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Abstract

Mathematicians use models of opinion dynamics to describe how opinions in
a group of people change over time, which can yield insight into mechanisms
behind phenomena like polarization and consensus. In these models,
mathematicians represent the community as a graph, where nodes represent
agents and edges represent possible interactions. Opinion updates are
modeled with a system of differential equations (ODEs). Our work focuses
on the sigmoidal bounded confidence model (SBCM), where agents update
their opinion toward a weighted average of their neighbors’ opinions by
weighting similar opinions more heavily. Using tools developed in physics
(mean-field theory), we derive a continuity equation from the system of ODEs
to further analyze the model’s steady states and compare with numerical
simulations.
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Preface
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find parts of this thesis which speak to you. And if following calculations
does not spark joy, please skip them! I hope you enjoy the pages to come :)

1and sometimes enemy





Chapter 1

The ABCs of Models of
Opinion Dynamics

The thing that gets me up in the morning is Connections, one of my favorite
New York Times games. The goal of Connections is to separate sixteen
words or phrases into four categories (of four words), varying in difficulty.
Some categories might be “Places in New York”, or “Anagrams of ‘live”’, or
words which fill in the blank “___ child” (e.g. problem, flower, only). Let’s
start with a small puzzle: what unites the following four words (see the
footnote for the answer)1?

It’s quite exciting to discover connections, whether it’s between words,
subjects, fields, or disciplines. For my thesis, we will be working with a
model of opinion dynamics, which is used to study the way opinions spread
in a group of agents by assigning each agent an “opinion”, keeping track
of their interpersonal connections, and studying the way their opinions
change over time. First developed by psychologists like Abelson (1967) to
study social behavior, these models have since been used to study how
populations become polarized, reach consensus, and even how sentiments
spread on social media Noorazar et al. (2020). The particular bounded
confidence model I’ll be working with, called the sigmoidal bounded confidence

1The category is “Second Opinion”, as these words are all featured in phrases where
“opinion” comes second (e.g. dissenting opinion).

https://www.nytimes.com/games/connections
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model (SBCM), unites two seemingly unrelated, well-studied models of
opinion dynamics. In order to study these dynamics, my thesis will connect
mathematical fields of inquiry, as well as a variety of disciplines ranging
from our social science origins to the physics-inspired tools we’ll use to
explore the SBCM.

We’ll start by getting to know the SBCM. But before we acquaint ourselves
with the sigmoidal bounded confidence model, let’s meet two models of
opinion dynamics which inspired it.

1.1 A is for Averaging

Suppose, for concreteness, that we would like to model the evolution of
a population of fireflies’ favorite colors. One of these fireflies, Glowrdon
Lightfoot, is tasked with organizing a light show, where the community of
fireflies comes together to show off their colors. They know that each firefly
will shine with their favorite color, but they would like to know which colors
they have to work with. Glowrdon knows what each firefly’s favorite color
is now, 365 days before the show, and that each firefly interacts with their
friends daily, so he sets about finding a model which he can use to help
predict the colors he can use.

Glowrdon decides to take inspiration from their interactions with their
own friends. Glowrdon’s favorite color is blue, their two friends’ favorite
colors are purple and red. After interacting with their friends, Glowrdon
realizes that their favorite color has changed under their influence. Their new
favorite color is purple—the average of blue, purple, and red. Extrapolating,
Glowrdon hypothesizes that everyone in their community updates their
opinions approximately this way. This model which Glowrdon has created,
where agents update their opinion based on the average of theirs and their
neighbors’ opinions, is called the Abelson model. Introduced by Abelson
(1967), it is one of the first models of opinion dynamics.

To carry out their analysis, Glowrdon decides to make use of some
mathematical tools, the first of which is an object called a graph:

Definition 1.1.1. A graph 𝒢 = (𝑉, 𝐸) consists of a set of vertices 𝑉 along
with a set of edges 𝐸, where each edge connects a pair of vertices. We
can write each edge 𝑒 ∈ 𝐸 (“element 𝑒 in the set 𝐸”) as a pair of vertices
𝑒 = {𝑣1 , 𝑣2} where 𝑣1 , 𝑣2 ∈ 𝑉 . In this thesis, I will use “vertex” and “node”
interchangeably.
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Figure 1.1 A model of a community using a graph, where fireflies are vertices,
and edges are denoted with a line between fireflies. Each color can be translated
to a number through its wavelength.

Since inter-firefly connections are an important part of the way opinions
change in a community and they don’t expect for friendships to change dras-
tically in just one year, Glowrdon decides to model their community using a
graph 𝒢 = (𝑉, 𝐸) (also shown in fig. 1.1), where each vertex (firefly) 𝑖 ∈ 𝑉 is
labeled with some opinion (favorite color) 𝑥𝑖 ∈ ℝ. This approximation, that
the time scale we’re considering is short enough that inter-agent connections
stay roughly static, is often used for the real-world models we’re interested
in2. Additionally, Glowrdon makes use of the following graph terminology:

Definition 1.1.2. If two vertices 𝑖 , 𝑗 ∈ 𝑉 are connected by an edge, we call
them adjacent (written 𝑖 ∼ 𝑗, and pronounced “𝑖 is adjacent to 𝑗”).

Note that we can rewrite set of edges 𝐸 as a set of adjacent vertex-pairs
so that:

𝐸 = {(𝑖 , 𝑗) : 𝑖 ∼ 𝑗 and 𝑖 , 𝑗 ∈ 𝑉}.

Definition 1.1.3. For a given vertex 𝑖, the total number of vertices adjacent
to it is called the degree of 𝑖, written deg(𝑖). It can be expressed with
deg(𝑖) = ∑

𝑗∼𝑖 1. For example, the yellow vertex in fig. 1.1 has a degree of 1,
and the red vertex in fig. 1.1 has a degree of 3.

Definition 1.1.4. A subgraph 𝐺′ = (𝑉′, 𝐸′) of a graph 𝐺 = (𝑉, 𝐸) is a graph
whose vertices are a subset of the vertices of 𝐺 (i.e. 𝑉′ ⊂ 𝑉) and whose

2Recently, researchers (e.g. Nugent et al. (2023)) have also been exploring the way an
evolving underlying network affects the model’s outcomes.
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Figure 1.2 A visualization of the evolution of the Abelson model on the graph
shown in fig. 1.1 with opinions residing in the color spectrum. We start with the
initial condition on the left. After letting the system come to equilibrium, we
reach the state on the right, where within each connected component, agents
share the same opinion, i.e. consensus.

edges are precisely those which are in 𝐺 and connect two vertices in 𝑉′, i.e.

𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑉′}.
Definition 1.1.5. A path between two vertices 𝑣1 and 𝑣𝑛 is a sequence of
distinct vertices (𝑣1 , 𝑣2 , . . . , 𝑣𝑛) where each neighboring pair of vertices are
joined by edges, i.e. (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for 𝑖 = 1, . . . , 𝑛 − 1.

Definition 1.1.6. In a connected graph, there is a path between any two
vertices. As we can see, there is not a path between the yellow and red
vertices in fig. 1.1 so this graph is not connected.

Definition 1.1.7. A connected component of a graph 𝐺 is a connected subgraph
which is not part of any larger connected subgraph. Any graph can be
split into connected components. For example, fig. 1.1 has two connected
components: one containing the yellow vertex, and another containing the
red one.

Now that we have a graph, we can think about how it changes over time.
Glowrdon starts by writing down a rule which governs how the opinions of
each vertex changes with each time step. In their case, the new opinion at
time 𝑡𝑛+1 of the 𝑖th firefly 𝑥𝑖(𝑡𝑛+1) is determined by the average of opinions
of it and its neighbors at time 𝑡𝑛 , so that:

𝑥𝑖(𝑡𝑛+1) = 1
1 + deg(𝑖)

©«𝑥𝑖(𝑡𝑛) +
∑
𝑗∼𝑖

𝑥 𝑗(𝑡𝑛)ª®¬. (1.1)
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Now, Glowrdon just needs to solve this equation 364 times for each firefly.
Though this is doable, it will take Glowrdon too long—and leave them
with too little time for the other preparation work they must do. However,
given how often Glowrdon is updating their model, they figure that just
by changing the scale on which they view time, each time step is only
1/365 ≈ 0.0027 years—an approximately continuous scale. If Glowrdon can
make opinions 𝑥𝑖 depend continuously on time, then they only need to solve
one equation for each firefly! In general, this approximation works well as
long as we assume that many (fairly regular) interactions happen within
our time frame. To do this, Glowrdon reformulates the update equation
(eq. (1.1)) as a differential equation. To start, Glowrdon takes the difference
between time steps:

𝑥𝑖(𝑡𝑛+1) − 𝑥𝑖(𝑡𝑛) = 1
1 + deg(𝑖)

©«𝑥𝑖(𝑡𝑛) +
∑
𝑗∼𝑖

𝑥 𝑗(𝑡𝑛)ª®¬ − 𝑥𝑖(𝑡𝑛) (1.2)

=
1

1 + deg(𝑖)
∑
𝑗∼𝑖

(𝑥 𝑗(𝑡𝑛) − 𝑥𝑖(𝑡𝑛)). (1.3)

Now, in order to take the limit 𝑡𝑛+1 → 𝑡𝑛 , we’ll introduce a coupling
strength 𝜀, which controls for how quickly our system converges.

𝑥𝑖(𝑡𝑛+1) − 𝑥𝑖(𝑡𝑛) = 𝜀

1 + deg(𝑖)
∑
𝑗∼𝑖

(𝑥 𝑗(𝑡𝑛) − 𝑥𝑖(𝑡𝑛))

When 𝜀 is larger, our system changes more dramatically at each time step.
Since we want to make sure our system changes smoothly, we require that
in the limit as 𝑡𝑛+1 → 𝑡𝑛 , 𝜀

𝑡𝑛+1−𝑡𝑛 → 1 so that by the definition of a derivative:

lim
𝑡𝑛+1→𝑡𝑛

𝑥𝑖(𝑡𝑛+1) − 𝑥𝑖(𝑡𝑛)
𝑡𝑛+1 − 𝑡𝑛 = lim

𝑡𝑛+1−𝑡𝑛
𝜀

𝑡𝑛+1 − 𝑡𝑛
1

1 + deg(𝑖)
∑
𝑗∼𝑖

(𝑥 𝑗(𝑡𝑛) − 𝑥𝑖(𝑡𝑛))

¤𝑥𝑖(𝑡) = d𝑥𝑖
d𝑡 =

1
1 + deg(𝑖)

∑
𝑗∼𝑖

(𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡)). (1.4)

In one last simplification in their analysis, Glowrdon reasons that since
365 days is a long time, on the 364th day, they do not expect that their
communities’ opinions will change much. Though it’s not clear yet why this
approximation should apply, we’ll see later that we can run simulations of
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the model to verify this assumption. Mathematically, Glowrdon expects that
the system will settle down near a steady state, which occurs when ¤𝑥𝑖(𝑡) = 0
for each 𝑖 ∈ 𝑉 .

It turns out that all steady states for this model have 𝑥 𝑗(𝑡) = 𝑥𝑖(𝑡) for
all 𝑗 ∼ 𝑖. In this case, whenever there is a path between two vertices, i.e.
𝑖 ∼ 𝑎 ∼ 𝑏 ∼ · · · ∼ 𝑗, since 𝑥𝑖(𝑡) = 𝑥𝑎(𝑡) = · · · = 𝑥 𝑗(𝑡), all of the vertices
along the path must share the same opinion. In particular, in any connected
component of a graph (where I can find a path between any two vertices
in the component) we expect the steady state opinion of each vertex to be
constant. We call this state within each connected component a consensus
state. A visual depiction of an example model is shown in ??.

To show why this is the only steady state, consider a connected component
𝐺′ of 𝐺. Let’s call 𝑦 the maximum opinion expressed by agents in 𝐺′, and
suppose Max is one such vertex with opinion 𝑥Max = 𝑦. Since𝐺′ is connected,
any other vertex 𝑣 in𝐺′ is connected to Max by a path (Max, 𝑢1 , 𝑢2 , . . . , 𝑢𝑛 , 𝑣).
Note that since we are at a steady state, ¤𝑥Max = 0 by eq. (1.4), so we must have
𝑥 𝑗(𝑡) − 𝑥Max(𝑡) = 0 for each 𝑗 ∼ Max. Thus, Max shares the same opinion as
all of its neighbors. In particular Max shares the same opinion as 𝑢1, the
first vertex along the path connecting Max and 𝑣. Since now 𝑢1 is also a
vertex possessing the maximum opinion of agents in 𝐺′, we can repeat this
argument for 𝑢1 and find that 𝑢2 must also share the maximum opinion.
Continuing along the path, we can conclude that 𝑣 must share the same
opinion as Max. Since our choice of 𝑣 was arbitrary, the same argument
applies to all vertices in 𝐺′, so 𝐺′ has, as its only steady state, a consensus
state.

1.2 B is for Bounded

The conclusions of the previous section may feel unsatisfying. Why does
this model predict that all connected communities find consensus, when
this phenomenon rarely occurs in the real world? If real-world interactions
are approximated well by the dynamics of the Abelson model, we could do
away with most disagreements just by allowing the two parties time to talk.

In contrast to always finding agreement, sociologists found that people
seek and favor information which confirms their currently held beliefs Fischer
et al. (2010), which they called selective exposure. Hegselmann and Krause
(2002) introduced a model incorporating this effect (the HK model), where
opinions are updated with the average of only similar adjacent opinions.
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More concretely, we introduce a confidence level 𝛿—instead of averaging all
opinions, we’ll only average neighboring opinions which are within 𝛿 of the
original opinion. Thus, our update function (eq. (1.4)) becomes:

𝑥𝑖(𝑡 + Δ𝑡) =
∑
𝑗∼𝑖

𝑥 𝑗(𝑡)𝜔(𝑥𝑖 , 𝑥 𝑗) (1.5)

where 𝜔(𝑥𝑖 , 𝑥 𝑗) =
𝟙[��𝑥 𝑗 − 𝑥𝑖 �� < 𝛿]∑
𝑗∼𝑖 𝟙[

��𝑥 𝑗 − 𝑥𝑖 �� < 𝛿] (1.6)

Here, 𝟙 is the indicator function,

𝟙[𝑥 < 𝛿] =
{

1 𝑥 < 𝛿

0 𝑥 ≥ 𝛿.

which is equal to one whenever the bracketed condition is satisfied and zero
everywhere else. Additionally, the way we’ve written our update rule in
eq. (1.5) has suggested that this update rule is a weighted average3. Indeed,
we’ve defined our weights 𝜔(𝑥𝑖 , 𝑥 𝑗) in such a way that they sum to one:∑

𝑗∼𝑖
𝜔(𝑥𝑖 , 𝑥 𝑗) =

∑
𝑗∼𝑖

𝟙[��𝑥 𝑗 − 𝑥𝑖 �� < 𝛿]∑
𝑗∼𝑖 𝟙[

��𝑥 𝑗 − 𝑥𝑖 �� < 𝛿] =
∑
𝑗∼𝑖 𝟙[

��𝑥 𝑗 − 𝑥𝑖 �� < 𝛿]∑
𝑗∼𝑖 𝟙[

��𝑥 𝑗 − 𝑥𝑖 �� < 𝛿] = 1.

As we did in the previous section, we’ll rewrite this equation in the form
of a differential equation:

¤𝑥𝑖(𝑡) =
∑
𝑗∼𝑖

(𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡))𝜔(𝑥𝑖 , 𝑥 𝑗).

From this equation, we can also examine the values of 𝛿 which lead to steady
states in the model. The model’s behavior changes depending on many
factors including the confidence bound 𝛿, the (substrate) graph structure,
and initial opinions of each vertex. Even by restricting ourselves to the case
where each vertex is adjacent to every other vertex (so the graph structure is
a complete graph) and focusing on the effect of 𝛿 by randomly distributing
the vertices’ initial opinions, the model exhibits a wide variety of behaviors,
with some examples shown in fig. 1.3.

3In fact, the Abelson model we introduced above can also be formulated in this manner,
except with a constant weight function.
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Figure 1.3 Plots of the evolution of the HK model at varying values of 𝛿 with
random initial conditions on the complete graph. By varying 𝛿, we can control
the number of factions our population ends up in. Figures based on Hegselmann
and Krause (2002), and generated using code from Brooks et al. (2023).

One additional component Hegselmann and Krause introduced is a type
of agent called a “zealot”: these vertices have an update rule given by

¤𝑥𝑖 = 0

so that they’re happy to share their opinion, but not willing to change it.
We can now split our vertex set 𝑉 into two partitions: a set of persuadable
vertices we’ll call 𝒫, and a set of zealots we’ll call 𝒵 = 𝑉\𝒫. Now, in total,
our update rules becomes:

¤𝑥𝑖(𝑡) =
{∑

𝑗∼𝑖(𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡))𝜔(𝑥𝑖(𝑡), 𝑥 𝑗(𝑡)) 𝑖 ∈ 𝒫
0 𝑖 ∈ 𝒵 . (1.7)

A visualization of this process is shown in fig. 1.4. For simplicity, let’s
consider a graph with only two zealots 𝒵 = {1, 2} with 𝑥1 = 1, 𝑥2 = −1.
Even in this simpler case, we can get a lot of interesting behavior, as shown
in fig. 1.5.

1.2.1 A Brief Change in Perspective and Look Ahead

Looking between the two models we’ve seen so far, we have on the one
hand the Abelson model, which averages all surrounding vertices (and
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V

V

Figure 1.4 A visualization of the HK model where opinons again lie on the
color spectrum. Here, each firefly has a confidence bound of allowable favorite
colors. Additionally, there is one zealot firefly shown in pink who will not change
its own color, but affects the colors of others. After a long time, the pair of
fireflies on the left behaves the same as in the Abelson model, but the group of
fireflies on the right split into two factions. Since the fireflies who like blue are
not influenced by those who like purple, they retain their opinions, effectively
separating the remaining purple and red fireflies into two pairs. Then, within
each pair, the fireflies reach a consensus (the red firefly is indoctrinated by the
zealot).
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Figure 1.5 Evolution of the HK model with two zealots. The initial conditions
were generated uniformly at random −1 to 1. This was generated using the code
repository from Brooks et al. (2023).
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SIGMOIDAL OPINION DYNAMICS 5

Fig. 1. (a) Examples of the influence function w(xi, xj) with the confidence bound � = 1 for
di↵erent values of the parameter �. When � = 0, all interaction weights are equal and independent
of the distances between opinions. As � increases, there is an increase in the interaction strength
between nodes i and j whose opinions satisfy |xj � xi|2 < �. Conversely, as � increases, the
interaction strength decreases between nodes whose opinions satisfy |xj � xi|2 > �. (b) Examples of
the influence on the opinion of a persuadable node as one increases �. This influence of node j on
node i depends on the product of the influence function w(xi, xj) in the left panel and the distance
|xj � xi| in opinion space. When � = 0, the influence is monotonic with respect to the the opinion
distance |xj � xi|; when � > 0, the influence has a local maximum.

in opinion space (i.e., when nodes i and j have similar opinions). One can interpret
w(xi, xj) as a weighting function that encodes the relative receptivity of nodes i and
j to each other’s opinions.4 We collect these values in a matrix W(x) 2 Rn⇥n. When
an opinion state x is clearly implied, we abbreviate the components of this matrix
as wij = w(xi, xj) and we abbreviate the matrix itself as W = W(x). Additionally,
w(xi, xj) depends on xi and xj only through their absolute di↵erence |xi � xj |. There-
fore, we can define a function ! : R ! R through the relation w(xi, xj) = !(|xi � xj |).

The parameter � controls the “sharpness” of the dependence of wij on the squared
distance (xi�xj)

2 (see Figure 1). Two limiting cases are of particular interest. When
� = 0, the function w(xi, xj) is a constant and is thus independent of xi and xj . By
contrast, as � ! 1, the function wij converges pointwise to a step function (with the
step located at �) of the squared distance:

w(1)(xi, xj) = lim
�!1

w(xi, xj) =

8
><
>:

1 , (xi � xj)
2 < �

1
2 , (xi � xj)

2 = �

0 , (xi � xj)
2 > � .

(2.3)

These two limits correspond to well-known opinion models.
When � = 0, equation (2.1) reduces to

(2.4)
dxi

dt
=

1

di

X

j⇠i

(xj � xi) ,

where di is the degree (i.e., the number of neighbors) of node i. This is a simple

4The evolution of weights as a function of opinions as a feedback mechanism is reminiscent of
the evolution of self-weights in the DeGroot–Friedkin model [38].
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Figure 1.6 The dependence of the sigmoid on values of 𝛾. Note that the yellow
curve is the weight function for the Abelson model (a constant), while the purple
curve approaches the weight function for the HK model (a step function). Figure
from Brooks et al. (2023).

consequently has a constant weight function), and the HK model, which
puts a bound on which values contribute to the average. Plotting the
weight function for each of these, we can see in fig. 1.6 that these two
weight functions can be thought of as extremes in a broader class of weight
functions, parameterized by a real number 𝛾. Conveniently for us, these
weight functions are also smooth (infinitely differentiable and continuous)
which is helpful when working with calculus, unlike the HK weight function.

Such a weight function can be interesting to study for a variety of
reasons—we might ask questions like:

• For which 𝛾 values does this model approximate the Abelson model
or the HK model?

• How does the new model differ from the Abelson and HK models
when the weight function is in between the two extremes?

• If we vary the structure of the substrate graph of our model, how do
the steady states of our system change? Do they match the behavior of
the steady states for the Abelson or HK models?

Though we won’t be able to immediately dive into explorations of these
questions, we’ll set things up by finding the mathematical description of
this model.



C is for Continuous 11

1.3 C is for Continuous

As we described, we’d like to find a continuous weight function which
bridges the gap between the Abelson and HK models. In particular, the
functions shown in fig. 1.6 are called sigmoids4. They’re given by the following
formula:

𝜔𝛾(𝑥𝑖 , 𝑥 𝑗) =
𝑤𝛾(𝑥𝑖 , 𝑥 𝑗)∑
𝑘∼𝑖 𝑤𝛾(𝑥𝑖 , 𝑥𝑘) with 𝑤𝛾(𝑥𝑖 , 𝑥 𝑗) = 1

𝑒𝛾((𝑥 𝑗−𝑥𝑖)2−𝛿) + 1
. (1.8)

Here, 𝛾 and 𝛿 are parameters we can vary: 𝛿 determines the point at which
the function crosses 𝑤 = 1

2 , and 𝛾 determines the “sharpness” of the curve.
We can see that when 𝛾 = 0, the exponential term is a constant, so

that 𝑤(𝑥𝑖 , 𝑥 𝑗) = 1
2 (a constant!) which gives the Abelson model. On the

other hand, when 𝛾 → ∞, the exponential term is very sensitive to whether
(𝑥 𝑗 − 𝑥𝑖)2 < 𝛿:

lim
𝛾→∞ 𝑒

𝛾((𝑥 𝑗−𝑥𝑖)2−𝛿) =


∞ (𝑥 𝑗 − 𝑥𝑖)2 > 𝛿

1 (𝑥 𝑗 − 𝑥𝑖)2 = 𝛿

0 (𝑥 𝑗 − 𝑥𝑖)2 < 𝛿

(1.9)

so lim
𝛾→∞𝑤𝛾(𝑥𝑖 , 𝑥 𝑗) = lim

𝛾→∞
1

𝑒𝛾((𝑥 𝑗−𝑥𝑖)2−𝛿) + 1
=


0 (𝑥 𝑗 − 𝑥𝑖)2 > 𝛿
1
2 (𝑥 𝑗 − 𝑥𝑖)2 = 𝛿

1 (𝑥 𝑗 − 𝑥𝑖)2 < 𝛿

(1.10)

which is exactly the weight function from the HK model with the exception
that when 𝑥𝑖 = 𝑥 𝑗 , here we have 𝑤(𝑥𝑖 , 𝑥 𝑗) = 1

2 , whereas in the HK model
𝑤(𝑥𝑖 , 𝑥 𝑗) = 1. Since the sequence 𝑤𝛾(𝑥𝑖 , 𝑥 𝑗) converges for fixed points 𝑥𝑖 and
𝑥 𝑗 , we can say that the 𝑤𝛾 converge pointwise to the piecewise function after
the equal sign.

This model is called the sigmoidal bounded confidence model (SBCM), and
was introduced by Brooks et al. (2023). There, they explored the behavior

4Sigmoids also give us a connection to physics! From quantum physics, we learn that
electrons (and in general, fermions) satisfy the Pauli exclusion principle, i.e. each energy level
can be occupied by at most one electron. Consequently, they have a distribution described by
the following sigmoid, also called the Fermi-Dirac distribution:

�̄� =
1

𝑒𝛽(𝜖−𝜇) + 1
where �̄� tells us the average number of electrons with a given energy 𝜖. We can see that these
parameters correspond to ours in the following way: 𝛽 → 𝛾, 𝜖 → (𝑥 𝑗 − 𝑥𝑖)2, and 𝜇 → 𝛿.
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of the model on a variety of substrate graphs, and showed that the linearly
stable steady states of the model indeed converges to those of the HK model
as 𝛾 tends to infinity and to the Abelson model as 𝛾 → 0. However, similar
to the HK model, the SBCM is difficult to characterize for intermediate
values of 𝛾 due to its sensitivity to the underlying graph structure. In this
work, we hope to begin extending their exploration by borrowing tools from
a parallel branch of inquiry developed for approximating large aggregations
of particles in physics, and learn more about the SBCM.

1.4 Discussion and Outline

In this chapter, we started our journey by acquainting ourselves with graphs
and opinion dynamics through the Abelson model. After deriving the
continuous-time version of the model and discussing some of its shortcom-
ings, we introduced the Hegselmann–Krause model, which accounts for
agents’ selective exposure. Finally, by noticing some similarities between
these two models, we motivated the SBCM, which is the model we’ll be
getting to know in this thesis.

For a look ahead, in chapter 2 I’ll introduce an important approximation,
the mean-field limit, which was inspired by physicists’ study of the way
particles move in gases, and apply it to the SBCM. We’ll also take a look
at a few simulations of the discrete SBCM to gain intuition for how we
expect the system to behave in the mean-field limit. Then, in chapter 3,
we’ll analyze a simplified version of the mean-field SBCM using some
powerful mathematical tools from a particular category of PDE problems
called gradient flows. It turns out that this simplified mean-field SBCM is a
nail this hammer can strike—using this tool, we’ll show that there exists a
unique solution to our system, and this solution behaves in the ways that
we expect from simulations. Finally, in chapter 4, we’ll summarize again
everything we’ve talked about, and list a handful of lines of inquiry we could
eventually explore with the mean-field SBCM. Finally, if you’re interested
in the lore behind the fireflies, feel free to check out appendix B (totally
optional). Now sit back, relax, and enjoy :)



Chapter 2

The DEs of the Mean-Field
Approximation

Like Prof. Sahakian with squirrels, I get quite excited when I spot birds—in
particular, after I got back from studying abroad in Europe where I got to
know a few of the local birds, I noticed that near Harvey Mudd, there is a
population of European Starlings (an invasive species). In addition to being
excellent mimics, they also have the best collective noun of all birds (and it’s
hard to beat a murder of crows): a flock of starlings is called a “murmuration”
(due to the sound of their flapping wings).

In stark contrast to the one or two starlings I often see around Mudd,
there are cities where you can see millions at a time (see fig. 2.1). Though
each individual starling is moving in response to its neighbors, as a flock, a
pattern emerges, and they behave like a fluid moving in response to unseen
forces. Similarly, in physics, even though (as far as we know), the Standard
Model tells us that everything1 in the universe is comprised of particles, we
can still make good physical predictions with macroscopic descriptions (e.g.
density, volume, pressure).

Originating in physics, the mean-field approximation is a powerful tool
for changing the scale at which we look at a system. This approximation,
which roughly translates discrete sets to continuous ones, was developed
in statistical mechanics (a field in physics which studies large aggregations
of particles) and allows us to make problems involving large numbers of
particles tractable by averaging over certain parameters. We’ll use this
approach to try to gain intuition about how the SBCM behaves—instead of

1Excepting gravity, for now...

https://www.youtube.com/watch?v=IcImivnimdo
https://www.youtube.com/watch?v=UVko9jyAkQg
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Figure 2.1 Photo collage: European Starling by simonglinn via Birdshare;
murmuration photo by ad551 via Creative Commons. Taken from Alfano (2013).

considering the fireflies as individuals, we’ll instead model them as particles
in a “fluid”.

2.1 D is for Deriving the Mean-Field Limit

Recall that agents in the SBCM update their opinion using a weighted average
of their neighbors opinions given by eq. (1.7), with weight function given by
eq. (1.8). I’ve also rewritten these equations here for our convenience:

¤𝑥𝑖(𝑡) =
{∑

𝑖∼𝑗(𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡))𝜔(𝑥𝑖(𝑡), 𝑥 𝑗(𝑡)) 𝑖 ∈ 𝒫
0 𝑖 ∈ 𝒵,

(2.1a)

𝜔𝛾(𝑥𝑖 , 𝑥 𝑗) =
𝜔𝛾(𝑥𝑖 , 𝑥 𝑗)∑
𝑘∼𝑖 𝜔𝛾(𝑥𝑖 , 𝑥𝑘) with 𝑤𝛾(𝑥𝑖 , 𝑥 𝑗) = 1

𝑒𝛾((𝑥 𝑗−𝑥𝑖)2−𝛿) + 1
. (2.1b)

From now on, we’ll write 𝑤(𝑥𝑖 , 𝑥 𝑗) to refer to 𝑤𝛾(𝑥𝑖 , 𝑥 𝑗), and to simplify
things, we’ll consider the case where every agent interacts with every other
agent—that is, the graph we’re working with is a complete graph. This
replaces all sums over adjacent nodes with sums over all nodes.

Now, as we’ve left it, the SBCM is still quite difficult to solve, and the
number of coupled differential equations we need to solve only gets larger as

http://www.flickr.com/photos/simonglinn/3338944897/
http://flickr.com/groups/birdshare
http://www.flickr.com/photos/aaddaamn/5196234319/
http://creativecommons.org/licenses/by/2.0/deed.en


D is for Deriving the Mean-Field Limit 15

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

opinion 𝑥

de
ns

ity

Figure 2.2 The bars’ area represent 𝑝(𝑦, 𝑡), whereas the continuous line rep-
resents the underlying distribution 𝜌(𝑦, 𝑡). By partitioning the opinion space (𝑥-
axis) into a finite number of buckets, we obtain the relation 𝑝(𝑦, 𝑡) ≈ 𝜌(𝑦, 𝑡)Δ𝑦.

𝜃 𝜃 + Δ𝜃

𝑣(𝜃 + Δ𝜃, 𝑡)𝜌(𝜃 + Δ𝜃)𝑣(𝜃, 𝑡)𝜌(𝜃)

𝜌
(𝜃
,𝑡
)

Figure 2.3 A visual representation of eq. (2.2), the continuity equation. Over
a small change in time, the change in the density in the interval (𝜃, 𝜃 + Δ𝜃)
consists of density which enters the region from the left and the density which
leaves the region from the right. By taking the difference, we find that 𝜕𝜌

𝜕𝑡 Δ𝜃 =
−Δ(𝑝𝑣), where the negative sign is due to density leaving on the right. In the
limit as Δ𝜃 → 0, we obtain the continuity equation.
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𝑁 increases. However, if we take 𝑁 → ∞, our system (maybe surprisingly)
can be simplified! As shown in fig. 2.2, instead of keeping track of each
individual firefly, we’ll reduce the size of our system by keeping track of
only one quantity: the density of fireflies. Then, treating the interactions
between agents as interactions between particles in a fluid, we can discover
how our “fluid” population flows over the space of opinions.

Our new differential equation keeps track of a density of agents as a
function of their opinions, and is governed by the following continuity
equation, also illustrated in fig. 2.3:

𝜕

𝜕𝑡
𝜌(𝑥, 𝑡) + 𝜕

𝜕𝑥
(𝑣(𝑥, 𝑡)𝜌(𝑥, 𝑡)) = 0, (2.2)

where 𝜌 is the density and 𝑣 is the velocity of our fluid. Note that in this
equation, 𝜌 changes in time, which is not true of zealots. Thus, we’ll use
𝜌(𝑥, 𝑡) to represent the density of persuadable agents, and 𝜌𝒵(𝑥) to represent
the (constant in time) density of zealot agents.

Now, since eq. (2.1) describes the way opinions change, we expect that
this equation corresponds to 𝑣(𝑥, 𝑡) in the continuum limit. However, note
that 𝑣(𝑥, 𝑡) depends on the opinion value 𝑥, while the sum in eq. (2.1a)
depends on the node index 𝑖. So in order to find 𝑣(𝑥, 𝑡), we’ll start by
reparameterizing our sum:

¤𝑥(𝑡) =
∑

distinct opinions 𝑦
(𝑛(𝑦𝑖 , 𝑡) + 𝑛𝒵(𝑦𝑖))(𝑦𝑖 − 𝑥) 𝑤(𝑥, 𝑦𝑖)∑

𝑦𝑖 (𝑛(𝑦𝑖 , 𝑡) + 𝑛𝒵(𝑦𝑖))𝑤(𝑥, 𝑦𝑖)

where in order to account for the possibility of multiple nodes having the
same opinion, we’ve introduced 𝑛(𝑦𝑖 , 𝑡) and 𝑛𝒵(𝑦𝑖), which respectively
counts the number of persuadable and zealot agents with opinion 𝑦𝑖 . It’s
now tempting to take the limit as the number of agents𝑁 approaches infinity,
but we can’t quite do this yet, as that would also take 𝑛(𝑦𝑖 , 𝑡) → ∞. So to
make sure things stay finite, we will divide by 𝑁 in both the numerator and
denominator and replace 𝑝(𝑦𝑖 , 𝑡) = 𝑛(𝑦𝑖 , 𝑡)/𝑁 (and similarly for zealots) so
that:

¤𝑥(𝑡) =
∑
𝑦(𝑝(𝑦𝑖 , 𝑡) + 𝑝𝒵(𝑦𝑖))(𝑦𝑖 − 𝑥)𝑤(𝑥, 𝑦𝑖)∑

𝑦(𝑝(𝑦𝑖 , 𝑡) + 𝑝𝒵(𝑦𝑖))𝑤(𝑥, 𝑦𝑖) .

When we made this replacement, instead of keeping track of a count
𝑛(𝑦𝑖 , 𝑡), we instead keep track of the count divided by the total, i.e. a
proportion, where

∑
𝑦𝑖 𝑝(𝑦𝑖 , 𝑡) = 1. Furthermore, if we imagine a contin-

uous underlying distribution of opinions, we can interpret each 𝑝(𝑦𝑖 , 𝑡)
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as “lumping together” the opinions from 𝑦𝑖 to 𝑦𝑖+1 = 𝑦𝑖 + Δ𝑦, i.e. that
𝑝(𝑦𝑖 , 𝑡) =

∫ 𝑦𝑖+Δ𝑦
𝑦𝑖

𝜌(𝑦′, 𝑡)d𝑦′ ≈ 𝜌(𝑦𝑖 , 𝑡)Δ𝑦, as shown in fig. 2.2. Thus, by
taking the limit Δ𝑦 → 0, we obtain 𝑝(𝑦, 𝑡) = 𝜌(𝑦, 𝑡)d𝑦.

Now, making this replacement in the limit Δ𝑦 → 0 and taking sums to
integrals:

𝑣(𝑥, 𝑡) =
∫ ∞
−∞(𝜌(𝑦, 𝑡) + 𝜌𝒵(𝑦))(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦∫ ∞

−∞(𝜌(𝑦, 𝑡) + 𝜌𝒵(𝑦))𝑤(𝑥, 𝑦)d𝑦
. (2.3)

Together with eq. (2.2), we have replaced our 𝑁 ordinary differential equa-
tions in eq. (2.1a) with one partial differential equation (the continuity
equation) which governs the motion of our system! Altogether, the continu-
ity equation eq. (2.2) imposes the constraint that total “mass”2 is conserved,
while eq. (2.3) tells us the way 𝜌 evolves, which we’ve derived directly from
the discrete case.

Now we’re set—all we need to do is just solve this one equation. Unfor-
tunately for us, partial differential equations which are solvable analytically
(i.e. by-hand) are quite elusive. Most physical systems (likely including this
one) do not admit analytic solutions. In these situations, mathematicians
must rely on numerical methods to evolve their system. Since I’m more
partial to the analysis of our system (rather than the numerics), for the rest of
this thesis we’ll explore the many ways we can compare analytic results from
the mean-field SBCM with numerical simulations of the (discrete) SBCM.

2.1.1 Recovering the Discrete SBCM

Now that we have our equation eq. (2.2), the first order of business is to
check that this is indeed a suitable approximation of our system. To do this,
we’ll show that the discrete case is recoverable from this new equation3.

In order to show that our new system contains the same dynamics as
the SBCM, we’ll show that we can recover the discrete SBCM by allowing 𝜌
to be comprised of a sum of 𝛿-distributions4, following a similar approach
to Bernoff and Topaz (2011). This allows us to get as close as possible to a

2i.e.
∫ ∞
−∞ 𝜌(𝑥, 𝑡)d𝑥

3If you got a little bit lost in the details of the previous section, don’t stress—this section
will hopefully give a bit more intuition and context for why eq. (2.2) and eq. (2.3) are the
mean-field limit we’re looking for.

4For the unacquainted, please visit appendix A.



18 The DEs of the Mean-Field Approximation

discrete system while still working with continuous “functions”. Without
further ado, suppose that 𝜌 is a finite sum of 𝛿-distributions, i.e.

𝜌(𝑥, 𝑡) =
𝑁∑
𝑖=1

𝛿(𝑥 − 𝑥𝑖(𝑡))

where 𝑁 ∈ ℕ and 𝑥𝑖(𝑡) is a real-valued function of 𝑡. Then, we can plug into
eq. (2.3) and simplify:

𝑣(𝑥, 𝑡) =
∫ ∞
−∞(𝜌(𝑦, 𝑡) + 𝜌𝒵(𝑦))(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦∫ ∞

−∞(𝜌(𝑦, 𝑡) + 𝜌𝒵(𝑦))𝑤(𝑥, 𝑦)d𝑦

=

∫ ∞
−∞ 𝜌𝒵(𝑦) +∑𝑁

𝑖=1 𝛿(𝑦 − 𝑥𝑖(𝑡))(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦∫ ∞
−∞ 𝜌𝒵(𝑦) +∑𝑁

𝑖=1 𝛿(𝑦 − 𝑥𝑖(𝑡))𝑤(𝑥, 𝑦)d𝑦

=

∑𝑁
𝑖=1(𝑥𝑖(𝑡) − 𝑥)𝑤(𝑥, 𝑥𝑖(𝑡)) + 𝑍1(𝑥)∑𝑁

𝑖=1 𝑤(𝑥, 𝑥𝑖(𝑡)) + 𝑍2(𝑥)
.

where we’ve extracted 𝜌𝒵 in the last step:

𝑍1(𝑥) =
∫ ∞

−∞
𝜌𝒵(𝑦)(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦

𝑍2(𝑥) =
∫ ∞

−∞
𝜌𝒵(𝑦)𝑤(𝑥, 𝑦)d𝑦

Now, since it’s a bit pesky to work with 𝛿 distributions, we’ll integrate
eq. (2.2) with respect to 𝑥 so that:

𝐶 =
𝜕

𝜕𝑡

∫
𝜌(𝑥, 𝑡)d𝑥 + (𝑣(𝑥, 𝑡)𝜌(𝑥, 𝑡))

= −
𝑁∑
𝑖=1

¤𝑥𝑖(𝑡)𝟙[𝑥 ≥ 𝑥𝑖(𝑡)] +
∫

𝑣(𝑥, 𝑡)
𝑁∑
𝑖=1

𝛿(𝑥 − 𝑥𝑖(𝑡))d𝑥

= −
𝑁∑
𝑖=1

¤𝑥𝑖(𝑡)𝟙[𝑥 ≥ 𝑥𝑖(𝑡)] +
𝑁∑
𝑖=1

𝑣(𝑥𝑖(𝑡), 𝑡)𝟙[𝑥 ≥ 𝑥𝑖(𝑡)]

so that after rearranging and equating coefficients:

¤𝑥𝑖(𝑡) = 𝑣(𝑥𝑖(𝑡), 𝑡) =
∑𝑁
𝑗=1(𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡))𝑤(𝑥𝑖(𝑡), 𝑥 𝑗(𝑡)) + 𝑍1(𝑥)∑𝑁

𝑗=1 𝑤(𝑥𝑖(𝑡), 𝑥 𝑗(𝑡)) + 𝑍2(𝑥)
,
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Figure 2.4 A plot with 𝑛 = 150, 𝛾 = 10, 𝛿 = 0.03, and no zealots. Note that
despite the initial polarization, they both converged to a unique steady state
in the absence of zealots. Each of the 150 agents are colored by their initial
opinion.

which is the same equation (eq. (2.1a)) as in the discrete case!
Thus, we’ve checked that our mean-field approximation indeed preserves

the dynamics of the original SBCM, and we can now rest-assured that the
forthcoming analysis is well-founded.

2.2 E is for Expectations and Simulations

Before we get into the mathematical weeds, let’s develop some intuition for
how our system should behave with discrete simulations. We’ll focus on
two cases: first, when there are no zealots, and then, when there are two
zealots.

What do we expect to happen in the no zealot case? First, note that
whenever agents interact, they tend toward a similar opinion as those they
interact with. Thus, without zealots to pull agents apart, we might expect
that after a long time, our system arrives at a consensus. A simulation in
the no-zealot case is shown in fig. 2.4. We can see that despite the initial
polarization, the agents eventually end up at a consensus. To see why this
happens mathematically, we can look at the way our particles move. Note
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Figure 2.5 The velocity profile 𝑣(𝑥) from eq. (2.3) with 𝜌(𝑦) = 1
2𝟙[−1 ≤ 𝑥 ≤

1], 𝛿 = 0.2, and a range of 𝛾. In fig. 2.5a, there are no zealots and in fig. 2.5b
there are two zealots with opinions ±1. Since 𝑣(−1) > 0 and 𝑣(1) < 0, the
agents will tend to move toward more similar opinions.

that when 𝜌(𝑥) is a uniform distribution centered at zero,

sgn(𝑣(𝑥, 𝑡)) = − sgn(𝑥) where sgn(𝑥) =

−1 𝑥 < 0
0 𝑥 = 0
1 𝑥 > 0

so that agents in our system are always pushed toward each other. Similar
to what we showed for the Abelson model, we can show the following for
the discrete SBCM.

Lemma 2.2.1. In an SBCM (on a complete graph) with no zealots and at least two
persuadable nodes, the only steady state is a consensus state.

Proof. To show this, we’ll show the contrapositive: that whenever we do not
have consensus, there exists some agent 𝑖 with ¤𝑥𝑖 ≠ 0 (so that we do not have
a steady state). First, let 𝑋 = {𝑥𝑖} be the set of unique opinions expressed
by our population. When there is no consensus, min(𝑋) ≠ max(𝑋). Now,
let 𝑎 be an agent with opinion min(𝑋), so that 𝑥𝑎 ≤ 𝑥 𝑗 for every agent 𝑗.
In particular, since we do not have a consensus, there exists some agent 𝑏
such that 𝑥𝑎 < 𝑥𝑏 . Thus, from eq. (2.1a), its opinion changes based on the
following equation:

¤𝑥𝑎(𝑡) =
∑
𝑗:𝑥 𝑗≥𝑥𝑎 (𝑥 𝑗 − 𝑥𝑎)𝑤(𝑥𝑎 , 𝑥 𝑗)∑

𝑗 𝑤(𝑥𝑎 , 𝑥 𝑗)
,
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and considering only signs, since 𝑤 is always positive:

sgn ¤𝑥𝑎(𝑡) = sgn

(∑
𝑗(𝑥 𝑗 − 𝑥𝑎)𝑤(𝑥𝑎 , 𝑥 𝑗)∑

𝑗 𝑤(𝑥𝑎 , 𝑥 𝑗)

)
= sgn©«

∑
𝑗:𝑥 𝑗>𝑥𝑎

(𝑥 𝑗 − 𝑥𝑎)𝑤(𝑥𝑎 , 𝑥 𝑗) +
∑
𝑗:𝑥 𝑗=𝑥𝑎

(𝑥 𝑗 − 𝑥𝑎)𝑤(𝑥𝑎 , 𝑥 𝑗)ª®¬
= sgn©«

∑
𝑗:𝑥 𝑗>𝑥𝑎

(𝑥 𝑗 − 𝑥𝑎)𝑤(𝑥𝑎 , 𝑥 𝑗)ª®¬ ≥ sgn((𝑥𝑏 − 𝑥𝑎)𝑤(𝑥𝑎 , 𝑥𝑏)) = 1.

Thus, ¤𝑥𝑎 ≠ 0 and we do not have a steady state. □

This argument relied on the fact that extremal agents always move toward
more moderate opinions—we showed that any agent with the minimum
opinion will move toward a higher opinion (in a system with at least two
distinct opinions) since ¤𝑥𝑎 > 0, and a similar argument can be used to show
that any agent 𝑏 with the maximum opinion will always evolve toward a
lower opinion5 (i.e. ¤𝑥𝑏 < 0).

This also holds in a system with zealots! In fig. 2.6, we can see two
simulations of a system of 150 agents with two distinct zealot opinions (±1)
and five zealots at each opinion. In fig. 2.6a, our agents act (essentially)
as if the zealots did not exist, while in fig. 2.6b, our agents seem to be
converging toward the two zealot opinions. When a system contains zealots,
if a persuadable agent 𝑎 has an extremal opinon |𝑥𝑎 | ≥ 1, then similarly
¤𝑥𝑎 ≠ 0 and we do not have a steady state.

Note also that in a system with two zealots, the steady state cannot have
persuadable agents who agree exactly with a zealot, (as the other zealot will
cause ¤𝑥 ≠ 0). Thus, the steady state system will have at least three distinct
opinions. In the case of fig. 2.6b, we will end up with four “factions”: the
five zealots at +1, some persuadable agents at 𝑥𝑎 = 1 − 𝛿, some persuadable
agents at 𝑥𝑏 = −1 + 𝜀, and the zealots at −1, where 𝛿 and 𝜀 are very small
and positive real numbers.

When we move to the continuous version, we can see that in fig. 2.5b, a
similar phenomenon happens, where 𝑣 intersects the 𝑥-axis at two additional
points when 𝛾 increases. At the maximum and minimum values ±1, we can

5e.g. by negating all opinions and showing (as we did above) that the minimum always
increases
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Figure 2.6 Plots with 𝑛 = 150, 𝛾 = 10, 𝛿 = 0.03, and two zealot opinions
±1 and five zealots at each opinion. These two simulations differ only by their
initial conditions, which were randomly sampled from a uniform distribution
over the interval [−1, 1].

see that sgn(𝑣(±1, 0)) = sgn(∓1). In particular, for a maximal opinion 𝑝, i.e.
𝑝 is the least upper bound (supremum)6 of the support7 of 𝜌 + 𝜌𝒵 ,

sgn(𝑣(𝑝, 𝑡)) = sgn

( ∫ ∞
−∞ 𝜌(𝑦, 𝑡)(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦∫ ∞

−∞ 𝜌(𝑦, 𝑡)𝑤(𝑥, 𝑦)d𝑦

)
= sgn

(∫ 𝑝

−∞
𝜌(𝑦, 𝑡)(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦 +

∫ ∞

𝑝
𝜌(𝑦, 𝑡)(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦

)
= sgn

(∫ 𝑝

−∞
𝜌(𝑦, 𝑡)(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦

)
= −1

where in the first and last steps we used that 𝜌(𝑥, 𝑡) ≥ 0 and 𝑤(𝑥, 𝑦) ≥ 0,
and in the third step we used 𝜌(𝑦, 𝑡) = 0 for 𝑦 > 𝑝 (as 𝑝 = sup(supp(𝜌))8).

6More concretely, this is a mathematical generalization of a maximum. For example,
consider a function like 𝑓 (𝑥) = −𝑒𝑥 (which is monotonically decreasing and asymptotes to
the 𝑥 axis as 𝑥 → −∞). For all intents and purposes, 0 is the “maximum” of the image of
𝑓 (𝑥) even though 0 is not in the image of 𝑓 (𝑥). Since a maximum of a set must belong in the
set, we call this least upper bound the supremum.

7The support of a function is the set of elements in the function’s domain where the
function is nonzero, i.e. supp( 𝑓 ) = {𝑥 | 𝑓 (𝑥) ≠ 0}. Since this is a (possibly infinite) set
of elements, we aren’t guaranteed that it has a maximum (or minimum), so we use the
supremum (or infimum, see footnote 9).

8“sup(supp(suppp(supppp(su𝜌pppp(supppppp(𝜌))))))” — Clay Adams ’24 (abridged)
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In general, extremal opinions, i.e. the least upper bound (supremum) or
greatest lower bound (infimum)9 of the support of 𝜌 + 𝜌𝒵 , will always evolve
toward more moderate opinions. Though this argument does not account
for occasions where the suprema don’t exist, it provides intuition for the
analogues we can make between the discrete and continuous cases. To make
this more concrete, we’ll need tools from the next section.

Finally, since opinions are always being pushed toward each other
(as 𝜔𝛾 is always positive), we also expect that the mean-field SBCM will
converge to a finite number of opinion “factions” which we can write as
𝛿-distributions. However, as we’ll see in more detail in the next chapter, since
𝜔𝛾 is bounded, this only happens in the limit as 𝑡 → ∞, so we likely won’t see
𝛿-distributions emerge after some finite time 𝑡 from a 𝜌0(𝑥) which does not
contain 𝛿-distributions. Physically, this corresponds to communities which
have more-or-less divided into factions, allowing for slight variations of
opinion within each faction. Each faction will never reach complete agreement,
but they will approach it as time goes on.

2.3 Findings

We started this chapter by introducing the mean-field limit as a way to
reframe our model as a fluid flowing over opinion space rather than as
discrete interacting agents. Mathematically, we derived it for our system by
taking the limit as the number of agents 𝑁 → ∞, resulting in the continuity
equation eq. (2.2) which imposes conservation of mass, and eq. (2.3) which
tells us how our “fluid” moves. Then, we verified that this model is a suitable
approximation of the discrete system by extracting the discrete SBCM from
the mean-field SBCM with a sum of 𝛿-distributions.

After deriving our model, we took inspiration from simulations of
the no-zealot case fig. 2.4 and the two-zealot case fig. 2.6 to motivate two
conjectures:

1. The first one, which we showed is true for the discrete case, is that the
range of opinions expressed by our population is always shrinking.
We also used this to show that when there are no zealots and at least
two agents, we always expect for the system to end up in a consensus
state.

9Similar to the supremum from footnote 6, there is also a mathematical generalization for
the minimum of a set, called the infimum.
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In the mean-field SBCM, we can ask: is the support of 𝜌 is always
shrinking? We expect the answer to be yes, and motivated this by
considering the sign of 𝑣 at the infimum and supremum of the support
of 𝜌, which showed us that 𝑣 is always pushing extremal opinions
toward more moderate ones.

2. Secondly, are 𝛿-distributions steady states of our system? We argued
that since the support is always shrinking and opinions are being
pushed toward each other by 𝜔𝛾, we might expect for our system
to approach 𝛿-function steady-states. However, unless our initial
condition 𝜌0(𝑥) contains a 𝛿-distribution, we don’t expect for our
system to coalesce into one in finite time.

In order to (at least partially) answer these questions (and more!) mathe-
matically, we’ll introduce some tools from PDEs and wack (and get wacked
by) some weedy math in the next chapter.



Chapter 3

The FGHs of Wading into
Wasserstein Weeds

To answer our questions from the previous chapter, we’ll start by considering
a simplified version of our model, where we set the denominator of our
velocity flow (eq. (2.3)) to be a constant:

𝑣(𝑥, 𝑡) =
∫ ∞

−∞
(𝜌(𝑦, 𝑡) + 𝜌𝒵(𝑦, 𝑡))(𝑦 − 𝑥)𝑤(𝑥, 𝑦)d𝑦. (3.1)

where, as before, 𝜌(𝑦, 𝑡) is the density of the persuadable nodes and 𝜌𝒵(𝑦) is
the density of zealot nodes. In a way, this mixes the SBCM with the Abelson
model, which features a constant denominator equal to the mass of the
system (𝑁 in the discrete case) due to its constant weight function. With this
approximation, we can apply tools from PDEs and obtain results which give
insight into how the full mean-field SBCM behaves.

Before we dive in, we’ll give a bit of a motivating example. Suppose we
have a particle moving as a result of some potential. Since the particle is
always moving in the direction that minimizes its energy (as the force on
the particle 𝐹(𝑥) = −∇𝑈(𝑥) is the negative gradient of the potential energy
𝑈), we can write this as:

¤𝑥(𝑡) = −∇𝑈(𝑥(𝑡)), (3.2)

which is the prototypical gradient flow equation. That is, starting at some
𝑥(0) = 𝑥0, how can 𝑥(𝑡) move so that it minimizes𝑈 as quickly as possible?

How does this relate to our continuity equation? It turns out that this is
related to the content of the SIAM Journal of Mathematical Analysis’s most



26 The FGHs of Wading into Wasserstein Weeds

downloaded article1. Jordan et al. (1998) found that after making the suitable
changes, techniques from the study of gradient flow equations can be used
to study equations like continuity equations2. In particular, they can help us
find answers to our questions at the end of the previous chapter!

3.1 F is for Formulating the Gradient Flow SBCM

Now, how can we reformulate our model as a gradient flow model? For one,
in the gradient flow equation eq. (3.2), there’s a ¤𝑥 rather than a ¤𝜌, so that
instead of minimizing 𝑥, an element of ℝ, we’d like to minimize 𝜌, a fluid
density in a function space.

Before we describe this function space, we’ll build some intuition for
which energy potential we’re hoping to minimize by thinking about how
our agents interact. Besides the Kuramoto model, a variety of models of
biological systems contain pairwise interactions between agents, for example
in chemotaxis (e.g. Keller and Segel (1970)), bird flocks (e.g. Cucker and
Smale (2007) and Ha and Liu (2009)), or locust swarms (e.g. Bernoff and
Topaz (2011)). In general, the mean-field approximation of these models are
all special cases of the following equation:

𝜕

𝜕𝑡
𝜌(𝑥, 𝑡) = 𝜕

𝜕𝑥
(𝜌(𝑥, 𝑡)𝑉(𝑥, 𝑡))

where:
𝑉(𝑥, 𝑡) = 𝜕

𝜕𝑥

(
𝑎(𝜌) −

∫
ℝ

𝐺𝛾(𝑥 − 𝑦)𝜌(𝑦, 𝑡)d𝑦 + 𝐹(𝑥)
)
. (3.3)

This velocity is constructed as the gradient of a potential energy which
combines a diffusive term 𝑎(𝜌) describing the particles’ tendency to spread
out, an interaction term

∫
𝐺𝛾(𝑥 − 𝑦)𝜌(𝑦, 𝑡)d𝑦 with an interaction potential

𝐺𝛾(𝑥, 𝑦), and a forcing term 𝐹(𝑥) representing an external potential which
takes into account any external forces on our system of particles.

Now, how does the mean-field SBCM fit into the picture?
Theorem 3.1.1. The adjusted mean-field SBCM is a gradient flow problem!

Proof. In our case, we don’t have any diffusion, as the only things in-
fluencing agents’ opinions are their interactions, but we do have forc-
ing due to the zealots. Thus, setting 𝑎(𝜌(𝑥, 𝑡)) = 0, we obtain 𝑉(𝑥, 𝑡) =

1In its 56 volumes of existence.
2In particular, they connected gradient flow problems with a broader class of equations

called Fokker–Planck equations.
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Figure 3.1 A plot of 𝐺𝛾(𝛼) for 𝛿 = 1 and various values of 𝛾.

𝜕
𝜕𝑥

(∫
𝐺𝛾(𝑥 − 𝑦)𝜌(𝑦, 𝑡)d𝑦 + 𝐹(𝑥)

)
. Now, when 𝐺𝛾(𝑥 − 𝑦) is bounded above,

by the dominated convergence theorem3 we can pass the derivative under
the integral and obtain:

𝑉(𝑥, 𝑡) = −
∫
ℝ

𝜕

𝜕𝑥
𝐺𝛾(𝑥 − 𝑦)𝜌(𝑦, 𝑡)d𝑦 + 𝜕𝐹

𝜕𝑥
.

Now, since we want 𝑉(𝑥, 𝑡) =
∫
ℝ
(𝜌(𝑦, 𝑡) + 𝜌𝒵(𝑦))(𝑦 − 𝑥)𝑤𝛾(𝑥, 𝑦), we need:

𝜕𝐺𝛾(𝑥 − 𝑦)
𝜕𝑥

= 𝐺′(𝑥 − 𝑦) = −(𝑥 − 𝑦) 1
1 + 𝑒𝛾((𝑥−𝑦)2−𝛿2) , (3.4)

𝜕𝐹
𝜕𝑥

=
∫
ℝ

𝜌𝒵(𝑦)(𝑦 − 𝑥)𝑤𝛾(𝑥, 𝑦). (3.5)

𝐺𝛾(𝛼) = −
∫

𝛼

1+𝑒𝛾(𝛼2−𝛿2) d𝛼4 is visualized in fig. 3.1. Also, note that since 𝐺′(𝛼)
is an odd function, any integral with bounds symmetric about the origin
must vanish: ∫ 𝑐

−𝑐
𝐺′(𝑥)d𝑥 = 0.

3See (again): measure theory!
4Which is also called an incomplete Fermi-Dirac integral, often used to find the expected

value for the energy of a system of fermions (particles which obey the Pauli exclusion
principle, e.g. electrons!)
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Using this, we can show that 𝐺𝛾(𝛼) is even:

𝐺𝛾(𝛼) = −
∫ 𝛼

0

𝛼′

1 + 𝑒𝛾(𝛼′2−𝛿2) d𝛼′ + 𝐶 =
∫ 0

𝛼

𝛼′

1 + 𝑒𝛾(𝛼′2−𝛿2) d𝛼′ + 𝐶

= −
∫ −𝛼

𝛼

𝛼′

1 + 𝑒𝛾(𝛼′2−𝛿2) d𝛼′ +
∫ 0

𝛼

𝛼′

1 + 𝑒𝛾(𝛼′2−𝛿2) d𝛼′ + 𝐶

= −
∫ −𝛼

0

𝛼′

1 + 𝑒𝛾(𝛼′2−𝛿2) d𝛼′ + 𝐶 = 𝐺𝛾(−𝛼) (3.6)

as desired. Since
∫
ℝ
𝐶𝜌(𝑦, 𝑡)d𝑦 = 𝐶

∫
ℝ
𝜌(𝑦, 𝑡)d𝑦 = 𝐶 for any time 𝑡 by our

assumption that the total mass is a (unit) constant, it will vanish when we
take a derivative with respect to 𝑥 in eq. (3.3). Thus, we can set 𝐶 = 0. It
turns out also that 𝐺 has an analytical solution:

𝐺𝛾(𝛼) =
{
𝛼2/4 𝛾 = 0,
1

2𝛾 ln
(
𝑒𝛾(𝛼2−𝛿2)+𝑒𝛾𝛼2

𝑒𝛾(𝛼2−𝛿2)+1

)
otherwise.

Note also that from this expression, we can see that when 𝛾 → ∞ and 𝛼 < 𝛿,
𝑒𝛾(𝛼2−𝛿2) → 0 so that:

lim
𝛾→∞𝐺𝛾(𝛼) = lim

𝛾→∞
1

2𝛾 ln

(
𝑒𝛾(𝛼2−𝛿2) + 𝑒𝛾𝛼2

𝑒𝛾(𝛼2−𝛿2) + 1

)
=

1
2𝛾 ln

(
𝑒𝛾𝛼

2
)
=

𝛼2

2 .

When 𝛼 > 𝛿, 𝑒−𝛾𝛿2 → 0 and 𝑒𝛾(𝛼2−𝛿2) → 0 so that by doing a bit of rearranging
(and multiplying by 𝑒−𝛾(𝛼2−𝛿2)/𝑒−𝛾(𝛼2−𝛿2)):

lim
𝛾→∞𝐺𝛾(𝛼) = lim

𝛾→∞
1

2𝛾 ln
©«
𝑒𝛾𝛼

2
(
1 + 𝑒−𝛾𝛿2

)
𝑒−𝛾(𝛼2−𝛿2)

1 + 𝑒−𝛾(𝛼2−𝛿2)
ª®®¬ =

1
2𝛾 ln

(
𝑒𝛾𝛿

2
)
=

𝛿2

2 .

Finally, when 𝛼 = 𝛿, 𝑒𝛾(𝛼2−𝛿2) = 1 so that:

lim
𝛾→∞𝐺𝛾(𝛿) = lim

𝛾→∞
1

2𝛾 ln

(
𝑒𝛾𝛿

2 + 1
1 + 1

)
= lim

𝛾→∞
1

2𝛾

(
ln

(
𝑒𝛾𝛿

2
)
− ln(2)

)
=

𝛿2

2 .

Thus, in total, we’ve found that:

lim
𝛾→∞𝐺𝛾(𝛼) =

{
𝛼2/2 |𝛼 | < 𝛿,

𝛿2/2 |𝛼 | ≥ 𝛿.
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as expected, since

lim
𝛾→∞𝑤𝛾(𝑥, 𝑦) =

{
1 |𝑦 − 𝑥 | < 𝛿

0 |𝑦 − 𝑥 | ≥ 𝛿
.

Thus, we can see that whenever 𝛾 ≠ 0, 𝐺 is bounded:

𝐺𝛾(𝛼) = 1
2𝛾 ln

(
𝑒𝛾(𝛼2−𝛿2) + 𝑒𝛾𝛼2

𝑒𝛾(𝛼2−𝛿2) + 1

)
<

1
2𝛾 ln

(
𝑒𝛾(𝛼2−𝛿2) + 𝑒𝛾𝛼2

𝑒𝛾(𝛼2−𝛿2)

)
=

1
2𝛾 ln

(
1 + 𝑒𝛾𝛿2

)
.

so that the dominated convergence theorem applies! On the other hand
if 𝛾 = 0, the dominated converge theorem applies whenever our domain
is bounded (for example to 𝑥 ∈ [−𝑐, 𝑐]), since 𝐺(𝑥) = 𝑥2/4 ∈ [0, 𝑐2/4] is
bounded.

With 𝐺 and 𝐹 together, we’ve derived an expression for our gradient
flow equation! □

Now, all that’s left is to figure out which (function) space we’re working
with.

3.2 G is for Grappling with the Wasserstein Metric

In order to construct this new space, we can take a look at a few key properties
it needs to satisfy in order to be able to support a gradient flow. In order
to write down the typical gradient flow equation eq. (3.2), we used the
following properties of (functions on) real numbers:

• We can take derivatives of (absolutely) continuous curves:

| ¤𝑥(𝑡)| = lim
ℎ→0

∥𝑥(𝑡 + ℎ) − 𝑥(𝑡)∥
|ℎ |

• For a differentiable function 𝐹 : ℝ𝑑 → ℝ, we can define a gradient:

|∇𝐹(𝑥(𝑡))| = lim sup
𝑦→𝑥(𝑡)

|𝐹(𝑦) − 𝐹(𝑥(𝑡))|
∥𝑦 − 𝑥(𝑡)∥

= lim
𝜀→0

(
sup

{ |𝐹(𝑦) − 𝐹(𝑥(𝑡))|
∥𝑦 − 𝑥(𝑡)∥ : 𝑦 ∈ 𝐵(𝑥(𝑡), 𝜀)\{𝑥(𝑡)}

})
(3.7)
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ni
a. 𝜌2(𝑥) = 𝜌1(𝑥 − 𝑐).

 

ni

b. Enumerating sand.

 

ni

c.
∫ 𝑧

−∞ 𝜌(𝑦)d𝑦 is constant for 𝑧 ∈ [𝑥, 𝑦].

Figure 3.2 Visualizations of the notion of distance between two density distri-
butions using sand piles.

where sup is the supremum (see footnote 6), and 𝐵(𝑎, 𝑟) is the ball of
radius 𝑟 centered at 𝑎. As usual, this gradient gives the direction of
steepest descent.

Is there a space we can work with which makes our continuity equation
a gradient flow problem? In this space, we’d like 𝜌(𝑥) to be the “objects”
we’re working with, so that at a specified time 𝑡, we can obtain 𝜌(𝑥, 𝑡). Let 𝑋
be the space of 𝜌-like objects. Since the objects in 𝑋 are similar to 𝜌 in some
sense, we’ll require for any 𝜌 ∈ 𝑋 that:

• 𝜌 is always nonnegative so that 𝜌 : ℝ → ℝ≥0.

• the mass of 𝜌 stays constant, i.e.
∫
ℝ
𝜌(𝑥)d𝑥 = 1.

Then, in order to take derivatives, we need a notion of distance between two
density functions. How can we define this? Suppose we have two density
functions 𝜌1 and 𝜌2. And since our continuity equation has a physical
interpretation, let’s imagine 𝜌1(𝑥) and 𝜌2(𝑥) physically, e.g. as two piles with
equal amounts of sand. To gain some intuition, let’s consider the following
special case.

Example 3.2.1 (Densities with a constant shift.). If 𝜌2(𝑥) = 𝜌1(𝑥 − 𝑐) for
some constant 𝑐 as in fig. 3.2a, in order to reshape pile 1 to look like pile
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2 (corresponding to 𝜌1 and 𝜌2 respectively), we just have to move 𝜌1(𝑥) a
distance of 𝑐. Perhaps we’d like to define 𝑑(𝜌1(𝑥), 𝜌1(𝑥− 𝑐)) = |𝑐 |. As a sanity
check, we can see that 𝑑(𝜌1(𝑥), 𝜌1(𝑥)) = 0 (which we always expect from a
metric).

Then, more generally, we can define 𝑑(𝜌1 , 𝜌2) as the amount of work it
takes to move the grains of sand in pile 1 so that it resembles pile 25. Now,
how might we enumerate these grains of sand? If we imagine building our
piles of sand from left to right, bottom to top (as in fig. 3.2b), we always know
that the 𝑖th grain of sand has 𝑖 − 1 grains of sand behind it, i.e. index each
grain of sand by the mass of sand we’ve already placed. To formalize this,
let’s index our grains of sand by a real number 𝑧 ∈ [0, 1]. Then, we might
try to define a function 𝑢(𝑧) which gives the 𝑥-position of the 𝑧th grain of
sand with: ∫ 𝑢(𝑧)

−∞
𝜌(𝑦)d𝑦 = 𝑧

However, we need to be careful in this definition, because as in fig. 3.2c, it
might be possible that there are multiple 𝑥-values for which

∫ 𝑥

−∞ 𝜌(𝑦)d𝑦 = 𝑧.
In order to make 𝑢(𝑧) well-defined, we’ll just define 𝑢(𝑧) to be the smallest
(infimum, see footnote 9) 𝑥-value for which the above equation is satisfied,
so that

𝑢(𝑧) = inf
{
𝑥 ∈ ℝ :

∫ 𝑥

−∞
𝜌(𝑦)d𝑦 > 𝑧

}
. (3.8)

We call this the pseudo-inverse6. Now, integrating over the contribution from

5By default, we might define 𝑑(𝜌1 , 𝜌2) to be the distance between the heights of the two
functions (for those who are familiar, this is the 𝐿1 norm), i.e.

𝑑(𝜌1 , 𝜌2) =
∫
ℝ
|𝜌2(𝑥) − 𝜌1(𝑥)| d𝑥.

However, this distance doesn’t contain a physical interpretation in the same way as the one
we derive. In particular, if 𝜌(𝑥) = 0 for |𝑥 | > 𝑅, we know that 𝜌(𝑥 + 2𝑅) is zero wherever
𝜌(𝑥) is nonzero, and 𝑑(𝜌(𝑥), 𝜌(𝑥 + 2𝑅)) = 2

∫
ℝ𝜌(𝑥)d𝑥 = 2, which does not depend on the

transport distance 2𝑅. Very roughly, since our problem involves the movement of our density,
we’d like for this information to also factor in to our distance metric.

6For those who have seen a bit of statistics, it’s the sort-of inverse of the cumulative
distribution function of our density distribution Φ(𝑥) =

∫ 𝑥
−∞ 𝜌(𝑦)d𝑦 where (𝑢 ◦Φ)(𝑥) = 𝑥 as

long as Φ(𝑥) is bĳective. Since we require that 𝜌 integrates to one, Φ(𝑥) is always surjective,
so when Φ is not bĳective it is not injective. These cases are accounted for by the inf in the
definition of 𝑢(𝑧) which guarantees that 𝑢(Φ(𝑥)) gives the unique “smallest” 𝑥 mapped to
Φ(𝑥).
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each grain of sand, we find that:

𝑑(𝜌1 , 𝜌2) =
∫
[0,1]

|𝑢2(𝑧) − 𝑢1(𝑧)| d𝑧. (3.9)

Originally formulated by Kantorovich and Rubenstein, this metric is often
called the Kantorovich-Rubenstein distance, which is part of a more general
class of metrics called Wasserstein metrics.

To verify that this distance metric matches our intuition, consider again
the case that 𝜌2(𝑥) = 𝜌1(𝑥 − 𝑐). In this case, we can see that by changing our
variable of integration:

𝑢2(𝑧) = inf
{
𝑥 ∈ ℝ :

∫ 𝑥

−∞
𝜌1(𝑦 − 𝑐)d𝑦 > 𝑧

}
= inf

{
𝑥 ∈ ℝ :

∫ 𝑥−𝑐

−∞
𝜌1(𝑦′)d𝑦′ > 𝑧

}
= inf

{
(𝑥 − 𝑐) ∈ ℝ :

∫ 𝑥−𝑐

−∞
𝜌1(𝑦′)d𝑦′ > 𝑧

}
+ 𝑐

= inf
{
𝑥′ ∈ ℝ :

∫ 𝑥′

−∞
𝜌1(𝑦′)d𝑦′ > 𝑧

}
+ 𝑐

= 𝑢1(𝑧) + 𝑐.
Thus,

𝑑(𝜌1 , 𝜌1(𝑥 − 𝑐)) =
∫
[0,1]

|𝑢1(𝑧) + 𝑐 − 𝑢1(𝑧)| d𝑧 = |𝑐 |,

as desired :)

3.2.1 A Little Context

As it turns out, this problem of “how do we minimize the cost of transporting
piles of sand” inspired a field of math (aptly) called optimal transport (to
read more, see Villani (2009b)). This particular metric has also found its way
into probability by reframing density funtions as probability distributions:
real-valued probability measure 𝜇 ∈ 𝒫(ℝ), we can see that both conditions

• 𝜇 is always nonnegative so that 𝜇 : ℝ → ℝ≥0, and

• the total probability is always 1, i.e.
∫
ℝ
𝜇(𝑥)d𝑥 = 1
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are satisfied. Then, we can interpret the pseudo-inverse is the “inverse” of
the cumulative distribution function:

Φ(𝑥) =
∫ 𝑥

−∞
𝜇(𝑦)d𝑦.

In this space, the Wasserstein metric is also a bit more complicated (see
Burger et al. (2008) for the gory details), and what I called the Wasserstein
metric above is actually a simplifed version of it. First, like the typical norm
endowed on function spaces

∥ 𝑓 (𝑥)∥𝐿𝑝(ℝ) =
∫
ℝ

| 𝑓 (𝑥)|𝑝 d𝑥,

the Wasserstein metric is actually a class of metrics also indexed by 𝑝 so that
in the one-dimensional case, i.e. for 𝜇1 , 𝜇2 ∈ 𝒫(ℝ1),

𝑤𝑝(𝜇1 , 𝜇2) = 𝑑𝑝(𝜇1 , 𝜇2) = ∥𝑢2(𝑥) − 𝑢1(𝑥)∥𝐿𝑝(ℝ) , (3.10)

where 𝑤1 is the Kantorovich-Rubenstein distance7. In higher dimensions,
i.e. in 𝒫(ℝ𝑑) where 𝑑 > 1, we can’t always simplify down to the form given
in eq. (3.9), and instead must consider something considerably funkier (also
colled the Monge-Kantorovich problem, which we won’t get into, but again,
Burger et al. (2008) is a great resource if you’re interested).

Now, I was originally also going to give a bit of history in this subsection,
but I realized that I cannot do better than the Fields medalist, politician, and
man who inspired many of my haircuts, Cédric Villani. If you’re interested
in bakeries and the lore behind the many characters (including Monge,
Kantorovich, Wasserstein, and Rubenstein) involved in this chapter, take a
look at Villani (2009a).

3.3 H is for the (Gradient Flow) Hammer

Now that we’ve reformulated our system as a gradient flow problem, we
can use it as a tool to answer our questions from the previous chapter.
Returning to eq. (2.3) which describes how a particular opinion 𝑥𝑖 changes,
we can use our new way of enumerating opinions as sand grains using our
pseudoinverse 𝑢(𝑧) from eq. (3.8). Thus, by carefully replacing 𝑥’s with

7In particular, the norm induced associated with the 𝑤1 metric.
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𝑢(𝑧)’s using the correspondence from eq. (3.10) we obtain:

¤𝑥 = −
∫
ℝ

𝜌(𝑦)𝐺′(𝑥 − 𝑦)d𝑦 +
∫
ℝ

𝜌𝒵(𝑦)𝐺′(𝑥 − 𝑦)d𝑦

𝜕𝑢(𝑧)
𝜕𝑡

= −
∫ 1

0
𝐺′(𝑢(𝑧, 𝑡) − 𝑢(𝜁, 𝑡))d𝜁 + 𝐹′(𝑢(𝑧, 𝑡))

𝜕𝑢(𝑧)
𝜕𝑡

= −
∫ 1

0
𝐺′(𝑢(𝑧, 𝑡) − 𝑢(𝜁, 𝑡))d𝜁 −

∫ 1

0
𝐺′(𝑢(𝑧, 𝑡) − 𝑢𝒵(𝜁))d𝜁.

Now, we’ll show that a solution exists (and is unique) by using a neat tool
from PDEs called the contraction mapping theorem (or Banach fixed-point
theorem). First, we’ll pretend that this is an ODE and integrate both sides
with respect to 𝑡 in hopes of solving for 𝑢(𝑧):

𝑢(𝑧, 𝑡) = 𝑢(𝑧, 0) −
∫ 𝑡

0

∫ 1

0
𝐺′(𝑢(𝑧, 𝑠) − 𝑢(𝜁, 𝑠)) + 𝐺′(𝑢(𝑧, 𝑠) − 𝑢𝒵(𝜁))d𝜁 d𝑠.

Now, following Burger et al. (2008) we’ll describe the right side as the
operation of a linear operator 𝒯 on 𝑢 so that

(𝒯 𝑢)(𝑧, 𝑡) = 𝑢(𝑧, 0) −
∫ 𝑡

0

∫ 1

0
𝐺′(𝑢(𝑧, 𝑠) − 𝑢(𝜁, 𝑠)) +𝐺′(𝑢(𝑧, 𝑠) − 𝑢𝒵(𝜁))d𝜁 d𝑠

(3.11)
and we’re looking for solutions where:

𝒯 𝑢 = 𝑢.

As the contraction mapping principle alludes, if we can show that 𝒯 is a
contraction map, i.e. that ∥𝒯 𝑢 − 𝒯 𝑣∥ ≤ 𝜆∥𝑢 − 𝑣∥ where 𝜆 ∈ [0, 1), then 𝒯
must map exactly one unique point to itself. Intuitively, we can imagine
that if we are on the surface of the Earth and we pull out a map of the
Earth, at least one point on the map is exactly on top of the corresponding
point on Earth. Thus, we’ll proceed by showing that 𝒯 is a contraction
mapping in the space of bounded functions on [0, 1] × [0, 𝑇] which we’ll call
𝑋 = 𝐿∞([0, 1] × [0, 𝑇]) for some fixed 𝑇:

∥𝒯 𝑢 − 𝒯 𝑣∥𝑋 =

𝑢0(𝑧) − 𝑢0(𝑧) −
∫ 𝑇

0

∫ 1

0
(𝑢(𝑧, 𝑠) − 𝑢(𝜁, 𝑠))𝑤𝛾(𝑢(𝑧, 𝑠), 𝑢(𝜁, 𝑠))

− (𝑣(𝑧, 𝑠) − 𝑣(𝜁, 𝑠))𝑤𝛾(𝑣(𝑧, 𝑠), 𝑣(𝜁, 𝑠))
+ (𝑢(𝑧, 𝑠) − 𝑢𝒵(𝜁, 𝑠))𝑤𝛾(𝑢(𝑧, 𝑠), 𝑢𝒵(𝜁, 𝑠)
−(𝑣(𝑧, 𝑠) − 𝑢𝒵(𝜁, 𝑠))𝑤𝛾(𝑣(𝑧, 𝑠), 𝑣(𝜁, 𝑠))d𝜁 d𝑠


𝑋 .
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Note that I’ve set 𝑢𝒵 and 𝑢0(𝑧) to be the same for 𝑣, since the zealot
distribution and intial condition are part of the setup of our system. Now,
since

∫ 𝑇

0 𝑓 (𝑡) ≤ 𝑇 sup𝑡∈[0,𝑇]{ 𝑓 (𝑡)} and 𝑤𝛾 ≤ 1 we have an upper bound:

∥𝒯 𝑢 − 𝒯 𝑣∥𝑋 ≤
𝑇 ∫ 1

0
2(𝑢(𝑧, 𝑠) − 𝑣(𝑧, 𝑠)) − (𝑢(𝜁, 𝑠) − 𝑣(𝜁, 𝑠))d𝜁


𝑋

≤ 3𝑇∥𝑢 − 𝑣∥𝑋 .
Thus, for 𝑇 < 1

3 , 𝒯 is a contraction mapping as desired, which gives the
existence of a unique solution up to time 𝑇. However, we can extend this
unique solution by setting an new initial condition for 𝑡 = 𝑇 and repeating
the process. Thus, we’ve completed the first step of showing that a solution
exists and is unique!

In order to make sure that this solution is indeed still a pseudo-inverse,
we need to make sure that it is monotonic. Again following Burger et al.
(2008), we can keep track of the slope 𝜆(ℎ, 𝑡) = 𝑢(𝑧 + ℎ, 𝑡) − 𝑢(𝑧, 𝑡) where
𝑧 ∈ [0, 1) and ℎ ∈ (0, 1 − 𝑧]. Then, note that since 𝜆(ℎ, 0)/ℎ ≥ 0:

𝜕

𝜕𝑡
𝜆(ℎ, 𝑡)
ℎ

= − 1
ℎ

∫ 1

0
(𝑢(𝑧 + ℎ, 𝑡) − 𝑢(𝜁, 𝑡))𝑤𝛾(𝑢(𝑧 + ℎ, 𝑡), 𝑢(𝜁, 𝑡))

− (𝑢(𝑧, 𝑡) − 𝑢(𝜁, 𝑡))𝑤𝛾(𝑢(𝑧, 𝑡), 𝑢(𝜁, 𝑡))
+ (𝑢(𝑧 + ℎ, 𝑡) − 𝑢𝒵(𝜁, 𝑡))𝑤𝛾(𝑢(𝑧 + ℎ, 𝑡), 𝑢𝒵(𝜁, 𝑡))
− (𝑢(𝑧, 𝑡) − 𝑢𝒵(𝜁, 𝑡))𝑤𝛾(𝑢(𝑧, 𝑡), 𝑢𝒵(𝜁, 𝑡))d𝜁

≥ − 1
ℎ
(𝜆(ℎ, 𝑡) + 𝜆(ℎ, 𝑡)) = −2𝜆(ℎ, 𝑡)

ℎ

following the same bounding argument from before. Thus, we can see that
by rearranging and recognizing a product rule:

𝜕

𝜕𝑡
𝜆(ℎ, 𝑡)
ℎ

+ 2𝜆(ℎ, 𝑡)
ℎ

=
𝜕

𝜕𝑡

(
𝜆(ℎ, 𝑡)
ℎ

𝑒2𝑡
)
≥ 0.

As a result, we can see that 𝜕
𝜕𝑡

𝜆(ℎ,𝑡)
ℎ is always positive and since 𝜆(ℎ, 0)/ℎ ≥ 0,

we know that 𝜆(ℎ, 𝑡)/ℎ ≥ 0 for any 𝑡 > 0, as desired.
Finally, to show that our system will not converge to 𝛿-distributions

in finite time, we’ll start by assuming that our initial condition is Lips-
chitz continuous, which is to say that our 𝑢0 must be more than uniformly
continuous—there must be some bound 𝐾 ≥ 0 such that:

|𝑢0(𝑥) − 𝑢0(𝑦)| ≤ 𝐾 |𝑥 − 𝑦 |
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for all 𝑥, 𝑦 ∈ [0, 1]. Note that this does not allow 𝜌 to be composed exclusively
of sums of 𝛿-distributions, as this would force 𝑢0(𝑥) to contain a discontinuity.
Now, we can see that (using similar reasoning as above):

𝜕

𝜕𝑡
|𝑢(𝑥, 𝑡) − 𝑢(𝑦, 𝑡)| ≤ |𝑢0(𝑥) − 𝑢0(𝑦)| + 2|𝑢(𝑥, 𝑡) − 𝑢(𝑦, 𝑡)|

so that:
|𝑢(𝑥, 𝑡) − 𝑢(𝑦, 𝑡)| ≤ 𝐾 |𝑥 − 𝑦 |(1 + 𝑡)𝑒2𝑡

so that for any fixed 𝑡, 𝑢(𝑥, 𝑡) is also Lipschitz continuous, so we can count
there being no 𝛿-distributions in 𝜌(𝑥, 𝑡) in finite time.

Additionally, we can count on 𝛿 distributions being stationary states, as
whenever 𝜌 = 𝛿(𝑥 − 𝑐), we can see that 𝑢(𝑥) = 𝑐 and as long as 𝑢𝒵 = 𝑐, we
also have:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

= −
∫ 1

0
(𝑐 − 𝑐)𝑤𝛾(𝑐, 𝑐) −

∫
(𝑐 − 𝑢𝒵)𝑤𝛾(𝑐, 𝑢𝒵) = 0,

as desired. Additionally, we can see that whenever we don’t have a zealot
distribution, the only distributional steady states are ones which are constant.

3.4 In Closing

We started this section by making a simplification to our model in eq. (3.1)
which allowed us to reinterpret our model so that we can apply tools from a
field of math called gradient flows. Then, after constructing the space we
are working in and building intuition for objects like the Wasserstein metric
and the pseudo-inverse, we followed Burger et al. (2008) in deriving a new
differential equation to work with. By analyzing the system with our new
tools, we confirm that our system admits the existence of a unique (well-
behaved) solution, that steady states can look like sums of 𝛿-distributions,
and that in the case where there are no zealots, the only 𝛿-distribution
steady state is a consensus state (with the entire population coalesced in one
𝛿-function).



Chapter 4

The Z of Conclusions and
Future Work

We made it (woohoo!!)! To celebrate, here’s another “connections quandry”
(solution in the footnote)1:

To summarize, in chapter 1 we were introduced to graphs, the Abelson
and HK models, and their connection to the sigmoidal bounded confidence
model (SBCM). Then in chapter 2 we introduced the mean-field approxima-
tion and derived the mean-field SBCM. Using simulations, and mathematical
arguments in the discrete case, we developed some intuition for how our
system should behave, and what its steady states should look like. Finally in
chapter 3, after making a simplification to the mean-field SBCM, we reframe
it as a gradient flow problem, and we showed that a simplified version of
our model indeed meets the expectations from chapter 2 and more!

Before I start talking about future work, I’d like to share that in writing this
section, one quote kept coming to mind, which I first heard in a conversation
between Terence Tao and Steven Strogatz on Strogatz’s podcast The Joy of
Why in an episode titled “What makes for ‘Good’ Mathematics?”. There, Tao
paraphrases from a Math Overflow reply by Minhyong Kim, which reads:

[It]’s almost as though definite mathematical results are money
in the bank. After you’ve built up some savings, you can afford

1The thing which unites these four phrases is, of course, my thesis!

https://www.quantamagazine.org/what-makes-for-good-mathematics-20240201/
https://mathoverflow.net/a/38694/766
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to spend a bit by philosophizing. But then, you can’t let the
balance get too low because people will start looking at you in
funny, suspicious ways.

Tao later posted on Mathstodon that he “sometimes [wonders] if we should
have more spaces to encourage mathematical speculation”. So though I have
certainly not accumulated “mathematical currency” in any way, I’ll follow
in this spirit and do a bit (a lot) of speculating.

4.1 Z is for the Zillion Questions I’d Like to Explore

First, it would be insightful to continue our exploration of the gradient-flow
version of our model. For example, we’ve shown that 𝛿 distributions are
indeed steady states, but are they the only steady states? Additionally, it
would be interesting to investigate the stability of our steady states—in the
two zealot case, for which 𝛾, 𝛿 is it more “natural” for our agents to become
polarized rather than coming to a consensus?

4.1.1 Code

On the more computational side, it might be interesting to run more discrete
SBCM simulations with varying proportions of zealots and with different
numbers of zealot opinions. Does the parity of the number of zealot opinions
affect the steady states of the system? How does the proportion of zealots to
persuadable nodes affect the rate of convergence to a steady state or other
properties of the system?

Additionally, it would be very useful to be able to numerically calculate
solutions to the mean-field SBCM for experimentation purposes. I briefly
tried to do this with Julia but did not get very far—perhaps it would be more
possible to code up in Mathematica, then port over to python/Julia. With a
mean-field SBCM simulator, it would be much easier to test hypotheses and
check our mathematical analysis.

Also, it could be helpful overall to make sure that our simulations aren’t
too greatly affected by possible floating point errors. Though 𝑤𝛾(𝑥, 𝑦) is
always positive whenever 𝑥 ≠ 𝑦, it can get very small whenever |𝑥 − 𝑦 | > 𝛿,
and these small values may be neglected in the simulation process. If the
mean-field SBCM is sensitive to perturbations, these floating point errors
could effect relatively large changes in the model’s behavior.

https://mathstodon.xyz/@tao/109399792091096710
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4.1.2 Generalizations

Though we abandoned the graph structure quite early on, it would be
exciting to bring it back and see what it adds to the mix. We think we have
a good idea of what the mean-field limit of the SBCM (including graph
structure) looks like—following the explanation in Lovász (2012) and taking
inspiration from Chiba and Medvedev (2018), we would introduce an infinite
parameterization of a graph called a graphon and an extra parameter keeping
track of each node’s “index” so that:

𝑣(𝑥, 𝜁, 𝑡) =
∫ 1

0

∫
ℝ
𝜌(𝑦, 𝜉, 𝑡)(𝑦 − 𝑥)𝑤𝛾(𝑥, 𝑦)𝑊(𝜉, 𝜁)d𝜉 d𝑦∫ 1

0

∫
ℝ
𝜌(𝑦, 𝜉, 𝑡)𝑤𝛾(𝑥, 𝑦)𝑊(𝜉, 𝜁)d𝜉 d𝑦

where𝑊(𝜉, 𝜁) is our graphon, and 𝜉 ∈ [0, 1] is our node index. It might be
interesting to try to replicate analysis from the discrete SBCM in Brooks et al.
(2023) for the mean-field case, and determine ways in which they differ.

I’m also quite intrigued by the many connections to physics which exist
in this model. First, as I mentioned, a sigmoid is a Fermi–Dirac distribution.
By interpreting (𝑥 − 𝑦)2 ↦→ 𝜀 as an energy, 𝛿2 ↦→ 𝜇 as our particle’s chemical
potential, and 𝛾 ↦→ 1/(𝑘𝐵𝑇) as the thermal energy in our system,

𝑤𝛾(𝑥, 𝑦) = 1
1 + 𝑒𝛾((𝑥−𝑦)2−𝛿2) ↦→

1
1 + 𝑒(𝜀−𝜇)/𝑘𝐵𝑇 = �̄�𝜀

which gives the number density of fermions at a particular energy 𝜀. Thus
(𝑦 − 𝑥)𝑤𝛾(𝑥, 𝑦) =

√
𝜀�̄�𝜀. Funnily enough the density of states of particles

in three spatial dimensions 𝐷(𝜀) ∼ √
𝜀 scales the same way as

√
𝜀 so that

integrating gives the total number of particles in three dimensions (up to
a constant factor). Similarly,

∫
𝑤𝛾(𝑥, 𝑦) gives (up to a constant) the total

number of fermions in a two-dimensional system. We could also interpret
this as finding the expected value of

√
𝜀 in a 2D fermion gas.

One more physical connection is the ability to keep track of phase
transitions. Brooks et al. (2023) included some analysis which plotted the
number of linearly stable steady states against 𝛾 and 𝛿 for a variety of graph
structures, which I feel would be interesting to do here as (yet another) a way
to visualize our system. In statistical physics, when we are looking for a phase
transition, we often do so by keeping track of some order parameter which
indicates using its behavior (e.g. how fast it grows) the phase we’re currently
in. We could explore the possiblity of analyzing this phase parameter to see
what it has to say about the mean-field SBCM.
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Finally, of course a natural extension of our gradient flow explorations
is to try to do the same things with the full-fledged mean-field SBCM
(complete with a nonconstant denominator). Of course, this is easier said
than done—I spent much of this year trying to do just this, but made
headway mostly in tangential directions. Some things we tried, like applying
analysis by Crawford and Davies (1999) for the generalized Kuramoto model (see
appendix B) also had complications arising from this varying denominator,
as it relies on the Fourier transform of our velocity 𝑣, which we can find easily
for convolutions (like the numerator of 𝑣) but not so easily for quotients of
convolutions. However, this model feels so natural and physical that it feels
like this system should be solvable, at least for a uniformly distributed initial
condition.

That’s all, folks!2

2Time flies like an arrow; fruit flies like a banana.



Appendix A

A Brief Connection to
𝛿-Distributions

Suppose we have a point particle located at the origin with mass 𝑚, as we
often do when we set up a physics problem. How would we describe the
density 𝜌 of this particle as a function of 𝑥? In order to fully describe this
point particle, we would like this 𝜌 to have the following properties:

1. Since the particle has mass 𝑚, we need
∫ ∞
−∞ 𝜌(𝑥)d𝑥 = 𝑚. In particular,

since the particle is localized at 𝑥 = 0, we expect:

∫
𝜌(𝑥)d𝑥 =


0 𝑥 < 0
𝑚/2 𝑥 = 0
𝑚 𝑥 > 0.

2. Since the particle is a point particle, we also need 𝜌(𝑥) = 0 for all 𝑥 ≠ 0.

However, these two requirements seem to contradict each other. When-
ever we have a function that is nonzero at a finite number of points, the
integral misses the “blips” in the function, and treats the function as if it were
continuous. Intuitively, this happens because we’re always integrating over
some set with measurable width, while our blip occurs only at a point—a
set with zero width1.

1To learn more, check out measure theory (especially if you enjoyed/want to learn more
about real analysis)! It’s one of my favorite undergrad math courses :)
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Thus, if 𝜌(𝑥) = 0 for all 𝑥 ≠ 0, we have a problem, since this would
imply that

∫ ∞
−∞ 𝜌(𝑥)d𝑥 = 02. As a result, we’re forced to reconsider our

assumptions. It’s impossible for 𝜌 to be a function which satisfies these
parameters. To address this problem, let’s try to construct a 𝜌(𝑥) which
satisfies the three conditions above (following the construction in Howison
(2020)).

First, let 𝜑 : ℝ → ℝ be a continuous function. By the definition of
continuity, for any 𝜀 > 0, there exists some Δ > 0 such that:

−Δ < 𝑥 < Δ =⇒ 𝜑(0) − 𝜀 < 𝜑(𝑥) < 𝜑(0) + 𝜀.

Additionally, since 𝜌(𝑥) = 0 whenever 𝑥 ≠ 0:∫ ∞

−∞
𝜌(𝑥)𝜑(𝑥)d𝑥 =

∫ −Δ

−∞
𝜌(𝑥)𝜑(𝑥)d𝑥 +

∫ Δ

−Δ
𝜌(𝑥)𝜑(𝑥)d𝑥

+
∫ ∞

Δ
𝜌(𝑥)𝜑(𝑥)d𝑥

=
∫ Δ

−Δ
𝜌(𝑥)𝜑(𝑥)d𝑥.

Additionally, since3

𝜑(0) − 𝜀 ≤ min
𝑥∈[−Δ,Δ]

(𝜑(𝑥)) ≤ 𝜑(𝑥) ≤ max
𝑥∈[−Δ,Δ]

(𝜑(𝑥)) ≤ 𝜑(0) + 𝜀,

we can see that multiplying by our mass 𝑚:

(𝜑(0) − 𝜀)𝑚 =
∫ Δ

−Δ
𝜌(𝑥)(𝜑(0) − 𝜀)d𝑥

≤
∫ Δ

−Δ
𝜌(𝑥)𝜑(𝑥)d𝑥 ≤

∫ Δ

−Δ
𝜌(𝑥)(𝜑(0) + 𝜀)d𝑥 = (𝜑(0) + 𝜀)𝑚

Thus, in the limit 𝜀 → 0, we obtain:∫ ∞

−∞
𝜌(𝑥)𝜑(𝑥)d𝑥 =

∫ Δ

−Δ
𝜌(𝑥)𝜑(𝑥)d𝑥 = 𝑚𝜑(0).

2If you’ve taken a course in quantum physics, perhaps you’ve seen the 𝛿-distribution

defined with 𝛿(𝑥) =
{
∞ 𝑥 = 0
0 elsewhere

where the ∞ is “just the right amount” to make the

integral evaluate to one.
3For those who are familiar with supremums and infimums (e.g. you’ve taken a course in

real analysis), note that since 𝜑(𝑥) is continuous and [−Δ,Δ] ⊂ ℝ is closed, the supremum
and infimum of 𝜑(𝑥) are achieved on this interval, so it’s okay to use max and min in place
of sup and inf (respectively) here.
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In this way, instead of a function, perhaps we can consider 𝜌 a generalized
function, which is defined by the evaluation of its integral with other
functions. Letting 𝜌(𝑥) = 𝑚𝛿(𝑥) so that

∫ ∞
−∞ 𝛿(𝑥)d𝑥 = 1, we can see that 𝛿(𝑥)

is fully determined by its behavior in the following functional, a map from
(real-valued) continuous functions to real numbers:

𝜑 ↦→
∫ ∞

−∞
𝛿(𝑥)𝜑(𝑥)d𝑥 = 𝜑(0).

We think of this as a generalized function, since for any function 𝑓 , we can
define a corresponding functional 𝐹 𝑓 with:

𝐹 𝑓 (𝜑) =
∫ ∞

−∞
𝑓 (𝑥)𝜑(𝑥)d𝑥.

In our case, we can think of 𝛿 as the functional defined with 𝛿(𝜑) = 𝜑(0).
In general, a distribution 𝐹 must satisfy a couple of other properties,

in addition to being a functional. In particular, in order for us to be able
differentiate them just like we can for functions, their domain is the space of
test functions, i.e. smooth (infinitely-differentiable) functions which have a
bounded domain. Also, it must be linear so that 𝐹(𝑎𝜑+ 𝑏𝜓) = 𝑎𝐹(𝜑)+ 𝑏𝐹(𝜓)
for 𝑎, 𝑏 ∈ ℝ and test functions 𝜑,𝜓. Finally, we require that they be
continuous in the following sense: if 𝜑(𝑥), 𝜑𝑛(𝑥) are test functions where the
𝑘th derivatives 𝜑𝑛(𝑥)(𝑘) converge (uniformly) to 𝜑(𝑥)(𝑘) as 𝑛 → ∞, then 𝐹(𝜑𝑛)
converges to 𝐹(𝜑). However, these mathematical details aren’t important for
our application, as we only deal with 𝛿-distributions. However, do check
out Howison (2020) if you’re curious!





Appendix B

Fields of Fireflies and the
Kuramoto Model

If you have not yet witnessed the synchronization of fireflies’ flashes, you
should watch this video. It’s a very spectacular sight! If we want to explore
what happens with different types/populations of fireflies, but don’t have
immediate access to a large amount of fireflies, we can instead model the
system mathematically and explore the results when we change our initial
conditions. In order to find a mathematical model, we need to consider what
qualities we’d like it to have:

• First, we want to focus on the effects of the community of fireflies on
only one firefly. By keeping track of the frequency at which each firefly
flashes, and when each firefly flashes inside the period of oscillation
(i.e. the “phase offset”), we can describe the change in when they flash
(their flashing “phase”) using an update rule of the form 𝑥𝑛+1 = 𝑓 (𝑥𝑛)),
so that the new flashing time is influenced by when the neighbors
flash.

• Since we’d like to encourage the fireflies to flash at the same time, we’d
like the update rule to depend on when the fireflies’ neighbors flash.
If one of firefly A’s neighbors, firefly B, is already flashing in sync
with firefly A, it likely won’t try to change its flashing time based on
firefly B’s flashing time. On the other hand, if firefly B is flashing at a
time which is offset from when firefly A flashes, then we might expect
firefly A to be influenced by firefly B and try to move toward it, so that
firefly B contributes to firefly A’s update rule. Conveniently, there is a

https://vimeo.com/151537139#t=65s
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Figure B.1 A visualization of
the𝑁 → ∞ limit. By taking the
limit as the number of fireflies
goes to infinity, it’s no longer
possible to keep track of indi-
vidual fireflies. Instead, we use
a density function 𝜌(𝜃, 𝑡) to de-
scribe the proportion of fireflies
flashing near some frequency at
a point in time.

function which does just this: sin(𝑥) is large when 𝑥 = 𝜋/2 and small
when 𝑥 = 0!

B.1 The Kuramoto Model

Yoshiki Kuramoto (1984) was inspired by similar processes that arise in
nature, and proposed the Kuramoto model to mathematically describe them.
His update rules is given by the following function:

¤𝜃𝑖(𝑡) = 𝜔𝑖 + 1
𝑁

𝑁∑
𝑗=1

sin(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡)), (B.1)

where 𝑁 is the total number of fireflies, 𝜃𝑖 is the (flashing) phase of firefly
𝑖, and 𝜔𝑖 is the (flashing) frequency of firefly 𝑖. We can imagine each firefly
in the collection flying in tiny circles with frequency 𝜔𝑖 , and flashing only
when they reach 𝜃 = 0 along their path, as shown in fig. B.1. In order for
them to synchronize, we’d like for them to all flash at the same time, so that
𝜃𝑗(𝑡) − 𝜃𝑖(𝑡) = 0 (thus sin(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡)) = 0). If firefly 𝑗 is flashing ahead
of firefly 𝑖, then 𝜃𝑗(𝑡) > 𝜃𝑖(𝑡) so that sin(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡)) > 0, and firefly 𝑖 will
speed up to catch up to firefly 𝑗.

Though this system looks quite complex (it’s a system of coupled nonlin-
ear differential equations), we can simplify it by using a neat trick. Recall
that by Euler’s identity, 𝑒 𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃). Then, treating each firefly as
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a complex number on the unit circle, we can consider the sum:

𝑟(𝑡)𝑒 𝑖𝜓(𝑡) = 1
𝑁

𝑁∑
𝑗=1

𝑒 𝑖𝜃𝑖(𝑡) (B.2)

Note that if the fireflies are synchronized, 𝑟(𝑡) = 1 and 𝜓(𝑡) = 𝜃𝑖(𝑡), and on
the other hand, when the fireflies are all flashing randomly, we expect that
the 𝑒 𝑖𝜃𝑖(𝑡) terms sum to zero so that 𝑟(𝑡) = 0. Thus, 𝑟(𝑡) ∈ [0, 1] represents how
aligned the fireflies are with one another, and 𝜓(𝑡) gives an average flashing
phase for the fireflies. These quantities are called order parameters—they’re
often used in physics as indicators of phase transitions. For example, as ice
melts, we move from a highly ordered state (where the molecules satisfy a
repeating pattern) to a disordered state (where the molecules have much
more freedom for movement). Similarly, in the Kuramoto model, there is an
ordered phase where all fireflies are synchronized, and a disordered phase
where the fireflies are flashing at random1.

Using eq. (B.2), we can rewrite our original differential equation (eq. (B.1))
in the following way:

¤𝜃𝑖(𝑡) = 𝜔𝑖 + Im
(
𝑒 𝑖(𝜓(𝑡)−𝜃𝑖(𝑡))

)
= 𝜔𝑖 + sin(𝜓(𝑡) − 𝜃𝑖(𝑡))

where Im(𝑎 + 𝑏𝑖) = 𝑏 gives the imaginary part of a complex number. Now,
our equation looks much simpler—the dependence on the other fireflies
is all encoded in the 𝜓 parameter. Though the dependence is hidden, it’s
still there—to further simplify (and solve the system), we turn to a powerful
tool called the mean field approximation. The difficulty with graph structure
dependence lies in the wide variety of different types of graphs. Especially
in the finite case, it’s often difficult to make use of symmetry to simplify
our analysis. Luckily, physicists have been dealing with complications due
to extra degrees of freedom for a long time—in statistical mechanics, the
study of large aggregations of particles, physicists developed a tool called
the mean field approximation, which reduces the complexity of our system
by taking the number of particles to infinity and averaging over degrees
of freedom. In particular, a field of inquiry which studies Kuramoto models
(models describing the way certain species of fireflies synchronize their
flashes), has used the mean field approximation in a similar context in order
to determine its asymptotic behavior. Conveniently, the Kuramoto model is

1In fact, the Kuramoto model also describes plasmas, where phase transitions have
physical meaning.
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very conducive to being placed on a graph, and researchers have studied
the mean field limit of the Kuramoto model, specifically on graphs!

B.2 The Mean Field Limit

The Kuramoto model, as we’ve left it, is still quite difficult to solve, and the
number of coupled differential equations we need to solve only gets larger
as 𝑁 increases—a similar predicament to the one we faced for the SBCM.
However, if we take 𝑁 → ∞, our system (maybe surprisingly) becomes
exactly solveable! As we will see, this approximation actually reduces the
number of differential equations we must solve—intuitively, we are now
keeping track of an “average” of sorts, rather than each individual firefly.

Following Strogatz (2000), we first need to find analogues for each of our
equations in the mean field limit. Let’s first turn to our order parameter,
𝑟(𝑡)𝑒 𝑖𝜓(𝑡) = 1

𝑁
∑𝑁
𝑗=1 𝑒

𝑖𝜃𝑖(𝑡). Now, in the limit as 𝑁 → ∞, our 1
𝑁 term becomes

very small, and we can approximate our sum as an integral! If we return to
our distribution of fireflies on the unit circle, and as the number of fireflies
gets larger, it gets more and more unwieldy—instead, we can keep track
of the density of fireflies 𝜌(𝜃, 𝑡). We can also impose the restriction that
our density function is normalized, so that

∫ 2𝜋
0 𝜌(𝜃, 𝑡)d𝜃 = 1 for any time 𝑡.

Then, eq. (B.2) becomes:

𝑟(𝑡)𝑒 𝑖𝜓(𝑡) =
∫ 2𝜋

0
𝑒 𝑖𝜃𝜌(𝜃, 𝑡)d𝜃,

where we are taking a weighted average of 𝑒 𝑖𝜃 for 𝜃 ∈ [0, 2𝜋) based on the
density 𝜌(𝜃, 𝑡). Now, for eq. (B.1), whenever 𝜃(𝑡) changes, we are changing
the distribution of our density 𝜌(𝜃, 𝑡). By replacing 𝜃(𝑡) → 𝜌(𝜃, 𝑡), we have:

𝑣(𝜃, 𝑡) = 𝜔(𝜃) +
∫ 2𝜋

0
sin(𝜃′ − 𝜃)𝜌(𝜃′, 𝑡)d𝜃′, (B.3)

and 𝜌 itself satisfies the following continuity equation:

𝜕

𝜕𝑡
𝜌(𝜃, 𝑡) + 𝜕

𝜕𝜃
(𝑣(𝜃, 𝑡)𝜌(𝜃, 𝑡)) = 0, (B.4)

as shown in fig. 2.3. By taking the limit as 𝑁 → ∞, we’ve reduced the
number of variables in our system by keeping track of the density of fireflies
rather than each individual firefly. A few plots of the evolution of 𝜓(𝑡) with
respect to various initial conditions is shown in fig. 2.3.
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Additionally, the Kuramoto model has a convenient feature: in eq. (B.3),
we can see that our update function depends on sin(𝜃′ − 𝜃). A pair of
mathematicians, Crawford and Davies, noticed that conveniently, Fourier
series decompositions depend only on sine functions, and asked the question:
can the analysis of the Kuramoto model be extended by replacing sin(𝜃′−𝜃)
with 𝑓 (𝜃′ − 𝜃) (we’ll call this a “coupling function”), assuming 𝑓 has a
Fourier series decomposition? It turns out that this is possible! In Crawford
and Davies (1999), they analyzed the asymptotic behavior of the Kuramoto
model, generalized with an arbitrary coupling function, by examining the
coefficients in the Fourier series expansion of 𝑓 (𝜃′ − 𝜃). Since the coupling
function in the SBCM does not depend on sines and cosines, this has potential
to be a point of connection between the Kuramoto model and the mean-field
SBCM, but needs further investigation.
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