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WELL-ROUNDED ZETA-FUNCTION

OF PLANAR ARITHMETIC LATTICES

LENNY FUKSHANSKY

(Communicated by Matthew A. Papanikolas)

Abstract. We investigate the properties of the zeta-function of well-rounded
sublattices of a fixed arithmetic lattice in the plane. In particular, we show
that this function has abscissa of convergence at s = 1 with a real pole of
order 2, improving upon a result of Stefan Kühnlein. We use this result to
show that the number of well-rounded sublattices of a planar arithmetic lattice
of index less than or equal to N is O(N log N) as N → ∞. To obtain these
results, we produce a description of integral well-rounded sublattices of a fixed
planar integral well-rounded lattice and investigate convergence properties of
a zeta-function of similarity classes of such lattices, building on the results of
a paper by Glenn Henshaw, Philip Liao, Matthew Prince, Xun Sun, Samuel
Whitehead, and the author.

1. Introduction

Let Λ = AZ2 ⊂ R2 be a lattice of full rank in the plane, where A = (a1a2) is a
basis matrix. The corresponding norm form is defined as

QA(x) = xtAtAx.

We say that Λ is arithmetic if the entries of the matrix AtA generate a 1-dimensional
Q-vector subspace of R. This property is easily seen to be independent of the choice
of a basis. We define det(Λ) to be | det(A)|, again independent of the basis choice,
and (squared) minimum or minimal norm

|Λ| = min{∥x∥2 : x ∈ Λ \ {0}} = min{QA(y) : y ∈ Z2 \ {0}},

where ∥ ∥ stands for the usual Euclidean norm. Then each x ∈ Λ such that
∥x∥2 = |Λ| is called a minimal vector, and the set of minimal vectors of Λ is
denoted by S(Λ). A planar lattice Λ is called well-rounded (abbreviated WR) if
the set S(Λ) contains a basis for Λ; we will refer to such a basis as a minimal basis
for Λ.

While in this note we focus on the planar case, the notion of WR lattices is
defined in every dimension: a full-rank lattice in RN is WR if it contains N lin-
early independent minimal vectors. The fact that these form a basis for the lattice
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370 LENNY FUKSHANSKY

is a low-dimensional phenomenon, only valid for N ≤ 4. WR lattices are impor-
tant in discrete optimization, in particular in the investigation of sphere packing,
sphere covering, and kissing number problems [15], as well as in coding theory [2].
Properties of WR lattices have also been investigated in [16] in connection with
Minkowski’s conjecture and in [9] in connection with the linear Diophantine prob-
lem of Frobenius. Furthermore, WR lattices are used in cohomology computations
of SLN (Z) and its subgroups [1]. These considerations motivate the study of dis-
tribution properties of WR lattices. Distribution of WR lattices in the plane has
been studied in [5], [6], [8], [7], [11]. In particular, these papers investigate various
aspects of distribution properties of WR sublattices of a fixed planar lattice.

An important equivalence relation on lattices is geometric similarity: two lattices
Λ1,Λ2 ⊂ R2 are called similar, denoted Λ1 ∼ Λ2, if there exists α ∈ R>0 and
U ∈ O2(R) such that Λ2 = αUΛ1. It is easy to see that similar lattices have the
same algebraic structure, i.e., for every sublattice Γ1 of a fixed index in Λ1 there
is a sublattice Γ2 of the same index in Λ2 so that Γ1 ∼ Γ2. A WR lattice can
only be similar to another WR lattice, so it makes sense to speak of WR similarity
classes of lattices. In [11] it has been proved that a planar lattice contains infinitely
many non-similar WR sublattices if and only if it contains one. This is always the
case for arithmetic planar lattices. If the lattice in question is not arithmetic, it
may still have infinitely many non-similar WR sublattices depending on the value
of a certain invariant described in [11]. In any case, it appears that non-arithmetic
planar lattices contain fewer WR sublattices than arithmetic ones in the sense which
we discuss below.

Given an infinite finitely generated group G, it is a much-studied problem to
determine the asymptotic growth of # {H ≤ G : |G : H| ≤ N}, the number of sub-
groups of index no greater than N , as N → ∞ (see [14]). One approach that has
been used by different authors with great success entails looking at the
analytic properties of the corresponding Dirichlet series generating function∑

H≤G |G : H|−s and then using some Tauberian theorem to deduce information
about the rate of growth of partial sums of its coefficients (see [4], as well as Chap-
ter 15 of [14]). In case G is a free abelian group of rank 2, i.e. a planar lattice,
this Dirichlet series allows us to count sublattices of finite index, and is a particular
instance of the Solomon zeta-function (see [3], [17]). We will use a similar ap-
proach while restricting to just WR sublattices, which is a more delicate arithmetic
problem.

Fix a planar lattice Ω, and define the zeta-function of WR sublattices of Ω to be

ζWR(Ω, s) =
∑

WRΛ⊆Ω

1

|Ω : Λ|s
=

∞∑

n=1

#{WRΛ ⊆ Ω : |Ω : Λ| = n}
ns

for s ∈ C. The rate of growth of coefficients of this function can be conveyed by
studying its abscissa of convergence and behavior of the function near it. For brevity
of notation, we will say that an arbitrary Dirichlet series f(s) =

∑∞
n=1 ann−s has

an abscissa of convergence with a real pole of order µ at s = ρ if f(s) is absolutely
convergent for Re(s) > ρ, and for s ∈ R,

(1) lim
s→ρ+

(s − ρ)µ
∞∑

n=1

an

ns
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WELL-ROUNDED ZETA-FUNCTION OF LATTICES 371

exists and is non-zero. Notice that this notion does not imply existence of analytic
continuation for f(s), but is merely a statement about the rate of growth of the
coefficients of f(s), which is precisely what we require. For instance, in [5] and [6]
it has been established that ζWR(Z2, s) has abscissa of convergence with a real pole
of order 2 at s = 1. Furthermore, it has been shown in [11] that if Ω is a non-
arithmetic planar lattice containing WR sublattices, then ζWR(Ω, s) has abscissa of
convergence with a real pole of order 1 at s = 1 (in fact, Lemma 3.3 of [11] combined
with Theorem 4 on p. 158 of [13] imply the existence of analytic continuation of
ζWR(Ω, s) in this situation to Re(s) > 1 − ε for some ε > 0 with a pole of order
1 at s = 1). It is natural to expect that the situation for any arithmetic lattice is
the same as it is for Z2; in fact, another result of [11] states that for any arithmetic
lattice Ω, ζWR(Ω, s) has abscissa of convergence at s = 1, and it is conjectured that
it has a pole of order 2 at s = 1. The main goal of the present paper is to prove
the following result in this direction.

Theorem 1.1. Let Ω be a planar arithmetic lattice. Then ζWR(Ω, s) has abscissa
of convergence with a real pole of order 2 at s = 1 in the sense of (1) above.
Moreover,

(2) #{WR Λ ⊆ Ω : |Ω : Λ| ≤ N} = O(N log N)

as N → ∞.

Remark 1.1. To compare, Theorem 4.20 of [4] combined with Lemma 3.3 (and the
Corollary following it) of [11] implies that if Ω is a non-arithmetic planar lattice
containing WR sublattices, then the right hand side of (2) is equal to O(N). It
should be pointed out that by writing that a function of N is equal to O(N log N)
(respectively, O(N)) we mean here that it is asymptotically bounded from above
and below by non-zero multiples of N log N (respectively, N). On the other hand,
it is a well known fact (outlined, for example, on p. 793 of [4]) that for any planar
lattice Ω,

(3) #{Λ ⊆ Ω : |Ω : Λ| ≤ N} ∼
(
π2/12

)
N2

as N → ∞.

The organization of this paper is as follows. In Section 2, we start by reducing
the problem to integral WR (abbreviated IWR) lattices in Lemma 2.1: a planar
lattice Λ = AZ2 is called integral if the coefficient matrix AtA of its quadratic form
QA has integer entries (this definition does not depend on the choice of a basis). We
then introduce zeta-functions of similarity classes of planar IWR lattices, objects of
independent interest, and study their convergence properties in Theorem 2.3. Our
arguments build on the parameterization of planar IWR lattices obtained in [7]. In
Section 3 we continue using this parameterization to obtain an explicit description
of IWR sublattices of a fixed planar IWR lattice which are similar to another fixed
IWR lattice (Theorem 3.2), and use it to determine convergence properties of the
Dirichlet series generating function of all such sublattices (Lemma 3.3). Finally, in
Lemma 3.4 we decompose ζWR(Ω, s) for a fixed IWR planar lattice Ω into a sum
over similarity classes of sublattices and observe that this sum can be represented
as a product of the two different types of Dirichlet series that we investigated above;
hence the result of Theorem 1.1 follows by Lemma 2.1.
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372 LENNY FUKSHANSKY

2. Integral WR lattices in the plane

Integral lattices are central objects in arithmetic theory of quadratic forms and
in lattice theory. IWR lattices have recently been studied in [7]. The significance of
IWR planar lattices for our purposes is reflected in the following reduction lemma.

Lemma 2.1. Let Ω be an arithmetic planar lattice. Then there exists some IWR
planar lattice Λ such that ζWR(Ω, s) has the same abscissa of convergence with a
pole of the same order as ζWR(Λ, s).

Proof. Lemma 2.1 of [11] guarantees that Ω has a WR sublattice, call it Ω′; natu-
rally, Ω′ must also be arithmetic. Let A be a basis matrix for Ω′. Then entries of
AtA span a 1-dimensional vector space over Q, meaning that there exists α ∈ R>0

such that the matrix αAtA is integral. Then the lattice Λ :=
√
αAZ2 is integral

and is similar to Ω′; hence it is also WR. Since Λ is just a scalar multiple of Ω′,
it is clear that ζWR(Λ, s) has the same abscissa of convergence with pole of the
same order as ζWR(Ω′, s), which is the same as that of ζWR(Ω, s) by Lemma 3.2
of [11]. !

Moreover, it is easy to see that these properties of a zeta-function of WR sub-
lattices are preserved under similarity.

Lemma 2.2. Assume that Λ1,Λ2 are two planar lattices such that Λ1 ∼ Λ2. Then
ζWR(Λ1, s) = ζWR(Λ2, s).

Proof. Similar lattices have the same number of WR sublattices of the same indices.
The statement of the lemma follows immediately. !

Lemmas 2.1 and 2.2 imply that we can focus our attention on similarity classes
of IWR lattices to prove Theorem 1.1. Integrality is not preserved under similarity,
however a WR similarity class may or may not contain integral lattices. WR simi-
larity classes containing integral lattices (we will call them IWR similarity classes)
have been studied in [7]; these are precisely the WR similarity classes containing
arithmetic lattices. Let us write ⟨Λ⟩ for the similarity class of the lattice Λ. Then
a result of [7] states that the set of IWR similarity classes is

IWR =

{
⟨ΓD(p, q)⟩ : ΓD(p, q) =

1
√

q

(
q p
0 r

√
D

)
Z2

}
,

where (p, r, q, D) are all positive integer 4-tuples satisfying

(4) p2 + Dr2 = q2, gcd(p, q) = 1,
p

q
≤ 1

2
, and D squarefree.

It is also discussed in [7] that ΓD(p, q) is a minimal integral lattice with respect to
norm in its similarity class. In particular, every integral lattice Λ ∈ ⟨ΓD(p, q)⟩ is of
the form Λ =

√
k UΓD(p, q) for some k ∈ Z>0, U ∈ O2(R), and so

|Λ| ≥ |ΓD(p, q)| = q.

The set IWR can be represented as

IWR =
⊔

D∈Z>0 squarefree

IWR(D),

where for each fixed positive squarefree integer D, IWR(D) := {⟨ΓD(p, q)⟩} is the
set of IWR similarity classes of type D.
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WELL-ROUNDED ZETA-FUNCTION OF LATTICES 373

Let us define the minimum and determinant zeta-functions of IWR similarity
classes of type D in the plane:

(5) ζm
IWR(D)(s) =

∑

⟨ΓD(p,q)⟩∈IWR(D)

1

|ΓD(p, q)|s =
∑

⟨ΓD(p,q)⟩∈IWR(D)

1

qs

and

(6) ζd
IWR(D)(s) =

∑

⟨ΓD(p,q)⟩∈IWR(D)

1

detΓD(p, q)s
=

1

Ds/2

∑

⟨ΓD(p,q)⟩∈IWR(D)

1

rs
,

where s ∈ C. Since

(7)

√
3

2
× 1√

D
× q ≤ r ≤ 1√

D
× q,

we have

(8) ζm
IWR(D)(s) ≤ ζd

IWR(D)(s) ≤
(

2√
3

)s

ζm
IWR(D)(s)

for all real s, and so ζm
IWR(D)(s) and ζd

IWR(D)(s) have the same convergence prop-
erties. We can establish the following result.

Theorem 2.3. For every real value of s > 1,
(9)

1(
2
√

3D
)s

ζ(2s − 1)

ζ(2s)
≤ ζd

IWR(D)(s) ≤
(

2√
3

)s

ζm
IWR(D)(s) ≤

(
4D√

3

)s

ζQ(
√
−D)(s),

where ζ(s) is the Riemann zeta-function and ζQ(
√
−D)(s) is the Dedekind zeta-

function of the imaginary quadratic number field Q(
√
−D). Hence the Dirichlet

series ζd
IWR(D)(s) and ζm

IWR(D)(s) are absolutely convergent for Re(s) > 1, and for
s ∈ R the limits

(10) lim
s→1+

(s − 1)ζd
IWR(D)(s), lim

s→1+
(s − 1)ζm

IWR(D)(s)

exist and are non-zero. Moreover, the N-th partial sums of coefficients of these
Dirichlet series are equal to O(N) as N → ∞.

Proof. Let D be a fixed positive squarefree integer. Lemma 1.3 of [7] guarantees
that p, r, q ∈ Z>0 satisfy (4) if and only if

(11) p =
|m2 − Dn2|
2e gcd(m, D)

, r =
2mn

2e gcd(m, D)
, q =

m2 + Dn2

2e gcd(m, D)
,

for some m, n ∈ Z with gcd(m, n) = 1 and
√

D
3 ≤ m

n ≤
√

3D, where

(12) e =

{
0 if either 2 | D or 2 | (D + 1), mn,
1 otherwise.

Then

(13) ζm
IWR(D)(s) =

∑

m,n∈Z>0, gcd(m,n)=1√
D
3 ≤m

n ≤
√

3D

(
2e gcd(m, D)

m2 + Dn2

)s

,
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374 LENNY FUKSHANSKY

and so for each real s > 1,

ζm
IWR(D)(s) ≤ (2D)s

∑

m,n∈Z\{0}√
D
3 ≤m

n ≤
√

3D

1

(m2 + Dn2)s

≤ (2D)s
∑

m,n∈Z\{0}

1

(m2 + Dn2)s = (2D)s ζQ(
√
−D)(s).(14)

Now, the Dedekind zeta-function of a number field converges absolutely for Re(s) >
1 and has a simple pole at s = 1.

On the other hand, for all real s > 1,

ζd
IWR(D)(s) ≥

∑

m,n∈Z\{0}, gcd(m,n)=1√
D
3 ≤m

n ≤
√

3D

1

(2mn)s

≥ 1(
2
√

3D
)s

∞∑

n=1

an

n2s
,(15)

where an is the cardinality of the set

Sn =

{
m ∈ Z>0 : n

√
D

3
≤ m ≤ n

√
3D, gcd(m, n) = 1

}
.

We will now produce a lower bound on an for every n ≥ 1. For each m ∈ Sn, let
sn(m) = m modn; then

an = |Sn| ≥ |{sn(m) : m ∈ Sn}| .

Notice that √
3D −

√
D/3 =

√
D(

√
3 − 1/

√
3) > 1

for each D, and hence

{sn(m) : m ∈ Sn} = {k ∈ Z : 1 ≤ k < n, gcd(k, n) = 1} ,

meaning that an ≥ ϕ(n), the Euler ϕ-function of n. Therefore

(16) ζd
IWR(D)(s) ≥

1(
2
√

3D
)s

∞∑

n=1

ϕ(n)

n2s
=

1(
2
√

3D
)s

ζ(2s − 1)

ζ(2s)

for all real s > 1 by Theorem 288 of [10]. The right hand side of (16) converges
absolutely for Re(s) > 1 and has a simple pole at s = 1. The inequality (9) now
follows upon combining (8) with (14) and (16).

Since each Dirichlet series can be written in the form
∑

n=1 bnn−s for some

coefficient sequence {bn}∞n=1, we will refer to
∑N

n=1 bn as its N -th partial sum of
coefficients. Now Theorem 4.20 of [4] guarantees that the N -th partial sums of

coefficients of the Dirichlet series 1

(2
√

3D)s
ζ(2s−1)
ζ(2s) and

(
4D√

3

)s
ζQ(

√
−D)(s) are equal

to O(N) as N → ∞. Inequality (9) implies that the same must be true about the
N -th partial sums of coefficients of Dirichlet series ζm

IWR(D)(s) and ζd
IWR(D)(s), and

that ζm
IWR(D)(s) and ζd

IWR(D)(s) are absolutely convergent for Re(s) > 1 with limits

in (10) existing and non-zero for s ∈ R. This finishes the proof of the theorem. !

Licensed to Claremont Graduate Univ. Prepared on Thu Sep 24 14:01:56 EDT 2015 for download from IP 134.173.130.170.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



WELL-ROUNDED ZETA-FUNCTION OF LATTICES 375

Remark 2.1. There is a connection between the zeta-function ζm
IWR(D)(s) and the

height zeta-function of the corresponding Pell-type rational conic. One can define
a height function on points x = (x1, x2, x3) ∈ Z3 as

H(x) =
1

gcd(x1, x2, x3)
max
1≤i≤3

|xi|.

It is easy to see that H is in fact projectively defined, and hence induces a function
on a rational projective space. Let D be a fixed positive squarefree integer. Then
the set of all integral points (p, r, q) satisfying

(17) p2 + Dr2 = q2, gcd(p, r, q) = 1, q > 0,

is precisely the set of all distinct representatives of projective rational points on the
Pell-type conic

XD(Q) = {[x, y, z] ∈ P(Q3) : x2 + Dy2 = z2}.

For each point [x, y, z] ∈ XD(Q) there is a unique (p, r, q) satisfying (17), and

H([x, y, z]) = H(p, r, q) = q.

Hence the height zeta-function of XD(Q) is
∑

[x,y,z]∈XD(Q)

1

H([x, y, z])s
=

∑

(p,r,q) as in (17)

1

qs
,

where s ∈ C.

3. IWR sublattices of IWR lattices

In this section we further investigate distribution properties of planar IWR lat-
tices and prove Theorem 1.1. Theorem 1.3 of [7] guarantees that every IWR lattice
of type D contains IWR sublattices belonging to every similarity class of this type,
and none others. Hence ζm

IWR(D)(s) and ζd
IWR(D)(s) are zeta-functions of minimal

lattices over similarity classes of IWR sublattices of any IWR lattice of type D in
the plane. It will be convenient to define

ΩD(p, q) =
√

q ΓD(p, q) =

(
q p
0 r

√
D

)
Z2

for each (p, r, q, D) satisfying (4). Then for a fixed choice of D, p0, q0 the lattice
ΩD(p0, q0) contains IWR sublattices similar to each ΩD(p, q). We will now describe
explicitly how these sublattices look. We start with a simple example of such
lattices.

Lemma 3.1. Let (p, r, q, D) and (p0, r0, q0, D) satisfy (4). Let

(18) k = m2 + Dn2

for some m, n ∈ Z, not both zero, and let

(19) U =

(
m√
k

−n
√

D√
k

n
√

D√
k

m√
k

)
.

Then U is a real orthogonal matrix such that the lattice

Λ =
√

k r0q0UΩD(p, q)
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is an IWR sublattice of ΩD(p0, q0) similar to ΩD(p, q) with

|ΩD(p0, q0) : Λ| = r0q0rqk.

Proof. As indicated in the proof of Theorem 1.3 of [7],
(

q0 p0

0 r0

√
D

)(
r0q r0p − rp0

0 rq0

)
= r0q0

(
q p
0 r

√
D

)
,

and so r0q0ΩD(p, q) is a sublattice of ΩD(p0, q0) of index rq. Now notice that

Λ =
√

kr0q0

(
m√
k

−n
√

D√
k

n
√

D√
k

m√
k

)(
q p
0 r

√
D

)
Z2

=

(
q0 p0

0 r0

√
D

)(
mr0q − np0q m(r0p − p0r) − n(p0p + Dr0r)

nq0q mrq0 + npq0

)
Z2,

and hence is a sublattice of ΩD(p0, q0) of index r0q0rqk. !

Lemma 3.1 demonstrates some examples of sublattices of ΩD(p0, q0) similar to
ΩD(p, q). We will now describe all such sublattices.

Theorem 3.2. A sublattice Λ of ΩD(p0, q0) is similar to ΩD(p, q) as above if and
only if

(20) Λ =
√

Qp0,q0,p,q(m, n) UΓD(p, q),

for some m, n ∈ Z, not both zero, where Qp0,q0,p,q(m, n) is a positive definite binary
quadratic form, given by (31) below, and U is a real orthogonal matrix as in (23)
with the angle t satisfying (25), where x, y are as in (28) or (32). In this case,

(21) |ΩD(p0, q0) : Λ| =
rQp0,q0,p,q(m, n)

r0q0
.

Proof. By Theorem 1.1 of [7], Λ ∼ ΩD(p, q) if and only if

(22) Λ =

√
k

q
U

(
q p
0 r

√
D

)
Z2

for some positive integer k and a real orthogonal matrix

(23) U =

(
cos t − sin t
sin t cos t

)
or

(
cos t sin t
sin t − cos t

)

for some value of the angle t. On the other hand, Λ ⊂ ΩD(p0, q0) if and only if

(24) Λ =

(
q0 p0

0 r0

√
D

)
CZ2,

where C is an integer matrix. Therefore Λ as in (22) is a sublattice of ΩD(p0, q0) if
and only if it is of the form (24) with

C = α

(
q(r0

√
D cos t − p0 sin t) (r0p − rp0)

√
D cos t − (pp0 + rr0D) sin t

qq0 sin t q0p sin t + q0r
√

D cos t

)

or

C = α

(
q(r0

√
D cos t − p0 sin t) (r0p + rp0)

√
D cos t − (pp0 − rr0D) sin t

qq0 sin t q0p sin t − q0r
√

D cos t

)
,

Licensed to Claremont Graduate Univ. Prepared on Thu Sep 24 14:01:56 EDT 2015 for download from IP 134.173.130.170.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



WELL-ROUNDED ZETA-FUNCTION OF LATTICES 377

where α =
√

k
q0r0

√
qD

. These conditions imply that we must have

(25) cos t =
xp0 + yq0√

qk
, sin t =

xr0

√
D√

qk

for some integers x, y satisfying one of the following two systems of congruences:

(26)
q0rx + (p0r − r0p)y ≡ 0(mod qr0)
(p0r + r0p)x + q0ry ≡ 0(mod qr0)

}

or

(27)
q0rx + (p0r + r0p)y ≡ 0(mod qr0)
(p0r − r0p)x + q0ry ≡ 0(mod qr0)

}
.

First assume (26) is satisfied. Notice that

det

(
q0r p0r − r0p

p0r + r0p q0r

)
= (qr0)

2 ≡ 0(mod qr0),

which means that a pair (x, y) solves the system (26) if and only if it solves one
of these two congruences. Hence it is enough to solve the first congruence of (26).
Define d1 = gcd(q0r, qr0) and d2 = gcd(d1, p0r − r0p), and let a, b ∈ Z be such that

aq0r + bqr0 = d1.

It now easily follows that the set of all possible solutions to (26) is

(28) (x, y) =

{(
a(r0p − p0r)n

d2
+

qr0m

d1
,

d1n

d2

)
: n, m ∈ Z

}
.

Combining (25) with (28), we see that
(29)

qk =

(
(ap0(r0p − p0r) + d1q0)n

d2
+

qp0r0m

d1

)2

+ Dr2
0

(
a(r0p − p0r)n

d2
+

qr0m

d1

)2

.

Then the right hand side of (29) is a positive definite integral binary quadratic form
in the variables m, n:

Q1
p0,q0,p,q(m, n) =

{
q2
0q

2r2
0

d2
1

}
× m2

+

{
a2(r0p − p0r)2q2

0 + 2ad1p0q0(r0p − p0r) + d2
1q

2
0

d2
2

}
× n2

+

{
2a(r0p − p0r)qq2

0r0 + 2d1qq0r0p0

d1d2

}
× mn.(30)

One can observe that all three coefficients of Q1
p0,q0,p,q(m, n) are divisible by q.

Then define

(31) Qp0,q0,p,q(m, n) =
1

q
Q1

p0,q0,p,q(m, n),

which is again a positive definite integral binary quadratic form.
Now notice that the system of congruences in (27) is the same as the one in (26)

with the order of equations reversed and the variables x and y reversed. Hence the
solution set for (27) is

(32) (x, y) =

{(
d1n

d2
,

a(r0p − p0r)n

d2
+

qr0m

d1

)
: n, m ∈ Z

}
.

Licensed to Claremont Graduate Univ. Prepared on Thu Sep 24 14:01:56 EDT 2015 for download from IP 134.173.130.170.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



378 LENNY FUKSHANSKY

Combining (25) with (32), we see that if (27) is satisfied, then

(33) qk =

(
(aq0(r0p − p0r) + d1p0)n

d2
+

qq0r0m

d1

)2

+
Dr2

0d
2
1n

2

d2
2

.

Then the right hand side of (33) is precisely Q1
p0,q0,p,q(n, m).

In either case, we have

(34) k =
1

q
Q1

p0,q0,p,q(m, n) = Qp0,q0,p,q(m, n)

for some m, n ∈ Z, not both zero. Then (20) follows upon combining (22) with
(34). Now we notice that

|ΩD(p0, q0) : Λ| =
detΛ

detΩD(p0, q0)
,

and so (21) follows from (20). This completes the proof of the lemma. !
Now define SD(p0, q0) to be the set of all IWR sublattices of ΩD(p0, q0) and

SD(p0, q0, p, q) to be the set of all IWR sublattices of ΩD(p0, q0) which are similar
to ΩD(p, q). Then

SD(p0, q0) =
⊔

SD(p0, q0, p, q).

Define

(35) ZD,p0,q0,p,q(s) =
∑

Λ∈SD(p0,q0,p,q)

1

|ΩD(p0, q0) : Λ|s

and

(36) ZD,p0,q0(s) =
∑

Λ∈SD(p0,q0)

1

|ΩD(p0, q0) : Λ|s
=

∑

(p,q) as in (4)

ZD,p0,q0,p,q(s)

for s ∈ C.

Lemma 3.3. For every squarefree positive integer D and integer triples (p0, r0, q0)
and (p, r, q) satisfying (4), the Dirichlet series ZD,p0,q0,p,q(s) is absolutely conver-
gent for Re(s) > 1. Moreover, it has analytic continuation to all of C except for a
simple pole at s = 1.

Proof. By Theorem 3.2,

(37) ZD,p0,q0,p,q(s) =
(r0q0

r

)s ∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s
,

where the sum on the right hand side of (37) is the Epstein zeta-function of the
positive definite integral binary quadratic form Qp0,q0,p,q(m, n). It is known to
converge absolutely for Re(s) > 1 and has analytic continuation to all of C except
for a simple pole at s = 1 (this is a classical result, which can be found for instance
in Chapter 5, §5 of [12]; in fact, the authors of [12] indicate that the existence of a
simple pole at s = 1 goes as far back as the work of Kronecker, 1889). The lemma
follows. !
Lemma 3.4. For every squarefree positive integer D and integer triple (p0, r0, q0)
satisfying (4), the Dirichlet series ZD,p0,q0(s) is absolutely convergent for Re(s) > 1,
and for s ∈ R the limit

(38) lim
s→1+

(s − 1)2ZD,p0,q0(s)

Licensed to Claremont Graduate Univ. Prepared on Thu Sep 24 14:01:56 EDT 2015 for download from IP 134.173.130.170.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



WELL-ROUNDED ZETA-FUNCTION OF LATTICES 379

exists and is non-zero. Moreover, if we write ZD,p0,q0(s) =
∑∞

n=1 bnn−s, then the
N-th partial sum of coefficients of ZD,p0,q0(s) is

N∑

n=1

bn = O(N log N)

as N → ∞.

Proof. Combining (36), (37), and (7) we obtain for every real s > 0

ZD,p0,q0(s) = (r0q0)
s

∑

(p,r,q) as in (4)

⎛

⎝ 1

rs

∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s

⎞

⎠ .

Combining this observation with Theorem 2.3 implies that
(

r0q0

2
√

3

)s ζ(2s − 1)

ζ(2s)
inf

(p,r,q) as in (4)

∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s
(39)

≤
(
r0q0

√
D
)s

ζd
IWR(D)(s) inf

(p,r,q) as in (4)

∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s

≤ ZD,p0,q0(s)

≤
(
r0q0

√
D
)s

ζd
IWR(D)(s) sup

(p,r,q) as in (4)

∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s

≤
(

4r0q0D
3
2

√
3

)s

ζQ(
√
−D)(s) sup

(p,r,q) as in (4)

∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s
.

Theorem 2.3 and Lemma 3.3 now imply that for each (p, r, q) as in (4) the Dirichlet
series

(40)

(
r0q0

2
√

3

)s ζ(2s − 1)

ζ(2s)

∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s

and

(41)

(
4r0q0D

3
2

√
3

)s

ζQ(
√
−D)(s)

∑

(m,n)∈Z2\{0}

1

Qp0,q0,p,q(m, n)s

are absolutely convergent for Re(s) > 1 and have analytic continuation to the half-
plane Re(s) > 0 except for a pole of order 2 at s = 1. Then Theorem 4.20 of
[4] implies that the N -th partial sums of coefficients of all the Dirichlet series as
in (40) and (41) must be equal to O(N log N). Then (39) implies that the N -
th partial sum of coefficients of ZD,p0,q0(s) is also O(N log N), and ZD,p0,q0(s) is
absolutely convergent for Re(s) > 1, where the limit of (38) exists and is non-zero
for s ∈ R. !

Proof of Theorem 1.1. The theorem now follows upon combining Lemmas 2.1, 2.2,
and 3.4. !
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