition of the free energy:

ℰ𝜃(v) = − ln
∑

h

𝑒−ℰ𝜃(v,h) = − ln 𝑝𝜃(v) − ln𝑍𝜃 (B.1)

Substituting the effective energy of the RBM:

ℰ𝜃(v) = − ln
1∑

ℎ1=0

1∑
ℎ2=0

· · ·
1∑

ℎ𝑛ℎ=0
exp ©­«

𝑛𝑣∑
𝑗=1

𝑏 𝑗𝑣 𝑗 +
𝑛ℎ∑
𝑖=1

𝑐𝑖ℎ𝑖 +
𝑛𝑣∑
𝑗=1

𝑛ℎ∑
𝑖=1

𝑊𝑖 𝑗𝑣 𝑗ℎ𝑖
ª®¬

= −
𝑛𝑣∑
𝑗=1

𝑏 𝑗𝑣 𝑗 − ln
𝑛ℎ∏
𝑖=1

1∑
ℎ𝑖=0

exp ©­«−
𝑛𝑣∑
𝑗=1

𝑊𝑖 𝑗𝑣 𝑗 − 𝑐𝑖 +
𝑛𝑣∑
𝑗=1

𝑊𝑖 𝑗𝑣 𝑗 + 𝑐𝑖ª®¬
= −

𝑛𝑣∑
𝑗=1

𝑏 𝑗𝑣 𝑗 −
𝑛ℎ∑
𝑖=1

ln
(
𝑒
−∑𝑛𝑣

𝑗=1𝑊𝑖 𝑗𝑣 𝑗−𝑐𝑖 + 𝑒
∑𝑛𝑣
𝑗=1𝑊𝑖 𝑗𝑣 𝑗+𝑐𝑖

)
= −b𝑇v −

𝑛ℎ∑
𝑖=1

ln
(
𝑒−W𝑇

𝑖
v−𝑐𝑖 + 𝑒W𝑇

𝑖
v+𝑐𝑖

)
.

The conditional probability distribution of the hidden units given the
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visible units can be derived as:

𝑝𝜃(h|v) =
𝑝𝜃(v, h)
𝑝𝜃(v)

=
𝑒−ℰ𝜃(v,h)

𝑒−ℰ𝜃(v)
=

1
Ω𝜃(v)

𝑒
∑𝑛ℎ
𝑖=1 𝑐𝑖 ℎ𝑖+

∑𝑛ℎ
𝑖=1 ℎ𝑖w𝑖

𝑇v

=
1

Ω𝜃(v)
∏

𝑖 = 1𝑛ℎ ℎ𝑖
(
𝑐𝑖 + w𝑖𝑇v

)
=
∏

𝑖 = 1𝑛ℎ𝑝𝜃(ℎ𝑖 |v)

where 𝑝𝜃(ℎ𝑖 |v) ∝ 𝑒 ℎ𝑖(𝑐𝑖+w𝑇
𝑖
v). This gives the single unit conditional probabil-

ity:

𝑝𝜃(ℎ𝑖 = 1|v) = 𝑝𝜃(ℎ𝑖 = 1|v)
𝑝𝜃(ℎ𝑖 = −1|v) + 𝑝𝜃(ℎ𝑖 = 1|v)

=
𝑒 𝑐𝑖+w𝑇

𝑖
v

𝑒−𝑐𝑖−w𝑇
𝑖
v + 𝑒 𝑐𝑖+w𝑇

𝑖
v

=
1

1 + 𝑒−2(𝑐𝑖+w𝑇
𝑖
v)

= 𝜎(2(𝑐𝑖 + w𝑇
𝑖 v)).

Similar relations can be derived for 𝑝𝜃(ℎ𝑖 = −1|v), 𝑝𝜃(𝑣 𝑗 = 1|h) and 𝑝𝜃(𝑣 𝑗 =
−1|h).
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