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Abstract

An approximation method is provided for calculating
the present worth of nonintegrable continuous cash
flows that have common industrial economic applica-
tions. Two limiting cases of particular use in
engineering screening analyses are given for each
model. Practical examples are presented to illus-
trate the application of the cash flow models to
manpower reductions due to computerized process
control and to cash flows for a pollution-abatement
facility.

1. INTRODUCTION

The - evaluation of engineering projects requiring
capital investments is becoming increasingly diffi-
cult in today's inflatiomary and resource-limited
environment. For example, the recent Alaskan pipe-
line project was initially estimated to cost one
billion dollars, but the actual cost prior to
the first flow of oil through the pipeline was eight
billion dollars. There were many reasons for this
cost overrun but the point is clear - capital
project evaluation is tough and getting tougher.

One of the major problems facing many companies and
government agencies is that less real funds are
available for new capital projects because of recent
high inflation rates. In this environmment, engineer-
ing economic project evaluations are becoming more
important in both the private and public sectors. In
the public sector, for example, government agencies
and companies doing projécts for these agencies are
turning to the concept of Life Cycle GCosts (LCC).

LCC for a capital project are the total of the -

expected future revenues and disbursements, or cash
flows, over the entire project lifetime. LCC anal-
ysis 1is used to compare-alternative projects by
minimizing the present worth of the LCC. This
analysis is similar to approaches used for many
years by the private sector, such as discounted cash
flow rate-of-return or present worth analysis.

Economic evaluations and sensitivity analyses of
engineering projects are often very time—consuming
because general equations for the present worth of
the cash flow functions are usually unavailable,
especially for nonintegrable cash flow functiouns.
This paper presents formulas for determining the
present worth of nonintegrable continuous cash flow
profiles that might be encountered in industrial and
government capital project evaluations.
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In many economic analyses of engineering projects,
the cash flows associated with the project can be
approximated by a continuous function of time. We
denote this continuous cash flow function by C(t);
the expected cash flow at time t is C(t). Cash flows
may.include, for example, expenditures for research,
development, testing, construction or training.
For simplicity, we express the project startup time
as 0 and the project lifetime as n. The results
presented herein include expressions for PW, the
present worth at -time -0 of the continuous cash
flows.

Since cash flows are continuous, PW 1is determined
using continuous compounding of interest. If th
nominal annual cost-of-capital is r, then e ft is
the single-payment present worth factor applied to a
cash flow occurring at time t. Consequently, PW is

defined as

. ;
PW =f c(e)e Ttar (1)
4]

In some cases the integral in Equation 1 may be
evaluated directly to obtain the algebraic solution
for PW; several cash flow functions of this type are
discussed in detail in a recent paper [1]. In other
situations the function C(t)e™Tt jigs not integrable
and methods of approximation must be applied to
determine PW; cash flow functions of this form are
the focus here. For each of the two representative
models examined in this paper, an example is given
to illustrate application to actual industrial
situations, and limiting cases for a long-term
project life or a negligible interest rate are
presented.

The reader may also be interested in two related
papers,. both recent: a generalized polynomial model
for calculating the present worth of projects with
discrete cash flows [2], and a model for combining
interest and inflation rates for present-worth
analysis in. eleven. industrialized countries [3].

II. DEVELOPMENT OF THE MODELS

For some types of cash flow functions C(t), the
expression C(t)e™*% in Equation 1 is nonintegrable
and numerical methods must be used to approximate
the present worth PW of the cash flows, The approxi-
mation method presented here is referred to as the
Trapezoidal Rule and is especially useful since it
allows us to control the error [4] . This method was
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chosen over other methods, such as the Rectangle
Rule or Simpson's Rule, because it offers a greater
degree of accuracy or simplicity in many cases.

Consider any cash flow function C(t) with a contin-
uous second derivative (all models presented here
satisfy this condition). For an arbitrary positive
integer m, the Trapezoidal Rule gives the following
approximation for PW:

n m-1
W — [C(0)+C(n)e""+2 c( ) "k"/'"] - (@)
2m k=1 .

The maximum error in using this approximation
is

.n?
Maximum Error = max iGanl, - (3)
12m* g<t<n

where

2

d d
Gr = [— cCO-2r — C@) +r’C(t)] et (4)
. Lde? dr

By choosing m sufficiently large, this error can be
made as small as we like. The Trapezoidal Rule will
be used in evaluating the following two models.

A. Reciprocal model

The cash flow for this model is of the form

1
c) = —
cend’

where d is some positive integer and f is a positive
constant. Figure 1 shows the graph of this cash flow
function.

A

-0 = T

CASH FLOW Ctt)

Figure 1. Reciprocal model cash flow.

Consider d = 1. Then C(t) = 1/(t + f) and using
Equation 4, we find

r’(t+j)2+2r(r+j)+;2
Gy =——m————> 0,
(t+f)3e”

It can easily be verified that G(t,r) is decreasing
in t for all positive t. Thus,

n®

Maximum Error =

max 1G @, .
12m* 0<t<n (%)
n® P+ 2rf+ 2)
=T G0 s .
12m 12m3f?

Using Equation 2,

the present worth formula for d =
1 is :

n ot n 1 R m=1 ,vkn/m
dr = (6)

m
f on+f k=1 nk+mf

with a maximum error determined by Equation 5.

An alternative method of flndlng PW for the Recip-
rocal Model with d = 1 is to use the infinite
alternating series expansion:

n e-rt
PW = f——-—dt
o tYf
+ ) — 2 4 )2 —p2
=erf(:ln(1+£)—’(n n rf+r(n m-re
f 1! 2421

P+ -rf ]
—_—t ...
3.3 .

However, no simple formula is available for deter-
mining the error introduced by truncating this
series.

If d 2 2 in the Reciprocal Model,
tion by parts produces

iterative integra-

L -2 ra
= (drl)' +1 1
pars (r)J” T ey
(N
n
oTt
Y dt}
0 s
reducing the problem to the case d = 1. Equation 6

is then applied to determine PW.

Example 1. As a result of anticipated computerized
process control, the manpower costs (in thousands of
dollars) for a fifteen year petrochemical project
are expected to vary in accordance with a cash flow
curve of the type shown in Figure 1. A preliminary
economic analysis has shown that the cash flow
function C(t) = 9300/(t + 14.142)2 can be expected
to accurately predict the manpower costs. Given a
10%Z cost-of-capital, what is the present worth of
the cash flows within an error of $30,0007

The cash flow function can be depicted by the
Reciprocal Model with parameters f = 14,142 and
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d = 2 (and leading coefficient 9300). Using
Equations 1 and 7, we have

15 -0.1¢
PW

9300 f —
e+ 14,1427

35. g0t
586930 f
]

ot |
t+14.142

Our next step is to determine the integer m from
Equation 6 that will assure a maximum error of
$30,000. Using Equation 5 with n = 15, we have

6315
Maximum Error = — <30 (X $1000),
m

The smallest positive integer satisfying this
relation is m = 15. Thus, Equation 6 is used with
m = 15 to find

15

. e—-O.lt .

+14.152 dt = 0,415,

[

Hence,

PW = [586 - 930(0.415)] (x $1000) = $200,000,

with a maximum error of (6315/225) (x $1,000) =
$28,000.

B. Logarithmic model

We consider next a continuous cash flow function of
the form

cft) = 1nlt + 1).

Figure 2 represents the general
logarithmic function.

shape of this

CASH FLOW C®)

cér= £n{t+1)

Figur_e 2. Logarithmic cash flow.

Using Equation 4, we find

-1 2r i
G = [ - -——-+r’1n(t+1)] et
(t+1) t+1

This function has a unique critical point at tg,
which 'is uniquely determined by the equation

33t + 1)+ 3r(t,+ 1) + 2 = PP, +1)°In(t,+1) ¢ # 0) (8)

- The smallest

The point t, specifies an absolute maximum
of G({t,r) on the positive t-axis. Since
6(0,r) = -1-2r < 0 and G(t,r) > 0 for t>t,, we
have

: 3
Maximum Error = LZ— max { (1+2r), [G[min(to,rr) ,r] ]‘} (9)
12m

by Equation 3. Using Equation 8, the corresponding
present worth formula is

m-—1 ki
W = s I:ln(n+1)e'"' 2 E ln(—n ¥ 1)e-rkn/m] (10)
m k=1 m .

Example 2. The operating costs (in thousands of
dollars) of a government-mandated pollution abate-
ment facility are expected to increase over the next
twenty-five years according to the cash flow func-
tion C(t) = 900 In(t + I). Given a nominal interest
rate of 5% (the company uses this rate for mandated
pollution abatement facilities) and a maximum error
margin of $4,500,000, what is the present worth of
these operating costs?

The solution to Equation 8 with r = 0.05 was found
by trial-and-error to be t, = 31.34. Hence,
min(ty,n) = 25 and

G [min(t,,n),r] = G(25,0.05) = 0.0008 < 1.1 = 1+2r.

Consequently, Equation 9 yields

(25°(1.1) 1,290,000
12m 2

Maximum Error = 900 < 4500(x $1000)

integer satisfying this relation is
m = 17. Thus, we use m = 17 in Equation 10 to
find

PW = 900(30.2)(X $1000) = $27,200,000,

with a maximum error of

1,290,000 (X $1000) = $4,460,000.
(17)2

An equivalent formulation of the present worth for
the Logarithmic Model is

n
U f in(t+l)e Ttae
0

(11)

% [PW¥-e Pln(n+1)],

where PW* is the present -worth of the Reciprocal
Model with analogous r and n and £ = d = 1. Although

‘use of Equation 11 makes the trial-and-error cal-

culation of ty in Equation 8 unnecessary, it
increages the error inherent in Equatien 6 by
introducing the multiplicative factor 1/r (usually
significantly large).
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III.  LIMITING CASES

The continuous models presented in this paper have
two special cases of engineering interest. The first
case concerns the limiting behavior of the_ present
worth PW as the project life n becomes infinite.
This behavior is important when evaluating projects
such as -dams and football stadiums that have life-
times in excess of, say, forty years. Also, infinite
lifetimes are often assumed for .permanent chemical
plant and refinery offsite facilities such as those
providing drinking or cooling water. The second case
occurs when the interest rate approaches zerc. A
zero-interest model can be used, for example, when
doing quick engineering calculations with interest
and inflation rates assumed to nearly cancel [5] .

A. Infinite Project Life

Denote by PW, the asymptotic level that the present
worth of the cash flows approaches as n— o ', Since

p, = [ cere ™ ar,
0

this asymptotic level is the Laplace transform
L{c(t)} of the cash flow function C(t). Expressions
for PWw for the nonintegrable models discussed in
this paper involve the exponential integral function

' x
e’
Ei(x) =[ 5 9

values of which are readily obtainable [6]. Expres-
sions for PWw are given in Table 1.

TABLE 1

Limiting cases of the p,

worth of the cash flow praofile

Model PW , {Infinite Project ‘Life) PW,(Zero Interest Rate)
i (rf), d=1

Reciprocal d-2

d-1 i
1 -r 3. d d
o) - %; i | 4
{t+F)d k JZO (-rp)I*t F*1 (i) 31

- e’fsi(-rf)}, d=2

Logarithmic

c(t) = n(t+1) -e"Ei(-ri/r (n+1)1n{n+1)-n

B. Zero Interest Rate

When the nominal annual interest rate r is zero, the

present worth PW, of the cash flows is found by

re-evaluating the. integral from Equation 1. Thus,

n

Pwo =[c(t)dt,

0

which always exists [7] .- The expressions for PW,

for each model are presented in Table 1.

Example 3. Consider the same situation as in Example
1. What are the present worth limits 1) as n—w, and
2) as r — 07

The situation is described by the Reciprocal Model
with parameters n = 15, r = 0.10, f = 14.142, d = 2,
and cash flow function C(t) = 9300/(t + 14.142)2
(x $1,000). First, we consult a set of mathematical
tables [6] to find ‘

Ei(-rf) = Ei(-1.4142) = -0.114.

Referring to the appropriate entry in Table 1 for an
infinite project life, we have

= 1 1.4142 03 .
PW_ = 9300 [—14‘ 15t 0D UEIC14142)

= 221.535 (x $1000) = $221,535,

and for a zero interest rate, we have

2

2
Fw, = 9300 [(14.142)= T (29142

] (X $1000) = $5825 '«

IV. SUMMARY

We have constructed mathematical models for deter-
mining the present worth of two types of represent-
ative cash flow profiles often encountered in
industrial and govermmental economic evaluations,
and have illustrated the application of these models
in several examples. Figures ] and 2 are graphical
representations of these cash flow profiles. We have
presented one numerical technique for evaluating the
present worth PW of these (nonintegrable) cash flows
(future work might involve more refined techniques,
such as Gaussian quadrature).

Limiting cases of the models were also examined,
and it was found that in the case of an infinite
project life or a negligible interest rate the
calculations for the present worth of the cash flows
were simplified.

Once the project lifetime and a model approximating
the expected future cash flow profile are deter-
mined, a simple trial-and-error calculation will
yield the discounted cash flow rate of return. When
used in discounting the cash flows, this rate gives
a zero preseént worth, and thus is the solution to
the equation PW = 0. A project under consideration
is usually evaluated by comparing its DCF with that
of other projects or the company's existing return-
on-investment.

NOMENCLATURE

c(t) general continuous cash flow function

é model parameter for Reciprocal Model

Ei(x) exponential integral function

£ model parameter for Reciprocal Model

G(t,r) Trapezoidal Rule maximum error shorthand
function

L Laplace transform operator

LCcE Life Cycle Costs
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m Trapezoidal Rule variable
n project lifetime
PW present worth
PW, lim PW
n—w
PW, lim PW
r—0
r nominal annual cost-of-capital
t time variable
to critical point for Logarithmic Model
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