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Abstract

Spectral Analysis of Complex Dynamical Systems
By

Casey Johnson

Claremont Graduate University: 2020

The spectrum of any differential equation or a system of differential equations is related to

several important properties about the problem and its subsequent solution. So much information

is held within the spectrum of a problem that there is an entire field devoted to it; spectral analysis.

In this thesis, we perform spectral analysis on two separate complex dynamical systems.

The vibrations along a continuous string or a string with beads on it are the governed by the

continuous or discrete wave equation. We derive a small-vibrations model for multi-connected

continuous strings that lie in a plane. We show that lateral vibrations of such strings can be de-

coupled from their in-plane vibrations. We then study the eigenvalue problem originating from

the lateral vibrations. We show that, unlike the well-known one string vibrations case, the eigen-

values in a multi-string vibrating system do not have to be simple. Moreover we prove that the

multiplicities of the eigenvalues depend on the symmetry of the model and on the total number of

the connected strings [50]. We also apply Nevanlinna functions theory to characterize the spectra

and to solve the inverse problem for a discrete multi-string system in a more general setting than it

was done in [71],[73], [22], [69]-[72]. We also represent multi-string vibrating systems using a cou-

pling of non-densely defined symmetric operators acting in the infinite dimensional Hilbert space.

This coupling is defined by a special set of boundary operators acting in finite dimensional Krein

space (the space with indefinite inner product). The main results of this research are published in

[50].

The Hypothalamic Pituitary Adrenal (HPA) axis responds to physical and mental challenge to

maintain homeostasis in part by controlling the body’s cortisol level. Dysregulation of the HPA

axis is implicated in numerous stress-related diseases. For a structured model of the HPA axis that

includes the glucocorticoid receptor but does not take into account the system response delay, we

first perform rigorous stability analysis of all multi-parametric steady states and secondly,



by construction of a Lyapunov functional, we prove nonlinear asymptotic stability for some of

multi-parametric steady states. We then take into account the additional effects of the time delay

parameter on the stability of the HPA axis system. Finally we prove the existence of periodic

solutions for the HPA axis system. The main results of this research are published in [51].
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Chapter 1

Modeling of string vibrations and

Sturm-Liouville problems

1.1 Introduction

According to Jacques Hadamard, a well-posed problem has three properties:

1. (Existence) A solution to the problem exists.

2. (Uniqueness) The problem has only one solution.

3. (Stability) The solution depends in a continuous fashion on the data associated with the

problem.

Unfortunately, almost all inverse problems in physics or biology are ill-posed. However, the prob-

lems of existence and uniqueness can often be addressed by considering a generalized solution

and then placing constraints on it. Stability is often lacking in inverse problems.

Stability is a property of solutions that describes the extent to which they can be expected

to exist. If it is known that a problem is well-posed, then we know that unique solutions exist

possibly under certain conditions. Once we know that unique solutions exist, we can then focus

on the resulting behavior of the solutions as time evolves. When describing the dynamics of

a problem, we often begin by first identifying a stationary or time-periodic solution. Then we

study the conditions for which this solution would exist or how it will behave as time goes on.

1



This falls into two categories of stability; sensitivity to perturbations in the system parameters

and sensitivity to perturbations to the initial condition or in the current state of the system. The

first category analyzes the robustness of the problem itself: does a unique solution still exist if a

parameter in the problem is changed? The second category analyzes how dependent the solution

is to the initial condition: that is, does the solution behave the same if the initial condition is

changed by a small increment [9].

In this chapter, we derive a small-vibrations model for multi-connected continuous strings that

lie in a plane. We show that lateral vibrations of multi-connected strings can be decoupled from

in-plane vibrations. We then study the eigenvalue problem originating from the lateral vibrations.

We show that, unlike the well-known one-string vibrations case, the eigenvalues in a multi-string

vibrating system do not have to be simple. Moreover we prove that the multiplicities of the eigen-

values depend on the symmetry of the model and on the total number of the connected strings

[50].

1.2 Sturm Liouville Problems

A very important and widely studied class of differential equations are Sturm-Liouville equations.

Definition 1.2.1. A Sturm-Liouville problem is a real second-order linear ordinary differential equation

of the form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = −λw(x)y (1.1)

for given coefficient functions p(x), q(x), and w(x) > 0. The function w(x) is sometimes called the

weight/density function.

All second-order linear ordinary differential equations can be reduced to this form. A Sturm-

Liouville problem is said to be regular if p(x), w(x) > 0, and p(x), p′(x), q(x), and w(x) are

continuous functions over the finite interval [a, b] with the separated boundary conditions

c1y(a) + c2y′(a) = 0 c2
1 + c2

2 > 0

d1y(b) + d2y′(b) = 0 d2
1 + d2

2 > 0

2



The main result of Sturm-Liouville theory says [6]

Theorem 1. For a regular Sturm-Liouville problem

• The eigenvalues are real and form an increasing sequence such that

λ1 < λ2 < λ3 < · · · < λn < · · · → ∞

• For each eigenvalue λn, there is a unique (up to constant multiple) eigenfunction yn(x) with exactly

n− 1 zeros in (a, b)

• These normalized eigenfunctions form an orthonormal basis under the w-weighted inner product in

the Hilbert space L2
[a,b],w(x).

(yn, ym) =
∫ b

a
yn(x)ym(x)w(x)dx = δmn

In ([15]), Binding, Browne, and Watson analyzed regular Sturm-Liouville problems on the in-

terval [0, 1] subject to various types of boundary conditions defined by the ratio ρ = y′/y. They

analyze ρ(0) = α where α = ∞ and α is finite. They analyze the boundary condition at x = 1 for

different cases: ρ(1) = β, ρ(1) = aλ + b where a > 0, ρ(1) = aλ+b
cλ+d where ad− bc > 0 and c 6= 0.

They resolve preceeding issues by extending the analysis of the spectra to the norming constants

vn = ||yn||2 where yn is an eigenfunction corresponding to λn. They produce an isomorphism be-

tween different type problems, preserving both spectrum and norming constants. They discover

that there is precisely one map with desired preservation property. Moreover, given sequences,

λB
n = (n− 1)2π2 + k + o(1)

vB
n =

1
2
+ o(

1
n
)

as n → ∞, with k independent of n, there is precisely one Neumann bilinear problem with spec-

trum and norming constants given by λB
n and vB

n , respectively.

3



Figure 1.1: String segment with tension forces shown.

1.3 Modeling Single String Vibrations

Vibrations, or wave motion, occur almost everywhere in nature. We begin with the simple model

of the small, transverse vibrations of a flexible string. First consider a taut string of length l fas-

tened at the ends to something. Let u = u(x, t) describe the vertical displacement of each point of

the string x at time t. For our purposes, we will assume that the string can only move vertically

and that there will be no horizontal displacement (see Figure 1.2). Let us assume that the string

has density ρ(x, t), with units mass per unit length, at each point in time. Since mass in neither

created nor destroyed over time, we can just consider ρ0(x). The tension in the string is given

by T(x, t), with force units. Note that T(x, t) is the force to the left of x caused by the portion of

the string to the right of x and always directed along the tangent at x. A segment of the string

between the positions x = a and x = b is illustrated in Figure 1.1. Let θ(x, t) denote the angle that

the tangent makes with the horizontal and that tan θ(x, t) = ux(x, t).

Now let us apply Newton’s second law which says that the rate of change with respect to time

of the total momentum must equal the net external force. For our purposes, we will assume that

tension caused by the string is the only external force. We will ignore gravity and damping forces.

Balancing the horizontal forces yields

T(a, t) cos θ(a, t) = T(b, t) cos θ(b, t) = τ(t) (1.2)

but since this must be true for any segment, we will call it a function τ [62]. Then the rate of

4



change with respect to time of the total momentum must equal the net vertical force,

d
dt

∫ b

a
ρ0(x)ut(x, t)dx = T(b, t) sin θ(b, t)− T(a, t) sin θ(a, t)

Bringing the derivative inside and applying (1.2) gives

∫ b

a
ρ0(x)utt(x, t)dx = T(b, t) sin θ(b, t)− T(a, t) sin θ(a, t)

= T(b, t) cos θ(b, t)(tan θ(b, t)− tan θ(a, t))

= τ(t)(ux(b, t)− ux(a, t)).

Then by the fundamental theorem of calculus, we can obtain

∫ b

a
ρ0(x)utt(x, t)dx = τ(t)

∫ b

a
uxx(x, t)dx.

Since this must be true for any segment, we have

ρ0(x)utt(x, t) = τ(t)uxx(x, t), 0 < x < l, t > 0.

If we assume that tension is constant, τ(t) = τ0, then we can further simplify the equation to

utt = c0(x)2uxx (1.3)

where c0(x) =
√

τ0
ρ0

is called the wave speed and has units of speed. This is the wave equation and

if c0 is constant, it is easy to show that u(x, t) = F(x− c0t) and u(x, t) = G(x+ c0t) are solutions for

F, G ∈ C2. The last thing we need to consider are the end points of the string, boundary conditions,

and initial position φ(x) and velocity ψ(x) of the string, initial conditions. There are different types

of boundary conditions; Dirichlet, Neumann, and mixed. The wave equation with homogeneous

Dirichlet boundary conditions is

5



0 l

Figure 1.2: A continuous string of length l that is showing some vibrations/waves.

utt = c2
0uxx for 0 < x < l

u(0, t) = 0 u(l, t) = 0

u(x, 0) = φ(x) ut(x, 0) = ψ(x)

The wave equation with Neumann boundary conditions is

utt = c2
0uxx for 0 < x < l

ux(0, t) = 0 ux(l, t) = 0

u(x, 0) = φ(x) ut(x, 0) = ψ(x)

We focus on the spectrum of the wave equation; it’s eigenvalues. These are found by utilizing

separation of variables, u(x, t) = X(x)T(t), and focusing solely on the solutions of X(x),

X′′ = −λX 0 < x < l

X(0) = 0 X(l) = 0

which yields

λn =
(nπ

l

)2
Xn(x) = sin

nπx
l

, n = 1, 2, 3, . . .

or

X′′ = −λX 0 < x < l

X′(0) = 0 X′(l) = 0

6



x0 x1 x2

l1l0 lNli−1 li

xi−1 xi xi+1 xN xN+1

Figure 1.3: Single discrete string model illustrating the notation used.

which yields

λn =
(nπ

l

)2
Xn(x) = cos

nπx
l

, n = 0, 1, 2, . . .

Instead of a continuous string, we can also consider its discrete equivalent. A discrete string is

a very fine thread with beads spread out along the thread and is called a Stieltjes string. Again, we

will consider ui to be the vertical displacement of the ith bead. We are going to assume uniform

tension and that tension T is strong enough to neglect gravity. Let the ith have mass mi and the

beads spread out uniformly with a distance of l between two beads as shown in Figure 1.3. Let

there be N beads, so then the boundary conditions will be at u0 and uN+1.The force for the ith bead

is

Fi = −T
(

ui − ui−1

li−1

)
+ T

(
ui+1 − ui

li

)
, i = 1, 2, . . . , N

Force is also equal to mass times acceleration, üi. Thus,

miüi = −T
(

ui − ui−1

li−1

)
+ T

(
ui+1 − ui

li

)
, i = 1, 2, . . . , N

Now if we assume uniform length between each bead, then the model simplifies to

miüi = −
(

2T
l

)
ui +

(
T
l

)
(ui−1 + ui+1)

üi = −2ω2
i ui + ω2

i (ui−1 + ui+1), i = 1, 2, . . . , N

where ωi =
√

T
mi l

.

7



Figure 1.4: Configuration of multiple strings.

1.4 Modeling Multi-String Vibrations

What if we want to connect multiple strings together? If we connect, say three strings, in a config-

uration similar to Figure 1.4.

Using the laws of physics to generate a model that governs the lateral displacement of the

strings that lie in a plane. We first need to represent the strings in parametric form,

~x = ~xn(t, s)

where n = 1, 2, 3 is the string number, ~x is the position, t is time, and s ∈ [0, l] is the Lagrangian

marker where l is the length of the non-stretched string. To begin, we will assume that all the

strings have the same density, ρ.

The tension T is a function of stretching, T = T
(∣∣∣ ∂~xn

∂s

∣∣∣). According to Newton’s Second Law

of Motion, the acceleration of an object is directly proportional to the magnitude of the net force

in the same direction and inversely proportional to the mass of the object. Therefore the law for

an arbitrary string segment (s0 − ∆s, s0 + ∆s) gives us

∂

∂t

(∫ s0+δs

s0−δs
ρ

∂~xn

∂t
ds
)
=

[
∂~xn

∂s

∣∣∣∣∂~xn

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~xn

∂s

∣∣∣∣)
]

s=s0+∆s

−
[

∂~xn

∂s

∣∣∣∣∂~xn

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~xn

∂s

∣∣∣∣)
]

s=s0−∆s

If we then take the limit ∆s→ 0, we get

ρ
∂2~xn

∂t2 =
∂

∂s

[
∂~xn

∂s

∣∣∣∣∂~xn

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~xn

∂s

∣∣∣∣)
]

8



Then, we need to state the boundary conditions. If we define s = 0 to be the point where the

strings join together, we want their positions to be the same and the sum of their derivatives to be

0.

~x1 = ~x2 = ~x3 at s = 0

∂~x1

∂s

∣∣∣∣∂~x1

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~x1

∂s

∣∣∣∣)+
∂~x2

∂s

∣∣∣∣∂~x2

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~x2

∂s

∣∣∣∣)+
∂~x3

∂s

∣∣∣∣∂~x3

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~x3

∂s

∣∣∣∣) =~0 at s = 0

And at the other boundary, s = l,

~xn = R~en at s = l

where

~e1 =


0

1

0

 , ~e2 =


√

3
2

− 1
2

0

 , ~e3 =


−
√

3
2

− 1
2

0


Solving for the steady state solution,

∂

∂s

[
∂~xn

∂s

∣∣∣∣∂~xn

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~xn

∂s

∣∣∣∣)
]

= 0

∂~xn

∂s

∣∣∣∣∂~xn

∂s

∣∣∣∣−1

T
(∣∣∣∣∂~xn

∂s

∣∣∣∣) = k1

xn = Ren
s
l

If we then consider a perturbation of the solution,

xn = Ren
s
l
+ x̃n

9



If we substitute the perturbation into the problem and linearize it, we obtain

ρ
∂2(Ren

s
l + x̃n)

∂t2 =
∂

∂s

[
∂(Ren

s
l + x̃n)

∂s

∣∣∣∣∂(Ren
s
l + x̃n)

∂s

∣∣∣∣−1

T
(∣∣∣∣∂(Ren

s
l + x̃n)

∂s

∣∣∣∣)
]

ρ
∂2 x̃n

∂t2 =
∂

∂s

[((
R
l

en

)
+

∂x̃n

∂s

) ∣∣∣∣(R
l

en

)
+

∂x̃n

∂s

∣∣∣∣−1

T
(∣∣∣∣(R

l
en

)
+

∂x̃n

∂s

∣∣∣∣)
]

ρ
∂2 x̃n

∂t2 =
∂

∂s

 R
l enT

(∣∣∣R
l en +

∂x̃n
∂s

∣∣∣)+ ∂x̃n
∂s T

(∣∣∣R
l en +

∂x̃n
∂s

∣∣∣)∣∣∣R
l en +

∂x̃n
∂s

∣∣∣


ρ
∂2xn

∂t2 = P
∂2xn

∂s2 + Qen

(
∂2xn

∂s2 · en

)

where the tildes where dropped and

P(α) = α−1T(α), Q(α) = T′(α)− α−1T(α), α =
R
l

Observe that, if T(α) = T0α, then Q = 0.

So right now, the model is

ρ
∂2xn

∂t2 = P
∂2xn

∂s2 + Qen

(
∂2xn

∂s2 · en

)
(1.4)

(x1)s=0 = (x2)s=0 = (x3)s=0 (1.5)

[
P

∂2x1

∂s2 + Qe1

(
∂2x1

∂s2 · e1

)]
s=0

+

[
P

∂2x2

∂s2 + Qe2

(
∂2x2

∂s2 · e2

)]
s=0

+

[
P

∂2x3

∂s2 + Qe3

(
∂2x3

∂s2 · e3

)]
s=0

= 0 (1.6)

(xn)s=l = 0 (1.7)

10



Let

xn = anen + bnen × ez + cnez

where

ez =


0

0

1


and plugging it into (1.4-1.7) yields

ρ
∂2an

∂t2 = (P + Q)
∂2an

∂s2 , ρ
∂2bn

∂t2 = P
∂2bn

∂s2 , ρ
∂2cn

∂t2 = P
∂2cn

∂s2 (1.8)

an = bn = cn = 0 at s = l (1.9)

a1~e1 + b1(~e1 × ~ez) + c1~ez = a2~e2 + b2(~e2 × ~ez) + c2~ez

= a3~e3 + b3(~e3 × ~ez) + c3~ezat s = 0 (1.10)

(P + Q)
∂a1

∂s
~e1 + P

∂b1

∂s
~e1 × ~ez + P

∂c1

∂s
~ez + (P + Q)

∂a2

∂s
~e2 + P

∂b2

∂s
~e2 × ~ez + P

∂c2

∂s
~ez

+ (P + Q)
∂a3

∂s
~e3 + P

∂b3

∂s
~e3 × ~ez + P

∂c3

∂s
~ez = 0at s = 0 (1.11)

Let’s note that

~e1 × ~ez =


1

0

0

 , ~e2 × ~ez =


− 1

2

−
√

3
2

0

 , ~e3 × ~ez =


− 1

2
√

3
2

0


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Obtain

a1~e1 + b1(~e1 × ~ez) + c1~ez = a2~e2 + b2(~e2 × ~ez) + c2~ez

= a3~e3 + b3(~e3 × ~ez) + c3~ez at s = 0

a1


0

1

0

+ b1


1

0

0

+ c1


0

0

1

 = a2


√

3
2

− 1
2

0

+ b2


− 1

2

−
√

3
2

0

+ c2


0

0

1



= a3


−
√

3
2

− 1
2

0

+ b3


− 1

2
√

3
2

0

+ c3


0

0

1

 at s = 0

(P + Q)
∂a1

∂s


0

1

0

+ P
∂b1

∂s


1

0

0

+ P
∂c1

∂s


0

0

1



+(P + Q)
∂a2

∂s


√

3
2

− 1
2

0

+ P
∂b2

∂s


− 1

2

−
√

3
2

0

+ P
∂c2

∂s


0

0

1



+(P + Q)
∂a3

∂s


−
√

3
2

− 1
2

0

+ P
∂b3

∂s


− 1

2
√

3
2

0

+ P
∂c3

∂s


0

0

1

 = 0 at s = 0

Therefore, condensing the above information yields the following


b1

a1

c1

 =


√

3
2 a2 − 1

2 b2

− 1
2 a2 −

√
3

2 b2

c2

 =


−
√

3
2 a3 − 1

2 b3

− 1
2 a3 +

√
3

2 b3

c3

 = 0 at s = 0

and
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
P ∂b1

∂s

(P + Q) ∂a1
∂s

P ∂c1
∂s

+


√

3
2 (P + Q) ∂a2

∂s −
1
2 P ∂b2

∂s

− 1
2 (P + Q) ∂a2

∂s −
√

3
2 P ∂b2

∂s

P ∂b2
∂s



+


−
√

3
2 (P + Q) ∂a3

∂s −
1
2 P ∂b3

∂s

− 1
2 (P + Q) ∂a3

∂s +
√

3
2 P ∂b3

∂s

P ∂c3
∂s

 =


0

0

0

 at s = 0

which combines to
P
(

∂b1
∂s −

1
2

∂b2
∂s −

1
2

∂b3
∂s

)
+
√

3
2 (P + Q)

(
∂a2
∂s −

∂a3
∂s

)
(P + Q)

(
∂a1
∂s −

1
2

∂a2
∂s −

1
2

∂a3
∂s

)
−
√

3
2 P

(
∂b2
∂s −

∂b3
∂s

)
P
(

∂c1
∂s + ∂c2

∂s + ∂c3
∂s

)
 =


0

0

0

 at s = 0

Uncoupling these into two groups, one for cn and one for (an, bn)

ρ
∂2cn

∂t2 = P
∂2cn

∂s2

cn = 0 at s = l

c1 = c2 = c3 at s = 0

∂c1

∂s
+

∂c2

∂s
+

∂c3

∂s
= 0 at s = 0

ρ
∂2an

∂t2 = (P + Q)
∂2an

∂s2 , ρ
∂2bn

∂t2 = P
∂2bn

∂s2

an = bn = 0 at s = l 2b1

2a1

 =

 √
3a2 − b2

−a2 −
√

3b2

 =

 −√3a3 − b3

−a3 +
√

3b3

 at s = 0

 P
(

2 ∂b1
∂s −

∂b2
∂s −

∂b3
∂s

)
+
√

3(P + Q)
(

∂a2
∂s −

∂a3
∂s

)
(P + Q)

(
2 ∂a1

∂s −
∂a2
∂s −

∂a3
∂s

)
+
√

3P
(

∂b2
∂s −

∂b3
∂s

)
 =

 0

0

 at s = 0
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xn1+1,1

xn1,1 x1,1 x0

x1,2

x2,2

x1,3 xn3,3

xn3+1,3

xn2,2

x1,j
x2,j

xnj,j

xn2+1,2

xnj+1,j

Figure 1.5: Stieltjes multi-string model with a middle mass. Note that while only 4 strings are
shown for simplicity, the notation corresponds to the notation for N strings.

If we have multiple Stieltjes strings, there could be two situations: one where there is a bead at

the middle joining point or one where there is no middle bead at the joining point.

The model very closely resembles that of a single Stieltjes string except for the middle mass.

The middle bead now has the forces from each strand affecting its vibrations. Consider a mul-

tistring system that has N strings where the jth string has nj beads on it. We will denote the

placement of the ith bead on the jth string as xi,j which will have mass mi,j. The beads on each

strand will be counted from the middle out to the edge. The position of the middle bead is de-

noted x0 and the edges of each string are denoted xnj+1,j. When considering multiple strings, we

will assume the length between each bead is uniform. Refer to Figure 1.5 for the corresponding

notation.



üi,j = − 2T
lmi,j

ui,j +
T

lmi,j
(ui−1,j + ui+1,j), i = 1, 2, . . . , nj, j = 1, 2, . . . , N

ü0 = −N T
lm0

u0 +
T

lm0
(∑N

j=1 u1,j)

unj+1,j = 0, Dirichlet on an end

unj+1,j = unj,j, Neumann on an end

(1.12)

Now if instead, there is no middle bead at the adjoining point as shown in Figure 1.6, the only
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xn1+1,1

xn1,1 x1,1 x0

x1,2

x2,2

x1,3 xn3,3

xn3+1,3

xn2,2

x1,j
x2,j

xnj,j

xn2+1,2

xnj+1,j

Figure 1.6: Stieltjes multi-string model with no middle mass. Note that while only 4 strings shown
for simplicity,the notation corresponds to the notation for N strings.

difference is how the adjoining position in the middle is taken care of



üi,j = − 2T
lmi,j

ui,j +
T

lmi,j
(ui−1,j + ui+1,j), i = 1, 2, . . . , nj, j = 1, 2, . . . , N

0 = −N T
l u0 +

T
l (∑

N
j=1 u1,j)

unj+1,j = 0, Dirichlet on an end

unj+1,j = unj,j, Neumann on an end

(1.13)

1.5 Numerical Simulations

We can further analyze and visualize the dynamics of a multistring system by utilizing numerical

simulations.

We will utilize finite differences to solve (1.3). Using standard second order central difference

for the each individual string, we get

uk+1
n − 2uk

n + uk−1
n

∆t2 = c2
0

(
uk

n+1 − 2uk
n + uk

n−1

∆x2

)
+ O(∆x2, ∆t2)

uk+1
n = 2uk

n − uk−1
n +

(
c0∆t
∆x

)2 (
uk

n+1 − 2uk
n + uk

n−1

)
uk+1

n = α2uk
n+1 + 2(1− α2)uk

n + α2uk
n−1 − uk−1

n

15



where α = c0∆t
∆x . Now since we need the previous time step, we will have to derive a starting con-

dition to get this scheme started. We will use the initial velocity condition which we approximate

using central difference:

u1
n − u−1

n
2∆t

= gn(x) = g(xn)

u−1
n = u1

n − 2∆tg(xn)

u1
n = α2u0

n+1 + 2(1− α2)u0
n + α2u0

n−1 − u−1
n

u1
n =

1
2
(
α2u0

n+1 + 2(1− α2)u0
n + α2u0

n−1
)
+ ∆tg(xn)

A visual representation of the continuous 10 string model can be seen in Figure 1.7. Refer to

Appendix A for the code.

Now for the continuous model, the eigenvalues of the system depend on the length and num-

ber of strings in the system. However if we consider the eigenvalues of the discrete system, we

can look at the dependence of the eigenvalues on the number of strings, the number of masses on

each string, the weight of each mass, etc.

Consider a system with three strings, no middle mass, setting m = T = l = 1, Dirichlet

conditions on the end of the strings, and 10 masses on the constant string. We start with having

19 masses on what we will call the top string and only 1 mass on what we will call the bottom

string. Tracking the eigenvalues as a mass moves from the top string to the bottom string shows

the following behavior illustrated in Figures 1.8-1.12.

If we increase the spring constant with Dirichlet conditions on the end of the strands, the

eigenvalues are affected as illustrated in Figures 1.13-1.17.

If we increase the weight of a single mass at a time with Dirichlet conditions on the end of the

strands, the eigenvalues are affected as illustrated in Figures 1.18-1.22.

If instead we impose Neumann conditions on the ends of the strands, the effect on the eigen-

values is illustrated in Figures 1.23-1.27.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7: Numerically simulated model of 10 continuous strings at different time steps.
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Figure 1.8: As masses move from one strand to another, the effect on the eigenvalues is shown.
Note that the eigenvalues are listed in increasing order. Part 1

Figure 1.9: As masses move from one strand to another, the effect on the eigenvalues is shown.
Note that the eigenvalues are listed in increasing order. Part 2
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Figure 1.10: As masses move from one strand to another, the effect on the eigenvalues is shown.
Note that the eigenvalues are listed in increasing order. Part 3

Figure 1.11: As masses move from one strand to another, the effect on the eigenvalues is shown.
Note that the eigenvalues are listed in increasing order. Part 4
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Figure 1.12: As masses move from one strand to another, the effect on the eigenvalues is shown.
Note that the eigenvalues are listed in increasing order. Part 5

Figure 1.13: As we increase a single spring constant at a time from 1 to 3, the effect on the eigen-
values is shown Part 1
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Figure 1.14: As we increase a single spring constant at a time from 1 to 3, the effect on the eigen-
values is shown Part 2

Figure 1.15: As we increase a single spring constant at a time from 1 to 3, the effect on the eigen-
values is shown Part 3
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Figure 1.16: As we increase a single spring constant at a time from 1 to 3, the effect on the eigen-
values is shown Part 4

Figure 1.17: As we increase a single spring constant at a time from 1 to 3, the effect on the eigen-
values is shown Part 5
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Figure 1.18: As we increase the mass of a single bead from 1 to 3 on a string with Dirichlet bound-
ary conditions, the effect on the eigenvalues is shown Part 1

Figure 1.19: As we increase the mass of a single bead from 1 to 3 on a string with Dirichlet bound-
ary conditions, the effect on the eigenvalues is shown Part 2
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Figure 1.20: As we increase the mass of a single bead from 1 to 3 on a string with Dirichlet bound-
ary conditions, the effect on the eigenvalues is shown Part 3

Figure 1.21: As we increase the mass of a single bead from 1 to 3 on a string with Dirichlet bound-
ary conditions, the effect on the eigenvalues is shown Part 4
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Figure 1.22: As we increase the mass of a single bead from 1 to 3 on a string with Dirichlet bound-
ary conditions, the effect on the eigenvalues is shown Part 5

Figure 1.23: As we increase the mass of a single bead from 1 to 3 on a string with Neumann
boundary conditions, the effect on the eigenvalues is shown Part 1
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Figure 1.24: As we increase the mass of a single bead from 1 to 3 on a string with Neumann
boundary conditions, the effect on the eigenvalues is shown Part 2

Figure 1.25: As we increase the mass of a single bead from 1 to 3 on a string with Neumann
boundary conditions, the effect on the eigenvalues is shown Part 3
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Figure 1.26: As we increase the mass of a single bead from 1 to 3 on a string with Neumann
boundary conditions, the effect on the eigenvalues is shown Part 4

Figure 1.27: As we increase the mass of a single bead from 1 to 3 on a string with Neumann
boundary conditions, the effect on the eigenvalues is shown Part 5
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Chapter 2

Nevanlinna Functions in Spectral

Analysis

2.1 Introduction

Continuing on with the multi-string problem, we will now discuss its spectral properties. In or-

der to discuss the spectral properties, Nevanlinna functions will be used in the results. In the

mathematical field of complex analysis, Nevanlinna theory is part of the theory of meromorphic

functions. The theory describes the asymptotic distribution of solutions of the equation f (z) = a,

as a varies. In its original form, Nevanlinna theory deals with meromorphic functions of one

complex variable defined in a disc or in the whole complex plane ([80]).

Definition 2.1.1. We say that the function f (z) belongs to the Nevanlinna class if the following condi-

tions are satisfied:

a. C \R ⊆ dom( f )

b. C \R ⊆ hol( f ) (that is, f is holomorphic away from the real axis)

c. if z ∈ hol( f ) then f (z) = f (z)

d. for any z ∈ C \R, Im f (z)
Im z ≥ 0

Note that if instead, for any z ∈ C \R, Im f (z)
Im z ≤ 0, then the function is said to be anti-Nevanlinna.

28



Example 2.1.1. Show that f (z) = z
1−z2 is a Nevanlinna function.

Since it is obvious that conditions a and b are satisfied, only show that conditions c and d are

satisfied. So

f (z) =
z

1− z2 =
x− iy

1− (x− iy)2 =
x− iy

1− x2 + 2ixy + y2

f (z) =
z

1− z2 =
z

1− z2
=

x− iy
1− (x + iy)2

=
x− iy

1− x2 − 2ixy + y2
=

x− iy
1− x2 + 2ixy + y2

These two statements are equal so c is satisfied.

And

Im f (z) = Im
(

x + iy
1− x2 + y2 − 2ixy

)
= Im

(
(x + iy)(1− x2 + y2 + 2ixy)

(1− x2 + y2 − 2ixy)(1− x2 + y2 + 2ixy)

)
= Im

(
x− x3 + xy2 + 2ix2y + iy− iyx2 + iy3 − 2xy2

(1− x2 + y2)2 + (2xy)2

)
=

2x2y + y− yx2

(1− x2 + y2)2 + (2xy)2 =
x2y + y

(1− x2 + y2)2 + (2xy)2

Im z = y

Im f (z)
Im z

=

x2y+y
(1−x2+y2)2+(2xy)2

y

=
x2 + 1

(1− x2 + y2)2 + (2xy)2 ≥ 0

Thus, condition d is satisfied. Therefore f (z) = z
1−z2 is a Nevanlinna function.

Now let’s investigate several properties of Nevanlinna functions.

Lemma 2.1.1. Let f (z) be a Nevanlinna function. Then − 1
f (z) is a Nevanlinna function.

Proof. Let f (z) be a Nevanlinna function. Then f (z) satisfies all the conditions for a Nevanlinna

function. From simple inspection, we can see that a and b are satisfied. We just need to show that

c and d are satisfied.
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c)

− 1
f (z)

= − 1

f (z)
= − 1

f (z)

d)

Im
(
− 1

f (z)

)
= Im

(
− f (z)
| f (z)|2

)

=
Im (− f (z))
| f (z)|2

=
Im [−(Re( f )− i Im( f ))]

| f (z)|2

=
Im[−Re( f ) + iIm( f )]

| f (z)|2 =
Im( f )
| f (z)|2

Im
(
− 1

f (z)

)
Im(z)

=

Im( f )
| f (z)|2

Im(z)
=

1
| f (z)|2

Im( f )
Im(z)

≥ 0

Thus, − 1
f (z) is a Nevanlinna function.

We can then say that − 1
f (z) is holomorphic on C \R. Therefore, the singularities of − 1

f (z) are

located on the real axis. So then the singularities become the zeros of f (z) whose locations do not

change. Thus, the zeros of f (z) are real. this is formalized in the Lemma 2.1.2 below.

Lemma 2.1.2. If f (z) is a Nevanlinna function and f (z0) = 0, then the z0’s are real.

Lemma 2.1.3. If h(z)
g(z) is a rational Nevanlinna function where

g(z) = zn + · · ·+ a1z + a0,

h(z) = bmzm + · · ·+ b1z + b0

then all a0, a1, . . . , an−1, b0, b1, . . . , bm ∈ R.

Proof. Let us note that g(z)
h(z) = g(z)

h(z)
. To be clear, note that we can write both h(z) and g(z) in its
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factored form. Since they are Nevalinna functions, the roots are real numbers.

g(z) = (z− z∗1)(z− z∗2) · · · (z− z∗n)

h(z) = bm(z− z1)(z− z2) · · · (z− zm)

g(z) = (z− z∗1)(z− z∗2) · · · (z− z∗n)

h(z) = bm(z− z1)(z− z2) · · · (z− zm)

g(z) = (z− z∗1)(z− z∗2) · · · (z− z∗n)

h(z) = bm(z− z1)(z− z2) · · · (z− zm)

We will use the fact g(z)
h(z) =

g(z)
h(z)

:

g(z)
h(z)

=
g(z)
h(z)

(z− z∗1)(z− z∗2) · · · (z− z∗n)
bm(z− z1)(z− z2) · · · (z− zm)

=
(z− z∗1)(z− z∗2) · · · (z− z∗n)

bm(z− z1)(z− z2) · · · (z− zm)

1
bm

(z− z∗1)(z− z∗2) · · · (z− z∗n)
(z− z1)(z− z2) · · · (z− zm)

=
1

bm

(z− z∗1)(z− z∗2) · · · (z− z∗n)
(z− z1)(z− z2) · · · (z− zm)

1
bm

=
1

bm

Therefore, bm must be real. Since we know the zeros are real, it forces all the coefficients to also be

real.

Lemma 2.1.4. f (z) = p(z)
q(z) is a rational Nevanlinna function if and only if

f (z) = c1z + c0 +
r

∑
l=1

c1l

zl − z

where c1 ≥ 0, c0 ∈ R, c1l > 0, zl ∈ R ∀l = 1, . . . , r.

Note that this does not contradict previous lemmas since the summation is showing poles of

order 1 which are real.

Proof. ⇒ By definition, we can rewrite f (z) as a general function with poles of various order. We
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will proceed to show that these poles must be of order 1, that is m1 = m2 = · · · = mk = 1.

f (z) = p(z) +
m1

∑
k=1

ck1

(z1 − z)k + · · ·+
mr

∑
k=1

ckr

(zr − z)k

The z1, z2, . . . , zk ∈ R. Consider

s1(z) =
m1

∑
k=1

ck1

(z1 − z)k

We have already shown that the ck1 ∈ R.

2i Im(s1(z)) = s1(z)− s1(z) =
m1

∑
k=1

ck1

(z1 − z)k −
m1

∑
k=1

ck1

(z1 − z)k

=
m1

∑
k=1

ck1
(z1 − z)k − (z1 − z)k

|z1 − z|2k

We now want to rewrite the above in polar notation to make computations easier. Let ϕ1 =

arg(z1 − z).

=
m1

∑
k=1

ck1
|z1 − z|k(cos(−ϕ1) + i sin(−ϕ1))

k − |z1 − z|k(cos(ϕ1) + i sin(ϕ1))
k

|z1 − z|2k

=
m1

∑
k=1

ck1
|z1 − z|k(cos(kϕ1)− i sin(kϕ1))− |z1 − z|k(cos(kϕ1) + i sin(kϕ1))

|z1 − z|2k

=
m1

∑
k=1

2ck1
−i sin(kϕ1)

|z1 − z|k

Therefore, we have

2i Im(s1(z)) =
m1

∑
k=1

2ck1
−i sin(kϕ1)

|z1 − z|k

Im(s1(z)) =
m1

∑
k=1

ck1
− sin(kϕ1)

|z1 − z|k

Im( f (z)) =
p(z)− p(z)

2i
+

m1

∑
k=1

ck1
− sin(kϕ1)

|z1 − z|k + · · ·+
mr

∑
k=1

ckr
− sin(kϕr)

|zr − z|k
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Consider limz→z1 , we can then determine the sign of Im f (z) because it depends on

m1

∑
k=1

ck1
− sin(kϕ1)

|z1 − z|k

which blows up and is the dominant term of the function. It dictates the sign of the function in

the neighborhood of z1. Recall ϕ1(z) = arg(z1 − z). Let z run through the entire upper half-plane.

Thus Im z > 0, and therefore z1 − z runs through the lower half-plane, arg(z1 − z) ∈ (−π, 0). So

m1 ϕ1 ∈ (−m1π, 0).

We will then take 2 complex numbers z′ and z′′ such that

ϕ1(z′) = arg(z1 − z′) ∈ (−2π

m1
,− π

m1
)

ϕ1(z′′) = arg(z1 − z′′) ∈ (− π

m1
, 0)

So we now have

− sin(m1ϕ1(z′)) < 0 − sin(m1ϕ1(z′′)) > 0

Thus we have two points in the neighborhood of z1 such that Im( f (z)) is changing signs con-

tradicts the definition of the Nevanlinna function. We assumed that the multiplicity of the pole

was ≥ 2 but we got a contradiction. Only if m1 ≥ 2 is it possible to find the two intervals which

lead to our contradiction. The contradiction is not possible if m1 = 1, therefore m1 = 1. We repeat

this argument for any zt.

Now we need to deal with p(z). p(z) has all real coefficients.

Im(p(z)) =
p(z)− p(z)

2i
=

p(z)− p(z)
2i

=
1
2i

n

∑
k=0

ck(zk − zk)

=
1
2i

n

∑
k=0

ck|z|k sin(k arg(z))

We got this because we can group by the coefficients since they are all real. We are interested in

the sign of Im(p(z)). We will apply similar logic and look at p(z) close to infinity. Looking close
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to infinity allows this term to dominate the fractions. The term cn sin(n arg(z)) dictates the sign

of Im(p(z)). Assume n ≥ 2 and look at two complex numbers z′ and z′′ near infinity such that

Im(z′) ≥ 0 and Im(z′′) > 0 but sin(n arg(z′)) and sin(n arg(z′′)) are different.

We need n ≥ 2 to get the desired contradiction, otherwise the interval would just be (0, π).

Since we got a contradiction for n ≥ 2, we have shown that p(z) must be linear. All that is left

is to show the coefficient conditions. Let us do this by computing Im( f (z)).

Im( f (z)) =
c1z + c0 − c1z + c0

2i
+

c11

2i

(
1

z1 − z
−
(

1
z1 − z

))

+ · · ·+ c1r

2i

(
1

zr − z
−
(

1
zr − z

))
Im( f (z))

Im(z)
= c1 +

c11
|z1 − z|2 + · · ·+ c1r

|zr − z|2 ≥ 0

Looking individually at neighborhoods of zi (and z = ∞) to get dominant term, see that that

coefficient has to be ≥ 0 and continue until all coefficients are ≥ 0.

⇐ Clearly conditions a, b, and c are satisfied. Let’s investigate condition d.

Im( f (z))
Im(z)

= c1 +
c11

|z1 − z|2 + · · ·+ c1r

|zr − z|2

We know that all the coefficients are positive and therefore can say that

Im( f (z))
Im(z)

≥ 0

Theorem 2. Let

h(z) = amzm + · · ·+ a0

g(z) = zn + · · ·+ b0.

h(z)
g(z) is a Nevanlinna function if and only if h(z)

g(z) = m1z + m0 +
h1(z)
g(z) where m1 ≥ 0, m0 ∈ R, and
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limz→+∞
h1(z)
g(z) and roots of g and roots of h1 are interlacing.

nul(g) = {z1, z2, . . . , zn} nul(h1) = {z∗1 , z∗2 , . . . , z∗n}

z1 < z∗1 < z2 < z∗2 < · · · < zn

Proof. ⇐ Assume that all conditions are satisfied. We want to show that h(z)
g(z) is a Nevanlinna

function.

h(z)
g(z)

= m1z + m0 +
c1

z− z1
+

c2

z− z2
+ · · ·+ cn

z− zn

The function breaks down like this because of the interlacing property. The strict inequalities

require that each pole has multiplicity 1. Using the Lemma 2.1.4 we simply need to show the

conditions for the coefficients are satisfied. We want to show that for any coefficients ci and ci+1

have the same sign. We will assume the contrary, ci < 0 and ci+1 > 0. Therefore,

lim
z→zi+0

h1(z)
g(z)

= lim
z→zi+0

(
· · ·+ ci

z− zi
+ · · ·

)
= −∞

lim
z→zi−0

h1(z)
g(z)

= lim
z→zi+0

(
· · ·+ ci+1

z− zi+1
+ · · ·

)
= −∞

Therefore, there is either no h(z) zeros or an even number between zi and zi+1. This is a

contradiction because we can only have 1 zero of h(z) between 2 zeros of g(z).

lim
z→+∞

h1(z)
g(z)

= −0

Thus, the fraction piece goes to −0. Therefore, they cannot change sign. Thus, all coefficients are

negative. This is okay because the previous theorem was z1 − z and we have z− z1

⇒ Note h(z)
g(z) = m1z + m0 +

c1
z−z1

+ c2
z−z2

+ · · ·+ cn
z−zn

. We simply need to show the interlacing

property since everything else we get for free or simply by utilizing Lemma 2.1.4.
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We will rewrite h(z)
g(z) to get a common denominator.

h(z)
g(z)

= m1z + m0

+
c1(z− z2) · · · (z− zn) + c2(z− z1)(z− z3) · · · (z− zn) + · · ·+ cn(z− z1) · · · (z− zn−1)

(z− z1) · · · (z− zn)

So h1(z) = c1(z− z2) · · · (z− zn)+ c2(z− z1)(z− z3) · · · (z− zn)+ · · ·+ cn(z− z1) · · · (z− zn−1)

and sign(h1(zn)) = −1 and sign(h1(zn−1)) = 1. Note that cn−1 = −1 but (z− zn) < 0.

The function is changing sign between zeros of g and there is only n − 1 zeros of h1 since h has

n− 1 roots, it is inside of g.

Theorem 3. Let f (z) = c1z + c0 +
h1(z)
g(z) be a Nevanlinna function. Then f (z) = P(z)

Q(z) has the interlacing

property.

Example 2.1.2. Show that

θ(λ) =
a− bλ

c− dλ
(2.1)

is Nevanlinna function if and only if ad− bc ≥ 1. (If ad− bc = 1, then θ(λ) is a Nevanlinna function)

Proof. ⇒ Let λ = m + in. Clearly Condition a and b are satisfied for θ(λ) to be a Nevanlinna

function. Now to evaluate condition c and d.

θ(λ) =
a− bλ

c− dλ

θ(λ) =
a− bλ

c− dλ
=

a− bλ

c− dλ
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Thus θ(λ) = θ(λ) and condition c is satisfied. Now to evaluate condition d. Note that Im(λ) = n.

θ(λ) =
a− bm− ibn
c− dm− idn

=
a− bm− ibn
c− dm− idn

· (c− dm + idn)
(c− dm + idn)

=
ac− adm + iadn− bcm + bdm2 − ibdmn− ibcn + ibdmn + bdn2

c2 − cdm + icdn− cdm + d2m2 − id2mn− icdn + id2mn + d2n2

=
ac− adm− bcm + bdm2 + bdn2 + i(adn− bcn)

c2 + d2m2 + d2n2

Im (θ(λ)) =
n(ad− bc)

c2 + d2m2 + d2n2

Im(θ(λ))

Im(λ)
=

ad− bc
c2 + d2m2 + d2n2 ≥ 0

Therefore ad− bd ≥ 0 for θ(λ) to be a Nevanlinna function.

⇐ Now, assume that ad− bc = 1 and show that θ(λ) = a−bλ
c−dλ is a Nevanlinna function. We will

proceed by cases

Case 1: a = 0 and b 6= 0 Without loss of generality, let b = 1. So c = −1. Therefore θ(λ) = −λ
−1−dλ .

Now to check condition d of being Nevanlinna,

θ(λ) =
−m− in

−1− dm− idn

=
−m− in

−1− dm− idn
· (−1− dm + idn)
(−1− dm + idn)

=
m + dm2 − idmn + in + idmn + dn2

1 + dm− idn + dm + d2m2 − id2mn + idn + id2mn + d2n2

=
m + dm2 + dn2 + in

1 + 2dm + d2(n2 + m2)

Im(θ(λ)) =
n

1 + 2dm + d2(n2 + m2)

Im(θ(λ))

Im(λ)
=

1
1 + 2dm + d2(n2 + m2)

≥ 0

Case 2: a 6= 0 and b = 0 Without loss of generality, let a = 1. So d = 1. Therefore θ(λ) = 1
c−λ . Now
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to check condition d of being Nevanlinna,

θ(λ) =
1

c−m− in

=
1

c−m− in
· (c−m + in)
(c−m + in)

=
c−m + in

c2 − cm + icn− cm + m2 + imn− icn− imn + n2

=
c−m + in

c2 − 2cm + m2 + n2

Im(θ(λ)) =
n

c2 − 2cm + m2 + n2

Im(θ(λ))

Im(λ)
=

1
c2 − 2cm + m2 + n2 ≥ 0

Case 3: a = 0 and c 6= 0 Without loss of generality, let c = 1. So b = −1. Therefore θ(λ) = λ
1−dλ .

Now to check condition d of being Nevanlinna,

θ(λ) =
m + in

1− dm− idn

=
m + in

1− dm− idn
· (1− dm + idn)
(1− dm + idn)

=
m + in− dm2 − idmn + idmn− dn2

1− dm + idn− dm + d2m2 − id2mn− idn + id2mn + d2n2

=
m− dm2 − dn2 + in

1− 2dm + d2n2 + d2m2

Im(θ(λ)) =
n

1− 2dm + d2n2 + d2m2

Im(θ(λ))

Im(λ)
=

1
1− 2dm + d2n2 + d2m2 ≥ 0

Case 4: a 6= 0 and b 6= 0 Without loss of generality, let a = 1 and b = 1. So d− c = 1 or d = 1 + c.
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Therefore θ(λ) = 1−λ
c−(1+c)λ . Now to check condition d of being Nevanlinna,

θ(λ) =
1−m− in

c− (1 + c)(m + in)

=
1−m− in

c−m− in− cm− icn

=
1−m− in

c−m− in− cm− icn
· (c−m + in− cm + icn)
(c−m + in− cm + icn)

=
c−m + in− cm + icn− cm + m2 − imn + cm2 − icmn− icn + imn + n2 + icmn + cn2

c2 − cm− c2m− cm + m2 + cm2 + n2 + cn2 − c2m + cm2 + c2m2 + cn2 + c2n2

=
c−m− 2cm + m2 + n2 + cm2 + cn2 + in

c2 − 2cm− 2c2m + m2 + 2cm2 + n2 + 2cn2 + c2m2 + c2n2

Im(θ(λ)) =
n

c2 − 2cm− 2c2m + m2 + 2cm2 + n2 + 2cn2 + c2m2 + c2n2

Im(θ(λ))

Im(λ)
=

1
c2 − 2cm− 2c2m + m2 + 2cm2 + n2 + 2cn2 + c2m2 + c2n2 ≥ 0

Lemma 2.1.5. Let
A(λ)

B(λ)
be a rational Nevanlinna function such that A(λ) = A0 ∏n

j=1(λ + αj) and

B(λ) = B0 ∏n
j=1(λ + β j) such that β0 < α0 < β1 < α1 < β2 < α2 < · · · < βn < αn and A0 > 0 and

B0 > 0. Then there is a unique a and b such that

A(λ)

B(λ)
= a +

1

bλ + B(1)(λ)

A(1)(λ)

where a > 0 and b > 0. Also where
B(1)(λ)

A(1)(λ)
is also a rational Nevanlinna function such that A(1)(λ) and

B(1)(λ) are of degree n− 1.

Proof. Let’s begin by dividing and writing it as

A(λ)

B(λ)
= a +

A(1)(λ)

B(1)(λ) + bλA(1)(λ)

Clearly, a =
A0

B0
> 0 and

A(1)(λ) = A(λ)− aB(λ) (2.2)

B(λ) = B(1)(λ) + bλA(1)(λ) (2.3)
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Let’s also define as follows

A(1)(λ) = A(1)
0 λn−1 + A(1)

1 λn−2 + · · ·+ A(1)
n−1

B(1)(λ) = B(1)
0 λn−1 + B(1)

1 λn−2 + · · ·+ B(1)
n−1

Equating the λn coefficients of (2.3) and B(λ), yields bA(1)
0 = B0 > 0. Equating the λn−1 coefficients

of (2.2) yields

A(1)
0 = A1 + aB1

= A0

n

∑
i=1

αi − aB0

n

∑
i=1

βi

= A0

n

∑
i=1

αi − A0

n

∑
i=1

βi

= A0

n

∑
i−1

(αi − βi) > 0

We know that this is greater than zero using the interlacing property of the zeros. Now since

A(1)
0 > 0, then b > 0.

Then dividing (2.2) by B(λ) we get

A(1)(λ)

B(λ)
=

A(λ)

B(λ)
− a

Assuming that λ goes from −∞ to 0 and using the interlacing properties,

lim
λ→−β+

j

A(λ)

B(λ)
= +∞ lim

λ→−β−j

A(λ)

B(λ)
= −∞

These limits also imply that

lim
λ→−β+

j

A(1)(λ)

B(λ)
= +∞ lim

λ→−β−j

A(1)(λ)

B(λ)
= −∞

Using the value of the limits and the Intermediate Value Theorem for continuous functions over

the interval (−β j+1,−β j) for j = 1, 2, . . . , n− 1, we know that there must be a zero of A(1)(λ) in
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the interval. Let’s call it −α′j for j = 1, 2, . . . , n− 1. Thus

A(1)(λ) = A(1)
0

n−1

∏
j=1

(λ− α′j)

such that β j < α′j < β j+1 for j = 1, 2, . . . , n− 1. This is all the zeros that exist.

Now if we divide (2.3) by A(1)(λ) and using similar logic

B(1)(λ)

A(1)(λ)
= −bλ +

B(λ)
A(1)(λ)

lim
λ→−α′+j

B(λ)
A(1)(λ)

= −∞ lim
λ→−α′−j

B(λ)
A(1)(λ)

= +∞

Using the value of the limits and the Intermediate Value Theorem for continuous functions over

the interval (−α′j+1,−α′j) for j = 1, 2, . . . , n− 2, we know that there must be a zero of B(1)(λ) in the

interval. Let’s call it −β′j for j = 1, 2, . . . , n− 2. To recover the last root, we use the Intermediate

Value Theorem over (α′1, 0). Since

B(1)(0)
A(1)(0)

=
B(0)

A(1)(0)
> 0

Thus, we recover the last root in the interval (α′1, 0). Thus we have

B(1)(λ) = B(1)
0

n−1

∏
j=1

(λ− β′j)

where 0 < β′1 < α′1 < β′2 < α′2 < · · · < β′n−1 < α′n−1. Therefore
B(1)(λ)

A(1)(λ)
is a rational Nevanlinna

function itself. We can continue this logic and receive the following continued fraction unique
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representation

A(λ)

B(λ)
= an +

1

bnλ +
1

an−1 +
1

bn−1λ +
. . . +

1

a1 +
1

b1λ +
1

a0

(2.4)

Lemma 2.1.6. A scalar function Q is said to be Nevalinna function if it has the integral representation of

the form

Q(λ) = α + βλ +
∫

R
(

1
s− λ

− s
s2 + 1

)dσ(s),
∫

R

dσ(s)
s2 + 1

< ∞, λ ∈ C \R

where α ∈ R and β ≥ 0 and σ is a nondecreasing function on R([10]).

Also, there is a Stieltjes class of functions such that a Nevanlinna function Q belongs to the

Stieltjes class if and only if Q is holomorphic and nonnegative on (−∞, 0).

Definition 2.1.2. The function θ is said to be an S-function if θ is defined and analytic on C \ [0, ∞) and

if θ(z) > 0 for z ∈ (−∞, 0).

Definition 2.1.3. A meromorphic S-function θ is said to be an S0-function if 0 is not a pole of θ.

Nevanlinna functions have been used as part of spectral-parameter dependent boundary con-

ditions. We will see how they have been used in Sturm-Liouville problems and then more specif-

ically in single string problems. Then we derive a formula using Nevanlinna functions to repre-

sent the spectral properties of each string in the multi string case. This function will depend on

the number of beads on the strand and the boundary condition on the end of the strand. Finally

we will look at the spectra of specific examples that will illustrate the phenomenon that occurs in
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multistring systems. That is, we will prove that the multiplicities of the eigenvalues depend on

the symmetry of the model and on the total number of strings.

2.2 Application of Nevanlinna Functions to Sturm-Liouville problem

with spectral-parameter dependent boundary conditions

Let us begin by considering the nonhomogeneous Sturm-Liouville problem

−y′′(x) + q(x)y(x) = λy(x) (2.5)

with boundary conditions that will vary depending on the author and scope. In [61], Levitan

considers (2.5) with the following boundary conditions:

y(a) cos α + y′(a) sin α = 0

y(b) cos β + y′(b) sin β = 0.

Levitan shows that for the eigenvalues λi and their corresponding eigenfunctions y(x, λi), the

eigenfunctions are orthogonal and the eigenvalues are real.

Zhamel looks at (2.5) with

y′(0) = 0

y′(π)−mλy(π) = 0

where λ is the spectral parameter and m is a physical parameter in [86] while Amara and Shka-

likov study the spectral properties and dynamics of the eigenvalues and eigenfunctions in [4]. In

[86], he considers the case when m < 0 and the behavior as m → 0−, specifically that the first

negative eigenvalue tends to −∞ as m → 0−. Regular Sturm-Liouville problems that involve

the eigenvalue parameter in the boundary condition at one end-point is using Walters ([85]) op-

erator theoretic formulation in ([38]). Fulton extends this work to singular problems with the

eigenvalue parameter linearly in a regular or a limit-circle boundary condition at the left endpoint
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([37]). For regular Sturm-Liouville problems with discontinuous boundary value problems with

eigendependent boundary conditions, some of the fundamental spectral properties are extended

in ([3]).

Computations of the eigenvalues of a regular Sturm-Liouville problem with eigendependent

boundary conditions can be cumbersome. Chanane discusses methods to for computing the eigen-

values of regular Sturm-Liouville problems with Dirichlet boundary conditions in ([20]). In ([19])

and ([21]), they extended the idea to singular problems. Then in ([28]), they expanded the scope

to include regular SL problems with general separated boundary conditions. In ([30]), ([31]), ([29])

they extended the scope to those with coupled self-adjoint boundary conditions and even regular

fourth order SL problems. Finally in ([27]), they demonstrate a method to compute the eigenvalues

for SL problems with general separated boundary conditions that are nonlinear in the eigenvalue

parameter.

Binding considers (2.5) with boundary conditions

y(0) cos α = y′(0) sin α α ∈ [0, π) (2.6)

y′

y
(1) = f (λ) (2.7)

where f belongs to the Nevanlinna class of functions,RN , with the form

f (λ) = aλ + b−
N

∑
k=1

bk

λ− ck
. (2.8)

He shows that the (see [12])

• Eigenvalues are real, simple, and form an increasing sequence accumulating at ∞ with λ0 <

c1

• If b is decreased while ck, q are increased then each λj is increased

• If a > 0 is decreased and bk is increased then each positive λj > ck is increased.

• The eigenvalues of (2.5),(2.6) with the Dirichlet condition y(1) = 0 will be denoted λD
i for

i = 0, 1, . . . and λcD
i to be the sequence of all cj and λD

k in non-decreasing order. Then

eigenvalues interlace as follows λ0 < λcD
0 ≤ λ1 ≤ λcD

1 ≤ · · · .
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Binding, Browne, and Watson considered (2.5), (2.6-2.7) in [17]. These f , (2.8) will also belong

to a class usually associated with the names of Herglotz or Nevanlinna. They use differential

equation techniques to derive properties of the eigenvalues and eigenfunctions generalizing clas-

sic Sturm theory. They modified a transformation in which they ensured regularity. They note

that non-Dirichlet conditions transform to Dirichlet and repeated transformations will be needed.

Each class RN is the union of two subclasses R†
N and R0

N and their transformation will provide

direct links between these subclasses for various values of N. They then analyze existence, os-

cillation and comparison theory. Their analysis determines that rather than one eigenvalue per

oscillation count, N ’extra’ eigenvalues appear with arbitrary oscillation counts. They also prove

that if their transformation is applied to ’old’ (original) problem, then the new spectrum contains

the old eigenvalues (except possibly the first one). Using oscillation theory, they show that these

are the only eigenvalues of the new problem. Therefore the transformation is isospectral. They

investigate the spectral properties of the nonlinear Sturm-Liouville boundary problem

−(py′)′ + qy = λ(1− f )ry on [0, 1]

(ajλ + bj)y(j) = (cjλ + dj)(py′)(j), j = 0, 1

where a0 = 0 = c0 and p, r > 0 and q are functions depending on x while f depends on x, y, y′ in

([16], [13]).

In ([2]), Altinisik, Kadakal, and Mukhtarov consider a discontinuous eigenvalue problem that

consists of the differential equation

τu := −a(x)u′′ + q(x)u = λu

to hold in [−1, 1] except at the point x = 0, with the boundary conditions

α1u(−1) + α2u′(−1) = 0

(β′1λ + β1)u(1) = (β2/λ + β2)u′(1)
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and at the point of discontinuity

γ1u(0−) = δ1u(0+)

γ2u′(0−) = δ2u′(0+)

where a(x) = a2
1 for x ∈ [−1, 0), a(x) = a2

2 for x ∈ (0, 1]; a1 > 0 and a2 > 0 are given real numbers;

q(x) is a given real valued function continuous in [−1, 0] and [0, 1]. the coefficients of the boundary

and transmission conditions are real numbers. We assume |α1| + |α2| 6= 0, β′1β2 − β′2β1 6= 0,

|γi|+ |δi| 6= 0 (i = 1, 2) and we write ρ := β′1β2 − β′2β1 > 0.

Tretter considers the eigenvalue problem for ordinary differential equations of the form Nη =

λPη on a compact interval with λ-polynomial boundary conditions ([82]). This leads to the

nonclassical spectral problem since P doesn’t need to be invertible. After linearizing the prob-

lems, Tretter arranges the system to correspond to assumptions of previous work which yields

an asymptotic fundamental matrix. Tretter then introduces a particular asymptotic fundamental

matrix and defines a notion of regularity of an nth order boundary eigenvalue problem. Then

they prove completeness in certain finite codimensional subspaces and they study the minimality

of the eigenfunctions and associated functions in the Sobolev spaces W l
2(a, b) for l ≥ p. The basic

properties of the eigenfunctions and associated functions are investigated and are shown that un-

der certain conditions, the canonical system of eigenfunctions and associated functions even form

a Riesz basis. Finally, they apply these new theory to the equation of motion of a clamped-free

elastic beam, with a mass-spring system attached at its free end and show that the eigenfunctions

and associated functions are complete in a set of spaces, form a minimal system of with defect,

and form a Riesz basis with defect.

When multiple Stieltjes strings are connected to form trees, like in Figure 2.1, then Pivovarchik

shows that an eigenvalue may have multiplicity greater than 1 ([70]). He also introduces the con-

cept of listing the eigenvalues for a multistring problem in decreasing multiplicity order. If instead

of Stieltjes strings connected to form trees we have continuous strings, then the eigenvalues of the

Sturm-Liouville problem exhibit multiplicity and interlacing properties in [58].

In order to solve the non-homogeneous problem, we will need to find a Green’s function that

satisfies the homogeneous problem.
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Figure 2.1: Multiple Stieltjes strings connected to form trees.

Definition 2.2.1. We say that a function of two variables G(t, τ) is a Green’s function for the differential

equation of order n subject to the boundary conditions on the interval [a, b] if G(t, τ) satisfies the following

conditions:

1. G(t, τ) is a continuous function in t, τ ∈ [a, b] and it has continuous derivatives of the order up to

and including [n− 2] with respect to t for any fixed τ, t, τ ∈ [a, b].

2. On subintervals [a, τ), (τ, b], the function G(t, τ) is considered a function of t (τ is fixed) and has

continuous derivatives with respect to t of the order [n − 1], [n]. At the same time, [n − 1] order

derivatives have a discontinuity jump at t = τ which is equal to −1

∂n−1

∂tn−1 G(τ0+, τ)− ∂n−1

∂tn−1 G(τ0−, τ) = −1

3. For any fixed τ, G(t, τ) as a function of t on both subintervals from the second condition and solves

the differential equation and satisfies the boundary conditions.

Note also that for all τ ∈ [a, b], G(t, τ) solves the differential equation, LG = −Gtt + q(t)G = 0,

t 6= τ.

Let

G(t, τ, λ) =

 G1(t, τ, λ) = a1(τ, λ)u1(t, λ) + a2(τ, λ)u2(t, λ) 0 ≤ t < τ < l

G2(t, τ, λ) = b1(τ, λ)u1(t, λ) + b2(τ, λ)u2(t, λ) 0 < τ < t ≤ l

Now, we need G1 to satisfy the left boundary condition: G1(0, τ, λ) = θ(λ)G1,t(0, τ, λ)
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a1(τ, λ)u1(0, λ) + a2(τ, λ)u2(0, λ) = θ(λ) [a1(τ, λ)u1,t(0, λ) + a2(τ, λ)u2,t(0, λ)]

→ a1(τ, λ) = θ(λ)a2(τ, λ)(−1)

→ a1(τ, λ)

a2(τ, λ)
= −θ(λ)

Now, we need G2 to satisfy the right boundary condition: G2(l, τ, λ) = HG2,t(l, τ, λ). We also

know that ψ(l, λ) = Hψt(l, λ) which will help eliminate H from our final function.

u2(l, λ) + α(λ)u1(l, λ) = H [u2,t(l, λ) + α(λ)u1,t(l, λ)]

α(λ) [u1(l, λ)− Hu1,t(l, λ)] = Hu2,t(l, λ)− u2(l, λ)

→ α(λ) =
Hu2,t(l, λ)− u2(l, λ)

u1(l, λ)− Hu1,t(l, λ)

b1(τ, λ)u1(l, λ) + b2(τ, λ)u2(l, λ) = H [b1(τ, λ)u1,t(l, λ) + b2(τ, λ)u2,t(l, λ)]

b1(τ, λ) [u1(l, λ)− Hu1,t(l, λ)] = b2(τ, λ) [Hu2,t(l, λ)− u2(l, λ)]

→ b1(τ, λ)

b2(τ, λ)
=

Hu2,t(l, λ)− u2(l, λ)

u1(l, λ)− Hu1,t(l, λ)
= α(λ)

Therefore, so far we have

G(t, τ, λ) =

 −θ(λ)a2(τ, λ)u1(t, λ) + a2(τ, λ)u2(t, λ) = a2(τ, λ)φ(t, λ) 0 ≤ t < τ < l

α(λ)b2(τ, λ)u1(t, λ) + b2(τ, λ)u2(t, λ) = b2(τ, λ)ψ(t, λ) 0 < τ < t ≤ l

Now let’s use continuity and the jump condition to solve for a2(τ, λ) and b2(τ, λ). Notice that our
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differential equation is of order 2 so n = 2 and therefore n− 1 = 1. We need

G(τ0+, τ, λ)− G(τ0−, τ, λ) = 0

∂

∂t
G(τ0+, τ, λ)− ∂

∂t
G(τ0−, τ, λ) = −1



−θ(λ)a2(τ, λ)u1(τ
0+, λ) + a2(τ, λ)u2(τ0+, λ)− α(λ)b2(τ, λ)u1(τ

0−, λ)

−b2(τ, λ)u2(τ0−, λ) = 0

−θ(λ)a2(τ, λ)u1,t(τ
0+, λ) + a2(τ, λ)u2,t(τ0+, λ)− α(λ)b2(τ, λ)u1,t(τ

0−, λ)

−b2(τ, λ)u2,t(τ0−, λ) = −1

Solving this system:

a2(τ, λ) [u2(τ, λ)− θ(λ)u1(τ, λ)] = b2(τ, λ) [u2(τ, λ) + α(λ)u1(τ, λ)]

a2(τ, λ) = b2(τ, λ)

[
u2(τ, λ) + α(λ)u1(τ, λ)

u2(τ, λ)− θ(λ)u1(τ, λ)

]
→ a2(τ, λ) = b2(τ, λ)

[
ψ(τ, λ)

φ(τ, λ)

]

−θ(λ)b2(τ, λ)

[
ψ(τ, λ)

φ(τ, λ)

]
u1,t(τ, λ) + b2(τ, λ)

[
ψ(τ, λ)

φ(τ, λ)

]
u2,t(τ, λ)− α(λ)b2(τ, λ)u1,t(τ, λ)

−b2(τ, λ)u2,t(τ, λ) = −1

b2(τ, λ)

[
ψ(τ, λ)

φ(τ, λ)

]
[u2,t(τ, λ)− θ(λ)u1,t(τ, λ)]− b2(τ, λ) [α(λ)u1,t(τ, λ) + u2,t(τ, λ)] = −1

b2(τ, λ) [ψ(τ, λ) (u2,t(τ, λ)− θ(λ)u1,t(τ, λ))− φ(τ, λ) (α(λ)u1,t(τ, λ) + u2,t(τ, λ))] = −φ(τ, λ)

b2(τ, λ) =
−φ(τ, λ)

ψ(τ, λ) (u2,t(τ, λ)− θ(λ)u1,t(τ, λ))− φ(τ, λ) (α(λ)u1,t(τ, λ) + u2,t(τ, λ))

b2(τ, λ) =
−φ(τ, λ)

ψ(τ, λ)φt(τ, λ)− φ(τ, λ)ψt(τ, λ)
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Simplifying the denominator separately

ψ(τ, λ)φt(τ, λ)− φ(τ, λ)ψt(τ, λ) = [u2(τ, λ) + α(λ)u1(τ, λ)] [u2,t(τ, λ)− θ(λ)u1,t(τ, λ)]

− [u2(τ, λ)− θ(λ)u1(τ, λ)] [u2,t(τ, λ) + α(λ)u1,t(τ, λ)]

= u2(τ, λ)u2,t(τ, λ)− θ(λ)u1,t(τ, λ)u2(τ, λ)

+α(λ)u1(τ, λ)u2,t(τ, λ)− α(λ)θ(λ)u1(τ, λ)u1,t(τ, λ)

−u2(τ, λ)u2,t(τ, λ)− α(λ)u1,t(τ, λ)u2(τ, λ)

+θ(λ)u1(τ, λ)u2,t(τ, λ) + α(λ)θ(λ)u1(τ, λ)u1,t(τ, λ)

= [θ(λ) + α(λ)][u1(τ, λ)u2,t(τ, λ)− u1,t(τ, λ)u2(τ, λ)]

= [θ(λ) + α(λ)](−1)

Therefore,

b2(τ, λ) =
φ(τ, λ)

θ(λ) + α(λ)

So now we have

G(t, τ, λ) =

 a2(τ, λ)φ(t, λ) 0 ≤ t < τ < l

b2(τ, λ)ψ(t, λ) 0 < τ < t ≤ l

=


φ(τ,λ)

θ(λ)+α(λ)

(
ψ(τ,λ)
φ(τ,λ)

)
φ(t, λ) 0 ≤ t < τ < l

φ(τ,λ)
θ(λ)+α(λ)

ψ(t, λ) 0 < τ < t ≤ l

=
1

θ(λ) + α(λ)

 ψ(τ, λ)φ(t, λ) 0 ≤ t < τ < l

ψ(t, λ)φ(τ, λ) 0 < τ < t ≤ l

Let’s return to the nonhomogeneous problem


−y′′(t) + q(t)y(t) = f (t), t ∈ (0, l)

y(0)− θ(λ)y′(0) = 0

y′(l)− Hy′(l) = 0
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From Lagrange’s Identity, where Ly(t, λ) = f (t),

G(t, τ, λ)Ly(t, λ)− y(t, λ)LG(t, τ, λ) =
d
dt

[G(t, τ, λ)yt(t, λ)− y(t, λ)Gt(t, τ, λ)]

Due to jump discontinuity, integrating both sides, and the fact that G(t, τ, λ) is a solution to ho-

mogeneous problem,

∫ τ−

0
G(t, τ, λ)Ly(t, λ)dt = [G(t, τ, λ)yt(t, λ)− y(t, λ)Gt(t, τ, λ)]τ

−

0∫ l

τ+
G(t, τ, λ)Ly(t, λ)dt = [G(t, τ, λ)yt(t, λ)− y(t, λ)Gt(t, τ, λ)]lτ+

→
∫ l

0
G(t, τ, λ)Ly(t, λ)dt = [G(t, τ, λ)yt(t, λ)− y(t, λ)Gt(t, τ, λ)]l0

− [G(t, τ, λ)yt(t, λ)− y(t, λ)Gt(t, τ, λ)]τ
+

τ−

→
∫ l

0
G(t, τ, λ)Ly(t, λ)dt = [G(t, τ, λ)yt(t, λ)− y(t, λ)Gt(t, τ, λ)]τ

+

τ−

= −[G(τ+, τ, λ)yt(τ, λ)− Gt(τ
+, τ, λ)y(τ, λ)

−G(τ−, τ, λ)yt(τ, λ) + Gt(τ
−, τ, λ)y(τ, λ)]

= −
[

∂

∂t
G(τ−, τ, λ)− ∂

∂t
G(τ+, τ, λ)

]
y(τ)

= −(−1)y(τ)

= y(τ)

→
∫ l

0
G(t, τ, λ)Ly(t, λ)dt = y(τ)

→
∫ l

0
G(t, τ, λ) f (t)dt = y(τ)

→
∫ l

0
G(t, τ, λ) f (τ)dτ = y(t)

We have found Green’s function for a single string with eigendependent boundary conditions.

Let us now analyze a concrete example of a Sturm-Liouville problem with eigendependent bound-

ary conditions.

Example 2.2.1. We will begin by considering the vibrations of a single continuous string of length π (see

Figure 2.2). In subsequent examples, we want to move half of the string into a boundary condition using

the Nevanlinna function θ(λ) without changing the eigenvalues and eigenfunctions of the entire problem.
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0 π

Figure 2.2: A continuous string of length π that is showing some vibrations/waves.

The vibrations of the entire string are governed by

−y′′ = λy (2.9)

y(0) = y(π) = 0 (2.10)

We have the ansatz y(x) = A sin(
√

λx) + B cos(
√

λx). Applying the boundary conditions

gives

y(π) = A sin(
√

λπ) + B cos(
√

λπ) = 0

y(0) = B = 0

Then A sin(
√

λπ) = 0. Solving this gives the eigenvalues and eigenfunctions:

λn = n2

yλ(x) = sin(
√

λx)

Example 2.2.2. For the same single string of length π, if we hide the right half of the string (see Figure

2.3), what does θ1(λ) have to be in order for the problem to have the same eigenvalues and eigenfunctions

as (2.9) or (2.2.1).

−y′′ = λy

y(0) = 0

y′
(π

2

)
= θ1(λ)y

(π

2

)

We have the ansatz y(x) = A sin(
√

λx) + B cos(
√

λx). Applying the boundary conditions
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0 ππ
2 θ1(λ)

Figure 2.3: A continuous string of length π where the right half is going to be ’hidden’.

0 ππ
2θ2(λ)

Figure 2.4: A continuous string of length π where the left half is going to be ’hidden’.

gives

y(0) = B = 0

y
(π

2

)
= A sin

(√
λ

π

2

)
y′
(π

2

)
= A

√
λ cos

(√
λ

π

2

)

So then

θ1(λ) =
y′
(

π
2

)
y
(

π
2

) =
√

λ cot
(√

λ
π

2

)

Example 2.2.3. For the same single string of length π, if we hide the left half of the string (see Figure 2.4),

what does θ2(λ) have to be in order for the problem to have the same eigenvalues and eigenfunctions as (2.9)

or (2.2.1).

−y′′ = λy

y(π) = 0

y′
(π

2

)
= θ2(λ)y

(π

2

)
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We start with the ansatz y(x) = A cos(
√

λx) + B sin(
√

λx)

y(π) = 0 → A cos(
√

λπ) + B sin(
√

λπ) = 0

A =
−B sin(

√
λπ)

cos(
√

λπ)

y
(π

2

)
= A cos

(√
λ

π

2

)
+ B sin

(√
λ

π

2

)
y′
(π

2

)
= −A

√
λ sin

(√
λ

π

2

)
+ B
√

λ cos
(√

λ
π

2

)

Thus

−A
√

λ sin
(√

λ
π

2

)
+ B
√

λ cos
(√

λ
π

2

)
= θ2(λ)

[
A cos

(√
λ

π

2

)
+ B sin

(√
λ

π

2

)]

After some simplification, we get

θ2(λ) =
−B
√

λ sin2
(√

λ π
2

)
cos

(√
λ π

2

)
+ B
√

λ cos3
(√

λ π
2

)
−B sin

(√
λ π

2

)
cos2

(√
λ π

2

)
− B sin3

(√
λ π

2

) =
√

λ cot
(√

λ
π

2

)

We can to check that y(π) = 0 and y′
(

π
2

)
= θ2(λ)y

(
π
2

)
give the expected eigenvalues and

eigenfunctions.

y(π) = A cos
(√

λπ
)
+ B sin

(√
λπ
)
= 0

y
(π

2

)
= A cos

(√
λ

π

2

)
+ B sin

(√
λ

π

2

)
y′
(π

2

)
= −A

√
λ sin

(√
λ

π

2

)
+ B
√

λ cos
(√

λ
π

2

)
→ −A

√
λ sin

(√
λ

π

2

)
+ B
√

λ cos
(√

λ
π

2

)
=

√
λ cos

(√
λ π

2

)
sin
(√

λ π
2

) (
A cos

(√
λ

π

2

)
+ B sin

(√
λ

π

2

))
→ B
√

λ cos
(√

λ
π

2

)
sin
(√

λ
π

2

)
= A

√
λ
[
cos2

(√
λ

π

2

)
+ sin2

(√
λ

π

2

)]
+B
√

λ cos
(√

λ
π

2

)
sin
(√

λ
π

2

)
→ B

2

√
λ sin

(√
λπ
)

= A
√

λ +
B
2

√
λ sin

(√
λπ
)
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Therefore the system that will yield our eigenvalues and eigenfunctions is

 A cos
(√

λπ
)
+ B sin

(√
λπ
)
= 0

B
2

√
λ sin

(√
λπ
)
= A
√

λ + B
2

√
λ sin

(√
λπ
)

 A cos
(√

λπ
)
+ B sin

(√
λπ
)
= 0

B
2 sin

(√
λπ
)
= A
√

λ + B
2

√
λ sin

(√
λπ
)

cos
(√

λπ
)
6= 0 A cos2

(√
λπ
)
+ B

2 sin
(

2
√

λπ
)
= 0

B
4 sin

(
2
√

λπ
)
= A
√

λ cos
(√

λπ
)
+ B

4

√
λ sin

(
2
√

λπ
)

⇒ cos
(√

λπ
)
=

(
B
4 −

B
4

√
λ
)

sin
(

2
√

λπ
)

A
√

λ

Plug back into the first equation of the system

⇒ A

(
B
4 −

B
4

√
λ
)2

A2λ
sin2

(
2
√

λπ
)
+

B
2

sin
(

2
√

λπ
)
= 0

factor

sin(2
√

λπ) = 2 sin(
√

λπ) cos(
√

λπ) = 0

⇒ sin(
√

λπ) = 0

⇒ λ = n2

Check the second solution for the equation A times complicated fraction.

Ly = λy

yλ(x) = A cos(
√

λx) + B sin(
√

λx)

y(0) = 0→ yλ(x) = sin(
√

λx)

Now we need to define θ(λ) so that y′λ
(

π
2

)
= θ(λ)yλ

(
π
2

)
in such a way that it has the same

55



eigenvalues.

yλ

(π

2

)
= sin(

√
λ

π

2
)

y′λ
(π

2

)
=
√

λ cos(
√

λ
π

2
)

→ y′λ
(π

2

)
=

√
λ cos(

√
λ π

2 )

sin(
√

λ π
2 )

yλ

(π

2

)

Therefore, we can say that

 −y′′ = λy

y(0) = y(π) = 0

and
−y′′ = λy

y(π) = 0

y′
(

π
2

)
= θ(λ)y

(
π
2

)
where θ(λ) =

√
λ cot

(√
λ

π

2

)

have the same spectral properties.

The idea presented in Examples 2.2.1-2.2.3 is similar to the system studied in [47] except two

strings are joined together by a single mass. However, rather than studying the spectrum, they

examine the boundary control and stabilization.

Example 2.2.4. Now if we look at three strings (see Figure 1.4), each of length π where the outer end is

fixed at x = 0 and has continuity in the middle at the joining point for x = π.
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

y′′i = λy i = 1, 2, 3

yi(0) = 0

y′1(π) + y′2(π) + y′3(π) = 0

y1(π) = y2(π) = y3(π)

y1λ = a1 sin(
√

λx)

y2λ = a2 sin(
√

λx)

y3λ = a3 sin(
√

λx)

Applying the boundary condition at π yields

a1 sin(
√

λπ) = a2 sin(
√

λπ)

a2 sin(
√

λπ) = a3 sin(
√

λπ)

Now, there yields two different cases: either sin(
√

λπ) 6= 0 or sin(
√

λπ) = 0.

Case1: sin(
√

λπ) 6= 0

sin(
√

λπ) 6= 0

a1 = a2 = a3 = a

3a
√

λ cos(
√

λπ) = 0
√

λ cos(
√

λπ) = 0

λn =
(2n + 1)2

4
, n = 1, 2, 3, . . .

Case 2: sin(
√

λπ) = 0

√
λ cos(

√
λπ) 6= 0

λ = n2, n = 1, 2, 3, . . .

a1 + a2 + a3 = 0
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then a1 = 1, a2 = 0, a3 = 0, or a1 = 0, a2 = 1, a3 = 0, or a1 = 0, a2 = 0, a3 = 1.

2.3 Application of Nevanlinna Functions in Multi-String Case Dirich-

let BC

For the multiple Stieltjes string model, let each edge have Dirichlet boundary conditions and set

m = T = l = 1. Then (1.12) simplifies to

üi,j = −2ui,j + (ui−1,j + ui+1,j), i = 1, 2, . . . , nj, j = 1, 2, . . . , N (2.11)

ü0 = −Nu0 + (
N

∑
j=1

u1,j) (2.12)

unj+1,j = 0 (2.13)

We can represent N− 1 strings as part of a boundary condition utilizing Nevanlinna functions.

This representation preserves the spectrum of the model. Without loss of generality, let’s represent

strings j = 2, 3, . . . , N into the boundary condition. Thus

üi,1 = −2ui,1 + (ui−1,1 + ui+1,1) i = 1, 2, . . . , n1 (2.14)

un1+1,1 = 0 (2.15)

u1,1 = θ(λ)u0 (2.16)

where θ(λ) = (λ + N) − ∑N
j=2 θnj(λ) and ni is the number of masses on the jth strand. Several

θnj(λ) are calculated below.

Number of Masses = nj θnj(λ) where k = λ + 2

1 1
k

2 k
k2−1

3 k2−1
k3−2k

n 1
k−θn−1

Lemma 2.3.1. For any nj, θnj(λ) is an anti-Nevanlinna function, and θ(λ) is Nevanlinna.
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Proof. In order to show that θnj(λ) is an anti-Nevalinna function, we proceed by induction. To see

that θ1(λ) = f (λ) = 1
λ+2 is anti-Nevanlinna, let λ = x + iy and

f (λ) =
1

x + iy + 2

=
x + iy + 2

(x− iy + 2)(x + iy + 2)

=
x + iy + 2

x2 + 4x + y2 + 4

f (λ) = x + iy + 2

=
(x− iy + 2)

(x + iy + 2)(x− iy + 2)

=
(x + iy + 2)

x2 + 4x + y2 + 4

Therefore, f (λ) = f (λ). Also,

Im( f (λ)) =
−y

x2 + 4x + y2 + 4

Im(λ) = y

Im( f (λ))
Im(λ)

=
−1

x2 + 4x + y2 + 4
≤ 0

Therefore, f (λ) = 1
λ+2 is an anti Nevanlinna function.

Now let’s use the general form to classify if nj = 2. λ + 2 is Nevanlinna and since θ1 is anti-

Nevanlinna, then −θ1 is then Nevanlinna. We also know that the sum of Nevanlinna functions is

Nevanlinna, so λ + 2 + (−θ1) is Nevanlinna. Based on one of the properties −1
λ+2+(−θ1)

is Nevan-

linna. Therefore, 1
λ+(−θ1)

is anti Nevanlinna.

Now assume that θnj−1(λ) is anti Nevanlinna function. Clearly, λ + 2 is a Nevanlinna function

as well as −θnj−1. The sum of two Nevanlinna functions is also a Nevanlinna function. Based

on previous Lemma, if f (x) is a Nevanlinna function, then −1
f (x) is a Nevanlinna function. Since

θnj(λ) =
1

λ+2+(−θnj−1(λ))
, then θd(λ) is an anti Nevanlinna function for any nj.

Since if θnj(λ) is anti Nevanlinna, then −θd(λ) is Nevanlinna. The sum of Nevanlinna func-

tions are Nevanlinna. Therefore θ(λ) is Nevanlinna.
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2.4 Application of Nevanlinna Functions in Multi-String Case Neu-

mann BC

Now if we consider the model (2.11-2.13) but with Neumann conditions on the edges gives

üi,j = −2ui,j + (ui−1,j + ui+1,j), i = 1, 2, . . . , nj, j = 1, 2, . . . , N (2.17)

ü0 = −Nu0 + (
N

∑
j=1

u1,j) (2.18)

unj+1,j = unj,j (2.19)

We can represent N− 1 strings as part of a boundary condition utilizing Nevanlinna functions.

This representation preserves the spectrum of the model. Without loss of generality, let’s represent

strings j = 2, 3, . . . , N into the boundary condition. Thus

üi,1 = −2ui,1 + (ui−1,1 + ui+1,1) i = 1, 2, . . . , n1 (2.20)

un1+1,1 = un1,1 (2.21)

u1,1 = θ̃(λ)u0 (2.22)

where θ̃(λ) = (λ + N) − ∑N
j=2 θ̃nj(λ) and nj is the number of masses on the jth strand. Several

θ̃nj(λ) are calculated below.

Number of Masses = nj θ̃nj(λ) where k = λ + 2

1 1
k−1

2 k−1
k(k−1)−1

n 1
k−θ̃n−1

Lemma 2.4.1. For any nj, θ̃nj(λ) is an anti-Nevanlinna function, and θ̃(λ) is Nevanlinna.

Proof. Note that the only difference between θnj and θ̃nj is when nj = 1. To see that θ1(λ) = f (λ) =
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1
λ+1 is anti-Nevanlinna, let λ = x + iy and

f (λ) =
1

x− iy + 1

=
x + iy + 1

(x− iy + 1)(x + iy + 1)

=
x + iy + 1

x2 + 2x + y2 + 1

f (λ) =
1

x + iy + 1

=
(x− iy + 1)

(x + iy + 1)(x− iy + 1)

=
(x + iy + 1)

x2 + 2x + y2 + 1

Therefore, f (λ) = f (λ). Also,

Im( f (λ)) =
−y

x2 + 2x + y2 + 1

Im(λ) = y

Im( f (λ))
Im(λ)

=
−1

x2 + 2x + y2 + 1
≤ 0

Therefore, f (λ) = 1
λ+1 is an anti Nevanlinna function. Since we have shown that f (λ) = 1

λ+1 is

anti Nevanlinna, we can follow the same induction argument to show that θ̃nj(λ) is anti Nevan-

linna for any number of masses.

2.5 Numerical Simulations

While investigating whether the eigenvalues of the same systems with only difference being pres-

ence or lack there of a middle mass, it was observed that the eigenvalues did in fact ’interlace’ but

there was overlap on certain eigenvalues and that they often occur in multiplicity. The following

calculations are investigating the occurrence of eigenvalues with multiplicity.

Example 2.5.1. Consider 3 Stieltjes strings with two beads on each string, a center bead, and m = T =

l = 1 for the entire system.
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Representing the model as d~u
dt = A~u, where

A =



−2 1 0 0 0 0 0

1 −2 1 0 0 0 0

0 1 −3 1 0 1 0

0 0 1 −2 1 0 0

0 0 0 1 −2 0 0

0 0 1 0 0 −2 1

0 0 0 0 0 1 −2


The characteristic polynomial is p(λ) = −λ7 − 15λ6 − 90λ5 − 277λ4 − 465λ3 − 417λ2 − 180λ −

27 = −(λ + 3)2(λ + 1)2(λ3 + 7λ2 + 12λ + 3) Calculating θ1(λ)

y6 − 2y7 = λy7 y7 =
1

λ + 2
y6

y3 − 2y6 + y7 = λy6 y6 =
λ + 2

(λ + 2)2 − 1
y3

y4 − 2y5 = λy5 y5 =
1

λ + 2
y4

y3 − 2y4 + y5 = λy4 y4 =
λ + 2

(λ + 2)2 − 1
y3

y2 − 3y3 + y4 + y6 = λy3

y2 =

[
λ + 3−

(
λ + 2

(λ + 2)2 − 1

)
−
(

λ + 2
(λ + 2)2 − 1

)]
y3 y2 = θ1(λ)y3

Thus, θ1(λ) = λ + 3−
(

λ+2
(λ+2)2−1

)
−
(

λ+2
(λ+2)2−1

)
= λ + 3− 2

(
λ+2

(λ+2)2−1

)
= λ3+7λ2+13λ+5

λ2+4λ+3 which is

Nevanlinna.

Calculating θ2(λ)

−2y1 + y2 = λy1 y1 =
1

λ + 2
y2

y1 − 2y2 + y3 = λy2 y3 =
(λ + 2)2 − 1

λ + 2
y2

Thus, θ2(λ) =
(λ+2)2−1

λ+2 = λ2+4λ+3
λ+2 which is Nevanlinna.
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Equating y2 =
[
λ + 3−

(
λ+2

(λ+2)2−1

)
−
(

λ+2
(λ+2)2−1

)]
y3 and y3 = (λ+2)2−1

λ+2 y2 yields

λ + 2
λ2 + 4λ + 3

y3 =
λ3 + 7λ2 + 13λ + 5

λ2 + 4λ + 3
y3 0 =

λ3 + 7λ2 + 12λ + 3
λ2 + 4λ + 3

y3

λ2 + 4λ + 3
λ3 + 7λ2 + 13λ + 5

y2 =
λ2 + 4λ + 3

λ + 2
y2 0 =

−(λ2 + 4λ + 3)(λ3 + 7λ2 + 12λ + 3)
(λ + 2)(λ3 + 7λ2 + 13λ + 5)

y2

The solutions to these yield all the eigenvalues, but do not illustrate their multiplicity.

Example 2.5.2. Consider the same configuration of Stieltjes strings as (2.5.1) but with no middle bead.

The characteristic polynomial is p(λ) = 1
27 (27λ6 + 297λ5 + 1269λ4 + 2646λ3 + 2781λ2 + 1377λ+

243) = 1
27 (λ + 3)2(λ + 1)2(λ2 + 3λ + 1)

→ y6 =
1

λ + 2
y5

→ y4 =
1

λ + 2
y3

→


1
3 y2 +

1
3 y3 − 5

3 y5 + y6 = λy5

1
3 y2 − 5

3 y2 + y4 +
1
3 y5 = λy3 y2 + y3 − 5y5 +

3
λ+2 y5 = 3λy5

y2 − 5y2 +
3

λ+2 y3 + y5 = 3λy3

y5 =
(3λ2 + 12λ + 9)(λ + 2)

(3λ2 + 11λ + 7)2 − (λ + 2)2 y2

y3 =
(3λ2 + 12λ + 9)(λ + 2)

(3λ2 + 11λ + 7)2 − (λ + 2)2 y2

→ y1 −
5
3

y2 +
1
3

y3 +
1
3

y5 = λy2

y1 =

(
λ +

5
3

)
− 2

3

(
3λ3 + 18λ2 + 33λ + 18

9λ4 + 66λ3 + 162λ2 + 150λ + 45

)
y2

y1 =
9(λ2 + 4λ + 3)(3λ3 + 15λ2 + 21λ + 7)

9(λ2 + 4λ + 3)(3λ2 + 10λ + 5)
y2

Thus, θ1(λ) =
9(λ2 + 4λ + 3)(3λ3 + 15λ2 + 21λ + 7)

9(λ2 + 4λ + 3)(3λ2 + 10λ + 5)
. We also know that y1 = 1

λ+2 y2. Equat-
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ing these and solving yields the following equation which yields the eigenvalues, but not multi-

plicity. Note though that the eigenvalues with multiplicity > 1 are the ones that can get cancelled

from θ1(λ).

3(λ4 + 7λ3 + 16λ2 + 13λ + 3)
(λ + 2)(3λ2 + 10λ + 5)

= 0

3(λ + 1)(λ + 3)(λ2 + 3λ + 1)
(λ + 2)(3λ2 + 10λ + 5)

= 0

Example 2.5.3. Now if instead we have a strand with 2 beads, a strand with 3 beads, a strand with 1 bead,

and a middle mass.

Then

θ(λ) = λ + 3− 1
λ + 2

− λ2 + 4λ + 3
(λ + 2)3 − 2(λ + 2)

=
λ4 + 9λ3 + 26λ2 + 26λ + 7

(λ + 2)(λ2 + 4λ + 2)

which is Nevanlinna and has the eigenvalues

λ = −4.4266,−3.3209,−2.7709,−2.0000,−1.4247,−0.7634,−0.2934. Notice that all are simple

eigenvalues.

Example 2.5.4. Looking even further at (2.5.1), where

θ2(λ) =
(λ + 2)2 − 1

λ + 2
=

λ2 + 4λ + 3
λ + 2

.
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The eigenvalues and non-normal eigenvectors are

λ = −4.4605, v =



1

−2.4605

5.0541

−2.4605

1

−2.4605

1



λ = −3, v =



1

−1

0

−0.6129

0.6129

1.6129

−1.6129



λ = −3, v =



1

−1

0

1.1739

−1.1739

−0.1739

0.1739



λ = −2.2391, v =



1

−0.2391

−0.9428

−0.2391

1

−0.2391

1



λ = −1, v =



1

1

0

0.6121

0.6121

−1.6121

−1.6121



λ = −1, v =



1

1

0

−1.1744

−1.1744

0.1744

0.1744



λ = −0.3004, v =



1

1.6996

1.8887

1.6996

1

1.6996

1


It seems that the eigenvectors associated with the repeated eigenvalue can have strands swap

places without really affecting anything. Since there are 3 strands to begin with, two swaps are

only possible before returning back to original. This can be verified if looking at the eigenvectors
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for λ = −3,

v1 =



1

−1

0

1.1739

−1.1739

−0.1739

0.1739



v2 =



1

−1

0

−0.6129

0.6129

1.6129

−1.6129



rotate each strand clockwise yielding

vnew =



1.6129

−1.6129

0

1

−1

−0.6129

0.6129



If this is the case, we should be able to find an α and β such that

 α + β = 1.6129

−0.6129α + 1.1739β = 1

In fact, α = 1.11291 and β = 0.499991 but αv1 + βv2 yields vnew with the signs switched on the last

two components .

Lemma 2.5.1. The maximal multiplicity of the eigenvalues for the system is equal to N− 1 and is achieved

on the symmetric configuration.

Example 2.5.5. To see Lemma 2.5.1, consider 4 Stieltjes strings joined with a middle mass. To simplify

computations, assume that all masses are 1, the uniform tension is 1, and the length between each mass

is uniform at 1 unit length. Assuming Dirichlet boundary conditions on the ends of the Stieltjes string.

Calculating the eigenvalues for different configurations with 4 strings:
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# beads per string Eigenvalues

1,2,3,4 -5.3, -3.5, -3.3,-2.8,-2.5,-2.0,-1.6,-1.2,-0.7, -0.4,-0.2

1,2,3,3 -5.3,-3.4,-3.2,-2.8,-2.0 (multiplicity 2),-1.4,-0.8,-0.5,-0.2

1,3,3,3 -5.3, -3.4142 (multiplicity 2), -3.1, -2.0 (multiplicity 3), -1.2, -0.5 (multiplicity 2), -0.2

3,3,3,3 -5.3,-3.4 (multiplicity 3),-3.0,-2.0 (multiplicity 3),-1.3, -0.5 (multiplicity 3), -0.1
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Chapter 3

Inverse Problem for Multi-String

Systems

3.1 Introduction

For mathematicians, after knowing a problem has a unique solution, the next logical question is

"If I know the solution, can I reproduce the problem?". These are inverse problems. The inverse

problems we will consider are: given the spectrum, what other conditions must we know in order

to uniquely identify the problem that yields that spectrum? The eigenvalues correspond to the

physical manifestion of frequency which is measurable. While we will narrow our focus to the

eigenvalues of strings, the inverse spectral problem for the 3D wave equation across a bounded

domain is solved in [53] and the inverse spectral problem for a network is solved in [11]. We begin

our investigation into inverse problems with the inverse regular Sturm-Liouville problem.

−y′′ + q(x)y = λy 0 ≤ x ≤ l (3.1)

y′(0)− h1y(0) = 0 y(l) = θ(λ)y′(l) (3.2)

y′(0)− h2y(0) = 0, y(l) = θ(λ)y′(l) (3.3)

where q(x) is a real-valued continuous function, h1, h2 are finite real numbers with h1 6= h2, θ(λ)

is a Nevanlinna function with θ(λ) = θ1(λ)
θ2(λ)

with θ1(λ) and θ2(λ) are relatively prime polynomi-

als, and (3.2),(3.3) are two boundary value problems. Note that if (3.2),(3.3) do not contain the
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eigenvalue parameter λ, then the inverse problem is given in ([57], [56],[40]). Let the solutions

of (3.1) be u1(x, λ) and u2(x, λ) such that they solve u1(0, λ) = 1, u′1(0, λ) = h1, u2(0, λ) =

1, and u′2(0, λ) = h2. The spectrum of (3.1),(3.2) are {λn}∞
n=0 of the entire function ϕ1(λ) =

θ2(λ)u1(l, λ)− θ1(λ)u′1(l, λ). The spectrum of (3.1),(3.3) are {µn}∞
n=0 of the entire function ϕ2(λ) =

θ2(λ)u2(l, λ)− θ1(λ)u′2(l, λ) ([32]).

Theorem 4. Let two spectra {λn}∞
n=0 and {µn}∞

n=0 be given so that λ0 < µ0 < λ1 < µ1 < · · · , equalities

√
λn+m = n +

a0

n
+

a1

n3 + o(
1
n3 )

√
µn+m = n +

a′0
n

+
a′1
n3 + o(

1
n3 )

take place, moreover a0 6= a′0. Then there exist an absolutely continuous function q(x), real numbers h1, h2

and a rational function θ(λ) for which Im θ(λ) Im λ ≤ 0, such that λn is the spectrum of the problem

(3.1),(3.2) µn is the spectrum of the problem (3.1),(3.3). [32]

Col considers the Sturm-Liouville boundary value problem with the boundary condition (α0 +

iα1λ− αλ2 − iα3λ3)y′(0)− (β0 + iβ1λ− β2λ2 − iβ3λ3)y(0) = 0 where q(x) is a real valued func-

tion with the condition
∫ ∞

0 (1 + x)|q(x)|dx < ∞, and ρ(x) =

 α2 0 ≤ x < a

1 a ≤ x < ∞
1 6= α > 0 in

([33]). They define the polynomials p1(λ) := α0 + iα1λ− α2λ2 − iα3λ3 and p2(λ) := β0 + iβ1λ−

β2λ2 − iβ3λ3 with the relation αi+1βi − αiβi+1 > 0, αi+2βi − αiβi+2 < 0, αi+3βi − αiβi+3 = 0. Col

considers the case of the discontinuous coefficient ρ(x). The main result is that the potential q(x)

can be uniquely recovered from the given scattering data. The result was obtained by using the

Marchenko method. It is applied to solving the boundary value problem when the boundary

conditions depend on spectral parameter as nonlinear. If q(x) = 0, the result is obtained

f0(x, λ) =
1
2

(
1 +

1√
ρ(x)

)
eiλµ+(x) +

1
2

(
1− 1√

ρ(x)

)
eiλµ−(x)

where u±(x) = ±x
√

ρ(x) + a(1∓
√

ρ(x)) If the condition on q(x) is satisfied, the boundary value

problem has a unique solution which satisfies the asymptotic behavior limx→∞ eiλx f (x, λ) = 1 for

Imλ ≥ 0 and can be expressed as f (x, λ) = f0(x, λ) +
∫ ∞

µ+(x) K(x, t)eiλtdt which is called the Jost
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solution. For the kernel function K(x, t),

∫ ∞

µ+(x)
|K(x, t)|dt ≤ c

(
exp

(∫ ∞

x
t|q(t)|dt

))
, 0 < c = constant

is satisfied. This kernel satisfies a bunch of properties and yields the spectral condition.

For a regular Sturm-Liouville problem with eigendependent boundary conditions, the poten-

tial and the asymptotic boundary conditions are uniquely determined by a dense set of nodal

points of eigenfunctions ([26]).

Binding, Browne, and Watson discuss three inverse problems for a Sturm-Liouville problem

with the boundary conditions y(0) cos α = y′(0) sin α and y′(1) = f (λ)y(1) for rational f in [18].

They show that the Weyl m-function uniquely determines α, f , and q, and is in turn uniquely

determined by either two spectra from different values of α or by Prüfer angle. In ([14]) they

discuss the inverse problem for the nonlinear Sturm-Liouville problem. For (3.2) with f (t) =

λy(t) and boundary conditions y′(0) − hy(0) = 0 and λ(y′(π) + Hy(π)) = H1y′(π) + H2y(π)

where h, H, H1, H2 ∈ R and ρ := HH1 − H2 > 0, Guliyev studies the inverse problem from the

sequences of eigenvalues and norming constants as well as from two spectra in ([43]) and obtained

the regularized trace formula where the first boundary condition is changed to λ(y′(0)− hy(0) =

h1y′(0)− h2y(0) where h, h1, h2 ∈ R and δ := hh1 − h2 > 0 in ([44]).

If for (2.8) f (λ) = ∞, then the boundary condition is interpreted as a Dirichlet condition. They

discuss the inverse problem of recovering q, α, and f from given spectral data. The data to be

used consists of eigenvalues and norming constants, which are often observable quantities. It was

found that the eigenvalues form a real sequence λ0 < λ1 < · · · accumulating at +∞. The "norm-

ing" of these eigenfunctions involve a Hilbert space structure which they develop. It allows the

problem to be viewed as a standard eigenvalue problem for a self-adjoint operator with compact

resolvent. They construct a chain of problems that connect their problem with a "standard" Sturm-

Liouville problem using transformations. They also need to invert the above transformations to

complete the solution of their inverse problem. They prescribe necessary and sufficient conditions

for given sequences λn, ρn to be generated by the problem and that such problem must be unique.

In ([45]), he proves that if the spectra of two seemingly different problems of (3.2) with both of his

boundary conditions, then the q(x)’s are equal a.e. and all the h and H’s are equal. In ([63]), they
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introduce a new method to recover the potential of the Sturm-Liouville equation on a half-interval

using the spectrum of the Dirichlet on both sides problem and a known potential on the other half

interval.

Pivovarchik solves the inverse problem for system of Sturm-Liouville equations in ([74]). Given

n ∈N, real and square-integrable potentials qj, j = 1, . . . , n which are defined on respective inter-

vals [0, aj], aj ∈ (0, ∞), the numbers γj ∈ (−∞, ∞], j = 1, . . . , n, and α > 0 and β ∈ R, then he can

state the problem

y′′j + λ2yj − q(x)yj = 0, j = 1, . . . , n, x ∈ [0, aj]

y1(λ, 0) = y2(λ, 0) = · · · = yn(λ, 0)
n

∑
j=1

y′j(λ, 0) + (iαλ + β)y1(λ, 0) = 0

γjy′j(λ, aj) + yj(λ, aj) = 0, j = 1, . . . , n.

A Stieltjes string is a thread bearing a finite number of point masses. F.R. Gantmacher and

M.G. Krein solved the inverse problem of identifying the location and mass of each bead just

given two spectra, one corresponding to Dirichlet and one corresponding to Neumann boundary

conditions, for the boundary value problem in [39]. Rather than needing the spectrum from both

types of boundary conditions, it was shown that the inverse problem can be solved for a given

spectrum of the Dirichlet problem generated by a Sturm-Liouville equation with a real potential

on an interval [0, a], and spectra of the Dirichlet problems generated by the same equation on the

subintervals [0, a/2] and [a/2, 0] this is for continuous string [69], while [24] is for Stieltjes string.

The inverse spectral problem for star graphs of Stieltjes strings with Dirichlet and Neumann

boundary conditions at either one pendant vertex of the star graph or the central vertex was solved

in [71] uniquely for the varying conditions on the pendant vertex and non-uniquely if the vary-

ing conditions is on the central vertex. Necessary and sufficient conditions on the location and

multiplicities of two finite sequences of numbers corresponding to the Dirichlet and Neumann

eigenvalues are derived in [73] where Neumann and Dirichlet boundary conditions are imposed

on the central vertex and Dirichlet boundary conditions on the pendant vertex. The correspond-

ing inverse problem was studied where the spectrums, the number and length of edges is given,
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and the number of masses on each edge is given in [73]. Boyko and Pivovarchik solved the inverse

problem of recovering the masses and the lengths of the intervals between them given the spec-

trum of the entire graph of q Stieltjes strings and the spectra of its q strings obtained by clamping

the graph at the interior vertex in [22]. In [59], they consider T to be a metric tree with q com-

plementary subtrees Ti, i = 1, . . . , q. If they are given q + 1 sequences {λk}n
k=1 and {vk,i}ni

k=1 such

that n = ∑
q
1 ni, they can determine the point masses on the edges of T such that the spectra of the

corresponding Dirichlet problems on T and Ti are exactly {λk}n
k=1 and {vk,i}ni

k=1.

For continuous connected strings, Eckhardt solves the inverse problem for a star graph of

connected Krein strings where the known spectral data comprises the spectrum associated with

the whole graph and the spectra associated with the individual edges and these coupling matrices

([36]). This coupling matrix is defined as

Γλ = (Γλ,ed)e,d∈E =

 ||φe(λ, ·)||2H2
0 (Ie)

||φd(λ, ·)||2H1
o (Id)

φ̇d(λ, 0)2

φ̇e(λ, 0)2


e,d∈Eλ

for every λ ∈ σ(S) for which the set Eλ is nonempty where Eλ = {e ∈ E|φe(λ, 0) = 0} and the rest

of the notation is defined in ([36]).

Before we even begin to study the inverse spectral problem for a star graph, let us understand

the inverse spectral problem for a single Stieltjes string. Let’s assume that we have a string of

length l with n beads located at l1, l2, . . . , ln and that each have a mass of m1, m2, . . . , mn. Let σ be

the uniform tension across the entire string. Let ui(t) be the displacement of the ith bead. The

displacement can be modeled by

ui − ui+1

li
+

ui − ui−1

li−1
−mi p2ui = 0 i = 1, 2, . . . , n (3.4)

Example 3.1.1 (Dirichlet on Left Hand Side). Assume you have (3.4) where the left hand side is fixed

Dirichlet. If you know the frequencies of the string, p1, p2, . . . , pn, with Dirichlet boundary condition on

the right and the frequencies, p′1, p′2, . . . , p′n, with Neumann boundary condition on the right, then we can

determine the location and mass of each bead. [39]

Following [39] let’s first consider both ends to be fixed. That is, u0 = un+1 = 0. Solving the
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recursive relation in (3.4) yields

ui = R2i−2(λ)u1 i = 1, 2, . . . , n

where R2i−2(λ) is of order i− 1 for i = 1, 2, . . . , n + 1 and λ = −p2. The sequence of frequencies,

p1 < p2 < · · · < pn are roots of

R2n(λ) = 0

because of the right hand boundary condition. Now these take care of the even R’s. The odd R’s

are found by

R2i−1(λ) =
R2i(λ)− R2i−2(λ)

li
i = 1, 2, . . . , n

ui+1 − ui

li
= R2i−1(λ)u1 i = 1, 2, . . . , n + 1

The relationship between various R’s is as follows:

R2i−1(λ) = λmiR2i−2(λ) + R2i−3(λ) (3.5)

R2i(λ) = liR2i−1(λ) + R2i−2(λ) (3.6)

R−1(λ) =
1
l0

R0(λ) = 1 (3.7)

Now in application, when λi is a solution of an even Reven(λ), it gives the amplitude of the beads

up to a scalar multiple of u1. When λi is a solution of the odd Rodd(λ), its the tangent of the angle

for threads between beads up to a scalar multiple of u1.
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Since there are explicit formulas for R’s, we can uniquely write the rational function as

R2n(λ)

R2n−1(λ)
= ln +

R2i−2(λ)

R2n−1(λ)
(3.8)

= ln +
1

mnλ +
1

R2n−2(λ)

R2i−3(λ)

(3.9)

= ln +
1

mnλ +
1

ln−1 +
1

mn−1λ ++
. . . +

1

l1 +
1

m1λ +
1

l0

(3.10)

Now since we can write the right hand side uniquely, then the left hand side is Nevanlinna ratio-

nal function.

Now let’s consider the right hand side have a Neumann boundary condition. That is, un+1 =

un yields

R2n(λ) = R2n−2(λ)

If consecutive even R’s are equal, then the odd R between them is equal to zero. That is

R2n−1(λ) = 0

Denote solutions as the sequence p′1 < p′2 < · · · < p′n, where λ′j = −p′j
2 for j = 1, 2, . . . , n. Now
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we need to see the corresponding change to V

V =
1
2

n

∑
i=0

1
li
(yi+1 − yi)

2 y0 = yn+1 = 0

V ′ =
1
2

n

∑
i=0

1
li
(yi+1 − yi)

2 y0 = 0, yn = yn+1

Clearly V ′ is one degree less than V . Now since (3.10) is Nevanlinna and pi are the zeros and p′i

are the poles, there interlace

p′1 < p1 < p′2 < · · · < p′n < pn

Let’s rewrite the R’s using their zeros.

R2n(λ) = C
n

∏
i=1

(λ− p2
i ) C > 0

R2n−1(λ) = C′
n

∏
i=1

(λ− p′i
2
) C′ > 0

Now assume we are only given the sequence p′1 < p1 < p′2 < · · · < p′n < pn, we can formulate

the following two polynomials

A(λ) = A0

n

∏
i=1

(λ− p2
i )

B(λ) = B0

n

∏
i=1

(λ− p′i
2
)

where A0 > 0 and B0 > 0. Then

R2n(λ)

R2n−1(λ)
= ρ +

A(λ)

B(λ)

Now we can equate both sides and use (3.5, 3.6) and (2.4) to get

li = ρai i = 0, 1, . . . , n

mi =
1
ρ

bi i = 1, 2, . . . , n
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We also know the total length of the string l. That is, l = l0 + l1 + · · ·+ ln. Therefore, adding all

the li’s yields

ρ =
l

a0 + a1 + · · ·+ an

This implies that

li =
ai

a0 + a1 + · · ·+ an
l i = 0, 1, . . . , n

mi =
σ

l
(a0 + a1 + · · ·+ an)bi i = 1, 2, . . . , n

Now you get the choice of A(λ) and B(λ), but the optimal choice is

A(λ) =
n

∏
i=1

(
1 +

λ

p2
i

)

B(λ) =
n

∏
i=1

(
1 +

λ

p′i
2

)

and it yields

li = ail i = 0, 1, . . . , n

mi = bi
σ

l
i = 1, 2, . . . , n

Example 3.1.2 (Neumann on Left Hand Side). Assume you have (3.4) where the left hand side is Neu-

mann. If you know the frequencies of the string, p1, p2, . . . , pn, with Dirichlet boundary condition on the

right and the frequencies, p′1, p′2, . . . , p′n, with Neumann boundary condition on the right, we can determine

the location and mass of each bead. [39]

Following very similar logic and [39], if the right hand side is Dirichlet, then let un+1 = 0 and

if it is Neumann, let un = un+1. In order to differentiate the two problems, let’s call the R’s Q’s.

Therefore

ui = Q2i−2(λ)u1 λ = −p2 Q0 = 1 i = 1, 2, . . . , n + 1
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The exact same recursive relationships occur. We let p1 < p2 < · · · < pn be the solutions of

Q2n(λ) = 0 and let p′1 < p′2 < . . . < p′n be the solutions of Q2n−1(λ) = 0. Also

Q2n(λ)

Q2n−1(λ)
= ln +

1

mnλ +
1

ln−1 +
1

mn−1λ ++
. . . +

1

l1 +
1

m1λ +
1

l0

Now if we are given the sequence p′1 < p1 < p′2 < p2 < · · · < p′n < pn, we can formulate the

functions

C(λ) = C0

n

∏
j=1

(λ + p2
j ) C0 > 0

D(λ) = D0

n

∏
j=1

(λ + p′j
2
) D0 > 0

such that

C(λ)
D(λ)

= an +
1

bnλ +
1

an−1 +
1

bn−1λ +
. . . +

1

a1 +
1

b1λ +
1

a0
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Equating the fractions similar to before yields

li =
ai

a1 + a2 + · · ·+ an
l i = 1, 2, . . . , n

mi =
σ

l
(a1 + a2 + · · ·+ an)bi i = 1, 2, . . . , n

Now if instead of using the total length, we want to use that we are given the total mass, M, of the

entire string, then we need to consider

D(λ)

λC(λ)
=

1

cnλ +
1

bn +
1

an−1λ +
. . . +

1

b2 +
1

a1λ +
1

b1

taking the limit as λ→ 0 yields

Dn−1

Cn
= b1 + b2 + · · ·+ bn

now the optimal choice is

C(λ) =
n

∏
j=1

(
1 +

λ

p2
j

)

D(λ) =
n

∏
j=1

(
1 +

λ

p′j
2

)

and it yields

mi = bi M i = 1, 2, . . . , n

li = σ
ai

M
i = 1, 2, . . . , n
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This work of Krein’s was then extended to consider a Stieltjes string where every single mass

could be damped. It is shown that we can recover masses, coefficients of damping and the lengths

between masses using the two spectra in ([25]).

Throughout the rest of the chapter, we explain the approach of Pivovarchik to solve the in-

verse problem for connected Stieltjes strings and then we apply Nevanlinna functions theory to

characterize the spectra and to solve the inverse problem for a discrete multi-string system in a

more general setting.

3.2 Pivovarchik’s Approach Inverse Spectral Problem for Multi-String

Systems

In order to discuss previous work done by Pivovarchik, we need to introduce his notation ([71],[73],

[22],[69],[24],[74],[70],[72],[23],[25]). Consider a plane star graph of q Stieltjes strings, q ∈ N and

q ≥ 2, where the strings are connected in the middle with a mass M ≥ 0 and the outer ends are

either fixed, Dirichlet problem, or free to move orthogonally to the equilibrium position, Neu-

mann problem. We label the edges by j = 1, 2, . . . , q where the jth edge has nj > 0 masses mk,j,

k = 1, 2, . . . , nj. Note that the central mass M is not considered to belong to an edge. The masses

subdivide the jth edge into nj + 1 intervals of length lk,j, k = 0, 1, . . . , nj where we count masses

and intervals from the exterior towards the center. Note this is where the notation differs. If we

want to talk about the entire length of an edge, we denote it lj := ∑
nj
k=0 lk,j. The total number of

masses on the star graph, without the middle mass M, is denoted by n := ∑
q
j=1 nj. We want to talk

about the position and displacement of each mass so we will denote the position of the mass mk,j

as xk,j with the connection at the middle denoted xnj+1,j, where j = 1, 2, . . . , q and the outer ends

denoted x0,j, and it’s vertical displacement denoted vk,j(t). Assume stretched by forces each equal

to 1.

Then using this new notation, the model for the graph with a mass in the middle and Dirichlet

conditions on the boundary is
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mk,jv̈k,j(t) =
vk+1,j(t)− vk,j(t)

lk, j
−

vk,j(t)− vk−1,j(t)
lk−1,j

k = 1, 2, . . . , nj, j = 1, 2, . . . , q

vn1+1,1(t) = vn2,2(t) = · · · = vnq+1,q(t)

Mv̈n1+1,1(t) = −
q

∑
j=1

vn1+1,j(t)− vnj,j(t)
lnj,j

y0,j(t) = 0 j = 1, 2, . . . , q

Proceeding with separation of variables vi,j(t) = ui,jeiλt yields the following difference equa-

tions for the displacement amplitudes ui,j for the Neumann and Dirichlet problem.

Neumann Problem (N1) If the central vertex carrying the mass M is allowed to move freely, then

λ2mk,jük,j =
uk+1,j − uk,j

lk, j
−

uk,j − uk−1,j

lk−1,j
k = 1, 2, . . . , nj, j = 1, 2, . . . , q (3.11)

λ2Mün1+1,1 = −
q

∑
j=1

(
unj+1,j − unj,j

lnj,j

)
j = 1, 2, . . . , q (3.12)

un1+1,1 = un2+1,2 = · · · = unq+q,j (3.13)

u0,j = 0 j = 1, 2, . . . , q (3.14)

Dirichlet Problem (D1) If we clamp all the strings at the middle vertex, then the system decouples

into q separate Stieltjes strings problems with Dirichlet conditions at both ends.

λ2mk,jük,j =
uk+1,j − uk,j

lk, j
−

uk,j − uk−1,j

lk−1,j
k = 1, 2, . . . , nj, (3.15)

unj+1,j = 0 j = 1, 2, . . . , q (3.16)

u0,j = 0 j = 1, 2, . . . , q (3.17)

Note that if there is no middle mass, we just set M = 0 in the appropriate problem.

They also denote the following by

• n = ∑
q
j=1 nj the number of masses on the star graph no counting the possible center mass M

•

 {λk}n+1
k=−(n+1),k 6=0 if M > 0

{λk}n
k=−n,k 6=0 if M = 0

λ−k = −λk, λk ≥ λk′ for k > k′ > 0, the eigenvalues of the

Neumann problem (3.11 -3.14)

80



• {νk,j}
nj
κ=−nj,κ 6=0, ν−κ,j = −νκ,j, νκ,j > νκ′,j for κ > κ′ > 0, the eigenvalues of the Dirichlet

problem (3.15-3.17)

• {ζn
k=−n,k 6=0 = ∪q

j=1{νκ,j}
nj
κ=−nj,κ 6=0, ζ−k = −ζk,ζk ≥ ζk′ for k > k′ > 0, the eigenvalues of the

Dirichlet problem (3.15-3.17)

We will now investigate the interlacing properties and multiplicities of the eigenvalues of the

Dirichlet problem (D1) and Neumann problem (N1). Following [71] and[22] who use the same

notation as [39] for each j = 1, 2, . . . , q, we may obtain the solutions ui,j, i = 1, 2, . . . , nj + 1 of (3.15)

with the boundary condition (3.17) successively in the form

ui,j = R2i−2,j(l0, λ2)u1,j i = 1, 2, . . . , nj + 1 (3.18)

where R2i−2,j(l0, λ2) are polynomials of degree 2i− 2 which is found by solving (3.15) and

ui,j = R2i−2,j(∞, λ2)u1,j i = 1, 2, . . . , nj + 1 (3.19)

where R2i−2,j(l0∞, λ2) are polynomials of degree 2i− 2 which is found by solving (3.11). We then

set

R2i−1,j(·, λ2) :=
R2i,j(·, λ2)− R2i−2,j(·, λ2)

li, j
i = 1, 2, . . . , nj

These polynomials also satisfy the recurrence relations

R2i−1,j(·, λ2) = −λ2mi,jR2i−2,j(·, λ2) + R2i−3,j(·, λ2) i = 1, 2, . . . , nj (3.20)

R2i,j(·, λ2) = li,jR2i−1,j(·, λ2) + R2i−2,j(·, λ2) i = 1, 2, . . . , nj (3.21)

R0,j(·, λ2) = 1 R−1,j(·, λ2) =


1

l0,j
if l0 ∈ (0, ∞)

0 if l0 = ∞
(3.22)

Plugging these into the boundary conditions (3.16)-(3.17) ( or(3.12-(3.13)) at the central vertex
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yields the following system of linear equations for u1,j, j = 1, 2, . . . , q

R2n1,1(·, λ2)u1,1 = R2n2,2(·, λ2)u1,2 = · · · = R2nq,q(·, λ2)u1,q (3.23)
q

∑
j=1

R2nj−1,j(·, λ2)u1,j = Mλ2R2n1,1(·, λ2)u1,q (3.24)

Thus, the spectrum of the Dirichlet problem (3.15)-(3.17) coincides with the zeros of the poly-

nomial

φD,q(λ
2) :=

q

∑
j=1

[(
R2nj−1,j(l0, λ2)− M

q
λ2R2nj,j(l0, λ2)

) q

∏
k=1,k 6=j

R2nk ,k(l0, λ2)

]
(3.25)

and the spectrum of the Neumann problem (3.11)-(3.14) coincides with the zeros of the polynomial

φN,q(λ
2) :=

q

∑
j=1

[(
R2nj−1,j(∞, λ2)− M

q
λ2R2nj,j(∞, λ2)

) q

∏
k=1,k 6=j

R2nk ,k(∞, λ2)

]
(3.26)

The degree of the polynomials φD,q(z) and φN,q(z) are both n where n is the total number of

masses on the star graph.

Lemma 3.2.1. There is the following continued fraction expansions ([22])

R2n,j(l0, z)
R2n−1,j(l0, z)

= ln,j +
1

−mnj,jz +
1

lnj−1,j+
1

−mnj−1,jz+·+ 1
l1,j+

1
−m1,jz+ 1

l0,j

(3.27)

They then prove the following theorem

Theorem 5. The sequences {λk}n
−n,k 6=0 and {ζk}n

−n,k 6=0 interlace as follows:

• ζ−n ≤ λ−n ≤ ζ−n+1 ≤ · · · ≤ ζ−1 < λ−1 < 0 < λ1 < ζ1 ≤ λ2 ≤ · · · ≤ ζn

• ζk−1 = λk if and only if λk = ζk

• the multiplicity of ζk does not exceed q.

After they show the properties of the spectra, they are able to solve the inverse problem

Theorem 6. Let lj > 0(j = 1, 2, . . . , q) be given. Let the sequences of real numbers {λk}n
k=−n,k 6=0 ,{

ν
(j)
k

}nj

k=−nj,k 6=0

(
j = 1, 2, . . . , q, n = ∑

q
j=1 nj

)
satisfy the conditions
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1. λ−k = −λk for each k; λk < λk′ if k < k′, ν
(j)
−k = −ν

(j)
k for each k and each j; and for each j =

1, 2, . . . , nj, ν
(j)
k < ν

(j)
k′ if k < k′

2. {λk}n
k=−n,k 6=0∩

{
ν
(j)
k

}nj

k=−nj,k 6=0
= ∅ for j = 1, 2, . . . , q, and

{
ν
(j)
k

}nj

k=−nj,k 6=0
∩
{

ν
(s)
k

}ns

k=−ns,k 6=0
=

∅ for j, s ∈ {1, 2, . . . , q} and j 6= s

3. Elements of the set {ζk}n
k=−n = def{0} ∪q

j=1

{
ν
(j)
k

}nj

k=−nj,k 6=0
are indexed in such a way that ζ−k =

−ζk for each k; ζk < ζk′ if k < k′ interlace with elements of {λk}n
k=−n , k 6= 0 (3.1) ζ−n < λ−n <

ζ−n+1 < · · · < λ−1 < 0 < λ1 < ζ1 < · · · < ζn

Then there exist a unique collection of sets
{

m(j)
k

}nj

k=1
, (j = 1, 2, . . . , q),

{
l(j)
k

}nj

k=0
(j = 0, 1, 2, . . . , q)

such that ∑
nj
k=0 l(j)

k = lj, which generate problems (2.2) − (2.5) and (2.8) − (2.10) with the spectra

{λk}n
k=−n,k 6=0 ,

{
ν
(j)
k

}nj

k=−nj,k 6=0
, respectively. [22], [71]

Möller and Pivovarchik give necessary and sufficient conditions on a sequence of complex

number to be the spectrum of a problem consisting of multiple Stieltjes strings damped in the

middle at the joining point ([66]). They followed the procedure of clamping the middle and con-

sidering the spectrum of the N strings individually. Then they consider the spectrum with the

middle not damped and finally discuss the changes to the spectrum if there is damping present.

3.3 Nevaninlinna Approach to Inverse Spectral Problem for Multi-String

Systems

Now we know that the Nevanlinna function θ(λ) yields the entire spectrum of the problem not

counting multiplicity. Let’s consider Dirichlet conditions on each edge with a middle bead so we

can say that

u1,j = θnj u0 j = 1, 2, . . . , N
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Then the spectrum solves

λu0 = −Nu0 +
N

∑
j=1

θnj u0

→ 0 = (λ + N)−
N

∑
j=1

θnj = Θ(λ)

The structure of this Θ(λ) allows us to solve the inverse problem.

Theorem 7. Assuming m = l = T = 1, given the spectrum {λ1, λ2, . . . , λk} for N connected Stieltjes

strings with a middle mass, we can determine the number of masses on each strand.

Note that the model cannot distinguish between the swapping strings.

Proof. Let’s take a step back and recall that the eigenvalue problem for the middle mass is

λ + N −
N

∑
j=1

θnj(λ) = 0 (3.28)

Since each θnj(λ) is anti-Nevanlinna function, (3.28) is a Nevanlinna function. Let us represent it

as

Θ(λ) =
f (λ)
g(λ)

:= λ + N −
N

∑
j=1

θnj(λ) = 0 (3.29)

Because of the nature of the θ’s, the degree of f (λ) will be one larger than the degree of g(λ). We

also know that the eigenvalues are the zeros and poles of (3.29) and that they interlace such that if

you put them in increasing order they follow the pattern zero, pole, zero, pole, . . . , zero.

Now assume we are given {λ1, λ2, . . . , λk} and N. Write the λ’s in increasing order and renum-

ber so that

λ1,z < λ2,p < λ3,z < λ4,p < · · · < λk,z

The subscript z means that eigenvalue is a zero of the desired rational function while the subscript

p means that eigenvalue is a pole. Let p(x) = (x − λ1,z)(x − λ3,z) · · · (x − λk,z) and q(x) = (x −
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λ2,p)(x− λ4,p) · · · (x− λk−1,p). We know that

p(x)
q(x)

= x + N − p1(x)
q(x)

. (3.30)

Now we just need to break p1(x)
q(x) into N θ functions. The denominators of the θ’s are distinct so

we can factor q(x) such that it’s factors are denominators of θ’s. Using a modified partial fraction

decomposition in that we only want denominators of the form of θ’s denominators, decompose
p1(x)
q(x) into the sum of θ’s. Therefore

p(x)
q(x)

= x + N − θ1,a1(x)− θ2,a2(x)− · · · − θN,aN (x) (3.31)

where θi,ai(x) means its the ith θ function with ai beads on that string. Thus, we have N ai’s and

since each ai is the number of beads on that strand, we have the number of beads on each strand.

Remember that the numbering of the strands is arbitrary.
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Chapter 4

Application of Operator Couplings in

Spectral Analysis

4.1 Introduction

A Hilbert space H is an inner product space that is a complete metric space with respect to the

metric generated by the inner product. Let us first consider L2(a, b) where (a, b) is any measurable

set on the real axis. L2(a, b) is the set of all complex valued Lebesgue measurable functions f

defined on (a, b) such that | f |2 is Lebesgue integrable on (a, b). [1]

Example 4.1.1. L2(a, b) is a Hilbert space with the inner product defined as ( f , g) =
∫ b

a f (t)g(t)dt.

Definition 4.1.1. Let D denote a subset of the space H. A function T which relates to each element f ∈ D

a particular element T f = g ∈ H is called an operator in H with domain D. The set H′ consisting of all

g = T f , where f runs through D is called the range of T. [1]

Let us now look at the model in terms of operator theory. There are some properties of opera-

tors that we need to consider.

Definition 4.1.2. An operator T is linear if its domain of definition D is a linear manifold and if

T(α f + βg) = αT f + βTg

for any f , g ∈ D and any complex numbers α, β.

86



Note that this definition does not require the operator to be bounded. Therefore, we say

Definition 4.1.3. A linear operator T is bounded if

sup
f∈DT ,|| f ||H≤1

||T f || < ∞

.

We use this definition to define the norm of a bounded linear operator to be

||T|| = sup
|| f ||H=1

||T f ||H = sup
f∈D

||T f ||
|| f ||

where x ∈ DT.

Thus we can make the following connections. [1]

• A bounded linear operator is continuous.

• If a linear operator is continuous at one point, then it is bounded.

• If S and T are linear operators, then αS + βT, where α, β ∈ C, is a linear operator with

the domain of definition DS ∩ DT. Each product ST and TS is also a linear operator. If S

and T are bounded linear operators defined everywhere inH, then the operators ST and TS

are also bounded linear operators defined everywhere inH, and ||ST|| ≤ ||S|| · ||T|| and

||TS|| ≤ ||T|| · ||S||.

Definition 4.1.4. We say that an operator T, is continuous at a point f0, f ∈ DT if

lim
f→ f0

T f = T f0

. Equivalently, for each ε > 0, there exists δ = δ(ε) > 0 such that if f satisfies the inequality

|| f − f0|| < δ

then

||T f − T f0|| < ε
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.

Note that if a linear operator is continuous at one point, then it is bounded. By continuous at

one point, x0, we mean that if x1, x2, . . .→ x0.

Definition 4.1.5. An operator T, not necessarily linear, is closed if the relations for fn ∈ DT

1. limn→∞ fn = f , and

2. limn→∞ T fn = g

imply that f ∈ DT and T f = g.

Thus if an operator is continuous, then it is closed. An operator is linear and continuous if and

only if it is bounded and linear. Also, if an operator that is linear and continuous at one point, then

it is continous at any point. Since differential operators are unbounded, they are not continous but

are closed. If T is a bounded linear operator defined on H, the expression

( f , Tg)

defines a bilinear functional on H with the norm ||T||. There exists a unique bounded linear

operator T∗ defined on H with norm ||T∗|| = ||T|| such that

( f , Tg) = (T∗ f , g)

for f , g ∈ H. The operator T∗ is then called the adjoint of T. If T is bounded and T∗ = T, then T is

said to be self-adjoint. Similar to matrices, it is said to be normal if the operator commutes with

its adjoint, i.e. TT∗ = T∗T.

Theorem 8. If T is a bounded self-adjoint operator, then

sup
|| f ||=||g||=1

|(T f , g)| = sup
|| f ||=1

|(T f , f )|

In other words,

||A|| = max{|γ|, |λ|}
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where

γ = sup
|| f ||=1

(T f , f ), λ = inf
|| f ||=1

(T, f )

Theorem 9. Let T and T∗ be linear operators defined on H and assume that

(T f , g) = ( f , T∗g)

for f , g ∈ H. Then T is bounded and T∗ is the adjoint of T.

Now let’s define the more general definition of the adjoint operator.

Definition 4.1.6. Now if T is an unbounded linear operator, we can say that

(T f , g) = ( f , g∗) (4.1)

for f ∈ DT. If DT is dense in H, then the operator T has an adjoint operator T∗. The domain, DT∗ is

defined: g ∈ DT∗ if and only if there exists a vector g∗ such that (4.1) is satisfied for f ∈ DT∗ . That is,

T∗g = g∗

Now there are several properties that follow direction from the definition.

• The operator T∗ is linear.

• If S ⊂ T, then S∗ ⊃ T∗.

• The operator T∗ is closed whether or not T is closed.

• If the operator T has a closure T, then (T)∗ = T∗.

• If the operator T∗∗ exists, then T ⊂ T∗∗.

Definition 4.1.7. A linear operator T is said to be symmetric/Hermitian if

• its domain DT is dense in H, and

• for f , g ∈ DT, (T f , g) = ( f , Tg)

89



If T is a symmetric operator, then T ⊂ T∗. Therefore a symmetric operator always has a

closure. An operator T for which T = T∗ is said to be self-adjoint.

Theorem 10. A symmetric operator T such that its range is all of H is called self-adjoint.

Proof. It is sufficient to verify that every element g ∈ DT∗ also belongs to DT. Let g ∈ DT∗ and

T∗g = g∗. Since range is H, there exists an element h ∈ DT such that Th = g∗. Consequently, for

each f ∈ DT

(T f , g) = ( f , g∗) = ( f , Th) = (A f , h)

Since range of T is H, we have g = h. Therefore g ∈ DT.

Example 4.1.2. L[y] = −y′′ with y(0) = y(1) = y′(1) = y′(0) = 0 is not self adjoint since dom(L) 6=

dom(L∗)

Example 4.1.3. L[y] = −y′′ with y(0) = y(1) = 0 is self adjoint since dom(L) = dom(L∗)

Definition 4.1.8. A complex number λ is called an eigenvalue of the linear operator T if there exists an

f ∈ DT, f 6= 0 such that

T f = λ f .

[1]

Theorem 11. The eigenvalues of a symmetric operator are real.

Proof. If T f = λ f for f 6= 0, then

λ( f , f ) = (λ f , f ) = (T f , f ) = ( f , T f ) = ( f , λ f ) = λ( f , f )

So λ = λ which is only true if λ ∈ R.

4.1.1 Boundary Spaces

Since we are interested in connecting strings, we need to consider coupling the corresponding

differential operators.
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Definition 4.1.9. A linear space L with the inner product defined as [ϕ1, ϕ2] is called a boundary space

of the operator A if there exists a linear operator Γ : dom(A)→ L such that for any function f ∈ dom(A)

[Γ f , Γ f ] =
1
i
([A f , f ]− [ f , A f ])

It is important to note that the domain includes the boundary conditions. If you can construct

Γ, then you have L. Let’s look at some examples to get some intuition for constructing boundary

spaces.

Example 4.1.4. Working in the Hilbert space, H = L2(a, b) with the operator A given by the differen-

tial operator Ay = i dy
dx with the boundary condition y(a) = 0. The domain of A consists of absolutely

continuous functions, f (x), on [a, b] such that f ′ ∈ L2(a, b) and f (a) = 0.

Then for any function from the domain of A,

1
i
[(A f , f )− ( f , A f )] =

1
i

[∫ b

a
i f ′ f ds−

∫ b

a
f i f
′
dx
]

=
1
i

[
i f f |ba − i

∫ b

a
f f
′
dx + i

∫ b

a
f f
′
dx
]

= f f |ba

= f (b) f (b)− f (a) f (a)

= f (b) f (b)

Therefore we can see that the boundary space of the operator A is 1-dimensional with the inner

product [x1, x2] = x1x2.

The boundary operator Γ acts as ΓA f = α f (b) where α is any complex number such that

|α| = 1.

Example 4.1.5. Working in the Hilbert space, H = L2(a, b) with the adjoint operator A∗ given by the

differential operator −A∗g = −i dg
dx with the boundary condition g(b) = 0. The domain of A∗ consists of

absolutely continuous functions, f (x), on [a, b] such that f ′ ∈ L2(a, b) and f (b) = 0.

Then for any function from the domain of A∗, following almost identical computations as
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Example 4.1.4

1
i
[(−A∗g, g)− (g,−A∗g)] =

1
i

[∫ b

a
−ig′gds−

∫ b

a
g(−ig

′
)dx
]

= g(a)g(a)

Thus we have the same one dimensional boundary space as for A with the inner product

[x1, x2] = x1x2.

The boundary operator Γ acts as Γ−A∗g = βg(a) where β is any complex number such that

|β| = 1.

Notice that Example 4.1.4 and Example 4.1.5 are related in that one is the adjoint of the other.

They have the same boundary space and very similar boundary operators which aligns with our

intuition.

Example 4.1.6. Working in the Hilbert space, H = L2
(a,b) with the operator A given by the differential

operator A f = − f ′′ with the boundary condition f (a) = f ′(a) = 0.

Then for any function from the domain of A,

1
i
[(A f , f )− ( f , A f )] =

1
i

[∫ b

a
− f ′′ f ds−

∫ b

a
− f f

′′
dx
]

=
1
i

[
− f ′ f |ba +

∫ b

a
f ′ f
′
dx + f f

′|ba −
∫ b

a
f ′ f ′dx

]
=

1
i

[
f f ′|ba − f ′ f |ba

]
=

1
i

[
f (b) f ′(b)− f (a) f ′(a)− f ′(b) f (b) + f ′(a) f (a)

]
=

1
i

[
f (b) f ′(b)− f ′(b) f (b)

]
= i f ′(b) f (b)− i f (b) f ′(b)

The boundary space for this operator is two dimensional. Let ~x =

 x1

x2

 and ~y =

 y1

y2


with J =

 0 i

−i 0

 such that it has the inner product [~x,~y] = (J~x,~y) = ~y∗ J~x.
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The boundary operator Γ act as ΓA f = M

 f (b)

f ′(b)

. Now since we are two dimensional, we

don’t need the magnitude of M to be 1. Instead, we need (J~x,~y)

[~x,~y] = (J~x,~y)

[Γ~x, Γ~y] = (JM~x, M~y)

= (M∗ JM~x,~y)

This tells us that instead of magnitude being 1, we need M∗ JM = J.

Example 4.1.7. Working in the Hilbert space, H = L2(a, b) with the operator A∗ given by the differential

operator −A∗g = g′′ with the boundary condition g(b) = g′(b) = 0.

Then for any function from the domain of A∗,

1
i
[(−A∗g, g)− (g,−A∗g)] =

1
i

[∫ b

a
g′′gds−

∫ b

a
gg′′dx

]
=

1
i

[
g′g|ba −

∫ b

a
g′g′dx− gg′|ba +

∫ b

a
g′g′dx

]
= ig′(a)g(a)− ig(a)g′(a)

The boundary space for this operator is two dimensional. Let ~x =

 x1

x2

 and ~y =

 y1

y2


with J =

 0 i

−i 0

 such that it has the inner product [~x,~y] = (J~x,~y) = ~y∗ J~x. Notice that this is

the same J as in Example 4.1.6.

The boundary operator Γ act as ΓA∗g = M̃

 g(a)

g′(a)

. Now since we are two dimensional, we

need M̃∗ JM̃ = J.

So what does this M and M̃ look like? From Example 4.1.6 we have M∗ JM = J and from

Example 4.1.7 we have M̃∗ JM̃ = J. They will be part of the same class of matrices, so let’s just
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consider M =

 a b

c d

. We want to know what the conditions are for M such that M∗ JM = J.

 a b

c d


 0 i

−i 0


 a b

c d

 =

 0 i

−i 0


For the above to be true, one of the following situations must be satisfied

• if a, b, c, d ∈ R, then ad− bc = 1

• if a, b, c, d ∈ C, then a
a = c

c , b
b = d

d , ad− bc = 1, and ad− bc = 1

These conditions represent the entire class of boundary operators that satisfy the operator A and

A∗. Therefore, Example 4.1.6 and 4.1.7 can have any matrix M that satisfies the above conditions.

Example 4.1.8. Working in the Hilbert space, H = L2 (0, π
2

)
with the operator A1 given by the differential

operator A1 f1 = − f ′′1 with the boundary condition f1(0) = 0.

Then for any function from the domain of A1,

1
i
[(A1 f , f )− ( f , A1 f )] =

1
i

[∫ π/2

0
− f ′′ f ds−

∫ π/2

0
− f f

′′
dx
]

= i f ′
(π

2

)
f
(π

2

)
− i f

(π

2

)
f ′
(π

2

)

The boundary space for this operator is two dimensional. Let ~x =

 x1

x2

 and ~y =

 y1

y2


with J =

 0 i

−i 0

 such that it has the inner product [~x,~y] = (J~x,~y) = ~y∗ J~x. Again, this is the

same reoccurring J.

The boundary operator Γ acts as ΓA1 f1 = M1

 f1
(

π
2

)
f ′1
(

π
2

)
. Now since we are two dimensional,

we need M∗1 JM1 = J.

Example 4.1.9. Working in the Hilbert space, H = L2
( π

2 ,π)
with the operator A2 given by the differential

operator A2 f2 = f ′′2 with the boundary condition f2(π) = 0.
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Then for any function from the domain of A2,

1
i
[(A2 f , f )− ( f , A2 f )] =

1
i

[∫ π

π/2
f ′′ f ds

∫ π

π/2
f f
′′

dx
]

= i f ′
(π

2

)
f
(π

2

)
− i f

(π

2

)
f ′
(π

2

)

The boundary space for this operator is two dimensional. Let ~x =

 x1

x2

 and ~y =

 y1

y2


with J =

 0 i

−i 0

 such that it has the inner product [~x,~y] = (J~x,~y) = ~y∗ J~x.

The boundary operator Γ act as ΓA2 f2 = M2

 f2
(

π
2

)
f ′2
(

π
2

)
. Now since we are two dimensional,

we need M∗2 JM2 = J.

The boundary spaces are the same for A1 and A2 (two dimensional with indefinite metric)

~x =

 x1

x2

 and ~y =

 y1

y2

 with J =

 0 i

−i 0

 such that it has the inner product [~x,~y] =

(J~x,~y) = ~y∗ J~x. Therefore we have a class of boundary operators such that we need we need

M∗1 JM1 = J and M∗2 JM2 = J. Since J is the same as previous examples, it has the same conditions.

In this chapter, we will represent multi-string vibrating systems using a coupling of non-

densely defined symmetric operators acting in the infinite dimensional Hilbert space. This cou-

pling is defined by a special set of boundary operators acting in finite dimensional Krein space (the

space with indefinite inner product). The coupling of operators are coupling of two continuous

operators, two discrete operators, and a continuous and discrete operator.

4.2 Operator Couplings

Definition 4.2.1. The linear operator A acting in the orthogonal sum of Hilbert spaces H = H1 ⊕ H2

is called a simple coupling of the linear operators A1 and A2, acting in H1 and H2 respectively, if

Pk (dom(A)) = dom(Ak), k = 1, 2, . . . and Pk A fk=1,2 = AkPk f , where Pk is the projecting operator from

H to Hk.

Let A1, A2 be symmetric operators in H1 and H2. Let A∗1 , −A∗2 have the same boundary space
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then the simple coupling of A∗1 and A∗2 defined by the condition ΓA∗1 f1 = Γ−A∗2 f2 will be a self-

adjoint operator in H = H1 ⊕ H2 according to Strauss.

We will now build these coupling operators and the corresponding boundary space. We will

do this by being given A1 and A2 then determining the boundary space and then build a simple

coupling that is self-adjoint.

Example 4.2.1. Coupling of Example 4.1.8 & 4.1.9 Let A1 f1 = − f ′′1 with dom(A1) is f1(0) = 0 and

f1(
π
2 ) = f ′1(

π
2 ) = 0. Let A2 f2 = − f ′′2 with dom(A2) is f2(π) = 0 and f2(

π
2 ) = f ′(π

2 ) = 0. Both A1

and A2 are symmetric but not self-adjoint.

We need to first determine A∗1 , −A∗2 and their corresponding domains.

〈A1 f1, g1〉 =
∫ π

2

0
− f ′′1 g1dx = − f ′1g1|

π
2
0 +

∫ π
2

0
f ′1g1

′dx

〈 f1, A∗1 g1〉 =
∫ π

2

0
− f1g1//dx = − f1g1

′|
π
2
0 +

∫ π
2

0
f1g1

′dx

〈A1 f1, g1〉 = 〈 f1, A∗1 g1〉 ⇒ f ′1(0)g1(0) = 0

Therefore, A∗1 f1 = − f ′′1 where dom(A∗1) is g1(0) = 0.

〈A2 f2, g2〉 =
∫ π

π
2

− f ′′2 g2dx = − f ′′2 g2|ππ
2
+
∫ π

π
2

f ′2g2
′dx

〈 f2, A∗2 f2〉 =
∫ π

π
2

− f2g2
′′dx = − f2g2

′|ππ
2
+
∫ π

π
2

f ′2g2
′dx

〈A2 f2, g2〉 = 〈 f2, A∗2 g2〉 ⇒ − f ′2(π)g2(π) = 0

Therefore A∗2 g2 = −g′′2 or −A∗2 g2 = g′′2 with dom(A∗2) is g2(π) = 0.

Now we need to determine ΓA∗1 and Γ−A∗2 using the definition of Boundary Space of a Differential

Operator. We use the equation,

[ΓA f , ΓA f ] =
1
i
([A f , f ]− [ f , A f ])

for both A∗1 and −A∗2 .
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[ΓA∗1 f , ΓA∗1 f ] =
1
i
[(A∗1 f , f )− ( f , A∗1 f )]

=
1
i

[
−
∫ π

2

0
f ′′ f dx +

∫ π

π
2

f f
′′

dx
]

=
1
i

[
− f ′ f |

π
2
0 +

∫ π
2

0
f ′ f
′
dx + f f

′|
π
2
0 −

∫ π
2

0
f ′ f
′
dx
]

=
1
i

[
f
(π

2

)
f ′
(π

2

)
− f ′

(π

2

)
f
(π

2

)]

[Γ−A∗2 f , Γ−A∗2 f ] =
1
i
[(−A∗2 f , f )− ( f ,−A∗2 f )]

=
1
i

[∫ π

π
2

f ′′ f dx−
∫ π

π
2

f f ′′dx
]

=
1
i

[
f ′ f |ππ

2
−
∫ π

π
2

f ′ f ′dx− f f ′|ππ
2
+
∫ π

π
2

f ′ f ′dx
]

=
1
i

[
f
(π

2

)
f ′
(π

2

)
− f ′

(π

2

)
f
(π

2

)]

So now we need to determine ΓA∗1 and Γ−A∗2 which is our choice. Since we are in a continuous

space, we need ΓA∗1 f1 = Γ−A∗2 f2.

Let’s define ΓA∗1 f =

 f
(

π
2

)
f ′
(

π
2

)
 with the indefinite inner product 〈x, y〉L1 = 〈x, M1y〉 with M1 =

 0 i

−i 0

. Let’s define Γ−A∗2 f =

 f
(

π
2

)
f ′
(

π
2

)
 with the indefinite inner product space 〈x, y〉L2 =

〈x, M2y〉 with M2 =

 0 i

−i 0

. Both M1 and M2 are self-adjoint. Therefore, we have a simple

coupling of the operators A∗1 and A∗2 in H = H1⊕H2. For k = 1, 2, clearly Pk(dom(A)) = dom(Ak),

P1 A f = A∗1 P1 f , and P2A f = A∗2 P2 f .

All that is left is to show that A, which is a simple coupling of A∗1 and A∗2 defined by the condition

ΓA∗1 f1 = Γ−A∗2 f2, is self-adjoint. Note that A is A f = − f ′′ with f (0) = 0 and f (π) = 0 as well as
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ΓA∗1 f1 = Γ−A∗2 f2.

〈A f , g〉 =
∫ π

2 −

0
− f ′′gdx +

∫ π

π
2 +
− f ′′gdx

= − f ′g|
π
2 −
0 − f ′g|ππ

2 +
+
∫ π

0
f ′g′dx

= − f ′
(π

2
−
)

g
(π

2
−
)
+ f ′(0)g(0)− f ′ (π) g (π)

+ f ′
(π

2
+
)

g
(π

2
+
)
+
∫ π

0
f ′g′dx

= f ′(0)g(0)− f ′ (π) g (π) +
∫ π

0
f ′g′dx

〈 f , A∗g〉 =
∫ π

2 −

0
− f g′′dx +

∫ π

π
2 +
− f g′′dx

= − f g′|
π
2 −
0 − f g′|ππ

2 +
+
∫ π

0
f ′g′dx

= − f
(π

2
−
)

g′
(π

2
−
)
+ f (0)g′(0)− f (π) g′ (π)

+ f
(π

2
+
)

g′
(π

2
+
)
+
∫ π

0
f ′g′dx

=
∫ π

0
f ′g′dx

〈A f , g〉 = 〈 f , A∗g〉 → f ′(0)g(0)− f ′ (π) g (π) = 0

Therefore, dom(A∗) is g(0) = 0 and g(π) = 0. This yields dom(A) = dom(A∗) and therefore A

is self-adjoint.

Example 4.2.2. Operator T1 is acting in Cm+2 such that (T1u)j = a1
j−1uj−1 + b1

j uj + a1
j uj+1 j =

0, 1, 2, . . . , m with the boundary condition u−1 = 0. Note that for Cm+2, (u0, u1, . . . , um, um+1).

Let operator T2 act in Cn+2 such that (T2u)j = a2
j−1uj−1 + b2

j uj + a2
j uj+1, j = 0, 1, . . . , n with the

boundary condition un+1 = 0. Note that for Cn+2, (u−1, u0, . . . , un).

Then for any vector from the domain of T1

[
ΓT1 u1, ΓT1 u1

]
=

1
i

[
(T1u1, u1)− (u1, T1u1)

]
= ia1

m

(
u1

m+1u1
m − u1

mu1
m+1

)

The boundary space for this operator is two dimensional and thus has the following inner
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product in the two dimensional boundary space [~x,~u] = (J~x,~y) = ~y∗ J~x where J =

 0 ia1
m

−ia1
m 0

.

Then the boundary operator Γ acts as ΓT1 u1 = M

 u1
m

u1
m+1

 with the condition that M∗ JM = J.

Then for any vector from the domain of −T2

[
Γ−T2 u2, Γ−T2 u2] =

1
i
[
(−T2u2, u2)− (u2,−T2u2)

]
= ia2

−1
(
u2

0u2
−1 − u2

−1u2
0
)

The boundary space for this operator is two dimensional and thus has the following inner

product in the two dimensional boundary space [~x,~u] = (J~x,~y) = ~y∗ J~x where J =

 0 ia2
−1

−ia2
−1 0

.

Then the boundary operator Γ acts as Γ−T2 u2 = M

 u2
−1

u2
0

 with the condition that M∗ JM = J.

Clearly, M = I satisfies this, but let’s look at one more similar to the continuous case.

If M =

 1 0

−1 1

,

M∗ JM =

 1 −1

0 1


 0 ia1

m

−ia1
m 0


 1 0

−1 1


=

 ia1
m ia1

m

−ia1
m 0


 1 0

−1 1


=

 0 ia1
m

−ia1
m 0


= J

So this M satisfies the necessary condition and therefore we can define ΓT1 u1 =

 u1
m

u1
m+1 − u1

m

.

This choice of M for the last row looks like the finite difference for the derivative and therefore

more closely resembles our continuous case.
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So then we have a simple coupling of T1 and T2 in Cm+2 ⊕ Cn+2 defined by the condition

ΓT1 u1 =
a2
−1

a1
m

ΓT2 u2 . For k = 1, 2, clearly Pk(dom(T)) = dom(Tk), P1Tu = T1P1u, and P2Tu = T2P2u.

All that is left is to show that T, which is a simple coupling of T1 and T2 defined by the condition

ΓT1 u1 =
a2
−1

a1
m

ΓT2 u2 is self-adjoint. Note that (Tu)j = aj−1uj−1 + bjuj + ajuj+1 with u−1 = 0 and

un+1 = 0

< Tu, v > = (T1u, v) + (T2u, v)

=





b1
0u0 + a1

0u1

a1
0u0 + b1

1u1 + a1
1u2

a1
1u1 + b1

2u2 + a1
2u3

...

a1
m−1um−1 + b1

mum + a1
mum+1


,



v0

v1

v2

...

vm





+





a2
−1u−1 + b2

0u0 + a2
0u1

a2
0u0 + b2

1u1 + a2
1u2

a2
1u1 + b2

2u2 + a2
2u3

...

a2
n−1un−1 + b2

nun


,



v0

v1

v2

...

vn




= b1

0u0v0 + a1
0u1v0 + a1

0u0v1 + b1
1u1v1 + a1

1u2v1 + a1
1u1v2 + b1

2u2v2 + a1
2u3v2 + · · ·

+a1
m−1um−1vm + b1

mumvm + a1
mum+1vm + a2

−1u−1v0 + b2
0u0v0 + a2

0u1v0 + a2
0u0v1 +

b2
1u1v1 + a2

1u2v1 + a2
1u1v2 + b2

2u2v2 + a2
2u3v2 + · · ·+ a2

n−1un−1vn + b2
nunvn
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< u, Tv > = (u, T1v) + (u, T2v)

=





u0

u1

u2

...

um


,



b1
0v0 + a1

0v1

a1
0v0 + b1

1v1 + a1
1v2

a1
1v1 + b1

2v2 + a1
2v3

...

a1
m−1vm−1 + b1

mvm + a1
mvm+1





+





u0

u1

u2

...

um


,



a2
−1v−1 + b2

0v0 + a2
0v1

a2
0v0 + b2

1v1 + a2
1v2

a2
1v1 + b2

2v2 + a2
2v3

...

a2
n−1vn−1 + b2

nvn




= b1

0u0v0 + a1
0u1v0 + a1

0u0v1 + b1
1u1v1 + a1

1u2v1 + a1
1u1v2 + b1

2u2v2 + a1
2u3v2 + · · ·

+a1
m−1um−1vm + b1

mumvm + a1
mum+1vm + a2

−1u−1v0 + b2
0u0v0 + a2

0u1v0 + a2
0u0v1 +

b2
1u1v1 + a2

1u2v1 + a2
1u1v2 + b2

2u2v2 + a2
2u3v2 + · · ·+ a2

n−1un−1vn + b2
nunvn

Clearly < Tu, v >=< u, Tv > so T is self-adjoint.

Example 4.2.3. Operators: T1
1 with same finite difference system as T1 and BC u1

−1 = u1
0 and u1

m = 0. T
′′
1

with same finite difference system as T1 and BC u1
−1 = 0 and u1

m = 0

Operators: T1
2 with same finite difference system as T2 and BC u2

−1 = u2
0 and u2

0. T
′′
2 with same finite

difference system as T2 and BC u2
−1 = 0 and u2

n = 0.

Example 4.2.4 (Three continuous strings). Show that −y′′i = λyi for i = 1, 2, 3 on x ∈ [0, l] is a self

adjoint operator. The boundary conditions are y1(0) = y2(0) = y3(0) = 0 and y1(l) = y2(l) = y3(l) =

ỹ(l) and y′1(l) + y′2(l) + y′3(l) = 0.
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(L~f ,~g) = (L f1, g1) + (L f2, g2) + (L f3, g3)

=
∫ l

0
− f ′′1 g1dx +

∫ l

0
− f ′′2 g2dx +

∫ l

0
− f ′′3 g3dx

= − f ′1g1|l0 +
∫ l

0
f ′1g′1dx− f ′2g2|l0 +

∫ l

0
f ′2g′2dx− f ′3g3|l0 +

∫ l

0
f ′3g′3dx

= − f ′1g1|l0 + f1g′1|l0 +
∫ l

0
f1(−g′′1 )dx− f ′2g2|l0 + f2g′2|l0 +

∫ l

0
f2(−g′′2 )dx

− f ′3g3|l0 + f3g′3|l0 +
∫ l

0
f3(−g′′3 )dx

= f̃ (l)(g′1(l) + g′2(l) + g′3(l))− g̃(l)( f ′1(l) + f ′2(l) + f ′3(l)) + ( f1, L∗g1)

+( f2, L∗g2) + ( f3, L∗g3)

= (~f , L∗~g)

where the last line is only true if g1(0) = g2(0) = g3(0) = 0, g1(l) = g2(l) = g3(l) = g̃(l),

and g1(l) + g2(l) + g3(l) = 0. Since the domain of definitions are equivalent, the operator is self

adjoint.

Example 4.2.5 (Continuous and discrete). Selfadjoint extension to L2(0, l)⊕C of differential operator

given by

l[y] = −y′′ + q(x)y

Dom y′1(0) = y1(0) = 0

y′1(1) = hy1(1)

A1 symmetric but not self-adjoint.

One to one mapping with θ(λ) = a−bλ
c−dλ , ad− bc = 1.
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H1 = L2(0, l) H2 = C, complex numbers

H̃ = H1 ⊕ H2

element of H̃ f̃ =< f , c1 >, g̃ =< g, c2 >

< f̃ , g̃ >H̃=
∫ l

0
f gdx + c1c2

Introduce an operator Ã in H̃.

D(Ã) = {< f , c1 >∈ H̃ : f ∈ Dom(A∗1)}

c1 = a1 f (0) + b2 f ′(0)

Ã < f , c1 > = < − f ′′ + g(x) f , c2 >

c2 = c f (0) + d f ′(0)

where Ã = Ã∗ is self adjoint. Find the condition on a, b, c, d for it to be self-adjoint.

We first need to determine the domain of A∗1 such that A1 is symmetric but not self adjoint.

A1 ∼ l[y] = −y′′ + q(x)y

y′1(0) = y′1(0) = 0

y′1(1) = hy1(1)
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< L f , g > =
∫ 1

0
(− f ′′ + q(x) f )gdx

= −
∫ 1

0
f ′′gdx +

∫ 1

0
q(x) f gdx

= −
[

f ′g |10 −
∫ 1

0
f ′g′dx

]
+
∫ 1

0
q(x) f gdx

= − f ′(1)g(1) + f ′(0)g(0) +
[

f g′ |10 −
∫ 1

0
f g′′dx

]
+
∫ 1

0
q(x) f gdx

= − f ′(1)g(1) + f ′(0)g(0) + f (1)g′(1)− f (0)g′(0)+ < f , L∗g >

= −h f (1)g(1) + f (1)g′(1)+ < f , Lg >

= f (1)
[
g′(1)− hg(1)

]
+ < f , Lg >

Therefore, for A1 to be symmetric, Dom(A∗1) = {g′(1) = hg(1)}.
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Let c1 = a f (0) + b f ′(0), c2 = c f (0) + d f ′(0), c3 = ag(0) + bg′(0), c4 = cg(0) + dg′(0).

< Ã f̃ , g̃ > =
〈
< − f ′′ + h(x) f , c2 >,< g, c3 >

〉
=

∫ 1

0
(− f ′′ + h(x) f )gdx + c2c3

=
∫ 1

0
(− f ′′g)dx +

∫ 1

0
h(x) f gdx + c2c3

= −
[

f ′g |10 −
∫ 1

0
f ′g′dx

]
+
∫ 1

0
h(x) f gdx + c2c3

= − f ′(1)g(1) + f ′(0)g(0) +
∫ 1

0
f ′g′dx +

∫ 1

0
h(x) f gdx + c2c3

= − f ′(1)g(1) + f ′(0)g(0) +
[

f g′ |10 −
∫ 1

0
f g′′dx

]
+
∫ 1

0
h(x) f gdx + c2c3

= − f ′(1)g(1) + f ′(0)g(0) + f (1)g′(1)− f (0)g′(0)−
∫ 1

0
f g′′dx +

∫ 1

0
h(x) f gdx

+
(
c f (0) + d f ′(0)

)
(ag(0) + bg′(0))

= − f ′(1)g(1) + f ′(0)g(0) + f (1)g′(1)− f (0)g′(0)−
∫ 1

0
f g′′dx +

∫ 1

0
h(x) f gdx

+ac f (0)g(0) + bc f (0)g′(0) + ad f ′(0)g(0) + bd f ′(0)g′(0)

= − f ′(1)g(1) + f ′(0)g(0) + f (1)g′(1)− f (0)g′(0)−
∫ 1

0
f g′′dx +

∫ 1

0
h(x) f gdx

+ac f (0)g(0) + bc f (0)g′(0) + ad f ′(0)g(0) + bd f ′(0)g′(0)

= − f ′(1)g(1) + f ′(0)g(0) + f (1)g′(1)− f (0)g′(0)−
∫ 1

0
f g′′dx

+
∫ 1

0
h(x) f gdx + ac f (0)g(0) + bc f (0)g′(0) + ad f ′(0)g(0) + bd f ′(0)g′(0)

= f (1)[g′(1)− hg(1)] + (1− ad) f ′(0)g(0) + (bc− 1) f (0)g′(0) + ac f (0)g(0)

+bd f ′(0)g′(0)−
∫ 1

0
f g′′dx +

∫ 1

0
h(x) f gdx

= (1− ad) f ′(0)g(0) + (bc− 1) f (0)g′(0) + ac f (0)g(0)

+bd f ′(0)g′(0)−
∫ 1

0
f g′′dx +

∫ 1

0
h(x) f gdx

< f̃ , Ã∗ g̃ > =
∫ 1

0
f (−g′′ + h(x)g)dx + c1c4

= −
∫ 1

0
f g′′dx +

∫ 1

0
h(x) f gdx +

(
a f (0) + b f ′(0)

)
(cg(0) + dg′(0))

= −
∫ 1

0
f g′′dx +

∫ 1

0
h(x) f gdx + ac f (0)g(0) + ad f (0)g′(0) + bc f ′(0)g(0)

+bd f ′(0)g′(0)
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Since we want Ã = Ã∗ to be self adjoint, we need to equate both of the end lines.

1− ad = bc

bc− 1 = ad

4.3 Spectral Properties of Operator Couplings

Let {λ1
n} be eigenvalues of T1

1 , let {λ2
m} be eigenvalues of T1

2 . If {µk} ∈ {λ1
n} ∩ {λ2

m}, then

{µk} ⊂ {λn+m} where {λn+1} are eigenvalues of the problem with eigenvalue dependent bound-

ary condition defined by T1
2 (if boundary condition is on the right or by T1

1 if it is on the left)

Example 4.3.1. Consider a2
−1 = a1

m. If a simple coupling of T1 and T2 is the operator T (u1
m = u2

−1,

u1
m+1 = u2

0) acting in Cm+n+2

T is given by

(Tu)j = a1
j−1uj−1 + b1

j uj + a1
j uj+1 (j = 0, 1, 2, . . . , m)

(Tu)j = a2
j−1uj−1 + b2

j + a2
j uj+1 (j = m + 1, . . . , m + n)

u−1 = 0, um+n+1 = 0

We can consider T1 as a boundary condition

θ(λ) =
u1

m+1(λ)

u1
m+1(λ)− u1

m(λ)

The total number of eigenvalues of T is equal to m plus the number of poles of θ(λ).

Example 4.3.2. T

u0 + 2u1 + u2 = λu1

u1 + u2 + u3 = λu2

u2 + 2u3 + u4 = λu3

u0 = 0 u4 = 0
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Eigenvalues of T are zeros of the polynomial P(λ) = λ(λ− 3)(λ− 2).

T
′
1 u0 + 2u1 + u2 = λu1

BC u1 = u2, u0 = 0

with P1(λ) = λ− 3 and eigenvalues {λ1
n} = {3}.

T
′′
1 u0 + 2u1 + u2 = λu1

BC u0 = 0, u2 = 0

with Q1(λ) = λ− 2 and eigenvalue 2.

T
′
2 u1 + u2 + u3 = λu2

u2 + 2u3 + u4 = λu3

BC u1 = u2, u4 = 0

with P2(λ) = (λ− 3)(λ− 1) and eigenvalues {λ2
m} = {1, 3}.

T
′′
2 u1 + u2 + u3 = λu2

u2 + 2u3 + u4 = λu3

BC u1 = 0 u4 = 0

with Q2(λ) = λ2 − 3λ + 1.
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The eigenvalue boundary condition dependent problem

u1 + u2 + u3 = λu2

u2 + 2u3 + u4 = λu3

u2 − u1

u1
= λ− 3, u4 = 0

θ(λ) = λ− 3

{λm+n} = {0, 2, 3}

{3} = {3} ∩ {1, 3}

Also,

m(λ) =
λ2 − 4λ + 3
λ2 − 3λ + 1

=
P2(λ)

Q2(λ)

where P2(λ) is the characteristic polynomial of T
′
2 and Q2(λ) is the characteristic polynomial of T

′′
2 .

The eigenvalues of the boundary condition dependent problem are zeros of φ(λ) = θ(λ) + m(λ).

Example 4.3.3. T

a0u0 + b1u1 + a1u2 = λu1

a1u1 + b2u2 + a2u3 = λu2

a2u2 + b3u3 + a3u4 = λu3

a3u3 + b4u4 + a4u5 = λu4

a4u4 + b5u5 + a5u6 = λu5

u0 = 0 u6 = 0 =
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We calculate the characteristic polynomial by

u2 =
(λ− b1)

a1
u1

u3 =
(λ− b2)(λ− b1)

a2a1
u1 −

a1

a2
u1 =

(
(λ− b2)(λ− b1)− a2

1
a2a1

)
u1

u4 =
(λ− b3)(λ− b2)(λ− b1)

a3a2a1
u1 −

a1(λ− b3)

a3a2
u1 −

a2(λ− b1)

a3a1
u1

u5 =
(λ− b4)(λ− b3)(λ− b2)(λ− b1)

a4a3a2a1
u1 −

a1(λ− b4)(λ− b3)

a4a3a2
u1

− a2(λ− b)4)(λ− b1)

a4a3a1
u1 −

a3(λ− b2)(λ− b1)

a4a2a1
u1 +

a3a1

a4a2
u1

u6 =
(λ− b5)(λ− b4) · · · (λ− b1)

a5a4a3a2a1
u1 −

a1(λ− b5)(λ− b4)(λ− b3)

a5a4a3a2
u1

− a2(λ− b5)(λ− b4)(λ− b1)

a5a4a3a1
u1 −

a3(λ− b5)(λ− b2)(λ− b1)

a5a4a2a1
u1

+
a3a1(λ− b5)

a5a4a2
u1 −

a4(λ− b3)(λ− b2)(λ− b1)

a5a3a2a1
u1

a4a1(λ− b3)

a5a3a2
u1 +

a4a2(λ− b1)

a5a3a1
u1

Since u6 = 0,

u6 =
(λ− b5)(λ− b4) · · · (λ− b1)

a5a4a3a2a1
u1 −

a1(λ− b5)(λ− b4)(λ− b3)

a5a4a3a2
u1

− a2(λ− b5)(λ− b4)(λ− b1)

a5a4a3a1
u1 −

a3(λ− b5)(λ− b2)(λ− b1)

a5a4a2a1
u1

+
a3a1(λ− b5)

a5a4a2
u1 −

a4(λ− b3)(λ− b2)(λ− b1)

a5a3a2a1
u1

a4a1(λ− b3)

a5a3a2
u1 +

a4a2(λ− b1)

a5a3a1
u1 = 0

→ 0 =
(λ− b5)(λ− b4) · · · (λ− b1)

a5a4a3a2a1
− a1(λ− b5)(λ− b4)(λ− b3)

a5a4a3a2

− a2(λ− b5)(λ− b4)(λ− b1)

a5a4a3a1
− a3(λ− b5)(λ− b2)(λ− b1)

a5a4a2a1

+
a3a1(λ− b5)

a5a4a2
− a4(λ− b3)(λ− b2)(λ− b1)

a5a3a2a1

a4a1(λ− b3)

a5a3a2
+

a4a2(λ− b1)

a5a3a1
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Finding P1

u4

u3
=

(λ−b3)(λ−b2)(λ−b1)
a3a2a1

u1 − a1(λ−b3)
a3a2

u1 − a2(λ−b1)
a3a1

u1

(λ−b2)(λ−b1)−a2
1

a2a1
u1

Finding P2

u5 =
−a4

(b5 − λ)
u4

u4 =
−a3

(b4 − λ)
u3 −

a2
4

(b4 − λ)(b5 − λ)
u4[

1 +
a2

4
(b4 − λ)(b5 − λ)

]
u4 = − a3

(b4 − λ)
u3

u4

u3
=

−a3(b4 − λ)(b5 − λ)

(b4 − λ)
[
(b4 − λ)(b5 − λ) + a2

4

]
The eigenvalues are given by

(λ−b3)(λ−b2)(λ−b1)
a3a2a1

− a1(λ−b3)
a3a2

− a2(λ−b1)
a3a1

(λ−b2)(λ−b1)−a2
1

a2a1

=
−a3(b4 − λ)(b5 − λ)

(b4 − λ)
[
(b4 − λ)(b5 − λ) + a2

4

]
(λ− b3)(λ− b2)(λ− b1)− a2

1(λ− b3)− a2
2(λ− b1)

a3
[
(λ− b2)(λ− b1)− a2

1

] =
−a3(b4 − λ)(b5 − λ)

(b4 − λ)
[
(b4 − λ)(b5 − λ) + a2

4

]
L
′′
2 where u6 = 0 and u3 = 0

u3 =

(
b4 − λ

a3
+

a2
4

a3(b5 − λ)

)
u4

b4 − λ

a3
+

a2
4

a3(b5 − λ)
= 0

with Q2(λ) = (b4 − λ)(b5 − λ) + a2
4.(But if λ = b5, then its undefined)

L1
′′ where u0 = 0 and u4 = 0

110



4.4 Operator couplings of Continuous and Discrete Operators

Given the operator A : L2(0, l)
⊕

C2 → C which acts according to

A

 f (x)

c1

 =

 − f ′′ + p f

c2


where c1 = A1

 f (0)

f ′(0)

+ B1

 f (l)

f ′(l)


c2 = A2

 f (0)

f ′(0)

+ B2

 f (l)

f ′(l)


A1, A2, B1, and B2 are 2× 2 matrices. Now if we want to find the adjoint of A, A∗, let’s define

A∗

 g(x)

m1

 =

 −g′′ + pg

m2


where m1 = D1

 g(0)

g′(0)

+ H1

 g(l)

g′(l)


m2 = D2

 g(0)

g′(0)

+ H2

 g(l)

g′(l)



Also for notation later, J =

 0 −1

1 0


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〈
A

 f (x)

c1

 ,

 g(x)

m1

〉 =

〈 f (x)

c1

 , A∗

 g(x)

m1

〉

→
〈

− f ′′ + q f

A2

 f (0)

f ′(0)

+ B2

 f (l)

f ′(l)


 ,


g(x)

D1

 g(0)

g′(0)

+ H1

 g(l)

g′(l)



〉

=

〈
f (x)

A1

 f (0)

f ′(0)

+ B1

 f (l)

f ′(l)


 ,


−g′′ + qg

D2

 g(0)

g′(0)

+ H2

 g(l)

g′(l)



〉

→
∫ l

0
(− f ′′ + q f )gdx +

〈
A2

 f (0)

f ′(0)

+ B2

 f (l)

f ′(l)

 , D1

 g(0)

g′(0)

+ H1

 g(l)

g′(l)

〉

=
∫ 1

0
f (−g′′ + qg)dx +

〈
A1

 f (0)

f ′(0)

+ B1

 f (l)

f ′(l)

 , D2

 g(0)

g′(0)

+ H2

 g(l)

g′(l)

〉

→ − f ′(l)g(l) + f ′(0)g(0) + f (l)g′(l)− f (0)g′(0) +
∫ l

0
− f g′′dx +

∫ l

0
q f gdx

+

〈
A2

 f (0)

f ′(0)

 , D1

 g(0)

g′(0)

〉+

〈
A2

 f (0)

f ′(0)

 , H1

 g(l)

g′(l)

〉

+

〈
B2

 f (l)

f ′(l)

 , D1

 g(0)

g′(0)

〉+

〈
B2

 f (l)

f ′(l)

 , H1

 g(l)

g′(l)

〉

=
∫ l

0
f (−g′′ + qg)dx +

〈
A1

 f (0)

f ′(0)

 , D2

 g(0)

g′(0)

〉+

〈
A1

 f (0)

f ′(0)

 , H2

 g(l)

g′(l)

〉

+

〈
B1

 f (l)

f ′(l)

 , D2

 g(0)

g′(0)

〉+

〈
B1

 f (l)

f ′(l)

 , H2

 g(l)

g′(l)

〉

112



→ − f ′(l)g(l) + f ′(0)g(0) + f (l)g′(l)− f (0)g′(0) +
∫ l

0
− f g′′dx +

∫ l

0
q f gdx

+

〈 f (0)

f ′(0)

 , A∗2 D1

 g(0)

g′(0)

〉+

〈 f (0)

f ′(0)

 , A∗2 H1

 g(l)

g′(l)

〉

+

〈 f (l)

f ′(l)

 , B∗2 D1

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 , B∗2 H1

 g(l)

g′(l)

〉

=
∫ l

0
f (−g′′ + qg)dx +

〈 f (0)

f ′(0)

 , A∗1 D2

 g(0)

g′(0)

〉+

〈 f (0)

f ′(0)

 , A∗1 H2

 g(l)

g′(l)

〉

+

〈 f (l)

f ′(l)

 , B∗1 D2

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 , B∗1 H2

 g(l)

g′(l)

〉

→
〈 f (0)

f ′(0)

 , J

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 ,−J

 g(l)

g′(l)

〉+
∫ l

0
− f g′′dx +

∫ 1

0
q f gdx

+

〈 f (0)

f ′(0)

 , A∗2 D1

 g(0)

g′(0)

〉+

〈 f (0)

f ′(0)

 , A∗2 H1

 g(l)

g′(l)

〉

+

〈 f (l)

f ′(l)

 , B∗2 D1

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 , B∗2 H1

 g(l)

g′(l)

〉

=
∫ l

0
f (−g′′ + qg)dx +

〈 f (0)

f ′(0)

 , A∗1 D2

 g(0)

g′(0)

〉+

〈 f (0)

f ′(0)

 , A∗1 H2

 g(l)

g′(l)

〉

+

〈 f (l)

f ′(l)

 , B∗1 D2

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 , B∗1 H2

 g(l)

g′(l)

〉

In order for these to be equal, the following must be true

J + A∗2 D1 − A∗1 D2 = 0

−J + B∗2 H1 − B∗1 H2 = 0

A∗2 H1 − A∗1 H2 = 0

B∗2 D1 − B∗1 D2 = 0
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Now if we want A to be self-adjoint,

〈
A

 f (x)

c1

 ,

 g(x)

c1

〉 =

〈 f (x)

c1

 , A∗

 g(x)

c1

〉

→
〈

− f ′′ + q f

A2

 f (0)

f ′(0)

+ B2

 f (l)

f ′(l)


 ,


g(x)

A1

 g(0)

g′(0)

+ B1

 g(l)

g′(l)



〉

=

〈
f (x)

A1

 f (0)

f ′(0)

+ B1

 f (l)

f ′(l)


 ,


−g′′ + qg

A2

 g(0)

g′(0)

+ B2

 g(l)

g′(l)



〉

→
∫ l

0
(− f ′′ + q f )gdx +

〈
A2

 f (0)

f ′(0)

+ B2

 f (l)

f ′(l)

 , A1

 g(0)

g′(0)

+ B1

 g(l)

g′(l)

〉

=
∫ 1

0
f (−g′′ + qg)dx +

〈
A1

 f (0)

f ′(0)

+ B1

 f (l)

f ′(l)

 , A2

 g(0)

g′(0)

+ B2

 g(l)

g′(l)

〉

→
〈 f (0)

f ′(0)

 , J

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 ,−J

 g(l)

g′(l)

〉+
∫ l

0
− f g′′dx +

∫ 1

0
q f gdx

+

〈 f (0)

f ′(0)

 , A∗2 A1

 g(0)

g′(0)

〉+

〈 f (0)

f ′(0)

 , A∗2 B1

 g(l)

g′(l)

〉

+

〈 f (l)

f ′(l)

 , B∗2 A1

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 , B∗2 B1

 g(l)

g′(l)

〉

=
∫ l

0
f (−g′′ + qg)dx +

〈 f (0)

f ′(0)

 , A∗1 A2

 g(0)

g′(0)

〉+

〈 f (0)

f ′(0)

 , A∗1 B2

 g(l)

g′(l)

〉

+

〈 f (l)

f ′(l)

 , B∗1 A2

 g(0)

g′(0)

〉+

〈 f (l)

f ′(l)

 , B∗1 B2

 g(l)

g′(l)

〉
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The conditions for A to be self-adjoint is as follows:

A∗2 A1 − A∗1 A2 = −J

B∗2 B1 − B∗1 B2 = J

A∗2 B1 − A∗1 B2 = 0

B∗2 A1 − B∗1 A2 = 0
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Chapter 5

Modeling Hypothalamus Pituitary

Adrenal Axis

Another biological area of interest is the system governing hormone production and action. Hor-

mones control a vast array of bodily functions that include sexual reproduction and development,

whole-body metabolism, blood glucose levels, and so on [84]. Hormones are produced and re-

leased in organs throughout the body such as the hypothalamus, pituitary, and adrenal gland.

Depending on the distance between the production site and the site of action, hormones are ca-

pable of a diffusion whole-body or localized effect. The endocrine system governing hormones

is an intercellular signaling system in which cells communicate via cellular secretions. The dis-

tance between the sites of hormone production and action and the complexities due to the mode

of transportation make it extraordinarily difficult to construct quantitative models of hormonal

control.

The hypothalamus pituitary adrenal axis is a central neuroendocrine system which consists of

hypothalamus, pituitary, and adrenal glands. The hypothalamus pituitary adrenal (HPA) axis is a

central neuroendocrine system, which consists of the hypothalamus, pituitary, and adrenal glands

(See Figure 5.2). The paraventricular nucleus of the hypothalamus secrets corticotropin releasing

hormone (CRH), which is transferred to the pituitary and stimulates the synthesis and release of

adrenocorticotropic hormone (ACTH). ACTH moves through the bloodstream and reaches the

adrenal gland in which it stimulates the secretion of cortisol. In response to stress, the concen-
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Figure 5.1: CORT’s natural circadian rhythm

trations of the HPA axis hormones are increased. A brief review of the HPA axis and the various

factors that regulate its functions are described in [68].

The most commonly known HPA axis hormone is cortisol (CORT). CORT is often known as

the stress hormone and is involved with or responsible for body temperature regulation, diges-

tion, the immune system, memory, mood, sexuality, etc. CORT levels in the body follow a natural

circadian rhythm as illustrated in Figure 5.1. Disruption of the HPA axis regulation results in the

disruption of circadian rhythms of CORT levels. It has been found that several medical disorders,

diseases, and syndromes are related to abnormal levels of CORT. For example, increased cortisol

has been shown in patients with major depressive disorder (see [52, 41]), and decreased cortisol

has been observed in people with post-traumatic stress disorder (see [76]). It has been shown that

those with Cushing’s syndrome have excessive levels of CORT while those with Addison’s disease

and Nelson’s syndrome have insufficient levels. Stress-related disorders such as major depressive

disorder and post-traumatic stress disorder show increased and decreased levels of CORT respec-

tively. Therefore, a deeper understanding of the dynamics of the HPA axis are important to the

medical field.

There have been multiple models of the HPA axis derived in an attempt to characterize the

oscillations seen in the hormone concentrations and to examine HPA axis dysfunction. Most of

these models have been constructed using deterministic coupled ordinary differential equations
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Figure 5.2: The HPA axis model

Figure 5.3: The HPA axis model with Glucocorticoids
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(see [42]). A major inconsistency among different existing HPA models that was mentioned in

[48] is related to their treatment of the circadian and ultradian oscillations (see Figure 5.1). For

example, the authors of [79] and [7] assumed that both oscillations can be generated inside the

HPA axis system by interaction of its elements; the authors of [83], [5], and [49] treat the circadian

and ultradian oscillations differently assuming that only ultradian oscillations are HPA axis based

but at the same time circadian rhythms are due to external input. Only one model made no ex-

plicit assumption about the origin of the oscillations and was developed to replicate the HPA axis

response to CRH injection (see [34]). It has also been suggested that the ultradian rhythm arises

from the introduction of a time delay (see [7]). Other models based on delay-differential equations

include [60] and [46].

To determine if delay-differential equations could predict the general features of CORT pro-

duction, the experimental data was compared to a simulated CORT curve in [46]. It was not

possible to obtain any experimental fitting of ACTH for the model since hypothalamic derived

CRH cannot be measured. Inclusion of the glucocorticoid receptor (GR), which is illustrated in

Fig 5.3, in a HPA axis model reveals ’bi-stability’ (see [46]). To be more concrete, there arises a

nonlinear Gauss type function with compact support, which is characterized by the parameter p4.

This Hill function arises as a result of ’inner’ nonlinearity in the physiological system which is

produced by the stress impulse, which is activated by the outer impulse that is called by an acute

stress. This situation is provided formally by the two parameters p4 and CRH. The amplitude of

the Hill function determines GR density in the pituitary, which is coupled nonlinearly in reaction

with regulated levels of CORT which in turn mediate a wide range of physiological processes,

including metabolic, immunological and cognitive function (see [75, 65]).

The stress response is subserved by the stress system which is located both in the central ner-

vous system and the periphery. The principal effects to the stress system include the CRH. The

secretion of CRH causes the anterior pituitary to synthesize ACTH which then stimulates the

adrenal glands to release CORT that regulate the blood concentration of CRH and ACTH via dif-

ferent negative feedback mechanisms.A model has been developed that links the HPA axis and the

memory system in the stress reaction (see [78]). The HPA axis is the subject of intensive research in

endocrinology. A study has shown that CRH may have a positive very short loop feedback action

that enhances stress-induced ACTH released (see [67]). This model is based on the feed-forward
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and feedback interactions between the anterior pituitary and adrenal glands. Because responsive-

ness of the stress system to stressors is crucial for life, it is important to consider the simpler case

when distributions of hormones in the system become unstable by action on stress, and further to

consider influence on the delay time as response of the physiological system on action on stress.

Mathematically, it means that we can consider two mathematical models: the first one is de-

scribed by a system of ordinary differential equations with initial distributions of hormones at a

point t = 0, and the second one is based upon a system of differential equations with initial distri-

butions of hormones on the interval [−τ, 0), where τ is a time delay. It turns out that bi-stability is

present in both models, i.e. limit distributions of hormones may be stable or unstable depending

on parameter values.

In this thesis, we study a system of delay differential equations (see [46, 75]):

da
dt = CRH

1+p2or − p3a =: f1, (5.1)

dr
dt =

(or)2

p4+(or)2 + p5 − p6r =: f2, (5.2)

do
dt = a(t− τ)− o =: f3, (5.3)

with initial conditions

a(t) = aτ(t) ∀ t ∈ [−τ, 0], r(0) = r0, o(0) = o0, (5.4)

where

0 6 aτ(t) ∈ C1[−τ, 0], r0 > 0, o0 > 0. (5.5)

Based on the principles of mass action kinetics, these equations describe the production and degra-

dation of the hormones ACTH (a), and CORT (o), as well as GR density (r) in the pituitary. Here,

the parameters p2−6 represent dimensionless forms of rate constants of the system, and the di-

mensionless parameter τ represents a discrete delay, which accounts for the delayed response of

the adrenal gland to ACTH. The dimensionless time t = 0 corresponds to the maximal value of an
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ACTH pulse.

We also study this system of nonlinear ODES without delay

da
dt = A

1+p2or − p3a, (5.6)

dr
dt =

(or)2

p4+(or)2 + p5 − p6r, (5.7)

do
dt = a− o, (5.8)

with initial conditions

a(0) = a0 > 0, r(0) = r0 > 0, o(0) = o0 > 0, (5.9)

where A := CRH > 0, and pi > 0.

For the model of the Hypothalamous Pituitary Adrenal (HPA) axis, we first perform rigorous

stability analysis of all multi-parametric steady states and secondly, by construction of a Lyapunov

functional, we prove nonlinear asymptotic stability for some of multi-parametric steady states.

We then take into account the additional effects of the time delay parameter on the stability of the

HPA axis system. Finally we prove the existence of periodic solutions for the HPA axis system.

The main results of this research are published in [51].
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Chapter 6

Spectral Analysis of HPA Model without

Delay

6.1 Introduction

When presented with a system of differential equations, we first attempt to get an understand-

ing of the behavior of the solution before trying to determine the solution itself. We begin by

understanding all possible trajectories corresponding to different solutions depending on initial

conditions. For a system d
dt~x = f (~x, t), we first identify fixed points ~x∗, which are the points

such that d
dt~x = ~0. We can determine the long term behavior of the solution in relationship to the

fixed point. We say that ~x∗ is attracting if there is a δ > 0 such that limt→∞ ~x(t) = ~x∗ whenever

|| ~x(0)− ~x∗|| < δ [81]. This allows trajectories to stray from ~x∗ for a short time, but must return to

~x∗ in the long run. If the trajectories remain in the neighborhood of ~x∗, then we say that the fixed

point is Liapunov stable. More precisely, we say that ~x∗ is Liapunov stable if for each ε > 0, there

is a δ > 0 such that || ~x(t)− ~x∗|| < ε whenever t ≥ 0 and || ~x(0)− ~x∗|| < δ [81]. The fixed points

that are both attracting and Liapunov stable are asymptotically stable, while fixed points that are

neither Liapunov stable or attracting is said to be unstable [81]. Now if the system is linear, it can
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be represented as

ẋ1 = a1,1x1 + a1,2x2 + · · · a1,nxn

ẋ2 = a2,1x1 + a2,2x2 + · · · a2,nxn

...

ẋn = an,1x1 + an,2x2 + · · · an,nxn

or as d
dt~x = A~x, where the matrix A is the coefficient matrix. If the eigenvalues of A are all real

and nonnegative, then the system is asymptotically stable.

However, if the system is nonlinear and represented as

ẋ1 = f1(x1, x2, . . . , xn) (6.1)

ẋ2 = f2(x1, x2, . . . , xn) (6.2)

... (6.3)

ẋn = fn(x1, x2, . . . , xn) (6.4)

then we do not have a coefficient matrix to calculate eigenvalues for. Instead, we linearize the

system by calculating the Jacobian matrix by

J~x∗ =



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
. . .

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn


~x∗

.

We then analyze stability by studying the system d
dt~x = J~x for each fixed point ~x∗. It is important to

note that different fixed points can have different stabilities. Now when the system has parameter

values instead of fixed values as coefficients, stability is often greatly affected by the different

values the parameter may take on.

Since the system (5.6-5.8) has three independent variables and several parameters, the char-

acteristic equation will have degree 3 and it may not be immediately clear how to solve for the

123



eigenvalues. The following lemma will be helpful in determining the roots of the characteristic

equation.

Lemma 6.1.1 (Routh Hurwitz Criteria for a Nonlinear System). Suppose

ẋ = f(x), f : R3 → R3, x(t0) = x0. (6.5)

Suppose xs is a fixed point of (6.5) and the characteristic polynomial at the fixed point is

λ3 + α1λ2 + α2λ + α3 = 0, αi ∈ R1.

If α1 > 0, α3 > 0 and α1α2 > α3, then the fixed point is asymptotically stable. If α1 < 0, α3 < 0 or

α1α2 < α3, then the fixed point is unstable.

For this chapter where we consider the HPA model without delay, we first perform rigorous

stability analysis of all multi-parametric steady states and secondly, by construction of a Lyapunov

functional, we prove nonlinear asymptotic stability for some of multi-parametric steady states.

6.2 Spectral Analysis Without Delay

Now let us consider the model or system without a time delay (5.6-5.8). Following general spectral

analysis techniques for nonlinear ODEs, we obtain the following equations for the nullclines:

o = a, A
1+p2or − p3a = 0, (or)2

p4+(or)2 + p5 − p6r = 0. (6.6)

The algebraic system (6.6) has a nonnegative solution in the following domain:

D := {(a, r, o) ∈ R3
+ : a = o, 0 6 a 6 A

p3
, p5

p6
6 r 6 p5+1

p6
}.

From (6.6) we have

o = a = 1
2p2r

[√
1 + 4p2 A

p3
r− 1

]
,
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1
4p2

2

[√
1 + 4p2 A

p3
r− 1

]2

= p4(p6r−p5)
1+p5−p6r ⇒ A = p3

r

√
p4(p6r−p5)
1+p5−p6r

(
1 + p2

√
p4(p6r−p5)
1+p5−p6r

)
. (6.7)

Note that the equation (6.7) has a unique solution r∗ ∈ ( p5
p6

, p5+1
p6

) in D. Really, the function f1(r) :=

1
4p2

2
[
√

1 + 4p2 A
p3

r − 1]2 is nonnegative and monotone increasing on [0,+∞) such that f1(0) = 0,

f1(+∞) = +∞, but the function f2(r) := p4(p6r−p5)
1+p5−p6r is nonnegative and monotone increasing on

[ p5
p6

, p5+1
p6

] such that f ′′2 (r) > 0, f2(
p5
p6
) = 0, f2(

p5+1
p6

) = +∞. Therefore, there is only one intersection

of f1(r) and f2(r) on the interval [ p5
p6

, p5+1
p6

]. On the other hand, let us denote by

z :=
√

1 + 4p2 A
p3

r− 1 > 0⇒ r = p3
4p2 A z(z + 2).

Then (6.7) can be rewritten in the following form

z4 + 2z3 + C1z2 + C2z− C3 = 0, (6.8)

where

C1 := 4p2(p2 p3 p4 p6−A(p5+1))
p3 p6

, C2 := 8p2
2 p4 > 0, C3 := 16Ap3

2 p4 p5
p3 p6

> 0.

So, we can find the explicit value of r∗ ∈ ( p5
p6

, p5+1
p6

) as a solution of (6.8).

As a result, the system (5.6)–(5.8) has only one fixed point (a∗, r∗, o∗) in D. Here,

a∗ = o∗ = 1
2p2r∗

[√
1 + 4p2 A

p3
r∗ − 1

]
= 1

r∗

√
p4(p6r∗−p5)
1+p5−p6r∗ ,

and r∗ is the solution of (6.7) or (6.8).

Next, we find the Jacobian matrix J∗ for (5.6)–(5.8) at the fixed point (a∗, r∗, o∗).

J∗ =


−p3 −K1 −K3

0 −p6 + K2 K4

1 0 −1

 ,
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where

K1 = Ap2a∗

(1+p2a∗r∗)2 =
2A(

√
1+ 4p2 A

p3
r∗−1)

r∗(1+
√

1+ 4p2 A
p3

r∗)2
=

Ap2
√

p4(p6r∗−p5)(1+p5−p6r∗)

r∗(p2
√

p4(p6r∗−p5)+
√

1+p5−p6r∗)2
=

p2 p3 p4(p6r∗−p5)

(r∗)2(p2
√

p4(p6r∗−p5)+
√

1+p5−p6r∗)2

(
1 + p2

√
p4(p6r∗−p5)
1+p5−p6r∗

)
> 0,

K2 = 2p4r∗(a∗)2

(p4+(a∗r∗)2)2 = 1
2p2

2 p4r∗

[√
1 + 4p2 A

p3
r∗ − 1

]2

(1 + p5 − p6r∗)2 =

2
r∗ (p6r∗ − p5)(1 + p5 − p6r∗) > 0 and 0 6 K2 6 2p6(

√
1 + p5 −

√
p5)

2,

K3 = r∗
a∗K1 =

p2 p3
√

p4(p6r∗−p5)√
1+p5−p6r∗+p2

√
p4(p6r∗−p5)

and 0 6 K3 6 p3,

K4 = r∗
a∗K2 = 2r∗√

p4
(1 + p5 − p6r∗)

3
2

√
(p6r∗ − p5) > 0.

Next, we will analyze the stability of the fixed point. First, we look for eigenvalues for J∗. So,

|J∗ − λI| =

∣∣∣∣∣∣∣∣∣∣
−p3 − λ −K1 −K3

0 −p6 + K2 − λ K4

1 0 −1− λ

∣∣∣∣∣∣∣∣∣∣
= 0,

whence we obtain the characteristic equation:

(λ + 1)(λ + p3)(λ + p6 − K2) + K3(λ + p6) = 0,

i. e.

λ3 + α1λ2 + α2λ + α3 = 0, (6.9)

where

α1 = p3 + p6 − K2 + 1, α2 = p3 + p6 − K2 + p3(p6 − K2) + K3, α3 = p3(p6 − K2) + p6K3.
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Let us denote by

∆ := 18α1α2α3 − 4α3
1α3 + α2

1α2
2 − 4α3

2 − 27α2
3.

If ∆ > 0, then (6.9) has three distinct real roots. If ∆ = 0, then (6.9) has a multiple root and all of

its roots are real. If ∆ < 0, then (6.9) has one real root and two complex roots.

To analyze stability, we will use Lemma 6.1.1. Let x1 := p5
p6

6 x := r∗ 6 x2 := p5+1
p6

. Then in

our case,

α1 > 0⇔ 0 6 K2 < p6 + p3 + 1⇔ (x− x1)(x2 − x) < p6+p3+1
2p2

6
x,

is true provided
(
√

p5+1−√p5)
2

p6
< p6+p3+1

2p2
6
⇒ p5 > 0 if p6 < p3 + 1,

p5 > (p3−p6+1)2

2p6(p3+p6+1) if p6 > p3 + 1,

and

α3 > 0⇔ 0 6 K2 < p6(1 + K3
p3
)⇔ (x− x1)(x2 − x) < x

2p6

[
1 + p2

√
p4(x−x1)

√
x2−x+p2

√
p4(x−x1)

]
.

Which is true for

(
√

p5+1−√p5)
2

p6
< 1

2p6
⇒ p5 > 1

8 .

As α1 > 0 and α3 > 0 then

α2 > 0⇒ 0 6 K2 6 p6 +
K3+p3
p3+1 , (6.10)

α1α2 > α3 ⇔ K2
2 − K2(p3 + 1 + 2p6 +

K3
p3+1 ) + (p3 + p6)(p6 + 1) + K3 > 0. (6.11)

From (6.10) and (6.11) it follows that

0 6 K2 6 p6 +
K3+p3
p3+1 ⇔ (x− x1)(x2 − x) 6 x

2p2
6

[
p6 +

p3
p3+1 +

1
p3+1

p2 p3
√

p4(x−x1)
√

x2−x+p2
√

p4(x−x1)

]
.
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This is true provided

(
√

p5+1−√p5)
2

p6
< 1

2p2
6
(p6 +

p3
p3+1 ), ⇔ 2p5 +

1
2 −

p3
2p6(p3+1) < 2

√
p5(p5 + 1),

⇒ 0 < p5 < p3−p6(p3+1)
4p6(p3+1) if 0 < p6 < p3

p3+1 ,

and

p5 >
(p6(p3+1)−p3)

2

p6(p3+1)+p3
if p6 >

p3
p3+1 .

Therefore, the fixed point is asymptotically stable if:

1
8 < p5 < p3−p6(p3+1)

4p6(p3+1) if 0 < p6 < p3
p3+1 ,

p5 > max{ 1
8 , (p6(p3+1)−p3)

2

p6(p3+1)+p3
} if p3

p3+1 6 p6 < p3 + 1,

p5 > max{ 1
8 , (p6(p3+1)−p3)

2

p6(p3+1)+p3
, (p3−p6+1)2

2p6(p3+p6+1)} if p6 > p3 + 1.

Therefore, we can conclude

Lemma 6.2.1. Assume that A > 0 and pi > 0. Then the system (5.6)–(5.8) has a unique fixed point and

this point is asymptotically stable if the following conditions are satisfied [51]:

1
8 < p5 < p3−p6(p3+1)

4p6(p3+1) if 0 < p6 < p3
p3+1 ,

p5 > max{ 1
8 , (p6(p3+1)−p3)

2

p6(p3+1)+p3
} if p3

p3+1 6 p6 < p3 + 1,

p5 > max{ 1
8 , (p6(p3+1)−p3)

2

p6(p3+1)+p3
, (p3−p6+1)2

2p6(p3+p6+1)} if p6 > p3 + 1.

Example 6.2.1. Let A = 1, p2 = 15, p3 = 7.2, p4 = 0.05, p5 = 0.11, and p6 = 2.9. Then r∗ ≈ 0.03,

a∗ = o∗ ≈ 0.12,

α1 = 11.1− K2 = 11.1− 1
22.5r∗

[√
1 + 25A

3 r∗ − 1
]2
(1.11− 2.9r∗)2 ≈ 11.07,
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Figure 6.1: A plot of different trajectories illustrating the stable node associated with parameter
values given in Example 6.2.1.

α2 = 30.98− 8.2K2 + K3 = 30.98−

8.2
22.5r∗

[√
1 + 25A

3 r∗ − 1
]2
(1.11− 2.9r∗)2 + 60A(r∗)2[√

1+ 25A
3 r∗+1

]2
≈ 30.78,

α3 = 20.88− 7.2K2 + 2.9K3 = 20.88−

7.2
22.5r∗

[√
1 + 25A

3 r∗ − 1
]2
(1.11− 2.9r∗)2 + 174A(r∗)2[√

1+ 25A
3 r∗+1

]2
≈ 20.75,

∆ ≈ 2509.05 > 0, α1α2 > α3. As a result, all characteristic roots are negative real numbers and the fixed

point is stable node.

A visual representation of this stable node can be found in Figure 6.1. This plot was created using the

Matlab ode45 solver [64] using various starting values and the parameter values given above. The starting

values were selected so that a0 > 0, r0 > 0 and o0 > 0 to imitate real initial hormone levels.

6.3 Parameter Analysis

Since the conditions for which the system is asymptotically stable involve numerous parameters,

let’s investigate what happens when certain parameters are set to 0.

Case 1: If A = 0 then the system (5.6)–(5.8) has the fixed point
(

0, p5
p6

, 0
)

. The corresponding

characteristic equation is

(λ + 1)(λ + p3)(λ + p6) = 0,

129



whence λi = −1, −p3, −p6 < 0. As a result,
(

0, p5
p6

, 0
)

is stable node.

Case 2: If p2 = 0 then the system (5.6)–(5.8) has the fixed point
(

A
p3

, r∗, A
p3

)
, where r∗ is a solution

of the equation:
p4

p4+(
A
p3

)2r2
= 1 + p5 − p6r.

This equation can also be written as

r
[

p6
p4 p5

(
A
p3

)2
r2 − 1+p5

p4 p5

(
A
p3

)2
r + p6

p5

]
= 1

which yields the following cases:

• if p4 >
[

A(1+p5)
p3 p6

]2
then there is one real root;

• if p4 =
[

A(1+p5)
p3 p6

]2
then r

(
r− 1+p5

2p6

)2
= p4 p5

p6
, whence

– if p5 A2

p2
3 p6

< 1
54 then we have 3 real roots,

– if p5 A2

p2
3 p6

= 1
54 then we have 2 real roots,

– if p5 A2

p2
3 p6

> 1
54 then we have 1 real root;

• if p4 <
[

A(1+p5)
p3 p6

]2
then r(r− r1)(r− r2) =

p4 p5
p6

( p3
A

)2, where

r1,2 = 1
2p6

[
1 + p5 ±

√
(p5 + 1)2 − p4 p2

6

( p3
A

)2
]

so

– if p4 p5
p6

( p3
A )2 < (r1+r2−K)(r2−2r1−K)(r1−2r2−K)

27 then we have 3 real roots,

– if p4 p5
p6

( p3
A )2 = (r1+r2−K)(r2−2r1−K)(r1−2r2−K)

27 then we have 2 real roots,

– if p4 p5
p6

( p3
A )2 > (r1+r2−K)(r2−2r1−K)(r1−2r2−K)

27 then we have 1 real root, where K2 = r2
1 −

r1r2 + r2
2.

The corresponding characteristic equation is

(λ + 1)(λ + p3)(λ + p6 − K2) = 0,

whence λi = −1, −p3, −p6 + K2. If K2 < p6 then ( A
p3

, r∗, A
p3
) is stable node. If K2 > p6 then

( A
p3

, r∗, A
p3
) is saddle. If K2 = p6 then it is a non-hyperbolic fixed point.
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Figure 6.2: A plot of different trajectories illustrating the unstable saddle-node with only realistic
initial conditions and the above parameter values stated in Example 6.3.1.

Example 6.3.1. Let A = 0.106, p2 = 0, p3 = 0.222, p4 = 0.464, p5 = 0.094, and p6 = 0.418. Then

r∗ ≈ 0.39, 0.83, 1.38 and a∗ = o∗ ≈ 0.47. Using similar calculations as above according to the defined

values. If r∗ ≈ 0.39 then α1 ≈ 1.30, α2 ≈ 0.32, α3 ≈ 0.01, and K2 ≈ 0.33 < p6 which means this is a

stable node. If r∗ ≈ 0.83 then α1 ≈ 1.18, α2 ≈ 0.17, and α3 ≈ −0.008, and K2 .45 > p6 which means this

is a saddle. If r∗ ≈ 1.38 then α1 ≈ 1.28, α2 ≈ 0.29, α3 ≈ 0.01, and K2 ≈ 0.35 < p6 which means this is a

stable node.

This is illustrated in Figure 6.2 using the stated above parameter values. The starting values were

selected so that a0 > 0, r0 > 0 and o0 > 0 to imitate real initial hormone levels.

Case 3: If p3 = 0 then the system (5.6)–(5.8) has the fixed point (+∞, p5+1
p6

,+∞). The corresponding

characteristic equation is

λ(λ + 1)(λ + p6) = 0,

whence λi = −1, 0, −p6. As a result, (+∞, p5+1
p6

,+∞) is non-hyperbolic fixed point.

Case 4: If p4 = 0 then the system (5.6)–(5.8) has the fixed point
(

a∗, p5+1
p6

, a∗
)

, where

a∗ =
p6

2p2(p5 + 1)
[

√
1 +

4Ap2(p5 + 1)
p3 p6

− 1].

In this case, we have that K2 = K3 = 0 and

(λ + 1)(λ + p3)(λ + p6) = 0,
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whence λi = −1, −p3, −p6. Hence, the fixed point is a stable node.

Case 5: If p2 = p4 = 0 then we obtain the explicit solution

a(t) = (a0 − A
p3
)e−p3t + A

p3
→ A

p3
as t→ +∞,

r(t) = (r0 − p5+1
p6

)e−p6t + 1+p5
p6
→ 1+p5

p6
as t→ +∞,

o(t) = (o0 − A
p3
)e−t + (a0 − A

p3
)e−t

t∫
0

e(1−p3)sds + A
p3
→ A

p3
as t→ +∞.

Case 6: If p5 = 0 then the one of fixed points is
(

A
p3

, 0, A
p3

)
and

(λ + 1)(λ + p3)(λ + p6) = 0,

whence λi = −1, −p3, −p6. Hence, this fixed point is stable node. In this case, by (6.6) we obtain

that

A
1+p2ar = p3a⇔ r = 1

p2a (
A

p3a − 1) provided 0 < a < A
p3

,

whence

(ar)2

p4+(ar)2 = p6r

implies that

r = 0 or a2r
p4+(ar)2 = p6.

Hence, we find that

a3 + (
p6(1+p2

2 p4)
p2

− A
p3
)a2 − 2 Ap6

p2 p3
a = − p6

p2
( A

p3
)2 ⇔ f (a) := a(a− a1)(a− a2) = − p6

p2
( A

p3
)2,

where
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a1,2 = 1
2

[
−( p6(1+p2

2 p4)
p2

− A
p3
)±

√
(

p6(1+p2
2 p4)

p2
− A

p3
)2 + 8 Ap6

p2 p3

]
and a1 < 0 < a2. Note that a2 6 A

p3
provided p2

2 p4 > 1. As a result,

• if p2
2 p4 > 1 then

– if fmin > − p6
p2
( A

p3
)2 then no real roots;

– if fmin = − p6
p2
( A

p3
)2 then 1 positive real root;

– if fmin < − p6
p2
( A

p3
)2 then 2 positive real roots;

• if p2
2 p4 < 1 then

– if fmin > − p6
p2
( A

p3
)2 then no real roots;

– if fmin < − p6
p2
( A

p3
)2 then 1 positive real root.

Case 7: If p6 = p5 = 0 then we have the following system

a′(t) = A
1+p2or − p3a,

r′(t) = (or)2

p4+(or)2 ,

o′(t) = a− o.

If r0 = 0 then we find the explicit solution

a(t) = (a0 − A
p3
)e−p3t + A

p3
,

r(t) = 0,

o(t) = (o0 − A
p3
)e−t + (o0 − A

p3
)e−t

∫ t

0
e(1−p3)sds + A

p3
.

If r0 6= 0 then we approximately have
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a′(t) ≈ −p3

(
a− A

p3

)
− A2 p2

p3
r,

r′(t) ≈ 1
p4

(
A
p3

)2
r2,

o′(t) = a− o,

whence

r(t) ≈ r0
1− r0

p4
( A

p3
)2t
→ +∞ as t→ T∗ := p4

r0

( p3
A

)2 ,

a(t) ≈ a0e−p3t + A
p3
(1− e−p3t)− A2 p2

p3
e−p3t

∫ t

0
r(s)ep3sds,

o(t) ≈ o0e−t + e−t
∫ t

0
a(s)esds.

If p6 = 0 but p5 6= 0 then r(t) blows up in a finite time too.

Also, note that if p6 = 0 and p5 = 0 then the system (5.6)–(5.8) has the fixed point ( A
p3

, 0, A
p3
).

The corresponding characteristic equation is

λ(λ + 1)(λ + p3) = 0,

whence λi = −1, −p3, 0. As a result, ( A
p3

, 0, A
p3
) is non-hyperbolic fixed point.

6.4 Nonlinear Stability Analysis

In this section, we show the stability of the fixed point by using the Lyapunov function approach.

We consider the system (5.6)-(5.8) and denote

W(t) := 1
2 [(a(t)− a∗)2 + (r(t)− r∗)2 + (o(t)− o∗)2 + (o(t)r(t)− o∗r∗)2],

where (a∗, r∗, o∗) is the fixed point (a∗ = o∗).
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Lemma 6.4.1 (Stability). Assume that

A > 0, p2 > 0, p3 > 1
2 , p4 > 0, p6 > 1

min{p3− 1
2 ,p6,1}

,

and

0 6 p5 < p6 min{p3 − 1
2 , p6, 1} − 1.

Then there exist W∗ > 0, A0 > 0 and p∗4 > 0 such that

W(t)→ 0 as t→ +∞ (6.12)

provided W(0) < W∗, 0 6 A < A0, p4 > p∗4 , hence, the fixed point (a∗, r∗, o∗) is globally stable. If

p4 6 p∗4 then there exist A0 6 A1 < A2 such that (6.12) holds provided W(0) < W∗, A1 < A < A2

[51].

Proof of Lemma 6.4.1. Using the system (5.6)–(5.8), we have

d
dt W(t)− (or− o∗r∗)(o(t)r(t))′ = −p3(a− a∗)2 − p6(r− r∗)2 − (o− o∗)2+

(a− a∗)
[ A

1+p2or −
A

1+p2o∗r∗
]
+ (r− r∗)

[ p4
p4+(o∗r∗)2 − p4

p4+(or)2

]
+ (a− o∗)(o− o∗).

As

2(a− o∗)(o− o∗) 6 (a− a∗)2 + (o− o∗)2,
∣∣ 1

1+p2or −
1

1+p2o∗r∗
∣∣ 6 p2|or− o∗r∗|,

(o(t)r(t))′ = r(a− o) + o[− p4
p4+(or)2 + 1 + p5 − p6r] = (r− r∗)(a− a∗) + r∗(a− a∗) + a∗(r− r∗)

− (or− o∗r∗)− p6(r− r∗)(o− o∗)− p6o∗(r− r∗) + (o− o∗)
[ p4

p4+(o∗r∗)2 − p4
p4+(or)2

]
+ o∗

[ p4
p4+(o∗r∗)2 − p4

p4+(or)2

]
,

∣∣ p4
p4+(o∗r∗)2 − p4

p4+(or)2

∣∣ 6 |or−o∗r∗|·|or+o∗r∗|
p4+(o∗r∗)2 , |or + o∗r∗| 6 |or− o∗r∗|+ 2o∗r∗,

then

d
dt W(t) 6 −αW(t) + βW

3
2 (t) + γW2(t),
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i. e.

d
dt W(t) 6 γW(t)

[
W

1
2 (t) + β−

√
β2+4αγ

2γ

][
W

1
2 (t) + β+

√
β2+4αγ

2γ

]
, (6.13)

where

α = 2[min{p3 − 1
2 , p6, 1} − Ap2 − r∗ − (p6 + 1)a∗ − 4o∗r∗

p4+(o∗r∗)2 ] > 0

β = 2
3
2 [p6 + 1 + 3o∗r∗

p4+(o∗r∗)2 ] 6 2
3
2 [p6 + 1 + 3 min

{ 1

2p
1
2
4

, 2p2√
1+ 4p2 p5 A

p6
−1

}
],

γ = 4o∗r∗
p4+(o∗r∗)2 6 4 min

{ 1

2p
1
2
4

, 2p2√
1+ 4p2 p5 A

p6
−1

}
,

provided

0 < r∗ + (p6 + 1)a∗ + 4o∗r∗
p4+(o∗r∗)2 < min{p3 − 1

2 , p6, 1} − Ap2. (6.14)

As 0 6 a∗ = o∗ 6 A
p3

, p5
p6

6 r∗ 6 p5+1
p6

and o∗r∗ > 1
2p2

[
√

1 + 4p2 p5 A
p6
− 1] then by (6.14) we get

p6+1+p2 p3
p3

A + min
{ 2

p
1
2
4

, 8p2√
1+ 4p2 p5 A

p6
−1

}
< B := min{p3 − 1

2 , p6, 1} − p5+1
p6

.

Hence,
p6+1+p2 p3

p3
A + 2

p
1
2
4

< B and A 6 2p6 p
1
2
4

p5
(1 + 2p2 p

1
2
4 ),

whence

0 6 A < A0 := min{ 2p6 p
1
2
4

p5
(1 + 2p2 p

1
2
4 ),

p3
p6+1+p2 p3

(B− 2

p
1
2
4

)},

or

F(A) := p6+1+p2 p3
p3

A + 8p2√
1+ 4p2 p5 A

p6
−1

< B and A >
2p6 p

1
2
4

p5
(1 + 2p2 p

1
2
4 ).

As the function F(A) has a unique minimum for positive A, denote by Amin, then there exist

0 < A1 < Amin < A2 such that F(A) < B provided F(Amin) < B.

So, if W(0) < [

√
β2+4αγ−β

2γ ]2 then by (6.13) we deduce that

W(t)→ 0 as t→ +∞.
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Chapter 7

Spectral Analysis of HPA Model with

Delay

7.1 Introduction

Delay-differential equations (DDEs) are a large and important class of dynamical systems. They

arise in systems that have a component which makes adjustments to the system based on it’s

observations. In the HPA model, the CORT reacts based on how much ACTH there was at the

previous time, not instantaneously since the ACTH needs to travel considerable lengths within

the body. Therefore there is a delay between the amount made at time t1 and how CORT responds

to the amount of ACTH when it gets to CORT at time t1 + τ.

There are different kinds of delay-differential equations but we will focus on those of the form

ẋ = f (x(t), x (t− τ1) , x (t− τ2) , . . . , x (t− τn))

where the quantities τi are positive constants. It is important to note that although we will not con-

sider them, there are other forms of DDEs such as equations with state-dependent delays where

the τi ’s depend on x or with distributed delays where the right-hand side of the differential equa-

tion is a weighted integral over past states. [77]

When we give initial conditions for finite-dimensional dynamical systems, we only need to

specify the initial values of the state variables. In order to solve a delay equation, we need more.
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At every time step, we have to look back to earlier τ values of x. So therefore we need to specify

an initial function which gives the behavior of the system prior to time t0 which is typically 0. This

function has to cover a period at least as long as the longest delay since we will be looking back in

time that far.

Let us narrow our focus to equations with a single delay, i.e.

ẋ = f(x(t), x(t− τ))

The initial function would be a function x(t) defined on the interval [−τ, 0]. The solutions of this

dynamical system can be thought of as a sequence of functions f0(t), f1(t), f2(t), . . . defined over

a set of contiguous time intervals of length τ. The points t = 0, τ, 2τ, . . . where the solution seg-

ments meet are called knots. Existence and uniqueness theorems analogous to those for ordinary

differential equations are much more easily proven in this conceptual framework than by trying

to think of DDEs as an evolution over the state space x.[77]

Example 7.1.1. Consider the delay-differential equation

ẋ = −x(t− 1) (7.1)

The equilibrium points satisfy

f (x∗, x∗, x∗, . . . , x∗) = 0

We proceed with DDEs, similarly to ODEs, except that the phase space is now our infinite-dimensional

function space, so that we have to consider displacements from equilibrium in this space. In other

words, our displacements will be time-dependent functions δx(t) over an interval of at least τmax,

the longest delay.

Since writing things like x(t− τ) is tedious. It is a common convention for delayed variables

to be indicated by the subscripted value of the delay xτ ≡ x(t− τ). So let x∗ be an equilibrium of

(7.1) and let the system be disturbed from equilibrium by a small perturbation which lasts from

t = t0 − τmax to t0. Let δx(t) be the displacement from equilibrium, assumed small, at any time in
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the open interval [t0 − τmax, ∞). Accordingly,

x = x∗ + δx

and

ẋ = δ̇x = f (x∗ + δx, x∗ + δxτ1 , x∗ + δxτ2 , . . . , x∗ + δxτn) (7.2)

since each of the quantities δx, δxτ1 , δxτ2 , . . . , δxτn is small, we can linearize

δ̇x ≈ J0δx + Jτ1 δxτ1 + Jτ2 δxτ2 + . . . + Jτn δxτn

J0 is the usual Jacobian with respect to x evaluated at the equilibrium point, while the matrices Jτi

are the Jacobians with respect to the corresponding xτi again evaluated at x = xτ1 = xτ2 = . . . =

xτn = x∗. Suppose that (7.2) also has exponential solutions, i.e. that we can write

δx(t) = Aeλt

Substituting this ansatz into (7.2) and rearranging a bit, we get

λA =
(

J0 + e−λτ1Jτ1 + e−λτ2Jτ2 + . . . + e−λτn Jτn

)
A

This equation can only be satisfied if

∣∣∣J0 + e−λτ1Jτ1 + e−λτ2Jτ2 + . . . + e−λτn Jτn − λI
∣∣∣ = 0 (7.3)

where I is the identity matrix. (7.3) is called the characteristic equation of the equilibrium point

which is a quasi-polynomial or transcendental equation[77]. Since the goal of stability analysis is

still the same, having a transcendental equation makes it a lot harder to determine the roots.

In systems of equations with delay, the characteristic equation may be a transcendental equa-

tion of the form

P(z) + Q(z)e−Tz = 0 (7.4)
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where P and Q are usually polynomials with real coefficients of degree n and m respectively, and

T is a nonnegative constant. We call (7.4) stable if all zeros lie in Re(z) < 0, and unstable if at least

one zero lies in the half-plane Re(z) > 0. If we allow T to vary, as a delay may do, it may happen

that zeros cross the imaginary axis, and the equation may change from stable to unstable or vice

versa. We call this a stability switch.

Theorem 12. [35] Consider equation (7.4), where P and Q are analytic functions in a right half-plane

Re(z) > −δ, δ > 0, which satisfy the following conditions:

i) P(z) and Q(z) have no common imaginary zeros.

ii) P(−iy) = P(iy) and Q(−iy) = Q(iy) for real y.

iii) P(0) + Q(0) 6= 0.

iv) There are at most a finite number of roots of (7.4) in the right half-plane when T = 0.

v) F(y) ≡ |P(iy)|2 − |Q(iy)|2 for real y, has at most a finite number of real zeros.

Under these conditions, the following statements are true.

a) Suppose that the equation F(y) = 0 has no positive roots. Then if (7.4) is stable at T = 0 it remains

stable for all T ≥ 0, whereas if it is unstable at T = 0 it remains unstable for all T ≥ 0.

b) Suppose that the equation F(y) = 0 has at least one positive root and that each positive root is simple.

As T increases, stability switches may occur. There exists a positive number T∗ such that the equation

(7.4) is unstable for all T > T∗. As T varies from 0 to T∗, at most a finite number of stability switches

may occur.

Proof. First note that restriction (i) is not an important restriction because if there is a common

imaginary zero z = iy, then P(z) + Q(z)e−Tz = (iy)k(P1(z) + Q1(z)e−Tz) where k is an integer and

P1 and Q1 have no common zeros and the theorem can be applied to (P1(z)+ Q1(z)e−Tz. Secondly,

restriction (iii) is the same as saying z = 0 is not a root. If z = 0 is a common root of P and Q, we

may proceed by removing the common factor. If P(0) + Q(0) = 0 but z = 0 is not a common root

of P and Q, then z = 0 is a zero for all T ≥ 0, and thus the equation is not stable.
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Thus, let’s begin by looking at purely imaginary roots z = iy 6= 0 of (7.4). Assume that (i), (ii),

and (iii) hold. Because of (ii) we may choose y > 0 WLOG. Then (7.4) implies that

P(iy) = −Q(iy)e−Tiy

|P(iy)| = | −Q(iy)e−Tiy|

|P(iy)| = |Q(iy)| (7.5)

and this determines possible y. If we set

P(iy) = PR(y) + iPI(y) Q(iy) = QR(y) + iQI(y)

where PR, PI , QR, and QI are real-valued functions of y. Thus, (7.4) implies that

(PR(y) + iPI(y)) + (PR(y) + iPI(y))e−Tiy = 0

(PR(y) + iPI(y)) + (PR(y) + iPI(y))(cos(y) + i sin(y)) = 0

Equating real and imaginary parts yields

 QR cos(Ty) + QI sin(Ty) = −PR

QI cos(Ty)−QR sin(Ty) = −PI

(7.6)

Thus

sin(Ty) =
−PRQI + QRPI

Q2
R + Q2

I
cos(Ty) = −PRQR + PIQI

Q2
R + Q2

I
(7.7)

It is not possible that QR and QI are both zero, since then QR + iQI = 0. Then by (7.5) it would

imply P(iy) = Q(iy) = 0 and thus they would have a common root which we assumed we do not

have. So for each root y of (7.5), it may be possible to determine values of T that satisfy (7.7) with

sine and cosine in [−1, 1].

Assuming that we have found values of iy and T that satisfy (7.4), (7.5), (7.6), (7.7), we can

assume that the root z = x + iy of (7.4) as a function of T and try to determine the direction of
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motion of z as T is varied. Thus, we determine

s = sign
{

Re
(

dz
dT
|z=iy

)}
= sign

{
d

dT
(Rez)|z=iy

}
.

Since the left side of (7.4) is an analytic function of z and T, a root z will be a differentiable

function of T, except at points where the root is a multiple. At a multiple root, we have

P′(z) + [Q′(z)− TQ(z)]e−Tz = 0 (7.8)

or since e−Tz = − P(z)
Q(z)

,

P′(z)Q(z)− P(z)Q′(z) + TP(z)Q(z) = 0 (7.9)

If we assume that (7.8) does not hold, we may consider z = z(T) to be a differentiable function, and

then differentiating (7.4) with respect to T, under the assumption that P and Q are independent of

T, yields

P′(z)
dz
dT

+ Q′(z)e−Tz dz
dT
− TQ(z)e−Tz dz

dT
− zQ(z)e−Tz = 0

dz
dT

=
zQ(z)

P′(z)eTz + Q′(z)− TQ(z)

Taking the inverse and using (7.4),

(
dz
dT

)−1

=
P′(z)eTz + Q′(z)− TQ(z)

zQ(z)

=
P′(z)eTz

−zP(z)eTz +
Q′(z)
zQ(z)

− TQ(z)
zQ(z)

= − P′(z)
zP(z)

+
Q′(z)
zQ(z)

− T
z

(7.10)

Now it is important to note that at a simple root (7.9) fails and therefore ( dz
dT )
−1 is not zero. At a

root of (7.4), P(z) = 0 implies that Q(z) = 0 and vice versa, which contradicts our assumption that
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P and Q are not simultaneously zero. Thus, (7.10) holds at any simple root iy of (7.4). Moreover,

s = sign
{

Re
(

dz
dT

)
|z=iy

}
= sign

[
− P′(iy)

iyP(iy)
+

Q′(iy)
iyQ(iy)

− T
iy

]
(7.11)

= −signIm
[

P′(iy)
yP(iy)

− Q′(iy)
yQ(iy)

]
(7.12)

By (7.5) and assuming that y > 0, we can further simplify to

s = −signIm[P′(iy)P(iy)−Q′(iy)Q(iy)] (7.13)

Now this equation tells us the direction in which a root z(T) of (7.4) crosses the imaginary axis at

any simple root iy of (7.4) if s 6= 0. It is important to note that the crossing direction at iy depends

on y only and is independent of T.

There is another useful form of (7.13) that we get by noting

P′(iy) = P′(z)|z=iy =
1
i

dP(iy)
dy

= −i
d

dy
[PR(y) + iPI(y)]

Using the notation that P′R(y) =
dPR(y)

dy and so on, we have P′(iy) = P′I(y)− iP′R(y) and Q′(iy) =

Q′I(y)− iQ′R(y). Thus,

−Im[P′(iy)P(iy)−Q′(iy)Q(iy)] = PRP′R + PI P′I −QRQ′R −QIQ′I (7.14)

Also, we define

F(y) = |P(iy)|2 − |Q(iy)|2 = P2
R(y) + P2

I (y)−Q2
R(y)−Q2

I (y)

If iy is a root of (7.5), then F(y) = 0 and that y is a simple root of F(y) if and only if it is a simple

root of (7.5). We also know that

F′(y) = 2(PRP′R + PI P′I −QRQ′R −QIQ′I)
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which yields that

s = signF′(y). (7.15)

Everything can be summarized as follows:

Assume that P and Q are as in (12), and that they satisfy (i), (ii) and (iii) of the theorem. The the

following assertions hold.

i) If iy(y > 0) and T satisfy (7.4) and if iy is a simple root and s 6= 0, then y is a simple root of

F(y) = 0 and the root z(T) of (7.4) crosses the imaginary axis (as T increases) in the direction given

by s = signF′(y).

ii) iy(y > 0) is a simple root of (7.5) if and only if it is a simple root of F(y) = 0. Then for this y there are

infinitely many values of T satisfying (7.7) and for each such value T, z = iy is a simple root of (7.4)

and s 6= 0.

This theorem and its proof served as the template used to analyze the effects of the time delay

on the stability in the system (5.1)–(5.3).

For this chapter we take into account the additional effects of the time delay parameter on the

stability of the HPA axis system. Then we prove the existence of periodic solutions for the HPA

axis system.

7.2 Spectral Analysis with Delay

Note the fixed point (a∗, r∗, o∗) for (5.6)–(5.8) coincides with the one for (5.1)–(5.3). Let us denote

by

Jτ :=


∂ f1
∂aτ

∂ f1
∂rτ

∂ f1
∂oτ

∂ f2
∂aτ

∂ f2
∂rτ

∂ f2
∂oτ

∂ f3
∂aτ

∂ f3
∂rτ

∂ f3
∂oτ

 ,

144



where aτ = a(t− τ), rτ = r(t− τ), and oτ = o(t− τ). Then Jτ at the point (a∗, r∗, a∗) is equal

J∗τ :=


0 0 0

0 0 0

1 0 0

 .

Now we will look for eigenvalues for the matrix J∗ + e−λτ J∗τ . So,

|J∗ + e−λτ J∗τ − λI| =

∣∣∣∣∣∣∣∣∣∣
−p3 − λ −K1 −K3

0 −p6 + K2 − λ K4

1 + e−λτ 0 −1− λ

∣∣∣∣∣∣∣∣∣∣
= 0,

whence we obtain the characteristic equation:

(λ + 1)(λ + p3)(λ + p6 − K2) = −(1 + e−λτ)K3(λ + p6).

Time delays are known to affect the stability of a fixed point. They can induce stability switches

in which the zeros of the characteristic equation may cross the imaginary axis as the delay, τ,

increases. Looking at the characteristic equation as a function of τ, and analyzing the location of

the roots and the direction of motion as they cross the imaginary axis (see [35]). Destabilization

will happen at critical values τc which is when there is a pair of purely imaginary characteristic

values. Following the ideas of papers [35] and [8], let’s rewrite the characteristic equation as

C(λ) := (λ + 1)(λ + p3)(λ + p6 − K2) + (1 + e−λτ)K3(λ + p6)

= ((λ + 1)(λ + p3)(λ + p6 − K2) + K3(λ + p6)) + e−λτK3(λ + p6)

= P(λ) + Q(λ)e−λτ = 0. (7.16)
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Then define

F(y) = |P(iy)|2 − |Q(iy)|2

= y6 + (p2
6 − 2K2 p6 + p2

3 − 2K3 + K2
2 + 1)y4 + (K2

2 − 2K2K3 + 2K3 p3

−2K2K3 p3 + p2
3 + K2

2 p2
3 − 2K2 p6 + 2K2K3 p6 − 2K2 p2

3 p6 + p2
6 − 2K3 p2

6

+p2
3 p2

6)y
2 + (K2

2 p2
3 − 2K2K3 p3 p6 − 2K2 p2

3 p6 + 2K3 p3 p2
6 + p2

3 p2
6). (7.17)

We want to use Theorem 12, so we need to check the following conditions:

1. P(λ) = (λ+ 1)(λ+ p3)(λ+ p6−K2) +K3(λ+ p6) and Q(λ) = K3(λ+ p6) have no common

imaginary zeros since each pi are real values.

2. It is quick to see that P(iλ) = P(iλ) and Q(iλ) = Q(iλ) for real λ.

3. P(0) + Q(0) = p3(p6−K2) + 2K3 p6 6= 0 so this is an important restriction in order to use the

Theorem 12.

4. Referring back to (6.9), we see that there are at most 3 roots of (7.16) if τ = 0.

5. (7.17) has at most 6 real zeros for real y.

Therefore, by Theorem 12 from the Appendix, if F(y) has no positive roots, the system is stable for

all τ > 0. If F(y) has a simple positive root y0, then there exists a pair of purely imaginary roots

±iv0 such that v0 =
√

y0. For this v0, there is a countable sequence of {τn
0 } of delays for which

stability switches can occur. Also, there exists a positive τc such that the system is unstable for all

τ > τc. Investigating this further, let x = y2

F(x) = x3 + b1x2 + b2x + b3, (7.18)

where b1 = p2
6 − 2K2 p6 + p2

3 − 2K3 + K2
2 + 1, b2 = K2

2 + −2K2K3 + 2K3 p3 − 2K2K3 p3 + p2
3 +

K2
2 p2

3− 2K2 p6 + 2K2K3 p6− 2K2 p2
3 p6 + p2

6− 2K3 p2
6 + p2

3 p2
6, and b3 = K2

2 p2
3− 2K2K3 p3 p6− 2K2 p2

3 p6 +

2K3 p3 p2
6 + p2

3 p2
6. Note that

F′(x) = 3x2 + 2b1x + b2
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and

∆0 = b2
1 − 3b2. (7.19)

Now analyzing the roots of (7.18),

• If ∆0 6 0, then F′(0) > 0 and F(x) is monotonically non-decreasing. Further,

– if F(0) > 0, then F has no positive roots and all the roots of the characteristic will remain

to the left of the imaginary axis for all τ > 0.

– if F(0) < 0, then since limx→∞ F(x) = ∞, there is at least one positive root of F and thus

the roots of the characteristic equation can cross the imaginary axis.

• If ∆0 > 0 then F has critical points

xc1 =
−b1+

√
∆0

3 , xc2 =
−b1−

√
∆0

3

and if xc1 > 0 and F(xc1) < 0, then F has positive roots (see [35]).

Stability switches are possible for each positive simple root xj of (7.18) and the cross is from

left to right if F′(v0) > 0, and from right to left if F′(v0) < 0 according to Theorem 12 (see [35]).

Now let’s analyze the characteristic quasi-polynomial (7.16) for λ = iv:

C(iv) = A1 − A2 cos(vτ)− A3 sin(vτ) + i[A4 − A3 cos(vτ) + A2 sin(vτ)] = 0,

where

A1(v) = p3 p6 − K2 p3 + K3 p6 − v2(p6 + p3 − K2 + 1), A2 = −K3 p6,

A4(v) = v(p3 − K2 − K2 p3 + p6 + p3 p6 + K3)− v3, A3(v) = −K3v.

So xj (j = 1, 2, 3) is a positive root of F(x) = 0 and vj =
√xj. Then vj satisfies (7.20) if its a solution

to the system

 A1(v)− A2 cos(vτ)− A3(v) sin(vτ) = 0,

A4(v)− A3(v) cos(vτ) + A2 sin(vτ) = 0.
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This yields

sin(vτ) = A1(v)A3(v)−A2 A4(v)
A2

2+A2
3(v)

, cos(vτ) = A1(v)A2+A3(v)A4(v)
A2

2+A2
3(v)

,

provided max{|A1(v)A3(v)− A2A4(v)|, |A1(v)A2 − A3(v)A4(v)|} 6 A2
2 + A2

3(v),

Therefore, for every positive root vj, it yields the following sequence of delays {τn
j } for which

there are pure imaginary roots (7.16):

τn
j = 1

vj

{
arctan( A1(vj)A3(vj)−A2 A4(vj)

A1(vj)A2+A3(vj)A4(vj)
+ π n)

}
for n = 0, 1, 2, . . . (7.20)

As a result the following statement holds.

Lemma 7.2.1. The system (5.6)–(5.8) with delay and p3(p6 − K2) + 2K3 p6 6= 0 is stable for all τ > 0 if

F(0) > 0 and ∆0 6 0 (where ∆0 is from (7.19)). The system has stability switches at some {τn
j } for every

positive root vj of (7.16). Furthermore, if A = 0, p2 = 0 or p5 = p6 = 0 then the delay has no affect on the

stability of the system. [51]

7.3 Existence of Periodic Solutions

In this section, by Picard’s method we prove the existence of solutions to problem (5.1)–(5.4).

Theorem 13. [51] Let A > 0, pi > 0, and assumption (5.5) hold. Let

a′τ(0) + p3aτ(0) = A
1+p2o0r0

, (7.21)

then problem (5.1)–(5.4) has a unique non-negative solution (a(t), r(t), o(t)) in C2 for all t ≥ 0. Moreover,
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for all time t ≥ 0 there are estimates

Ap6

p3 p6 + 12Ap2(p5 + 1)
[1− e−p3τ][1 + (p3τ)−1] ≤ a(t) ≤ 3A

p3
+ aτ(0),

Ap6

p3 p6 + 12Ap2(p5 + 1)
[1− e−2τ][1− e−p3τ][1 + (p3τ)−1] ≤ o(t) ≤ 3A

p3
+ aτ(0) + o0 + max

t∈[−τ,0]
aτ(t),

p5

p6
[1− e−p6τ][1 + (p6τ)−1] ≤ r(t) ≤ p5 + 1

p6
+ r0.

Remark 7.3.1. It is apparent that for aτ(t) = a0 +Λ t2e−t, where Λ is a positive number, fitting condition

(7.21) of this theorem is rewritten as

a0 = A
p3(1+p2o0r0)

, o0 > 0, r0 > 0.

Theorem 14. Under the conditions of Theorem 13, the system (5.1)–(5.5) has at least one C2-smooth T-

periodic solution, where T 6= τ. [51]

Proof of Theorem 14. The main line of proof follows (see [55, pp. 278–280]) (see also [54, Theo-

rem 5]). Rewrite the system of (5.1)–(5.3) in the following form

x′(t) = M x(t) + B x(t− τ) + f(x(t)), (7.22)

where

x(t) =


a(t)

r(t)

o(t)

 , f(x(t)) =


A

1+p2or

p5 +
(or)2

p4+(or)2

0

 ,

M =


−p3 0 0

0 −p6 0

0 0 −1

 , B =


0 0 0

0 0 0

1 0 0

 .

Obviously, the right-hand side of (7.22) is T-periodic with respect to t as it does not depend on
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time explicitly. Without loss of generality, we may assume that

0 6 τ < T.

This is true because otherwise we could represent the τ in the form

0 < τ = nT + τ1, where n ∈ Z+, τ1 ∈ [0, T).

Then shift to the auxiliary equation

x′(t) = M x(t) + B x(t− τ1) + f(x(t))

the T-periodic solutions of which coincide with the T-periodic solutions of (7.22).

On the set of all vector-valued functions x(t) defined on [0, T], let us define an operator Sτ by

Sτx(t) :=


x(t− τ) if τ 6 t 6 T,

x(t− τ + T) if 0 6 t < τ.

Note that the T-periodic solutions of (7.22) coincides with the solutions of the following integral

equations:

x(t) = T(τ, x) := x(0) +
t∫

0

(M x(s) + B Sτx(s) + f(x(s))) ds.

The operator T(τ, x) maps every continuous vector-valued function x(t) into a continuous vector-

valued function for 0 6 t 6 T, therefore T(τ, x) is compact in C. Next, we will show that for all

T-periodic solutions xp(t) there exists R > 0 such that

|xp(t)| 6 R < ∞. (7.23)
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Really, from (7.3) we deduce that

|xp(t)| 6 |xp(0)|+
t∫

0

[|M| |xp(s)|+ |B| |Sτxp(s)|+ |f(xp(s))|] ds 6

|xp(0)|+ [(p2
3 + p2

6 + 1)
1
2 + 1]

t∫
0

|xp(s)| ds + (A2 + (p5 + 1)2)
1
2 t.

From here, using Grönwall’s Lemma, we arrive at

|xp(t)| 6 (|xp(0)|+ a)ebT − a,

where a = (A2+(p5+1)2)
1
2

(p2
3+p2

6+1)
1
2 +1

, b = (p2
3 + p2

6 + 1)
1
2 + 1. Hence, (7.23) holds with R = (|xp(0)|+ a)ebT − a.

As a result, by the fixed point theorem the integral equation (7.3) has at least one solution, and

consequently the equation (7.22) has at least one T-periodic solution.

7.3.1 Periodic Solutions with the Period T = τ

Lemma 7.3.1. If

o0 = aτ(−τ), aτ(0) = A
p3

[
1 + p2

√
p4(p6r0−p5)
p5+1−p6r0

]−1
, p5

p6
6 r0 6

p5+1
p6

.

then the problem (5.1)–(5.4) has at least one τ-periodic solution.

Proof of Lemma 7.3.1. Note that if a function Φ(t) ∈ C2[a, b] is periodic with a period T > 0 then

Φ(t + T) = Φ(t) and Φ′(t + T) = Φ′(t). Let (a(t), r(t), o(t)) be a T-periodic solution of (5.1)–(5.3)

from Theorem 14. Then for this solution we have

A
1+p2o(t)r(t) − p3a(t) = A

1+p2o(t+T)r(t+T) − p3a(t + T),

− p4
p4+(o(t)r(t))2 + 1 + p5 − p6r(t) = − p4

p4+(o(t+T)r(t+T))2 + 1 + p5 − p6r(t + T), (7.24)

a(t− τ)− o(t) = a(t + T − τ)− o(t + T), (7.25)
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whence

o(t)r(t) = o(t + T)r(t + T), a(t− τ) = a(t + T − τ). (7.26)

Let T = τ > 0. Then from (7.26) for t ∈ [0, τ] we have

aτ(t) = a1(t), o1(t)r1(t) = o2(t + τ)r2(t + τ). (7.27)

By (7.27) at t = 0 we get

aτ(0) = a1(0) = e−p3τaτ(0) + A e−p3τ

τ∫
0

ep3s ds
1+p2r1(s)o1(s)

,

o0 = o1(τ) = e−τo0 +

0∫
−τ

aτ(s)es ds,

r0 = r1(τ) = e−p6τr0 − p4 e−p6τ

τ∫
0

ep6s ds
p4+r2

1(s)o
2
1(s)

+ p5+1
p6

(1− e−p6τ),

whence

aτ(0) = A e−p3τ

1−e−p3τ

τ∫
0

ep3s ds
1+p2r1(s)o1(s)

, o0 = 1
1−e−τ

0∫
−τ

aτ(s)es ds,

r0 = e−p6τ

1−e−p6τ

[
−p4

τ∫
0

ep6s ds
p4+r2

1(s)o
2
1(s)

+ p5+1
p6

(ep6τ − 1)
]
.

Hence

f1(τ) := (ep3τ − 1) aτ(0)
A −

τ∫
0

ep3s ds
1+p2r1(s)o1(s)

= 0,

f2(τ) := (1− e−τ)o0 −
0∫
−τ

aτ(s)es ds = 0,

f3(τ) := 1
p4

[
p5+1

p6
(ep6τ − 1)− (ep6τ − 1)r0

]
−

τ∫
0

ep6s ds
p4+r2

1(s)o
2
1(s)

= 0.

As fi(0) = 0 and

f ′1(τ) = ep3τ[ p3aτ(0)
A − 1

1+p2r0o0
] ≡ 0 if p3aτ(0)

A = 1
1+p2r0o0

,
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f ′2(τ) := e−τ(o0 − aτ(−τ)) ≡ 0 if o0 = aτ(−τ),

f ′3(τ) := ep6τ
[

p5+1−p6r0
p4

− 1
p4+r2

0o2
0

]
≡ 0 if p5+1−p6r0

p4
= 1

p4+r2
0o2

0
,

then fi(τ) = 0 for all τ > 0 provided

o0 = aτ(−τ), aτ(0) = A
p3

[
1 + p2

√
p4(p6r0−p5)
p5+1−p6r0

]−1
, p5

p6
6 r0 6

p5+1
p6

.

Example 7.3.1. Let A = 1, p2 = 11, p3 = 1.2, p4 = 0.05, p5 = 0.11, and p6 = 2.9. Then the initial

conditions are a0 = A
p3

(
1 + p2

√
p4(p6r0−p5)
p5+1−p6r0

)−1

, r0 = 1
2

(
p5
p6
+ p5+1

p6

)
, and o0 = a0. With these parameter

values we solve (5.1)–(5.4) numerically using the Matlab solver dde23 [64]. The resulting periodic solutions

can be seen in Figure 7.1.

If we perturb the parameters by a bit, the periodicity changes. We illustrate a periodicity change by using

the parameters A = 1, p2 = 7, p3 = 1.2, p4 = 0.05, p5 = 0.51, and p6 = 3.1. Then the initial conditions

are a0 = A
p3

(
1 + p2

√
p4(p6r0−p5)
p5+1−p6r0

)−1

, r0 = 1
2

(
p5
p6
+ p5+1

p6

)
, and o0 = a0. The resulting periodic solutions

can be seen in Figure 7.2.

Periodicity of solutions can also be illustrated by plotting delayed function versus no delay function or

function versus derivative as seen in Figure 7.3.

7.4 Numerical Analysis

In order to concretely understand how the delay is affecting stability, let’s set the parameters in

equation in the equation (7.16) to p3 = 0.41, p6 = 0.91, K2 = 0.81, and K3 = 0.41. We then proceed

with our calculations using these values to illustrate the dynamics of eigenvalues with respect to
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(a)

(b)

Figure 7.1: Plot of the solutions a(t), r(t), and o(t) with the parameter values in Example 7.3.1 part
a.

154



(a)

(b)

Figure 7.2: Plot of the solutions a(t), r(t), and o(t) with the parameter values in Example 7.3.1 part
b.
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(a) a(t) and a(t− 4) (b) a(t) and a′(t)

(c) r(t) and r(t− 4) (d) r(t) and r′(t)

(e) o(t) and o(t− 4) (f) o(t) and o′(t)

Figure 7.3: Plots using parameter values A = 1.5, p2 = 1.8, p3 = 0.2, p4 = 5, p5 = 0.11, p6 = 0.9
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Figure 7.4: Contour plot for τ = 0.

the time delay. Taking the real and imaginary parts, we rewrite equation (7.16) as a system



−K2 p3 +K3 p6 + p3 p6 − K2x + K3x + p3x− K2 p3x + p6x + p3 p6x + x2

−K2x2 + p3x2 + p6x2 + x3 − y2 + K2y2 − p3y2 − p6y2 − 3xy2

+e−τxK3 p6 cos(τy) + e−τxK3x cos(τy) + e−τxK3y sin(τy) = 0,

−K2y +K3y + p3y− K2 p3y + p6y + p3 p6y + 2xy− 2K2xy + 2p3xy

+2p6xy + 3x2y− y3 + e−τxK3y cos(τy)− e−τxK3 p6 sin(τy)

−e−τxK3x sin(τy) = 0.

The red lines represent the solution curves for the first equation and the blue lines represent

the solution curves for the second equation for different values of the delay τ in Figures 7.4-7.9.

The eigenvalues for the system (5.6)–(5.8) are roots of (7.16) and correspond to the intersections

between the red and blue lines.

When there is no delay, i.e. τ = 0, we only have three eigenvalues λ ≈ −0.9,−0.2 ± 0.8i

(see Figure 7.4). Note that zooming out on the graph would not show additional crossings of the

solution curves. If we were to classify these three eigenvalues, they would all be attractors, with

one traditional attractor and one spiraling attractor.

When the delay is non-zero, i.e. τ = 1.3, we notice that an additional pair of complex eigenval-

ues appears from −∞. This is shown in Figure 7.5. It isn’t as clear, but the original two complex
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Figure 7.5: Contour plot for τ = 1.3.

Figure 7.6: Contour plot for τ = 2.
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Figure 7.7: Contour plot for τ = 4.5

pairs of eigenvalues have also moved slightly toward the imaginary axis. As τ increases to τ = 2

(see Figure 7.6), the original pair of complex eigenvalues is about to cross the imaginary axis

while the other pair of complex values are closer. When the pair of complex eigenvalues crosses

the imaginary axis, the once stable system is no unstable.

When we skip to τ = 4.5, it is obvious (see Figure 7.7) that countably many eigenvalues will

originate from −∞ and move toward the imaginary axis as τ increases. When τ = 8 (see Figure

7.8), we can see that there looks to be two pairs of complex eigenvalues crossing the imaginary

axis. It isn’t as clear, but between τ = 8 and τ = 10.8 the first pair of complex eigenvalues that

crossed the imaginary axis have crossed back into the stable region while another pair crossed into

the unstable region.

The eigenvalues can cross the imaginary axis only at the points y1 ≈ ±0.7 and y2 ≈ ±0.25

which are real roots of the equation (7.17). It is easier to see these values in Figure 7.10 and 7.11.

The density of complex eigenvalues around these crossing points y1, y2 is increasing as the τ gets

larger.

When the delay τ < τ∗ ≈ 2 (where τ∗ is a critical value found as a solution of (7.20) with

v1 =
√
|y1|) all eigenvalues are stable. The first stability switch happens at τ∗ ≈ 2 when two

complex conjugate eigenvalues cross the imaginary axis at y1 ≈ ±0.7 changing the sign of the real

part from negative to positive. At a later time τ∗ ≈ 11 (where this τ∗ is a critical value found as a
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Figure 7.8: Contour plot for τ = 8

Figure 7.9: Contour plot for τ = 10.8
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(a) (b)

Figure 7.10: Tracking two complex eigenvalues to see how the value of their real part changes.

(a) (b)

Figure 7.11: Tracking two complex eigenvalues to see how the value of their imaginary part
changes.

solution of (7.20) with v2 =
√
|y2|) this complex pair will cross the imaginary axis back changing

the sign of the real part from positive to negative (see Figure 7.9).

Solving (7.20) and taking into account the periodicity of the arctangent function one can ob-

tained the infinite sequences of delays associated with v1 and another infinite sequence associated

with v2 at which stability switches may happen. At time delays associated with v1 a complex

conjugate pair of eigenvalues may cross the imaginary axis from left to right and for time delays

associated with v2 the pair may cross the imaginary axis from right to left. If the derivative of F(y)

(see (7.16)) does not change sign at the corresponding τ∗ from either of the two sequences above,

then the crossing of the imaginary axis does not happen.
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Chapter 8

Conclusions

After our investigation into both the multistring systems and the HPA axis system, we have a

thorough understanding of their respective spectral properties and the affect they have on the be-

havior of the solution. We looked at operator couplings to ensure the model would still be self

adjoint if we coupled a discrete string with a continuous string. Then we utilized Nevanlinna

functions to describe the full spectrum of connected Stieltjes strings for any number of strands

with various number of beads on them. Utilizing these Nevanlinna functions, we showed an al-

ternate/improved inverse solution to the connected Stieltjes string problem. Finally we looked at

the HPA axis system. We investigated the stability of the solution without a time delay parameter

and then looked at the affect the time delay parameter would have on the stability of the solution.

All of this work just touches the surface of work left to be done in this field. The ability to

couple two different operators and have the result be self adjoint is great, but it would be even

better to couple more than two operators. The current method for calculating the boundary space

only allows for 2 operators. Coupling more than two operators will require developing a new

method of calculating a boundary space which would ensure the coupled operators will be self

adjoint.

While we performed a decently rigorous study of multistring systems, we can take it one step

further. Rather than have the edges of the strings be fixed, how does the system behave if the edges

of the strings are connected to their neighbor edge? We could also study a multistring system in

which some strands are continuous while others are discrete.

Biological processes are mysterious compared to physical phenomena in that we don’t have
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concrete governing equations. There are mathematicians whose research field is deriving the best

model to explain a biological process. Although it may not have been very clear, the mathemat-

ical model of the HPA axis we studied is just one of many that mathematicians claim accurately

explain the HPA axis. For future work, we can perform similar analysis on the other models of the

HPA axis. Depending on the results of the analysis of another model, we could also compare the

findings with the model considered here.
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Appendix A

Appendix Matlab Code

Modeling N Strings

1 c l e a r a l l ;

2 c l o s e a l l ;

3 c l c

4 % Wave Equation f o r N s t r i n g s connected in the middle

5 % u _ t t =c^2u_xx

6 % x in [ 0 , xend ] xend=length of indiv idua l s t r i n g

7 % t in [ 0 , tend ]

8 % u ( x , 0 ) = f ( x ) u_t ( x , 0 ) =g ( x ) =0

9

10 %SetUp Conditions

11 N=6; %number of s t r i n g s meeting in the middle

12 c =1; %wave speed

13 tend =12; %time endpoint

14 numt=100∗ tend ; %number of time s teps

15

16 xpts =25; %number of x grid points per s t r i n g ( not inc luding

j o i n i n g pt )
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17 numx=N∗ xpts +1; %number of x grid points

18 xend=pi ; %length of indiv idua l s t r i n g

19 x s t a r t =0; %always s t a r t s a t 0

20 x= l i n s p a c e ( x s t a r t , xend , ( xpts +1) ) ; %generates x values

21

22 dx=x ( 2 )−x ( 1 ) ;

23 dt=tend/numt ;

24 u=zeros (numx, numt ) ;

25

26 %repeat x values in order to evaluate i n i t i a l values

27 f o r j =2 :N

28 f o r i = ( ( j −1)∗ xpts +2) : ( j ∗ xpts +1)

29 x ( i ) =x ( i −(( j −1)∗ xpts ) ) ;

30 end

31 end

32

33 %%%%INITIAL POSITION : Add as many loops necessary f o r each s t r i n g ’ s

i n i t i a l

34 %%%%p o s i t i o n

35 f o r i = 1 : ( xpts +1)

36 u ( i , 1 ) =(1/10) ∗(−2∗ s in ( x ( i ) )−s in (2∗ x ( i ) ) ) ∗ (3/2) ; %S t r i n g 1 I n i t i a l

P o s i t i o n

37 end

38 f o r i =( xpts +2) : ( 2 ∗ xpts +1)

39 u ( i , 1 ) =(1/10)∗(−2∗ s i n ( x ( i ) )−s i n (2∗ x ( i ) ) ) ∗ (1/2) ; %S t r i n g 2 I n i t i a l

P o s i t i o n

40 end

41 f o r i =(2∗ xpts +2) : ( 3 ∗ xpts +1)

42 u ( i , 1 ) =(1/10) ∗ (1/4) ∗ (4∗ s in ( x ( i ) ) +s i n (4∗ x ( i ) ) ) ; %S t r i n g 3 I n i t i a l
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P o s i t i o n

43 end

44 f o r i =(3∗ xpts +2) : ( 4 ∗ xpts +1)

45 u ( i , 1 ) =(1/10) ∗ (3/4) ∗ (4∗ s in ( x ( i ) ) +s i n (4∗ x ( i ) ) ) ; %S t r i n g 4 I n i t i a l

P o s i t i o n

46 end

47 f o r i =(4∗ xpts +2) : ( 5 ∗ xpts +1)

48 u ( i , 1 ) =(1/10) ∗ (1/2) ∗(−3∗ s i n ( x ( i ) )−s i n (3∗ x ( i ) ) ) ; %S t r i n g 5 I n i t i a l

P o s i t i o n

49 end

50 f o r i =(5∗ xpts +2) : ( 6 ∗ xpts +1)

51 u ( i , 1 ) =(1/10) ∗ (1/2) ∗ (3∗ s in ( x ( i ) ) +s i n (3∗ x ( i ) ) ) ; %S t r i n g 6 I n i t i a l

P o s i t i o n

52 end

53

54 %%%CHECK STABILITY

55 alpha=c∗dt/dx ;

56 alpha ^2∗ s i n ( dx/2)^2

57

58 i f ( 1< alpha ^2∗ s in ( dx/2)^2 )

59 f p r i n t f ( ’ The s t a b i l i t y condi t ion f a i l s .\n ’ )

60 end

61

62 %%%%Boundary Conditions

63 f o r j =1 :N

64 f o r i =1:numt

65 u ( ( j ∗ xpts +1) , i ) =0 ; %D i r i c h l e t a t the ends

66 end

67 end
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68

69 %%%%F i r s t I t e r a t i o n

70 f o r k =1:N

71 i f k<N

72 u ( 2 , 2 ) =(1−alpha ^2)∗u ( 2 , 1 ) +(1/2) ∗alpha ^2∗(u ( 3 , 1 ) +u ( 1 , 1 ) ) ;

73 f o r i = ( ( k−1)∗ xpts +3) : ( k∗ xpts )

74 u ( i , 2 ) =(1−alpha ^2)∗u ( i , 1 ) +(1/2) ∗alpha ^2∗(u ( i +1 ,1)+u ( i −1 ,1) )

;

75 end

76 u ( ( k∗ xpts +2) , 2 ) =(1−alpha ^2)∗u ( ( k∗ xpts +2) , 1 ) +(1/2) ∗alpha ^2∗(u ( ( k∗

xpts +3) , 1 ) +u ( 1 , 1 ) ) ;

77 e l s e

78 f o r i = ( ( k−1)∗ xpts +3) : ( k∗ xpts )

79 u ( i , 2 ) =(1−alpha ^2)∗u ( i , 1 ) +(1/2) ∗alpha ^2∗(u ( i +1 ,1)+u ( i −1 ,1) )

;

80 end

81 end

82 end

83 u ( 1 , 2 ) =(1/(3∗N) ) ∗ (4∗u ( 2 , 2 )−u ( 3 , 2 ) +4∗u ( 2 7 , 2 )−u ( 2 8 , 2 ) +4∗u ( 5 2 , 2 ) . . .

84 −u ( 5 3 , 2 ) +4∗u ( 7 7 , 2 )−u ( 7 8 , 2 ) ) ;

85

86 %%%All Subsequent I t e r a t i o n s

87

88 f o r j = 2 : ( numt−1)

89 u ( 2 , j +1)=−u ( 2 , j −1)+2∗(1−alpha ^2)∗u ( 2 , j ) . . .

90 +alpha ^2∗(u ( 3 , j ) +u ( 1 , j ) ) ;

91 f o r k =1:N

92 i f k<N

93 f o r i = ( ( k−1)∗ xpts +3) : ( k∗ xpts )
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94 u ( i , j +1)=−u ( i , j −1)+2∗(1−alpha ^2)∗u ( i , j ) . . .

95 +alpha ^2∗(u ( i +1 , j ) +u ( i −1, j ) ) ;

96 end

97 u ( ( k∗ xpts +2) , j +1)=−u ( ( k∗ xpts +2) , j −1) . . .

98 +2∗(1−alpha ^2)∗u ( ( k∗ xpts +2) , j ) +alpha ^2∗(u ( ( k∗ xpts +3) , j ) +

u ( 1 , j ) ) ;

99 e l s e

100 f o r i = ( ( k−1)∗ xpts +3) : ( k∗ xpts )

101 u ( i , j +1)=−u ( i , j −1)+2∗(1−alpha ^2)∗u ( i , j ) . . .

102 +alpha ^2∗(u ( i +1 , j ) +u ( i −1, j ) ) ;

103 end

104 end

105 end

106 f o r m=1:N

107 u ( 1 , ( j +1) ) =u ( 1 , ( j +1) ) +(1/(3∗N) ) ∗ (4∗u ( ( (m−1)∗ xpts +2) , ( j +1) )−

u ( ( (m−1)∗ xpts +3) , ( j +1) ) ) ;

108 end

109 end

110

111

112 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

113 s t r =xpts +1;

114 xnew=zeros ( s t r , ( 2 ∗N) ) ;

115 unew=zeros ( (N∗ s t r ) ,numt ) ;

116 unew ( 1 , : ) =u ( 1 , : ) ;

117

118 f o r i = 1 : (N−1)

119 unew ( ( i ∗ s t r +1) , : ) =u ( 1 , : ) ;

120 end
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121 f o r i =1:N

122 t h e t a =( (2∗ i )−1)∗pi/N;

123 th =[ cos ( t h e t a ) −s i n ( t h e t a ) ; s i n ( t h e t a ) cos ( t h e t a ) ] ;

124 xnew ( 2 : s t r , ( 2 ∗ ( i −1)+1) ) =x ( ( ( i −1)∗ xpts +2) : ( ( i ∗ xpts ) +1) ) ;

125 f o r k =1: s t r

126 xnew ( k , ( 2 ∗ ( i −1)+1) : ( 2 ∗ ( i −1)+2) ) =th∗xnew ( k , ( 2 ∗ ( i −1)+1) : ( 2 ∗ ( i −1)

+2) ) ’ ;

127 end

128 unew ( ( ( i −1)∗ s t r +2) : ( i ∗ s t r ) , : ) =u ( ( ( i −1)∗ xpts +2) : ( i ∗ xpts +1) , : ) ;

129 end

130

131 %P l o t t i n g

132 h= f i g u r e ;

133 f i lename = ’ NStrings . g i f ’ ;

134 f o r j = 1 : 1 0 : numt

135 plot3 ( xnew ( : , 1 ) ,xnew ( : , 2 ) ,unew ( 1 : 2 6 , j ) , ’ Color ’ , [ . 8 . 8 . 8 ] )

136 hold on

137 f o r k =2:N

138 plot3 ( xnew ( : , ( 2 ∗ ( k−1)+1) ) ,xnew ( : , ( 2 ∗ ( k−1)+2) ) ,unew ( ( ( k−1)∗ s t r

+1) : ( k∗ s t r ) , j ) , ’ Color ’ , [ . 8 . 8 . 8 ] )

139 end

140 a x i s ([− (6∗ pi /5) 6∗pi /5 −6∗pi /5 6∗pi /5 −2 2 ] )

141 x l a b e l ( ’ x ’ )

142 y l a b e l ( ’ y ’ )

143 z l a b e l ( ’u ’ )

144 hold o f f

145 frame=getframe ( h ) ;

146 im=frame2im ( frame ) ;

147 [ imind , cm]= rgb2ind ( im , 2 5 6 ) ;
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148 i f j ==1

149 imwrite ( imind , cm, fi lename , ’ g i f ’ , ’ Loopcount ’ , i n f ) ;

150 e l s e

151 imwrite ( imind , cm, fi lename , ’ g i f ’ , ’ WriteMode ’ , ’ append ’ ) ;

152 end

153 pause ( . 0 5 )

154 end

Modeling Delay Parameter

1 c l e a r a l l ;

2 c l o s e a l l ;

3 c l c

4

5 globa l A p2 p3 p4 p5 p6 %ca cv R r Vstr gammaH . . .

6 %alpha0 alphas alphap alphaH . . .

7 %beta0 betas betap betaH

8

9 % A=1;

10 % p2 =15;

11 % p3 = 7 . 2 ;

12 % p4 = 0 . 0 5 ;

13 % p5 = 0 . 1 1 ;

14 % p6 = 2 . 9 ;

15

16 A= 1 . 5 ;

17 p2 = 1 . 8 ;

18 p3 = . 2 ;

19 p4 =5;

20 p5 = 0 . 1 1 ;
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21 p6 = . 9 ;

22

23 r0 = . 5∗ ( p5/p6+(p5+1)/p6 ) ;

24 a0 =(A/p3 ) ∗(1+ p2∗ s q r t ( p4 ∗ ( p6∗ r0−p5 ) /(p5+1−p6∗ r0 ) ) ) ^(−1) ;

25 o0=a0 ;%+A∗exp(−1) ;

26 h i s t o r y =[ a0 ; r0 ; o0 ] ;

27 % P0 = 9 3 ;

28 % Paval = P0 ;

29 % Pvval = (1 / (1 + R/r ) ) ∗ P0 ;

30 % Hval = (1 / (R ∗ Vstr ) ) ∗ (1 / (1 + r/R) ) ∗ P0 ;

31 % h i s t o r y = [ Paval ; Pvval ; Hval ] ;

32

33 f o r tau = [ 4 ]

34 s o l = dde23 ( ’ prob2f ’ , tau , h is tory , [ 0 , 5 0 0 ] ) ;

35 t = l i n s p a c e ( tau , 1 0 0 , 1 0 0 0 ) ;

36 o=deval ( sol , t ) ;

37 olag=deval ( sol , t−tau ) ;

38 f i g u r e

39 p l o t ( o ( 3 , : ) , olag ( 3 , : ) ) ;

40 x l a b e l ( ’ o ( t ) ’ ) ;

41 y l a b e l ( ’ o ( t−4) ’ ) ;

42 f i g u r e

43 p l o t ( o ( 1 , : ) , olag ( 1 , : ) ) ;

44 x l a b e l ( ’ a ( t ) ’ ) ;

45 y l a b e l ( ’ a ( t−4) ’ ) ;

46 f i g u r e

47 p l o t ( o ( 2 , : ) , olag ( 2 , : ) ) ;

48 x l a b e l ( ’ r ( t ) ’ ) ;

49 y l a b e l ( ’ r ( t−4) ’ ) ;
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50 f i g u r e

51 p l o t ( s o l . y ( 1 , : ) , s o l . yp ( 1 , : ) ) ;

52 x l a b e l ( ’ a ( t ) ’ ) ;

53 y l a b e l ( ’ a ’ ’ ( t ) ’ ) ;

54 f i g u r e

55 p l o t ( s o l . y ( 2 , : ) , s o l . yp ( 2 , : ) ) ;

56 x l a b e l ( ’ r ( t ) ’ ) ;

57 y l a b e l ( ’ r ’ ’ ( t ) ’ ) ;

58 f i g u r e

59 p l o t ( s o l . y ( 3 , : ) , s o l . yp ( 3 , : ) ) ;

60 x l a b e l ( ’ o ( t ) ’ ) ;

61 y l a b e l ( ’ o ’ ’ ( t ) ’ ) ;

62 end
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