Claremont Colleges

Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

3-1-1981

Specitying and Proving Properties of Sentinels

Krithivasan Ramamritham
University of Massachusetts - Amherst

Robert M. Keller
Harvey Mudd College

Recommended Citation

Ramamritham, K., and R.M. Keller. "Specifying and proving properties of sentinels.” Proceedings of the Sth International Conference
on Software Engineering (March 1981): 374-382.

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more

information, please contact scholarship@cuc.claremont.edu.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

SPECIFYING AND PROVING
PROPERTIES OF
SENTINEL PROCESSES(*)

Krithivasan Ramamritham and Robert M. Keller
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

ABSTRACT

This paper presents a technique for specifying
and verifying properties of '"sentinels" -- a
high-level 1language construct for synchronizing
access to shared resources. Statements in the
specification language possess formal temporal
semantics. As a prelude to proving the
correctness of sentinels, the semantics of
constructs used in sentinels is given. The proof
technique involves showing that the temporal
behavior of a sentinel conforms to that defined
by the specification. The methodology is
illustrated by applying it to a typical
synchronization problem.

INTRODUCTION
We are concerned with the problem of
synchronizing access to shared resources by

concurrently executing processes. In particular,
we are interested in the specification of
synchronization among processes as well as a
methodology for verifying that a given
synchronizer possesses specified properties. The
specification and verification techniques
proposed are founded on temporal 1logic 7, the
chief advantage of which is that it facilitates a
unified approach to specification and
verification of both invariant and time-dependent
properties of software systems. When one refers
to ordering of operations, scheduling discipline,
ete.s the underlying concept is temporal
ordering. Thus it 1is appropriate to adopt a
system of reasoning based on temporal logic for
expressing the semantics of, and for validating,
the synchronization of concurrent processes.

Our specification language is designed to express
various aspects of synchronization control, such
as constraints governing access to shared
resources, priority of various types of access,
mutual exclusion of access, invariance of the
resource state, absence of starvation, and other
relevant properties. Statements in the language
use the primitive temporal constructs
"henceforth", "eventually" and "until", and other
constructs that can be expressed in terms of the
primitives. Each statement has appropriate
formal temporal semantics. Details of the
specification language can be found in'®,

CH1627-9/81/0000/0374500.75 © 1981 IEEE

374

Here we confine our attention to showing the
correctness of a synchronizer that has been
specified in this language. The proof technique
is based on the following key observation: The
temporal behavior of a synchronizer of concurrent
processes induces a temporal behavior in the
synchronized processes. Verifying the
synchronizer then reduces to showing that the
behavior induced by the synchronizer conforms to
the specified behavior. Thus the proof technique
has two phases:

1. The temporal behavior induced Dby the
synchronizer is determined from the
synchronization code, wusing the temporal

semantics of the constructs.

2. The induced behavior is shown to imply the
specified behavior, by applying theorems of
temporal logic.

The first phase is similar to the inductive
assertion method for verifying sequential
programs.

In this paper we demonstrate the approach by
applying it to sentinels!3, A sentinel is a
sequential process which coordinates other
processes by using queueing primitives to provide
a Dbasic form of synchronization. These
primitives allow sentinels to exchange data with,
and control execution of, the processes being
coordinated. Besides providing a means to program
interacting concurrent processes in a structured

manner, sentinels can be wused to achieve
highly-tailored disciplines for coordination
among processes. A typical synchronization
problem is used throughout the paper to

illustrate use of the specification language and
the proof method, and to demonstrate that a
unified approach can result from using temporal
logic as a semantic basis.

(*)This material is based upon work supported
by the National Science Foundation under grant
MCS 77-09369.

A LANGUAGE FOR SPECIFYING SYNCHRONIZATION

First we explain our concept of
"synchronization". A synchronizer (of which
sentinels are examples), is a sequential process
that guarantees disciplined access to shared
resources. Access to a shared resource is
through specific operations, the execution of
which is controlled by the synchronizer.
Constraints essential for maintaining the
integrity of the resource are enforced by the
synchronizer.

Concurrent processes can access the shared
resource by requesting execution of any of the
specified operations. A request for an operation

on a shared resource 1is serviced by the
synchronizer after ensuring that none of the
constraints is violated. A serviced request

becomes active when it is executed either by the

synchronizer or, on 1its behalf, by another
process., This model assumes that
1. There may be a finite delay Dbetween
servicing a request and its subsequent
activation.
2. An active process cannot be aborted or

interrupted.

An operation remains active for a finite but
indefinite period of time, after which it is
said to have terminated.

These assumptions will be formalized after the
introduction of the language primitives.

3.

Specification Language Primitives

We refer to each distinct type of operation on a
shared resource as an operation class. All
operations of a particular type are said to be
instances of that operation class. In the
definitions below, "a" stands for a specific
instance of a particular operation class.

instance has associated with it
conditions with the following

Every pending
four primitive
semantics.

Req(a) This condition becomes true when a
concurrent process requests
operation "a", and remains true
until the requested operation is
serviced.

Start(a) This condition becomes true when
the synchronizer services request
"a" and remains true until "a"
starts execution.

Exec(a) This condition is true when
execution of operation "a" is in
progress.

Term(a) This condition becomes true when
operation "a" terminates.

We will now introduce the temporal operators

along with their semantics.

Tgese are strongly
influenced by I..amport1 x Owicki1

and Pnueli1 &

375

Oc To be read "always C". This means
condition C will remain true from
now on, i.e., C is true now and

throughout the future.

To be read "eventually C". This

means condition C is true now or
will eventually become true.
A UNTIL B To be read as "A remains true until
B becomes true". This means if B
eventually becomes true, then A
remains true from now until B
becomes true; otherwise [JA.

In our language, specifications are statements in
first-order predicate calculus augmented with the

temporal operators above. Statements in the
language may involve the predicate logic
operators: V(or), &(and) ~(not) and

=>(implication). Certain temporal operators are
derived from these primitives, and are introduced
to enhance the readability of the specification
language. They are,

P ONLYIF Q (P> Q) ey,
is true.

P is true only if Q

P ONLYAFTER Q (P UNTIL Q) i.e., P can become

true only after Q does.

P TRIGGERS Q [P => (OQ & P UNTIL Q)] &

[TQ => (TQ UNTIL P)]

If P is true, Q will become true; P
remains true until Q becomes true.
If Q is false, it remains false

until P becomes true.

P and Q are arbitrary conditions. The following
axioms formalize the synchronization model and
are asserted for each operation "a".

Start(a) => Req(a)
Start(a) TRIGGERS Exec(a)
Start(a) TRIGGERS ~Start(a)
Start(a) TRIGGERS ~Req(a)

Start(a) => [vbza ~Start(b) UNTIL ~Start(a)l
Exec(a) => [Exec(a) UNTIL Term(a)]
Term(a) => Exec(a)
Term(a) TRIGGERS [~“Term(a) & ~Exec(a)]
For notational convenience, we introduce the
following predicates.
Reg$A 3a€A Req(a), i.e., there exists a
request of class A.
Exec$A 3agA Exec(a), i.e., an operation of

cldss A is active.

The temporal operators defined earlier serve as
building blocks for our specification language.

The semantics of the various specification
statements are given in terms of these_ temporal
operators. The reader can refer to for a
detailed description of the specification
language.

To highlight various features of the
specification language, sentinels, and the proof
technique, we introduce the following

synchronization
operations,
shared resource,
exclude each other,
execute
However,
operations

problem: Two classes of
namely "Low" and "High", access a
High operations are required to
while a low operation may

with other operations.
possible concurrent low
by "maxavail". "Inuse"

concurrently
max imum
is 1limited

gives the number of low operations currently in

execution,

In addition, we want to expedite

servicing high requests and hence they are given

priority over low requests.

Below is the formal

specification for this problem.

SYNCHRONIZER Low _n_high IS

OPERATION CLASSES low,high;

OPERATIONS lowop:low; highop:high;

(s1)

RESOURCE STATE INFORMATION

STATE VARIABLES (s2)
maxavail CONSTANT 10
inuse [0..maxavail] INITIALLY O
STATE CHANGES (s3)
Start(lowop) : inuse ¢ inuse+1
Term(lowop) inuse ¢ inuse-1
STATE INVARIANCE (S4)
0 < inuse < maxavail
EXCLUSION high's EXCLUDE (s5)
INTER CLASS PRIORITY AMONG REQUESTED OPERATIONS
high > low (S6)
SCHEDULING DISCIPLINE (S7)

O{Req(highop) => OStart(highop)}
O{[Req(lowop) &

(“Req$high UNTIL Start(lowop))]
=> OStart(lowop)}

END low n_high;

The following observations are pertinent:

Instances of operations in a class can be
referred to by using generic operation names,
such as lowop and highop above.

Normally, servicing constraint specifications
express the conditions that should exist when
an operation is serviced. In this example,
the constraint is simply that a corresponding
request be present. We have therefore omitted
such constraints since they are implied by
the axioms of the synchronization model.

Data structures constituting the state of the
resource, and modifications to the resource
state by the operations, can be specified.

There is a construct to specify invariance of
a resource state predicate.

the
be

Exclusion among operations belonging to
same class or different classes can
specified.

Priority among operations within a class and
between operations of different classes can
be specified. In addition, priority can
depend on resource state.

376

- Scheduling discipline statements specify the
fairness that is expected of the
synchronizer.

The specifications require that every high
request be eventually serviced. Due to the
presence of priority specifications, a weaker
form of fairness is acceptable for low
operations. Since requests are made by processes
outside the synchronizer, the sequential model
assumed precludes the immediate recognition of
the presence of requests. This implies that,
although at a given time a request may be
eligible for service, a higher priority request
may have arrived before the synchronizer
recognizes this fact, thus preventing the
synchronizer from servicing the former. Hence it
is required that a low request eventually be
serviced provided no high requests arrive before
the low request would have been serviced (see L7
below) .

Now we are in a position to give the semantics of
the specifications for the problem in temporal
logic. Below we have substituted formal temporal
semantics Li for each specification statement Si.
Init is a special condition which is true when
the synchronizer is created and triggers its own
negation.

init => (inuse=0) (L2)
O (maxavail=10)
Vv lowopg€low yp [Start(lowop) & inuse=zp] (L3)
TRIGGERS inuse=p+1
V1lowop€low vp [Term(lowop) & inuse=p]
TRIGGERS inuse=p-1
0O{0 < inuse < maxavail} (LY)
vp1,p2 Ehigh pl#p2, (L5)
O~ {Exec(p1) & Exec(p2)}
VlowopE€low Vhighopghigh (L6)

O{Req(lowop) & Req(highop) =>
Start(lowop) ONLYAFTER Start(highop)}

vhighopghigh
O {Req(highop) => OStart(highop)}
Vlowop€low
O{[Req(lowop) &
("Req$high UNTIL Start(lowop))]
=> OStart(lowop)}

(L7)

SENTINELS, A HIGH-LEVEL LANGUAGE CONSTRUCT FOR
MULTIPROCESS COORDINATION

A sentinel is a special kind of process set up to
provide tailored communication disciplines
between other processes. The sentinel construct
uses a queuing primitive as a basic form of
synchronization. More elaborate forms of
synchronization are then built up by constructing
a sequential process (a sentinel) which
coordinates other processes via the basic queuing
primitive. The sentinel is the unique server of
a set of queues which are associated with it.
Sentinels allow a statement to be placed on the
queue, in the sense that the sentinel «can
determine when that statement is to be executed,
thus executing synchronization control over the
enqueuing processes. Instead of requiring the
synchronized processes to carry out certain
clerical operations (e.g. causing other processes
to be scheduled), a sentinel is an active process
and carries out such operations itself.

In order to have a means for creating processes,
we assume the underlying mechanics for a detached
mode of execution, e.g., as with the "task"
option in PL/I. For concreteness, we assume that
any syntactic statement entity, <statement>, can
be executed as a process by the statement

DETACH EXECUTE <statement>

which will create a process for <statement),
which then runs concurrently with the creating
process. The statement which corresponds to a
sentinel is a procedure call on the code of the
sentinel., Queues are passed as parameters to that
call. When the sentinel process is created, each
queue is initialized. 1In order that all requests
from enqueuing processes are enqueued, each queue

has a "queue manager" which provides enqueuing
processes exclusive access to it. The sentinel
process created becomes the server of those
queues.

The items which are communicated to sentinels
from other processes via queues are called
tokens. A token 1is a pair, consisting of a

statement and a parameter list. Either of these
items may be null in various applications. A

token gets created by a process, called the
enqueuing process, through a statement of the
form

QUEUE(<queue ref>,<{stmt>,<{parameter 1listd>).

The placement of a token puts the execution of
<{stmt> in control of a unique sentinel process
serving the queue. It also makes any parameters
in <parameter 1list> accessible to this server.
The enqueuing process is suspended till the
completion of execution of <stmt)>,

The
the

EXECUTE <queue reference> [n]

iﬁrver services the statement component of
n element in a queue by executing

where "n" 1is an integer variable whose value
indicates the position from the front of the

queue. The n*" element is removed from the queue

377

and cannot be re-executed. We also allow the

detached mode of execution for an execute
statement, viz.

DETACH EXECUTE <queue ref> [n] COUNT (c).
This effectively creates another temporary

process which executes the statement part of the
token in parallel with the synchronizer. Since
the token is already a statement in another
process, namely the enqueuing one, execution can
be optimized so that no new process is actually
created. The designated integer variable "c"
will automatically be incremented by 1 when this
statement is executed, and decremented by 1 when
and if the detached process terminates.

which will
condition

We assume a wait until statement,
delay a process until a specified
becomes true. Empty(<queue reference>) tests
whether the referred queue is empty and
non-empty(<queue reference>), tests the negation.
A sentinel recognizes that a request exists in a
given queue Q only when it evaluates non-empty(Q)
and finds it to be true.

The sentinel concept separates scheduling actions
from the processes being scheduled. It should be
mentioned that by demanding explicit selection of
the next token to be executed, a sentinel does
not provide internal nondeterminism as do similar
independently-conceived mechanisms such as ADA
and serializers®, A user must program the
sentinel to make a suitable choice. This allows
for flexible, yet relatively easily-understood
scheduling. (However, due to queueing delays
global nondeterminism may be present in a
distributed system.)

As an example, we give below the sentinel to
synchronize low and high operations as specified
in the previous section. (Statement 1labels are
for subsequent reference.)

SENTINEL low n_high (highq,lowq: QUEUE);
maxavail CONSTANT INTEGER := 10;
inuse INTEGER RANGE 0..max := 0;
La: WHILE true
DO

Lb: WAIT UNTIL (NON-EMPTY(highq) V
(NON-EMPTY(lowg) & inuse < maxavail));

Le: WHILE NON-EMPTY(highq)
DO

Ld: EXECUTE highql[1];
oD

Le: 1IF NON-EMPTY(lowg) & inuse < maxavail

THEN
Lf: DETACH EXECUTE lowq[1] COUNT (inuse)
oD

END low _n _high;

This sentinel would be created by
DETACH EXECUTE low n_high (highq,lowq).
A concurrent process requesting a high would
execute
Queue (highq,highop,nil),
while a process requesting a low would execute
Queue (lowq,lowop,nil).

An implementation of a sentinel-like mechanism is
described in o

FORMAL SEMANTICS OF SENTINEL CONSTRUCTS

The following predicates aid in referring to the

instruction pointer of processes. For any

executable statement S,

at(s) is true iff control is at the
beginning of S.

in(S) is true iff control is within S.

after(S) is true iff control is immediately

following S.

For our purposes, the above informal definitions
will suffice., Note that if S2 1is the next
executable statement following S1 then after(S1)
is equivalent to at(S2).

1) By executing the statement S : "WAIT UNTIL C",
the sentinel delays its own execution until the
boolean condition C is true. Thus the semantics
of "S" is

{at(S) => [at(S) UNTIL C]}
& O{lat(s) & C] => Oafter(S)}.

2) By executing the statement 83
"QUEUE(Q, op, param)", a user process appends the
token (op,param) to the queue named Q. Q[i]

refers to the it token in the queue. Q[i].og
will refer to the operation component of the i
token. When there is no confusion as to whether
the token or the operation component of the token
is being referred to, we will use Q[i] to refer
to the operation component. Qi gives the number
of tokens in the queue Q. Thus

vn{[at(S) & iQi=n] =>
O[iQi=n+1 & Qln+1)=(op,param) & Req(op)]l}.

3) By executing the statement S : "EXECUTE Q[nl",
the sentinel process executes Q[n]. Let " denote
concatenation of elements in queues and Q[n..m]
denote a queue formed by elements Q[n], Qln+1]
Qlm-1], Q[m] of the queue "Q". The
semantics of the execute statement is then:

gecey

vQ1,Q2,p,n
{at(S) & |
p=iQi}
=>
{Start(op) &
O[in(S) & (Exec(op) UNTIL after(S)) &
Ql1..p-11= Q17Q2] &

Olafter(S) => ~Exec(op)1}

4) By executing the statement S : "DETACH EXECUTE
Q[n] COUNT(c)", the sentinel effectively makes an
external task execute Q[n], i.e.,

Qi>n & Q(nl=(op, param) &
& Q[1..n-11=Q1 & Q[n+1..p1=Q2}

v Q1,Q2,k,m,n,p
{at(s) & iQi>n & Qlnl=(op, param) & c=m &
p=1Q! & Q[1..n-1]=Q1 & Q[n+1..pl=Q2}
=>
{Start(op) &
Ofc=m+1 & Exec(op) & Q[1..p-11=Q17Q2} &
[Term(op) & c=k] TRIGGERS c=zk-1}

378

From the above, we infer the following:
- The statement "QUEUE(Q,op,param)" enables the
condition "Req(op)". Equivalently,
vopl {3i Q[il).op=op1 => Reg(op1)}. (119

- If S is (DETACH) EXECUTE Q[i] then

at(S) => Start(Q[il]). (12)
- Serving a request by means of a (DETACH)
EXECUTE statement implies its eventual
activation. Hence such a statement will
eventually enable the condition "Exec(op)"
where "op" is the serviced operation. (I3)

THE VERIFICATION TECHNIQUE

there are two main phases
in the verification process. 1In the first,
conditions that hold when the synchronizer
services an operation are determined. These are
the constraints imposed by the sentinel for
servicing an operation. Proof of these
conditions is achieved by deriving place
assertions for the program from the semantics
of the constructs involved, using the standard
inductive assertions method " * The
preconditions of the "execute" statements give
the conditions under which the operations are
serviced.

As mentioned earlier,

In the second phase, from given high-level
specifications, constraints are derived for the
execution of an operation using the axioms and
theorems of temporal logic. What then remains to

be shown is: (1) given the preconditions for
servicing operations, these constraints are
satisfied, and (2) the sentinel guarantees the

fairness specified.

To illustrate the proof technique, we will show
that the sentinel which coordinates low and high
operations 1is correct with respect to the
specification of their synchronization. Given
below is a list of the theorems of "linear time"
version of temporal logic1 that will be employed

in the verification process. A and B denote
arbitrary temporal logic expressions.

T : O vB) = (Oav OB)

T2 : O(A VB) <=2 (OA V OB)

T3 : O(a & B) <=> (Oa & OB)

T4 : O => OB) & O(B => OC)

=> 0O => &0)

T5 : (OA & OOB) => O(A & B)

T6 : If T is a theorem, then OT
We make the following assumption regarding
terminating statements:

Dilat(stmt) & P] => Ol[after(stmt) & P']J} (A1)
where P and P' are pre and post conditions
appropriate for "stmt". This will be a valid
assumption if the underlying scheduler of
processes is fair.

Inductively, if S1,...,5n 1is a sequence of
terminating statements, then by A1, T4, and the

definitions of the predicates "at" and "after",
at(s1) => Oafter(Sn).

We call this, "control flow reasoning".

Verification: Phase 1
From the semantics

of the constructs, we
determine assertions that hold at the beginning
of certain statements (places) of interest. We
assume that operations 1low and high always
terminate. It then suffices to note that the
place assertions below follow from the semantics
of the statements and induction on the structure

of the program. Here the statement labels
correspond to those in the sentinel program.
at(Lb) => “Exec$high
at(Le) => “Exec$high &
(non-empty(highq) V
(non-empty(lowq) & inuse<maxavail))
at(Ld) => ~“Exec$high & non-empty(highq)
at(Lf) => “Exec$high & inuse < maxavail &
EMPTY(highq) & non-empty(lowg) (P
Since only the sentinel can service requests,

~Exec$high and "Exec$low are initially true.

For an operation "op" to be serviced, control
should be at the beginning of an execute
statement "S" that services "op". From the

preconditions of the Execute statements, we have:

vhighop € high
Start(highop) =>
{non-empty(highg) & highop=highql1] &

~Exec$high} (PR)
Vlowop € low
Start(lowop) =>
{non-empty(lowg) & lowop=lowql1] &
~Exec$high & empty(highq) &

inuse<maxavail)} (PA)

Verification: Phase 2
We will systematically derive from the top level
specifications the necessary conditions for
servicing a request. These conditions are
embedded in the scheduling constraint, mutual
exclusion, resource state invariance, and
priority specifications. We outline only the
essential steps in deriving the necessary
conditions from each of these statements. Only
informal arguments are given for showing the
correctness of the transformation steps. In what
follows, to preserve readability, we have
employed the following artifice. Statements in
which the free variable "lowop" occurs are
implicitly universally quantified over all low

operations. Occurrences of '"highop" are similarly
quantified.
Transforming Mutual Exclusion Statement The

specification statement "C excludes D", where C

(b)Control will be at Lf only when
non-empty(highg) evaluates to false. Since the
sentinel cannot recognize requests in highq until
the next evaluation of non-empty(highq) ,
empty(highq) is assumed to hold until then.

379

and D are operation classes,
equivalent to

vec €C O{Start(e)
vd €D O{Start(d)

can be shown to be

=>
=>

~“Exec$D}
“Exec$C}

Exclusion of different instances of the

operation class, say C, is preserved if

vc€C [O{Start(c) => "Exec$C}

Same

Thus the mutual exclusion of all high operations
will be transformed into
Start(highop) => T“Exec$high.

Translating Resource state invariance Invariance
is maintained by ensuring that the Invariant is
preserved by each operation that 1is serviced.
For this purpose, a precondition is obtained for
each operation from (a) the invariance
specification and, (b) the changes to the
resource state by the operation.

Given that
priority than 1low

Translating Priority Specifications
high operations have higher
operations, we have:

O{Req(lowop) & Req(highop) =>
Start(lowop) ONLYAFTER Start(highop)}

This can be shown to be equivalent to

O{start(lowop) => “Req$high}

Conjunction of all constraints applicable to low
and high operations respectively results in:

Start(lowop) =>

{Req(lowop) & ~“Req$high & inuse<max} (ca)
Start(highop) =>
{Req(highop) & ~“Exec$High} (CR)
Since
empty(highg) => “Req$high

highop=highql1] => Req(highop)
lowop=lowg[1] => Req(lowop),

the preconditions PA and PR derived from the
sentinel code, imply the constraints CA and CR
respectively.
Observe that the sentinel overconstrains low
operations since

Start(lowop) => “Exec$high

from the sentinel code, whereas this 1is not

required by the specifications. We can avoid
such overconstraint by executing high operations
also in a detached mode but avoid doing so for
simplicity.

Proof of Fairness We reiterate our assumption
that the operations being synchronized, namely
low and high, always terminate. Before we prove
the fairness specification, we prove three
lemmas.
Lemma 1

OO {at(Le) V Oat(Lb)}

This lemma states that eventually control either
remains forever at the WAIT UNTIL statement, or
eventually reaches Lc.

Proof Given a statement w: WAIT UNTIL C, by T1,

8-c v «c.

From the semantics of the WAIT UNTIL statement,
and the definition of the UNTIL operator,

at(w) => O at(w) Vv Oafter(w)

The Lemma then follows from control flow

reasoning.

Lemma 2

vC {C => vp O(p=highql1] => OStart(p))} =>
{C => vpO(3i p=highql[i] => OStart(p))!}

By this lemma, if we can show that the first
request in highq will eventually be serviced,
then all operations in highq will eventually be
serviced.

Proof Assume the hypothesis of the lemma. From
the semantics of the Execute statement,

vi>1 vp {at(Ld) & highqlil=p}

=> Of{after(Ld) & highqli-1]=p} (1)

From the hypothesis of
Execute

Assume C and p=highqlil.
the 1lemma, and the semantics of the
statement, OStart(highql1]).

OStart(highql1])

=> Oat(Ld)
-- definition of Start

=> O (p=highqli-11)
-- by (1)

By repeated application of (1) in conjunction
with the hypothesis of the 1lemma, we get,
O (p=highq[1]) and hence OStart(p).

Lemma 3

vC {C => yp O(p=lowq[1] => OStart(p))} =>
{C =>yp O(3i p=lowqlil => OStart(p))}

This is similar to Lemma 2, and applies to low

operations.

Proof of fairness to high requests
Fairness specified is

v highopghigh [(J(Req(highop) =>

OsStart(highop)) (F1)

consider one particular highop namely

Using Lemma 1, either <OQat(Lb) or
QOat(Le). Since Req(highop), by the semantics of
the Wait Until statement, [Jat(Lb) is false. If
control is at Le then since Req(highop), <at(Ld)
which implies OStart(highop). So the first
operation in highq will eventually be serviced,
in which case, by lemma 2, all high operations
will be eventually serviced. Now we give " the
formal proof.

Let us
highql1].

We show that F1 is true for a particular highop,

380

namely highq[1]. highop 1is never

serviced. Then

Suppose

Req(highop) =>
[Req(highop) UNTIL Start(highop)]
-- axiom of the synchronizer model

=> [OReq(highop) —-- definition of UNTIL.

Furthermore,

ODOat(Lb) V Oat(Le) -- by Lemma 1 and T2

=> O[(at(Lb) & req(highop)) V at(Le)]
-- by T5, T2 and (2)

=> Qat(Ld)
-—- using control flow reasoning and
the semantics of "WAIT UNTIL" (3)

=> OStart(highop)

This contradicts the assumption [J~Start(highop).
Hence by T1, OStart(highop). Fairness to all
high operations follows from Lemma 2.

Proof of Fairness to low requests
Fairness specified is

V1owopE€low
O{[Req(lowop) &
("Req$high UNTIL Start(lowop))]

=> <>Start(lowop)} (F2)
Here again we consider a particular lowop, namely
lowql[1]. Assume that the request 1is never
serviced. From the hypothesis of F2 and the
definition of UNTIL, [JReq(lowop) and [J~Req$high
are true. Since low operations terminate,
O (inuse < maxavail). This conclusion in
conjunction with 1lemma 1 and control flow
reasoning shows that eventually control will

reach Lf at which time lowop will be serviced.
This contradicts the assumption and hence by T1,
OStart(lowop) .

Formally, assume [J~Start(lowop). Since

Req(lowop) =>
[Req(lowop) Until Start(lowop)],
from the semantics of UNTIL,
OReq(lowop) & [O~Req$high.)

(inuse < maxavail) 1is an invariant. (5)

inuse=maxavail

=> Exec$low

=> 3lowopElow Exec(lowop).

=> OI[Term(lowop) & inusezmaxavaill

since all operations are assumed to terminate.
From the semantics of Detach Execute,

O (inuse<maxavail). (6)

From T6 and (6),

OO (inuse < maxavail). (7
From (4),(7) and control flow reasoning,

at(Lb) => Oat(Le)

=> Oat(Lf) => OStart(lowop).

This contradicts our assumption
[O~Start(lowop) .

F2 follows from T1 and Lemma 3.

To summarize, we have shown that (a) the
conditions which hold when operations are
serviced by the synchronizer conform to - the
constraints derived from the servicing

constraints, invariance, priority and exclusion
specifications, and (b) the synchronizer services
operations according to the specified scheduling
discipline, thus showing the correctness of the

sentinel with respect to the overall
specifications. We have given only the essential
transformations from high-level specifications.

Further descgiption of the transformation system
appears in 1]

CONCLUDING REMARKS

We have applied temporal logic to the
specification and verification of synchronizers
of concurrent processes. The full specification
language has constructs for stating the set of
properties that are normally relevant to
synchronization of concurrent operations, namely,
ordering, fairness, priority, exclusion (and by

dgfault, concurrency), and invariance of resource
state.

Our specification of semantics of the
synchronizing constructs used in sentinels is
complete in the sense that we have given the
invariant and temporal behavior of each
constryct. Similarly, by specifying the behavior
of primitives used to implement these constructs,
we can prove their implementation.

Although we have applied the technique to
sentinels, we conjecture that our technique is
applicable to other synchronization mechanisms
e.g., monitors®, serializers® and ADA ‘tasking
facility!, The only requirement is that the
synchronization primitives wused must possess
precise semantics. Then it will be possible to
determine the conditions that should hold when
operations are serviced, and thus apply the
results of phase 2. One problem we do anticipate
for these other mechanisms is in showing that a
specified fairness is guaranteed by a
synchronizer.. This is due to the fact that some
synchronizing constructs have "hidden" or
unspecified scheduling disciplines (e.g. in ADA),
or the underlying scheduling has one of many
possible interpretations (e.g. in monitors”?),

381

Previous efforts to specify synchronization

include those of Griffith55 and Robinson19_ In
these, an abstract solution to the problem is
specified, rather than the problem itself. Pre
and post conditions are provided for
"synchronizing functions" that surround critical

regions. Verification entails showing that the
code for the synchronizing functions Dbehaves
correctly with respect to the invariants
specified.

Current techniques for verifying synchronized

sharing of resources are mainlx2 concerned with
the proof of invariants. Keller gave a gener?g
technique for this purpose. Owicki and Gries
presented proof rules using auxiliary variables.
Hoare® gave proof rules for monitors which were
later extended10. Path expressions directly
yield invariants which are used in the proof of
processes synchronized by paths-,

In all of the techniques mentioned in the
previous paragraph, verification of invariants
has been the main concern and proving correctness
relies on the notion of states to reason
indirectly about the effect of synchronization.
We surmise that the uses of auxiliary (history)

variables is mainly motivated by a need to
maintain history information, 1i.e., temporal
information. Further, formal proof of absence of
deadlock and starvation requires ‘techniques

different from those used to prove invariants. On
the other hand, the method we have outlined here
handles invariant and temporal properties in a
unified manner.

The approach used here for the proof suggests the
possibility of synthesizing synchronizers from
given specifications by extending phase 5.
Preliminary ideas in this regard appear in? .
Our experience with specifying and proving
sentinels leads us to believe that temporal logic
is a valuable tool in general, for a complete
semantic definition of programming constructs,
for invariant and temporal specifications of
programs, and in formally verifying total
correctness of these programs. By treating
invariant and temporal properties under a single
framework, temporal logic provides a unified
approach to program verification and
specification.

(21

(31

(4]

[54

[6]

(713

(81

(91

[101]

REFERENCES
Ichbiah J.D. et al. Preliminary ADA
Reference Manual. SIGPLAN Notices 14 (June
1979).
Atkinson, R:R. and Hewitt, C.E:
Specification and Proof Techniques for

serializers. IEEE Transactions on Software
Engineering SE-5 (Jan 1979), 10-23.
Flon, L. and Habermann, A.N. Towards the
Construction of Verifyable Software Systems.
SIGPLAN Notices 11 (March 1976), 141-148.
Floyd, R. Assigning Meanings to Programs.
Proc. 9th. Symposium in Applied
Mathematics, (1967).
Griffiths, P. SYNVER: A
Automatic Synthesis and
Synchronization Processes.
Harvard University, (1974).
Habermann, A.N. Path Expressions.
Carnegie-Mellon University, (June, 1975).
Hoare, C.A.R. An Axiomatic Basis for
Computer Programming. Communications of the
ACM 12 (1969), 576-580.
Hoare, C.A.R. Monitors: An Operating System
tructuring Concept. Communications of the
ACM 17 (Oct 1974), 540-557.
Howard, J.H. Signalling in monitors. Proc.
Second International Conference on Software

System for the
Verification of
TR 22-T4,

Engineering, (Oct, 1976), pp. Uu7-52.

Howard, J.H. Proving Monitors.
Communications of the ACM 19 (May 1976),
549-557.

382

(111

[12]

[131

[14]

[15]

[16]

171

(181

[19]

B. Jayaraman and R.M. Keller. Resource
control in a demand-driven data-flow model.

Proc. 1980 International Conference on
Parallel Processing, (August, 1980), pp.
118-127.

Keller, R.M. Formal Verification of
Parallel Programs. Communications of the
ACM 19 (July 1976), 371-384.

Keller, R.M. Sentinels: A Concept for
Multiprocess Coordination. UuCS-78-104,

University of Utah, (June, 1978).

Lamport, L. 'Sometime' is Sometimes 'Not
Never!', Proc. Seventh Annual Symposium on
POPL, (Jan, 1980), pp. 174-185.
Owicki , S. and Gries, D.
Properties of Parallel Programs: An
Axiomatic Approach. Communications of the
ACM 19 (May 1976), 279-284.

Verifying

Owicki, S. Temporal 1logic and Parallel
Programs. Colloquium, University of
Utah.(Feb, 1979).

Pnueli, A. The Temporal Semantics of
Concurrent Programs. In Khan, Ed.,
Semantics of Concurrent Computation,

Springer Lecture Notes in Computer Science,
Springer-verlag, (1979), pp. 1-20.

Ramamritham, K. and Keller, R.M.
Specification and Synthesis of
Synchronizers. Proec. 1980 International
Conference on Parallel Processing,
(Aug, 1980).

Robinson, L. and Holt, R.C. Formal
Specifications for Solutions to

Synchronization Problems. Stanford Research

Institute, (1975).

	Claremont Colleges
	Scholarship @ Claremont
	3-1-1981

	Specifying and Proving Properties of Sentinels
	Krithivasan Ramamritham
	Robert M. Keller
	Recommended Citation

	Keller374
	Keller375
	Keller376
	Keller377
	Keller378
	Keller379
	Keller380
	Keller381
	Keller382

