The STEAM Journal

Volume 5 | Issue 1

Article 9

February 2023

Gömböc the Great

Indigo M. Strickert

Lori E. Bradford University of Saskatchewan

Follow this and additional works at: https://scholarship.claremont.edu/steam

Part of the Interdisciplinary Arts and Media Commons, Other Civil and Environmental Engineering Commons, Other Engineering Commons, and the Structural Engineering Commons

Recommended Citation

Strickert, Indigo M. and Bradford, Lori E. (2023) "Gömböc the Great," *The STEAM Journal*: Vol. 5: Iss. 1, Article 9. DOI: 10.5642/steam.DMPA4932 Available at: https://scholarship.claremont.edu/steam/vol5/iss1/9

© February 2023 by the author(s). This open access article is distributed under a Creative Commons Attribution-NonCommerical-NoDerivatives License. STEAM is a bi-annual journal published by the Claremont Colleges Library | ISSN 2327-2074 | http://scholarship.claremont.edu/steam

Gömböc the Great

Abstract

A sonnet written about the mathematics behind the self-righting shape of some tortoise shells.

Keywords

tortoise, gömböc, mathematics, poetry, sonnet

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Cover Page Footnote

Footnote: At time of writing, 1st author is 13 years old.

Gömböc the Great

Indigo M. Strickert (8th grade student, Saskatchewan) Lori Bradford (University of Saskatchewan)

I'm an 8th grade student in Saskatoon, Saskatchewan, Canada. Our class was asked to compose sonnets, staying true to their structure, about something from 'nature'. I decided to do a sonnet about natural structures – very meta!

In science, I had been learning about amphibians and reptiles, and among my favorites were turtles and tortoises. I had also witnessed some 3D printing happening at the College of Engineering where my mother works (the second author). A professor had challenged students to create a 3D logo, and some were having problems making theirs stand upright. That brought me to the intersection of math and tortoises, and a realization of their stability. I learned of the mathematician Vladimir Arnold and the challenge he posed in 1995 to provide both a mathematical proof and a physical example of mono-monostatic shapes; 3D, convex shapes which have just one stable and one unstable point of equilibrium. I thought that it was so interesting that the problem was solved by Hungarian scientists Domokos and Várkonyi with the help of tortoises. Some tortoises evolved mono-monostatic carapaces to right themselves and gain protection from a predators' chomp. Amazing.

Image credit: Kuribo, 2008 Shared via the Creative Commons Attribution-Share Alike 3.0 license, sourced from Wikimedia January 14, 2023, <u>https://commons.wikimedia.org/wiki/File:Indian_Star_Tortoise_Tennoji.jpg</u>)

Gömböc the Great

An enduring species, loved in math circles Is the unwavering Indian Star Tortoise Don't ask one to sprint or do hurdles But their mono-monostatics sure are gorgeous

Monostatic means just one point of rest The extra mono- adds one point of roll An evolutionary champion, brilliantly convex Its righting response is a thing to extol

With it could Arnold's math challenge be settled? *Nature* and *Science* popularized the proof Revealed by studying thousands of pebbles And Indian Stars at the Budapest Zoo.

Nature, the mathematician, made the tortoise gömböc. Much more robust than a curvy rock.