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SPECIFYING AND PROVING
PROPERTIES OF

SENTINEL PROCESSES<*)

Krithivasan Ramamritham and Robert M. Keller
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112

ABSTRACT

This paper presents a technique for specifying
and verifying properties of "sentinels" a
high-level language construct for synchronizing
access to shared resources . Statements in the
specification language possess formal temporal
semantics. As a prelude to proving the
correctness of sentinels, the semantics of
cons t r uc t s used in sentinels is given. The proof
technique involves showing that the temporal
behavior of a sentinel conforms to that defined
by the specification. The methodology is
illustrated by applying it to a typical
synchronization problem.

INTRODUCTION

We are concerned with the problem of
synchronizing access to shared resources by
con currently executing processes. In particul ar,
we are interested in the specification of
syn chronization among processes as well as a
methodology for verifying that a given
synchronizer possesses specified properties. The
specification and verification techniques
proposed are founded on temporal logic 17 , the
chief advantage of which is that it facilitates a
unified approach to specification and
verification of both invariant and time-dependent
properties of software systems. When one refers
to ordering of operations, scheduling discipline,
etc. , the underlying concept is temporal
ordering. Thus it is appropriate to adopt a
system of reasoning based on temporal logic for
expressing the semantics of, and for validating,
the synchronization of concurrent processes.

Our specification language is designed to express
various aspects of synchronization control, such
as constraints governing access to shared
resources, pr iori ty of various types of access,
mutual exclusion of access, invariance of the
resource state, absence of starvation , and other
relevant properties. Statements in the language
use the primitive temporal constructs
"henceforth", "eventually" and "until", and other
constructs that can be expressed in terms of the
primitives. Each statement has appropriate
formal temporal semantics. Details of the
specification language can be found in 18•
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Here we confine our attention to showing the
correctness of a synchronizer that has been
specified in this language. The proof technique
is based on the following key observat ion: The
temporal behavior of a synchronizer of concurrent
processes induces a temporal behavior i n the
syn chronized processes. Verifying the
synchronizer then reduces to showing that the
behavior induced by the synchronizer conforms to
the specified behavior. Thus the proof technique
has two phases:

1. The temporal behavior induced by the
syn chronizer is determined from the
syn chroni zation code, us i ng the temporal
semantics of the constructs.

2. The induced behavior is shown to imply the
spe cified behavior, by applying theorems o f
temporal logic.

The first phase is similar to the inductive
assertion method 4 for verifying sequential
programs.

In this paper we demonstrate the approach by
applying it to sentinels13 • A sentinel is a
sequential process which coordinates other
processes by using queueing primitives to provide
a basic form of synchronization. These
primitives allow sentinels to exchange data with,
and control execution of, the processes being
coordinated. Besides providing a means to program
interacting concurrent processes in a structured
manner, sentinelS' can be used to achieve
highly-tailored disciplines for coordination
among processes. A typical synchronization
problem is used throughout the paper to
illustrate use of the specification language and
the proof method, and to demonstrate that a
unified approach can result from using temporal
logic as a semantic basis.

<*)ThiS material is based upon work supported
by the National Science Foundat ion under grant
MCS 77-09369.



A LANGUAGE FOR SPECIFYING SYNCHRONIZATION

2. An active process c annot be aborted or
interrupted.

3. An operation remains active for a finite but
indefinite period of time, after which it is
said to have terminated.

These assumptions will be formalized after the
introduction of the language primitives.

Specification Language Primitives
We refer to each distinct type of operation on a
shared resource as an operatiOn class. All
operations of a particular type are said to be
instances of that operation class. In the
definitions below, "a" stands for a specific
instance of a particular operation class.

3aEA Req( a), i.e., there ex ists a
request of class A.

(P => Q) i.e., P is true only if Q
is true.

To be read "always C". This means
condition C will remain true from
now on, i.e., C is true now and
throughout the future.

To be read "eventually C". This
means condition C is true now or
will eventually become true.

=> Req( a)
TRIGGERS Exec Ca)
TRIGGERS -Start(a)
TRIGGERS -Req( a)
=> [Vb,a -Start(b) UNTIL -Start(a)]
=> [Exec(a) UNTIL Term(a)]
=> Exec( a)
TRIGGERS [-Term(a) & -Exec(a)]

Start( a)
Start(a)
Start( a)
Start(a)
Start(a)
Exec(a)
Term(a)
Term(a)

Req$A

A UNTIL 9

Exec$A

P ONLYIF Q

Dc

3aEA Exec( a), i.e., an operation of
class A is active.

The temporal operators defined earl ier serve as
building blocks for our specification language.
The semantics of the various specification
statements are given in terms o f these atemporal
operators. The reader can refer to 1 for a
detailed description of the specification
language.

P ONLYAFTER Q (-P UNTIL Q) i.e., P can become
true only after Q does.

P TRIGGERS Q [P => (OQ & P UNTIL Q)] &
[-Q => (-Q UNTIL P)]
If P is true, Q will become true; P
remains true unt~Q becomes true.
If Q is false, it remains false
until P becomes true.

For notational convenience, we introduce the
follOWing predicates.

P and Q are arbitrary conditions. The following
axioms formalize the synchronization model and
are asserted for each operation "a".

OC

To be read as "A remains true until
B becomes true". This means i"fB
eventually becomes true, then A
remains true from now until B
becomes true; otherwise [JA.

In our language, specifications are statements in
first-order predicate calculus augmented with the
temporal oper-ator-s above. Statements in the
languClge may involve the predicate logic
operators: V(or) , &(and) "Lnot.) and
=> (impl ication) • Certain temporal operators are
derived from these primitives, and are introduced
to enhance the readability of the specification
langUage. They are,

with it
following

associated
wi th the

process requests
"a" , and remains true
requested operation is

This cond i t i on is true when
execution of operation "a" is in
progress.

Thi s cond i tion becomes true when a
concurrent
operation
until the
serviced.

This condition becomes true when
the synchronizer services request
"a" and remains true until "a"
starts execution.

This cond ition becomes true when
operation "a" terminates.

Req( a)

Exec( a)

Every pending i ns t a nc e has
four primitive conditions
semantics.

Term(a)

First we explain our concept of
"synchronization". A synchronizer (of which
sentinels are examples), is a sequential process
that guarantees disciplined access to shared
resources. Access to a shared resource-TS
through spec ific operations, the execution of
which is controlled by the synchronizer.
Constraints essential for maintaining the
integrity of the resource are enforced by the
synchronizer.

Concurrent processes can access the shared
resource by requesting execution of any- of the
specified operations. A request for an operation
on a shared resource is serviced by the
synchronizer after ensuring that none of the
constraints is violated. A serviced request
becomes active when it is executed either by the
synchronizer or, on its behalf, by another
process. This model assumes that

1. There may be a finite delay between
serv icing a request and its subsequent,
activation.

Start( a)

We will now introduce the temporal operators
along with their semantics. 'fgese are strongly
influenced by Lamport 14, Owicki 1 and pnueli 17•

To highlight various features of the
specification language, sentinel s , and the proof
technique, we introduce the following
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synchroni zation prob l em : Two cl asses of
operations, namely "Low" and "High", access a
shared resource. High operations are required to
exclude each other, while a low operation may
execute concurrently with other operations.
However, maximum possible concurrent low
operations is limited by "max avai l '", "Inuse"
gives the rnmber of low operations currently in
execution. In addition, we want to expedite
servicing high requests and hence they are given
priority over low requests. Below is the formal
specification for this problem.

STIlCHRONIZER Low_n_high IS

OPERATION CLASSES low,high;
OPERATIONS lowop:low; highop:high;

RESOURCE STATE INFORMATION
STATE VARIABLES

maxavail CONSTANT 10
inuse [0 ••maxavail) INITIALLY 0

STATE CHANGES
Start( lowop) : inuse <- i nuse-s t
Term( lowop) : inuse (- inuse-1

STATE INVARIANCE
o (inuse ( maxavail

EXCLUSION high's EXCLUDE

(S1)

( 32)

(33)

(S4)

(35)

- Scheduling discipline statements specify the
fa irness that is expected of the
synchronizer.

The specifications require that every high
request be eventually serviced. Due to the
presence of priority specifications, a weaker
form of fairness is acceptable for low
operations. Since requests are made by processes
outside the synchronizer, the sequential model
assumed precl udes the irntned iate recogni tion of
the presence of requests. This implies that,
al though at a given time a request may be
eligible for service, a higher priority request
may have arrived before the synchronizer
recognizes this fact, thus preventing the
synchronizer from serv i cing the former. Hence it
is required that a low request eventually be
serv iced prov ided no high requests arr i ve before
the low request would have been serv iced (see L7
below) . .

Now we are in a position to give the semantics of
the specifications for the problem in temporal
logic. Below we have substituted formal temporal
semantics Li for each specification statement Si.
Init is a special condition which is true when
the synchronizer is created and triggers its own
negation.

INTER CLASS PRIORITY AMONG REQUESTED OPERATIONS
high> low (S6)

init => (inuse=O)
(J(maxavail=10)

(L2)

SCHEDULING DISCIPLINE
(J[Req(highop) => <>Start(highop)}
(J [ [Req(lowop) &

(-Req$high UNTIL Start(lowop»)
=> <>Start(lowop)}

(S7)
VlowopElow VP [Start(lowop) & inuse=p]

TRIGGERS inuse=p+1
VlowopElow VP [Term(lowop) & inuse=p]

TRIGGERS inuse=p-1

(J[O ~ inuse (maxavail)

(L3)

(L4)

The following observations are pertinent:
- Instances of operations in a class can be

referred to by using generic operation names,
such as lowop and highop above.

- Normally, servicing constraint specifications
express the conditions that should exist when
an operation is serviced. In this example,
the constraint is simply that a corresponding
request be present. We have therefore omitted
such constraints since they are implied by
the axioms of the synchronization model.

- Data structures constituting the state of the
resource, and modifications to the resource
state by the operations, can be specified.

- There is a construct to specify invariance of
a resource state predicate.

- Exclusion among operations belonging to the
same class or different classes can be
specified.

- Priority among operations within a class and
between operations of different classes can
be specified. In addition, priority can
depend on resource state.
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Vp1,p2 Ehigh p1,p2, (L5)
(J-[Exec(p1) & Exec(p2)}

VlowopElow VhighopEhigh (L6)
(J [Req(lowop) & Req( highop) =>

Start(lowop) ONLYAFTER Start(highop)}

VhighopEhigh (L7)
(J[Req(highop) => <>Start(highop)}
VlowopElow
(J[[Req(lowop) &

(-Req$high UNTIL Start(lowop»]
=> <>Start(lowop)}



SENTINELS, A HIGH-LEVEL LANGUAGE CONSTRUCT FOR
Ml1l7rri>ROC'ESS COORDI NATI ON

A sentinel is a special kind of process set up to
provide tailored communication disciplines
between other processes. The sentinel construct
uses a queuing primitive as a basic form of
synchronization. More elaborate forms of
synchronization are then built up by constructing
a sequential process (a sentinel) which
coordinates other processes via the basic queuing
;>rimitive. The sentinel is the unique server of
a set of queues which are assoc iated wi th it.
Sentinels allow a statement to be placed on the
queue, in the sense that the sentinel can
determine when that statement is to be executed
thus executing synchronization control over th~
enqueuing processes. Instead of requiring the
synchronized processes to carry out certain
clerical operations (e.g. causing other processes
to be scheduled), a sentinel is an active process
and carries out such operations itse~

In order to have a means for creating processes,
we assume the underlying mechanics for a detached
mode of execution, e.g., as with the "task"
option in PLfI. For concreteness, we assume that
any syntactic statement enti ty, <s t a t ement >, can
be executed as a process by the statement

DETACH EXECUTE <s t a t ement>

which will create a process for <statement>,
which then runs concurrently with the creating
process. The statement which corresponds to a
sentinel is a procedure call on the code of the
sentinel. Queues are passed as parameters to that
call. When the sentinel process is created, each
queue is initialized. In order that all requests
from enqueuing processes are enqueued, each queue
has a "queue manager" which prov ides enqueuing
processes excl usi ve access to it. The sentinel
process created becomes the server of those
queues. ------

The items which are communicated to sentinels
from other processes via queues are called
tokens. A token is a pair, consisting of a
statement and a parameter list. Either of these
items may be null in various applications. A
token gets created by a process, called the
enqueuing process, through a statement of the
form

QUEUE«queue ref>,<stmt>,<parameter list».

The placement of a token puts the execution of
<stmt> in control of a unique sentinel process
serving the queue. It also makes any parameters
in <parameter 1 ist> accessible to this server.
The enqueuing process is suspended till the
completion of execution of <stmt>.

The i'lfver serv ices the- statement component of
the n element in a queue by executing

EXECUTE <queue reference> [n]

where "n" is an integer variable whose value
indicates the position from the front of the
queue. The nth element is removed from the queue
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and cannot be re-executed. We also allow the
detached mode of execution for an execute
statement, viz.

DETACH EXECUfE <queue ref> [n] COUNT (c).
This effectively creates another temporary
process which executes the statement part of the
token in parallel with the synchronizer. Since
the token is already a statement in another
process, namely the enqueuing one, execution can
be optimized so that no new process is actually
created. The designated integer variable "c"
will automatically be incremented by , when this
statement is executed, and decremented by , when
and if the detached process terminates.

We assume a wait until statement, which will
delay a process until a specified condition
becomes true. Empty«queue reference» tests
whether the referred queue is empty . and
non-empty«queue reference», tests the negation.
A sentinel recognizes that a request exists in a
given queue Q only when it evaluates non-empty(Q)
and finds it to be true.

The sentinel concept separates scheduling actions
from the processes being scheduled. It should be
mentioned that by demanding explicit selection of
the next token to be executed, a sentinel does
not prOVide internal nondeterminism as do similar
independently-conceived mechanisms such as ADA'
and serial i zers2 • A user must program the
sentinel to make a suitable choice. This allows
for fleXible, yet relatively easily-understood
scheduling. (However, due to queueing delays
global nondeterminism may be present in a
distributed system.)

As an example, we give below the sentinel to
synchronize low and high operations as specified
in the previous section. (Statement label s are
for subsequent reference.)

SENTINEL low_n_high (highq,lowq: QUEUE);
maxavail CONSTANT INTEGER := 10;
inuse INTEGER RANGE O•• max := 0;
La: WHILE true

DO
Lb: WAIT UNTIL (NON-EMPTY(highq) V

(NON-EMPTY(lowq) & inuse < maxavail»;
Lc: WHILE NON-EMPTY(highq)

DO
Ld: EXECUTE highq[ 1];

OD
Le: IF NON-EMPTY(lowq) & inuse < maxavail

THEN
Lf: DETACH EXECUTE lowq[1] COUNT (inuse)

OD
END low_n_high;

This sentinel would be created by
DETACH EXECUTE low n high (highq,lowq).

A concurrent process requesting a high would
execute

Queue (highq,highop,nil),
while a process requesting a low would execute

Queue (lowq,lowop,nil).

An implementation of a sentinel-like mechanism is
described in 11

\



/
FORMAL SEMANTICS OF SENTINEL CONSTRUCTS

The following predicates aid in referring to the
instruction pointer of processes. For any
e~ecutable statement S.

From the above, we infer the following:
- The statement "QUEUE(Q.op,param)" enables the

condition "Re qt op) "; Equivalently.
vop1 (3i Q[i].op=op1 => Reqtop t H . (11)

- Serving a request by means of a (DETACH)
EXECUTE statement impl ies its eventual
activation. Hence such a statement will
eventually enable the c ond i t i o n "Exec(op)"
where "op" is the serv iced operation. (13)

( 12)
- If S is (DETACH) EXECUTE Q[i] then

at(S) => Start(Q[i]).

is true iff control is within S.

is true iff control is immediately
following S.

is true iff control is at the
beginning of S.

in(S)

at(S)

after(S)

For our purposes. the above informal definitions
will suffice. Note that if S2 is the next
executable statement following S1 then after( S 1)
is equivalent to at(S2).

1) By executing the statement S : "WAIT UNTIL C".
the sentinel delays its own execution until the
boolean condition C is true. Thus the semantics
of "S" is

(at(S) => [at(S) UNTIL C]}
& o{[at(S) & C] => Oafter(S)}.

2) By executing the statement S:
"QUEUE(Q. op , pa r am) !", a user proces s appends the
token (op,param) to the queue named Q. Q[i]
refers to the i t h token in the queue. Q[i].op
will refer to the operation component of the i th
token. When there is no confusion as to whether
the token or the operation component of the token
is being referred to. we will use Q[ t l to refer
to the operation component. :Q: gives the number
of tokens in the queue Q. Thus

vn{[at(S) & IQI=n] =>
0[IQI=n+1 & Q[n+1]=(op.param) & Req(op)]}.

3) By executing the statement S : "EXECUTE Q[n]".
the sentinel process executes Q[n]. Let - denote
concatenation of elements in queues and Q[n •• m]
denote a queue formed by elements Q[n], Q[n+1]
, . • • • Q[m-1], Q[m] of the queue "Q". The
semantics of the execute statement is then:

VQ1,Q2,p ,n
(at(S) & IQ:>n & Q[n]=(op, param) &

p=:Q: &0[1 •• n-1]=Q1 & Q[n+1 •• p]=Q2}
=>
(Start(op) &
O[in(S) & (Exec(op) UNTIL after(S» &

Q[1 •• p-1]= Q1-Q2] &
o[after(S) => -Exec(op)]}

4) By executing the statement S : "DETACH EXECUTE
Q[n] COUNT( c)", the sentinel effectively makes an
external task execute Q[n]. i.e.,

V Q1.Q2.k.m.n.p
(at(S) & IQI>n & Q[n]=(op. param) & c=m &

p=TQI & Q[1. .n-1]=Q1 & Q[n+1. .p]=Q2}
=>
(Start( op) &

O{c=m+1 & Exec(op) & Q[1 •• p-1]=Q1-Q2} &
[Term(op) & c=k] TRIGGERS c=k-1}

THE VERIFICATION TECHNIQUE

As mentioned earl ier, there are two main phases
in the verification process. In the first,
conditions that hold when the synchronizer
serv ices an operation are determined. These are
the constraints imposed by the sentinel for
serv i cing an operation. Proof of these
conditions is achieved by deriving place
assertions 12 for the program from the semantics
of the constructs involved, using the standard
i nd uctive assertions method 4• 7. The
preconditions of the "execute" statements give
the conditions under which the operations are
serviced.

In the second phase, from given high-level
specifications, constraints are derived for the
execution of an operation using the axioms and
theorems of temporal logic. What then remains to
be shown is: (1) given the preconditions for
serVicing operations, these constraints are
satisfied, and (2) the sentinel guarantees the
fairness specified.

To illustrate the proof technique, we will show
that the sentinel which coordinates low and high
operations is correct with respect to the
specification of their synchronization. Given
below is a list of the theorems of "linear time"
version of temporal logic 14 that will be employed
in the verification process. A and B denote
arbitrary temporal logic expressions.

T1 o(A V B) => (oA V OB)
T2 O(A V B) (=) (OA V OB)
13 o(A & B) (=> (DA & DB)
T4 D(A => OB) & o(B => OC)

=> D(A => OC)
T5 (OA & DB) => O(A & B)
T6 If T is a theorem, then DT

We make the following assumption regarding
terminating statements:

D{[at(stmt) & P] => O[after(stmt) & PI]} (A1)

where P and pI are pre and post conditions
appropriate for "stmt". This will be a valid
assumption if the underlying scheduler of
processes is fair.

Inductively, if Sl ..... 5o
terminating statements, then
definitions of the predicates
at(Sl) => Oafter(Sn).

is a sequence of
by A1. T4. and the
"at" and "after".
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We cal l th is , " control flow reasoning" . and D are operation classes, can be shown to be
equi valent to

'1c E C [] ISt ar-t Cc) => -Exec$C}

Ex clusion o f d ifferent instances of the same
operation class, say C, is prese rved if

Thus the mutual excl us i on of all high operations
will be transformed into

Start(highop) => - Exec$hi gh .

Verification: Phase 1
Fr om the se mant i c s o f the con s t r uc t s , we
de termine asse r tio ns tha t hold at the beg inning
of certa i n sta tement s ( pl ac es ) of interest. We
ass ume tha t oper a tions low and high always
t erminate . It t hen suffices to note that the
pl ac e asser tions below follow from the semantics
of the statement s and induction on the structure
of the progr am. Here the statement label s
cor r espond to those in the sentinel program.

v c E C [] [Sta r t f c) =>
'1d ED [] (Started) =>

-Exec$D}
-Exec$C}

at(Lb ) =>
atCt,c ) =>

at( Ld) =>
at CLf") =>

-Ex ec$h i gh
-Exec$ high &
(non-empty(highq) V
( non- empt y( l owq) & inuse<maxavail»
- Exec $hi gh & non-empty(highq)
-Exec$high & inuse < maxavail &

EMPTY (highq) & non-empty(lowq) (b)

Translating Resource state invariance Invariance
is maintained by ensuring that the Invariant is
prese rved by each ope ration that is serv i ced .
For th is purpose, a precondition is obtained for
ea ch operat ion from (a) the inv ariance
sp ecification and, (b) the changes to the
resource state by the operation .

[][Req(lowop) & Req(highop) =>
Start(lowop) ONLYAFTER Start(highop)}

Since only the sentinel can service requests,
-Exec$high and -Exec$low are initially true.

For an ope r a t i on "op" to be serv i ced, control
should be at the beginning of an execute
s ta t ement " S" that services "op'! , From the
pr econdition s of the Execute statements, we have:

Translating Priority
high operations have
operations, we have:

Specifications Given
higher priority than

that
low

CCR)

(CA)

Start(highop) =>
(Req( highop) & -Exec$High}

This can be shown to be equ ivalent to

[][Start(lowop) => -Req$high}

Conjunction of all constraints applicable to low
and high operations respectively results in:

Start( lowop) =>
(Req(lowop) & - Re q$hi gh & inuse<max}

(PA)

( PR)

'1lowop E l ow
Star t( lowop) =>

[non- empty(lowq) & lowop=lowq[l] &
-E xe c$ high & empty(highq) &

i nuse<maxavail) }

'1h ighop E high
St ar t (hi ghop ) =>

(non-empty(highq) & highop=highq[l] &
" Exec s h i gh}

Cb)Control will be at Lf only when
non-e.npty(highq) evaluates to false. Since the
sentinel cannot recogn ize requests in highq until
t he nex t ev al uation of non-empty( highq) ,
empty(highq) is assumed to hold until then.

Verifi cation: Phase 2
We will systematically der ive from the top level
spe cifications the necessary conditions for
serv icing a request. These conditions are
embedded in the scheduling constraint, mutual
excl usion, resource state invar iance, and
priority specifications. We outline only the
essential steps in deriving the necessary
cond i t i ons from each of these statements. Only
informal arguments are given for showing the
co rrectness of the transformation steps. In what
follows, to preserve readabil ity, we have
employed the following artifice. Statements i n
which the f r ee variable "lowop" occurs are
implic itly univ ersally quantified over all low
operations. Oc c ur r ence s of "highop" are similarly
quan t ifi ed.

Trans formi ng
spe c ification

Mutual Exclusion Statement The
statement "C excl udes D", where C

Since

empty(highq) => -Req$high
highop=highq[l] => Req(highop)
lowop=lowq[l] => Req(lowop),

the preconditions PA and PR derived from the
sentinel code, imply the constraints CA and CR
respectively.

Observe that the sentinel overconstrains low
ope rations since

Start(lowop) => -Exec$high

from the sentinel code, whereas this is not
required by the specifications. We can avo id
such overconstraint by executing high operations
al so in a detached mode but avoid doing so fo r
simpl ic ity .

Proof of Fairness We reiterate our assumpt ion
that the operat ions being synchronized, namely
low and high, always terminate. Before we prove
the fairness specification, we prove three
lemmas .

Lemma 1----
[]O{atCLc) V Oat(Lb)}
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This lemma states that eventually control either
remains forever at the WAIT UNTIL statement, or
eventually reaches Lc.

namely highq[ 1].
serv iced. Then

Suppose highop is never

Proof Given a statement w: WAIT UNTIL C, by Tl,

tJ -C V O C.

From the semantics of the WAIT UNTIL statement,
and the definition of the UNTIL operator,

Req(highop) =>
[Req(highop) UNTIL Start(highop»)
-- axiom of the synchronizer model

=> []Req(highop) -- definition of UNTIL. (2)

ate w) => 0 ate w) V 0 after( w)

The Lemma then follows from control
reasoning.

Lemma 2---
v c (C => vp (](p=highq[l] => OStart(p»} =>

(C => Vp(] (3i pe hi ghql i ] => OStart( p»}

flow

Furthermore,
<>Oat(Lb) V <>at(Lc) -- by Lemma 1 and T2

=> <>[(at(Lb) & req(highop» V at(Lc)]
-- by T5, T2 and (2)

=> <>at(Ld)
using control flow reasoning and
the semantics of "WAIT UNTIL" (3)

By this lemma, i.f we can show that the first
request in highq will eventually be serviced,
then all operations in highq will eventually be
serv iced .

Proof Assume the hypothesis of the lemma. From
the semantics of the Execute statement,

VDl Vp {atCl.d) & hignql t l e p)
=> O(after(Ld) & highq[i-l]=p} (1)

Assume C and pe ht ghql l l . From the hypothesis of
the lemma, and the semantics of the Execute
statement, OStart(highq[l]).

OStart(highq[l])

=> Oat(Ld)
-- definition of Start

=> O(p=highq[i-l])
-- by (1)

By repeated application of (1) in conjunction
with the hypothesis of the lemma, we get,
O(p=highq[l]) and hence <>Start(p).

Lemma 1
VC {C => VP (] (p=lowq[ 1] => O'Star t I p»} =>

{C => VP (](3i pe Lovql t l => OStart(p»}

e > OStart( highop)

This contradicts the assumption O-Start(highop) .
Hence by Tl, <>Start( highop) . Fa irness to all
high operations follows from Lemma 2.

Proof of Fairness to low requests
Fairness specifiedis--

VlowopElow
[]([Req(lowop) &

(-Req$high UNTIL Start(lowop»]
=> <>Start(lowop)} (F2)

Here again we consider a particular lowop, namely
lowq[ 1]. Assume that the request is never
serviced. From the hypothesis of F2 and the
definition of UNTIL, tJReq(lowop) and tJ-Req$high
are true. Since low operations terminate,
<>(inuse < maxava i L) . This conclusion in
conjunction with lemma 1 and control flow
reasoning shows that eventually control will
reach Lf at which time lowop will be serv iced.
This contradicts the assumption and hence by Tl,
<>Start( lowop) .

Formally, assume (]-Start(lowop). Since

Req( lowop) =>.
[Req(lowop) Until Start(lowop»),

This is similar to Lemma 2, and applies to low
operations .

Proof of fairness to high requests
Fairness specified is

VhighopEhigh (](Req(highop) =>
<>Start( highop) ) (F1)

from the semantics of UNTIL,

[]Req(lowop) & O-Req$high.

(inuse < maxavail) is an invariant.

Lnuseemax av at l

(4)

(5)

Let us consider one particular highop namely
ht.gnql t l . Using Lemma 1, either <>Oat(Lb) or
<>at(Lc). Since Req(highop), by the semantics of
the Wait Until statement, (]at(Lb) is false. If
control is at Lc then since Req(highop), <>at(Ld)
which implies <>Start(highop). So the first
operation in highq will eventually be serviced,
in which case, by lemma 2, all high operations
will be eventually serviced. Now we give · the
formal proof.

=> Exec$low

=> 310wopElow Exec(lowop).

=> O[Term(lowop) & inuse=maxavail]

since all operations are assumed to terminate.

From the semantics of Detach Execute,

We show that Fl is true for a particular highop,

380

<>(inuse<maxavail) . (6)



CONCLUDING REMARKS

Our sp ecification of semantics of the
synchronizing constr uct s used in sentinels is
compl e t e in the sense that we have given the
i nvariant and temporal behavior of each
c ons t r uc t . Similarly, by specifying the behavior
of primitives used to implement these constructs,
we c an prove their implementation.

We have a ppl i ed temporal logic t o t he
specification and verification of synch r onizers
o f conc ur r ent processes. The full specifi cation
languag e 18 has cOnstructs for stating the set of
pr oper t ies that are normally relevant t o
sy nch ron ization of concurrent operations, namely,
or der i ng , fairness, priority, e xc l us i on ( and by
defaUlt, conc ur r enc y) , and invariance of resource
state.

To summarize, we have shown that ( a ) the
cond i t io ns whi ch hold when operat i ons ar e
serv i c ed by t he sy nchro nizer conform t o t he
cons t r a i nt s de r i ved f rom the servicing
cons t r a i nt s , invariance, priority and ex cl usio n
spe c if i cations, and (b) the synchronizer services
ope r a tio ns accor d i ng to the s peci fi ed scheduling
discipline, thus showing the co r r ec t ne ss of the
sentinel with respect to the overall
specifications. We have given only the essenti al
transformations from high-level s pec i f ica t i ons .
Further description o f the t ra ns for mat i on sys tem
app e ars i n HI.

In al l o f t he t echn i que s ment i on ed i n t he
prev io us paragraph , ver i fi c a t i on o f i nva r i ant s
has been the mai n co nc ern and pr ov ing correc t ne s s
r elies o n the notion of states t o r ea son
i nd irectly abo ut the e f fe ct of synchroniza t i o n .
We s urmi se tha t the us e s of a uxiliar y ( hi s t or y)
var iab l es is main l y mot i va t ed by a ne ed to
mai ntai n hi s tor y i n format i o n, i . e. , t emporal
informatio n. Further, fo r mal pr oo f o f abse nc e of
deadlock an d sta r vat ion requi res tec hni que s
different f r om t ho se us ed t o prove i nva rian t s . On
the ot he r ha nd, the method we have out l ined here
handles inv ar i ant and t emporal prope r t ies in a
uni f i ed manner .

Current tec hni que s for verifying sync hroni zed
sharing of resource s are mainl~ conc er ned wi th
the pr oof o f invari an t s . Kelle r ,2 gav e a gener~~
tec hni que for t hi s purpose. Ow1 c k1 and Gr 1e s
pr e sented proof r ules usi ng aux il iary var iables .
Hoare8 gave pr oof r ules for monitors wh i ch were
later extended l O. Pa t h expr essions6 direc t l y
yi eld inv ar i an t s whi c h are use d i n the proo f o f
processe s s ync hro nized by paths 3 .

The approach us ed he r e fo r the proof su ggests the
pos s i b i l i t y of s ynt hes i z i ng s ynchro ni zers from
given s pecificat ions by, ex tending pha se, l S'
Pr eliminar y ideas 1n th1S regard appear 1n .
Our exper i en c e wi t h spe cifying a nd pr oving
sentinel s lead s us to believe that temporal l og i c
is a valuabl e too l i n general , for a compl e t e
semantic defi ni t i on o f programming co ns t r uc t s ,
f or invar iant and temporal sp ec i f ic a tions of
pr og r ams, and i n for mal l y ver i f yi ng total
co r rectness of t he se programs . By tr eating
i nvariant and t empo r al pr operti e s under a single
f ramework, t emporal logic provides a un i f i ed
appr oa ch to pr ogr am veri f icat ion a nd
spe c i fi c at i on.

Pre v io us efforts t o s pecify sy nc hr oni za t i on

f ' h 5 d Rob1'nso n19. Iincl ude those of Gr if 1t s an n
these , an ab s t r ac t solution t o the pr obl em is
spe c if ied , rather t han the pr oblem itsel f. Pr e
and post cond i t io ns are pr ovid ed f or
11synchr onizing f unct i ons " that surround cr i t i c al
r egions. Ve r ifi c at i on entails sh owing t hat the
code for t he syn ch ronizi ng fun ctions behaves
co r r ec t l y wi th respe ct t o the invari ant s
s pec i f i ed .

( 7)OO(inuse < maxavaill .

Fr om ( 4) , (7 ) and control flow reasoning,

From T6 and (6 ),

=> Oat(Lf ) => OStart(lowop).

a t Cl.b) => Oat(Lc)

F2 foll ows from Tl a nd Lemma 3.

Thi s co ntr ad i c t s our assumption
O - Start ( l owop) .

Although we have applied the technique t o
sentinels, we conjecture that our technique i s
applicable to other synchronization mechan isms
e.g ., monitors8, ser ializers2 and ADA tasking
fa cilityl. The only requirement i s that the
synchron ization primitives used must possess
precise semantics . Then it will be possible t o
determine the cond i tions that should hold when
operations are serviced, and thus apply the
results of phase 2. One problem we do anti cipate
for these other mechanisms is in showing that a
specified fairness is guaranteed by a
synchronizer. , This i s due to the fact that some
synchronizing constructs have "hidden" or
unspecified schedul ing disciplines (e.g . in ADA).
or the underlying scheduling has one of many
possible interpretations (e.g. in monitors9) .
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