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ABSTRACT OF THE DISSERTATION

CAUSAL EFFECT RANDOM FOREST OF INTERACTION TREES
FOR LEARNING INDIVIDUALIZED TREATMENT REGIMES

IN OBSERVATIONAL STUDIES:
WITH APPLICATIONS TO EDUCATION STUDY DATA

by
LUO LI

Doctor of Philosophy in Computational Science-Statistics
Claremont Graduate University and San Diego State University, 2020

Learning individualized treatment regimes (ITR) using observational data holds great

interest in various fields, as treatment recommendations based on individual characteristics

may improve individual treatment benefits with a reduced cost. It has long been observed that

different individuals may respond to a certain treatment with significant heterogeneity. ITR

can be defined as a mapping between individual characteristics to a treatment assignment. The

optimal ITR is the treatment assignment that maximizes expected individual treatment effects.

Rooted from personalized medicine, many studies and applications of ITR are in medical

fields and clinical practice. Heterogeneous responses are also well documented in educational

interventions. However, unlike the efficacy study in medical studies, educational interventions

are often not randomized. Study results often suffer greatly from self-selection bias. Besides

the intervention itself, the efficacy and effectiveness of interventions usually interact with a

wide range of confounders.

In this study, we propose a novel algorithm to extend random forest of interaction trees

to Casual Effect Random Forest of Interaction Trees (CERFIT) for learning individualized

treatment effects and regimes. We first consider the study under a binary treatment setting.

Each interaction tree recursively partitions the data into two subgroups with greatest

heterogeneity of treatment effect. By integrating propensity score into the tree growing

process, subgroups from the proposed CERFIT not only have maximized treatment effect

differences, but also similar baseline covariates. Thus it allows for the estimation of the



individualized treatment effects using observational data. In addition, we also propose to use

residuals from linear models instead of the original responses in the algorithm. By doing so,

the numerical stability of the algorithm is greatly improved, which leads to an improved

prediction accuracy. We then consider the learning problem under non-binary treatment

settings. For multiple treatments, through recursively partitioning data into two subgroups

with greatest treatment effects heterogeneity with respect to two randomly selected treatment

groups, the algorithm transforms the multiple learning ITR into a binary task. Similarly,

continuous treatment can be handled through recursively partitioning the data into subgroups

with greatest homogeneity in terms of the association between the response and the treatment

within a child node. For all treatment settings, the CERFIT provides variable importance

ranking in terms of treatment effects. Extensive simulation studies for assessing estimation

accuracy and variable importance ranking are presented. CERFIT demonstrates competitive

performance among all competing methods in simulation studies. The methods are also

illustrated through an assessment of a voluntary education intervention for binary treatment

setting and learning optimal ITR among multiple interventions for non-binary treatments

using data from a large public university.
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CHAPTER 1

INTRODUCTION

1.1 INDIVIDUALIZED TREATMENT REGIMES AND
EDUCATION INTERVENTIONS

Learning individualized treatment regimes (ITR) using observational data holds great

interest in various fields, as treatment recommendations based on individual characteristics

may improve individual treatment benefits with a reduced cost. It has long been observed that

different individuals may respond to a certain treatment with significant heterogeneity.

[50, 2, 26, 42]. ITR can be defined as a mapping between individual characteristics to a

treatment assignment [34]. The optimal ITR is the treatment assignment that maximizes

expected treatment effects at an individual level. Rooted from personalized medicine, many

studies and applications of ITR are in the medical research and clinical practice, such as

depressive disorder, substance use disorder and sputum positive tuberculosis [44, 59, 71].

Heterogeneous responses are also well documented in educational interventions. Taking

educational supplemental instruction (SI) research as an example, studies show that prior

academic achievement, motivations, genders and minority status all affect SI effectiveness

[60, 61, 57, 18]. Academic advising personalized to individual student’s specific

characteristics can maximize intervention effects and help students to achieve academic

success.

However, unlike the efficacy study in the field of medication, educational interventions

are often not randomized. Study results often suffered greatly from self-selection bias [5].

Special statistical adjustment, such as propensity score methods, need to be considered in

order to achieve an unbiased estimate for observational data. Besides the intervention itself,

the effectiveness of interventions usually interacts with a wide range of confounders, such as

students’ demographic, social economic background, academic status and even other
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intervention programs. Multiple interventions with similar educational objectives are also

common. Oftentimes, interventions such as SI are provided along with other interventions,

such as tutoring or recital supplement course. Therefore despite extensive studies on the effect

of SI and its wide appeal, whether or not SI is effective continues to be controversial. After

their systematic review of SI studies between 2001 to 2010, Dawson,Van Der Meer, Skalicky

and Cowley concluded that SI seemed to work on some levels for some groups of students, as

many studies are not methodologically sound or lack enough information. Existing methods

are often parametric, and the nonlinear effects are often ignored in the model or rely on ad hoc

approaches. The complex confounding, interaction and nonlinear relationship remain

unveiled as studies rarely address multiple explanatory variables in one study, and are subject

to model misspecification using the traditional parametric methods [5]. In addition, even

though majority studies agree on the benefit of educational interventions, such as SI, claims

are all based on the average treatment effect (ATE) on group level [18] and ignore the fact that

not all the program attendees benefit from the intervention. Academic advising based on ATE

can adversely impact an individual student‘s academic success considering the opportunity

cost. In other words, if the student is spending time on an ineffective intervention, the student

may lose the opportunity to benefit from another effective intervention. To improve the

efficacy and effectiveness of the treatment, recommendation should be based on

individualized treatment effects (ITE) rather than ATE.

Tree based machine learning methods have gained a great popularity due to the model

flexibility with few statistical assumptions, their ability to handle a variety of data structures,

and the interpretability and the exceptional predictive power. It is also one of leading methods

for causal treatment effect estimation. Many criticisms discussed above, such as nonlinear

issues and interaction effects, can be automatically handled in tree based methods. Therefore,

in this study, we propose a novel algorithm extended from the tree based method, random

forest of interaction trees [69] to access the intervention’s effectiveness on individual students

using observational education study data. The method is data driven without explicit model
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specification. It has the versatility to handle both binary treatment and non-binary treatment

settings. Furthermore, it also has advantages in dealing with high dimensional data, as

opposed to the traditional parametric methods. By integrating general propensity scores into

the tree growing process, this proposed method could be applied to both randomized and

observational studies.

In the following sections, we first review essential concepts in tree based methods,

which are the building blocks of the proposed algorithm.

1.2 CLASSIFICATION AND REGRESSION TREES

CART(classification and regression trees) is a tree based method proposed [8]. Tree

based method recursively partitions the data using the best binary split until some criterion is

met. Specifically, a tree is grown by splitting the root node into two child nodes that maximize

between-node heterogeneity, or equivalently, minimize within-node impurity. In each split,

CART algorithm searches all possible variables and all possible values. The same procedure

is repeated for each child node until reaching a point where further splitting no longer

decreases the impurity or a predetermined stopping rule is reached. A node that cannot be

split any further is called a terminal node, an important attribute of a tree with respect to

prediction. Specifically, each terminal node is a distinct partition of the sample based on the

input variables. In other words, each terminal node is characterized by a unique combination

of the attributes of an observation or patient characteristics. Given that each terminal node

contains information on the outcome, predictions can easily be obtained given a set of patient

characteristics.

To illustrate the process, lets consider a hypothetical example. To simplify the

example, we only consider using Age (X1), Gender (X2), Pretest (X3), and average quiz

scores Quiz(X4) to predict students’ final exam scores (Y ). As Figure 1.1 shows the root

node (the whole data set) is split into two child nodes based on the splitting rule whether a

student’s quiz score is less than or equal to 7 (X4 ≤ 7) out of possible points 10. If the answer

is yes, the observation goes to the left child node, otherwise, goes to the right node. Then
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conditioned on this, the left child node is split into another two child nodes with protest score

less than or equal to 30 (X3 ≤ 65). This partition process continued by splitting the lower

level right child node with whether an observation under that node is male (X2 = 0) or female

(X2 = 1). The splitting continues recursively until a predetermined stopping rule is reached.

Figure 1.1. Hypothetical tree using age, gender, pretest, quiz to predict final exam
scores.

Depending on the nature of the outcome, CART can be applied to both classification

and regression problems. Unlike the conventional parametric model, which assumes one

correct specified global model for the whole data set. In CART, the data complexity is

reduced through data partition. The simplest model then could be applied into the smaller

homogeneous subgroup. In this example, the original 100 data in the root node is partitioned

into 5 terminal nodes with much smaller data size (10 to 25). In addition, the variable

selection, transformation and interaction problems in parametric model can be handled

automatically in CART. For instance, the interaction between Pretest and Gender is
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automatically captured in the hierarchical tree structure. The variables splitting on the top

levels of the tree are the variables with higher prediction power.

1.3 BAGGING AND RANDOM FOREST

Bagging is an earlier ensemble method. After the large initial tree achieved, CART

usually requires a prune back process because of the overfitting problem. In addition, large

individual tree has lower bias but high variance. These problems can be effectively addressed

through bagging (bootstrap aggregating) [9]. Instead of growing a tree with the whole data

set, bagging builds a tree on each bootstrap sample. The final aggregate classifier can be

obtained by averaging (regression) or majority voting (classification). Single classifier based

on one tree is unstable with high variance. Bagging reduces the variance using aggregated

classifier [6].

In addition to bootstrapping, Random Forest embraces the idea of random subspace

[31]. At each split, a random subset of predictors is considered as possible candidates, which

further reduces the variance by de-correlating the trees [6]. Thus, Random Forest improve the

prediction accuracy by further reducing variance of estimators.

Depending on the nature of the outcome, classification, regression, or survival trees

can be grown in Random Forest. The Random Forest algorithm is summarized as following:

1. Draw bootstrap sample from the original data. On average 63% of the original sample
will be included in the bootstrap sample and 37% will be left out, which is called
out-of-bag data (OOB).

2. A classification, regression or survival tree is grown on the bootstrapped data.

(a) At each node, randomly select a subset mtry of the total p predictors to consider
splitting the data on. The default mtry is

√
p for classification and survival trees,

while p/3 for regression trees.

(b) Among the mtry predictors selected, the optimal split-point is typically identified
to minimize the within node error (regression), Gini index (classification), or
maximize the log-rank statistic (survival).
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(c) Repeat steps a and b until between-node heterogeneity/within-node impurity
ceases to improve or a stopping rule is reached (e.g., minimum node sample size
needed to partition the data).

3. Repeat steps 1 and 2 for ntree bootstrap samples/trees as desired.

Once a Random Forest is constructed using the above steps, predictions are based on

averaging the predicted values from each tree in the forest. Random Forest has a built-in tool

for evaluating prediction accuracy that avoids overly optimistic estimates of accuracy because

the data used to build the Random Forest is separate from the data used to evaluate its

accuracy. Specifically, each tree in a Random Forest is constructed from a subsample of the

data (due to bootstrapping) known as in-bag data, the left over OOB data not used to construct

each tree are used to evaluate prediction accuracy. Commonly used measures of prediction

error are the Brier score (regression), misclassification error (classification), and 1-Harells

[27] index of concordance (survival).

1.4 OUTLINE OF THE DISSERTATION

The organization of the dissertation is as follows. In Chapter 2, we first give an

introduction of random forest of interaction trees (RFIT) and propensity score methods. Then

we discuss the causal effect RFIT (CERFIT) algorithm in detail. We also present simulation

studies to assess CERFIT’s performance with respect to prediction accuracy and variable

importance ranking. At last, we illustrate CERFIT through the analysis of an educational

dataset from a large public university. The chapter concludes with a brief discussion on the

strength of proposed method and the direction of future work.

In Chapter 3, we discuss the rationale and provide evidence on the benefit of using

residuals from linear regression model to replace the responses in the algorithm. Then we

conduct the simulation studies to investigate the numerical stability benefits of using linear

residuals. In Chapter 4, we introduce CERFIT algorithm for non-binary treatment. We start

the chapter with introductions on general propensity score methods for the multiple

treatments and continuous treatment settings, then present how to integrate the general
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propensity score into the CERFIT algorithm. We also conduct simulation studies to assess the

CERFIT’s performance by prediction accuracy and variable importance ranking for multiple

and continuous treatment settings, respectively. The application of CERFIT under non-binary

treatments is demonstrated through learning optimal ITR under multiple parallel education

interventions.

In Chapter 5, we summarize the method and discussthe R implementations through

introducing main functions used in the proposed R program. The final chapter provides a

discussion on the proposed methods and suggestions for future work.
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CHAPTER 2

CERFIT FOR BINARY TREATMENTS

2.1 INTRODUCTION

The estimation of causal effects is challenging since we can not observe both the

responses under the intervention and the responses without the intervention for any individual

unit. Typically, causal inference relies on Rubin’s potential outcomes framework [64, 65]. It is

assumed that, for each study unit, there exists potential outcomes under the opposite treatment

assignment regime. The casual treatment effects are identifiable under the “zero bias” or “no

confounding” condition. Theoretically, confounding can be controlled either through the

research design or in data analysis processes. The estimation of causal effects can be done at

different levels, such as population, subpopulation, and unit [32]. The estimand of interest

varies for different causal inference levels, such as the average treatment effect (ATE) at the

population or subpopulation levels, and the individual treatment effect (ITE) at the unit level.

Under Robin’s framework, recent endeavors to estimate the individualized treatment

effect can be generally categorized into two different approaches. The first approach is the

separate counterfactual model. Let Yi(1) and Yi(0) denote the treated and untreated outcomes

for an individual unit with a set of baseline covariates Xi. Then the individualized treatment

effect (ITE) is defined as the conditional difference between the two outcomes:

τ i = E[Yi(1)|Xi]− E[Yi(0)|Xi], where τ i is the ITE for an individual unit i. Under this

model, the estimation of ITE is deemed as a general “regression” problem. For any individual

unit i, we observe only one Yi under one of the treatment options; but the dataset contains

units under either treatment group. Using available data, Yi(1) and Yi(0) can be modeled and

estimated separately. Then the ITE can be estimated by the differences between the two

outcomes. This framework usually involves two separate models, Y (1) = f1(X) + ε1 and
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Y (0) = f0(X) + ε0. Representative papers under this framework include separate regression

[76, 23], counterfactual synthetic random forest [49], and Bayesian additive regression trees

or BART [29]. Under this approach confounding issues are arguably bypassed through the

precise estimation of the responses or outcomes under two treatment regimes [29]. If the

response is correctly modeled and precisely estimated for the two groups, the ITE can be

estimated without bias. However, the existence of strong selection bias in some observational

studies may compromise the prediction accuracy. For instance, with a dataset collected from a

program enrolled mostly with male participants, we may have an unreliable estimation of

female participant’s responses.

Another approach is the so-called direct estimation model. As opposed to the separate

counterfactual model, the direct approach estimates treatment effects in one model

(τ = δ(X) + ε) using all of the data. The estimation of ITE is treated as an approximation

problem. The primary idea of this method is that ITE can be approximated by the average

treatment effect (ATE) of a subgroup g (τ̂ i ≈ ÂTEg) when the subgroup g is small enough

that it contains only subjects having homogeneous treatment effects. Representative papers

under this approach include causal random forest [77] and random forest of interaction trees

[43, 69, 68]. Although both methods are tree-based and involve recursively partitioning the

data into two child nodes with greatest heterogeneity of treatment effects, their similarities

end there. Causal random forest (CRF) splits the data by maximizing the variance of the

treatment effect, while random forest of interaction trees (RFIT) chooses the split that

maximizes the interaction effect with the treatment. The advantage of direct modeling is that

it utilizes the data more efficiently, learning one model instead of two models under the

separate counterfactual approach. Hence, it may achieve higher prediction accuracy. In

addition, direct estimation model approaches allow variable importance estimates with respect

to differential treatment effects. Methods under the counterfactual framework (such as BART)

can provide variable importance rankings only with respect to treated or untreated outcomes,

which is not directly relevant for establishing subgroups with the most differential treatment
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effects (where the treatment or intervention is the most or least useful). However, as the direct

approach involves estimating the average treatment effect (in small groups with homogenous

treatment effect) , the strong ignorability condition requires it to address issues of

confounding when using observational study data. This usually involves appropriately

controlling for or specifying the treatment assignment mechanism. However, neither CRF nor

RFIT explicitly addresses this issue.

In this chapter, we propose to extend random forest of interaction trees (RFIT) to a

causal effect RFIT (CERFIT) using propensity scores. With no random assignment of

treatment in observational studies, selection bias can result in systematic differences in

baseline covariates between the two groups. Propensity score adjustment is one of the most

frequently used methods to address selection bias in observational studies [4, 63]. By

integrating propensity score into the tree growing process, subgroups from the proposed

causal effect random forest of interaction trees (CERFIT) not only maximize treatment effect

differences, but also achieve similar baseline covariates within each terminal node. Thus it

allows for estimation of the individualized treatment effect using observational data as well as

variable importance rankings with respect to differential treatment effects.

This chapter is structured as follows. In Section 2.2, we first give an introduction of

random forest of interaction trees (RFIT) and the propensity score, then present the causal

effect RFIT (CERFIT) algorithm in detail. In Section 2.3 we present simulation studies to

assess CERFIT’s performance with respect to prediction accuracy and variable importance

ranking. In Section 2.4, we illustrate CERFIT through the analysis of an educational dataset

from a large public university. Section 2.5 concludes this chapter with a brief discussion.

2.2 RANDOM FOREST OF INTERACTION TREES

Random forest [9] is a nonparametric machine learning method. The basis of random

forest is classification and regression trees, or CART [8]. Tree based methods recursively

partition the data using binary splits until some stopping criteria are met. Specifically, a tree is

grown by splitting the root node into two child nodes that maximize between-node
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heterogeneity, or equivalently, minimize within-node impurity. A node that cannot be split

any further is called a terminal node. Each terminal node is characterized by a unique

combination of the attributes. Random forest (RF) is an ensemble method. Instead of growing

a tree with the whole data set as with CART, RF builds multiple trees. Each of the trees is

grown with a bootstrap sample through bagging. In addition, RF embraces the idea of

“random subspace” [31] in the splitting process. In each split, the CART algorithm searches

all possible variables and all possible cut-points; while in RF, only a random subset of

predictors are considered as possible splitting candidates. By doing so, RF increases the

variance through de-correlating the trees [6], and hence improves the prediction accuracy.

Predictions in RF are based on averaging the predicted values from each tree in the forest.

Depending on the nature of the outcome, different splitting rules can be defined for different

types of RF. Typically, the optimal split-point is identified to minimize the within node error

for regression trees, minimize the Gini index for classification trees [9], or maximize the

log-rank test statistic for survival trees [37].

Random forest of interaction trees, or RFIT [69], essentially follows the routine of RF.

Instead of creating regression or classification trees, RFIT uses bootstrap samples to create

interaction trees. The optimal split-point is chosen by splitting the data into two child nodes

that maximizes the differences in treatment effects. Consider a candidate binary split s that

divides a node c into two child nodes, left child node cL and right child node cR, within which

{YL(1), YR(1)} are treated responses and {YL(0), YR(0)} are untreated responses.

cL cR
T = 1 YL(1), n1, s

2
1 YR(1), n3, s

2
3

T = 0 YL(0), n2, s
2
2 YR(0), n4, s

2
4

Here T denotes the treatment assignment, which is 1 for treated and 0 otherwise, and

{n1, . . . , n4} and {s2
1, . . . , s

2
4} denote sample sizes and sample variances in the four cells

determined by the split and the treatment indicator. The average treatment effect for the two
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child nodes can be defined as ATEL = 1
n1

∑n1

i=1 YL(1)− 1
n2

∑n2

i=1 YL(0) and

ATER = 1
n3

∑n3

i=1 YR(1)− 1
n4

∑n4

i=1 YR(0). The t-test statistic for split s is defined as

t(s) =
ATEL − ATER

σ̂
√

1/n1 + 1/n2 + 1/n3 + 1/n4

, (2.1)

where σ̂2 is the pooled estimator of the constant variance (σ̂2 =
∑4

i=1
(ni−1)s2i

n−4
, n =

∑4
i=1 ni).

The best split s∗ is chosen by maximizing t2(s∗). By simple deduction, it is not hard to show

that (2.1) is equivalent to the Wald test statistic for H0 : β3 = 0 in the interaction model

Yi = β0 + β1I(Ti = 1) + β2I(Xij ≤ c) + β3I(Ti = 1)I(Xij ≤ c) + εi, (2.2)

where I(·) is the indicator function. Ti is the treatment assignment for the ith subject,

I(Xij ≤ c) is the indicator for a binary cut based on covariate Xj , and εi ∼ N(0, σ).

After the best split s∗ is chosen, the tree is grown recursively until it reaches the

predetermined maximum tree depth or minimum terminal node size. The estimation of the

individualized treatment effect, τ i, is based on the average treatment effect

ATEt = E[Yt(1)]− E[Yt(0))] within the terminal node t, to which the ith subject belongs.

And the final prediction for each subject is the average prediction across all trees [69].

2.3 PROPENSITY SCORE METHODS

The estimation of causal treatment effect under the potential outcome framework

usually assumes the strong ignorability condition: {Y (1), Y (0)} ⊥⊥ T |X and

0 < Pr(T = 1|X) < 1, where T is the treatment indicator and X is a set of baseline

covariates. This condition assumes that the treatment assignment is independent of the

potential outcomes given a set of covariates, and the probability of treatment selection is

between 0 and 1, exclusive. It is a sufficient condition for causal effect estimation [55],

E[Y (0)|X] = E[Y |X,T = 0] and E[Y (1)|X] = E[Y |X,T = 1]. Note that, in observational

studies, treatment is not randomly assigned among study subjects, but associated with the
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study subject’s baseline covariates. Propensity score adjustment is one of the most frequently

used methods to address this confounding issue. The propensity score, e, is defined as the

probability of treatment conditional on a set of covariates, e = Pr(T = 1|X). In their seminal

work, Rosenbaum and Rubin (1983) show that an unbiased estimate of the average treatment

effect can be obtained by conditioning on the propensity score alone, instead of the set of

covariates: {Y (1), Y (0)} ⊥⊥ T |e(X). This approach has been widely applied in causal

inference and several methods based on propensity score have been proposed, such as

matching, stratification, inverse probability of treatment weighting (IPTW), and covariate

adjustment [3, 4]. With propensity score matching, treated and untreated units are matched

based on similar values of the propensity score. Then the matched samples can be analyzed as

if data were obtained from a randomized trial. The stratification method approximates a

quasi-randomized experiment. Study subjects are stratified into several strata based on the

quantile values of the propensity score. The baseline covariates of the units within the same

stratum will be similar if the propensity score is correctly modeled. Under IPTW adjustment,

a weight based on the propensity score is used to create a synthetic sample within which the

covariate distribution for one treatment group is similar to that for the other treatment group.

Thus the distribution of the confounders is independent of the treatment assignment, allowing

for an unbiased estimate of the average treatment effect. Under the covariate adjustment

approach, the propensity score is used as a new covariate in the modeling. This method

reduces confounding and allows the estimation of the outcome associated with treatment

while adjusting for the propensity score, which contains information on a set of confounders

[3].

2.4 CERFIT FOR BINARY TREATMENTS
ALGORITHM

The random forest of interaction trees, or RFIT, algorithm was developed for

estimating subgroup average treatment effects (ATEs) using data from randomized trials [69].
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To extend the RFIT for use with observational study data, we propose to use the propensity

score to address the confounding issues through three methods.

The fundamental differences between a randomized trial and an observational study is

the treatment assignment mechanism. In observational studies, the baseline characteristics for

individual units in the treated group often differ systematically from their counterparts in the

control group due to self selection of the treatment assignment. To address this issue, we

propose to use IPTW to adjust the data first and grow the trees using subsamples with more

balanced baseline covariates between two treatment groups. Specifically, the IPTW weight is

defined as w = T
e

+ 1−T
1−e . A unit with lower probability to be included in the treatment group

(T = 1), will receive a higher weight to be included in the bootstrap sample, and vice versa.

In the same manner, a unit with higher probability to be include in the control group (T = 0)

will receive a lower weight, and vice versa. In random forest (RF) or random forest of

interaction trees (RFIT), each tree is grown based on a bootstrap sample. In our proposed

causal effect random forest of interaction trees (CERFIT), each tree is built based on a

weighted bootstrap sample selected using weights w. However, previous work by Xu et

al.[78] found that weighting each subject by IPTW may inflate the sample size and type I

error rate under the null model of no treatment effect. A stabilized IPTW is usually suggested

to address this issue [62]:

ws =
T · Pr(T = 1)

e
+

(1− T ) · Pr(T = 0)

1− e
, (2.3)

where Pr(T = 0) and Pr(T = 1) are marginal probabilities for each of the treatment groups.

Stabilized IPTW helps mitigate a common issue in the practice of IPTW, extremely large

weights, by reducing the weights in general. An observation with a very low propensity score

in the treated group or a very high propensity score in the control group will receive a very

large weight. In the context of random forest, this will increase the similarity of subsamples

used for each tree, and thus compromise the ensemble accuracy. Therefore, several studies
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suggested further truncating the ws using the quantiles of the weight distribution [17, 47]. We

recommend using the 10th and 90th percentiles as thresholds for the CERFIT algorithm.

A second extension to accommodate observational data is to use the propensity score

to adjust the RFIT splitting rule, further controlling issues of confounding during the tree

growing process. To this end, we use the propensity score as a blocking covariate in the

interaction model

Yi = β0 + β1I(Ti = 1) + β2I(Xij ≤ c) + β3I(Ti = 1)I(Xij ≤ c) + β4ei + εi, (2.4)

where ei is the propensity score for the ith subject and εi is iid N(0, σ).

Thirdly, we address issues of confounding by utilizing the weighted average treatment

effect (ATE). When the model for estimating a propensity score is correctly specified,

Lunceford and Davidian [51] demonstrates that the ATE can be consistently estimated by two

alternative weighted ATE’s [51]: 1) 1
n1

∑n1

i=1wi(1)Yi(1)− 1
n0

∑n0

i=1wi(0)Yi(0) or 2)∑n1
i=1 wi(1)Yi(1)∑

wi(1)
−

∑n0
i=1 wi(0)Yi(0)∑

wi(0)
, where n1 and n0 are the sample sizes for the treated and

untreated groups. In CERFIT, we utilize the second estimator since it has smaller variance

compared to the first one [51]. Using the truncated weights, the average treatment effect in the

terminal node of CERFIT is calculated as

ATEw =

∑
w′i(1)Yi(1)∑
w′i(1)

−
∑
w′i(0)Yi(0)∑
w′i(0)

, (2.5)

where w′i is the truncated stabilized weight for the ith subject.

The propensity score plays a critical role in the proposed CERFIT algorithm, thus it is

essential to utilize a robust method in the propensity score estimation. We recommend

random forest (RF) for the propensity score analysis as a large body of work has demonstrated

random forest’s superior prediction accuracy in various data situations [13, 12]. Moreover,

Lee, Lessler, and Stuart [46] show that the propensity scores estimated using RF are able to
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balance covariates better than those estimated using logistic regression. In the randomForest

R package [7], the default mtry value for the regression problem is set as mtry = p/3, where

p is the number of predictors. We recommend using max{3, p/6} as the default mtry value in

CERFIT. The reason for this recommendation is that using weighted bootstrap samples may

increase the similarity of the trees. A smaller mtry can help further de-correlate the trees. In

particular, p/6 is half of the default mtry value in the randomForest [7], R package and the

value of 3 in our recommendation is designed to stay away from an mtry value that is too

small, when p is not very large, in order to preserve the quality of splits and ultimately the

prediction accuracy of the random forest. The default terminal node size is set at 10, with

minimum size for each of the treatment groups set at 5. The detailed CERFIT procedure is

summarized in the CERFIT algorithm.

Table 2.1. The CERFIT Algorithm for Binary Treatments

The CERFIT algorithm for binary treatments

1. Estimate propensity scores using random forest with treatment indicator as outcome.

2. Draw bootstrap samples from the data using w′ (truncated ws) as sampling weights.

3. Grow an interaction tree based on each weighted bootstrap sample.

−3.1 At each node, randomly select a subset mtry of the total p covariates from which to

determine a split rule. The default value of mtry is set at max{3, p/6}.

−3.2 Among the mtry covariates selected, the optimal split is identified by maximizing the

squared Wald test statistic for testing H0 : β3 = 0, in equation (2.4).

−3.3 Repeat steps 3.1 and 3.2 until reaching a pre-specified stopping rule (e.g., maximum

tree depth, minimum terminal node size).

4. Repeat steps 1 to 3 for ntree trees as desired, with a default value set at 500.
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2.5 VARIABLE IMPORTANCE RANKING

Compared to the separate counterfactual framework for estimating the individualized

treatment effect, one important advantage of the proposed CERFIT algorithm is the

availability of variable importance rankings. Permutation based variable importance score

(VIMP) is one of the most frequently used methods of obtaining variable importance

rankings. In random forest [9], variable importance is ranked using VIMP. The relative VIMP

for a particular variable is calculated by comparing the difference in the prediction error of the

out-of-bag (OOB) data to the prediction error when the variable is noised up by randomly

permuting its values. The larger the VIMP value, the higher the predictive power of the

variable. Following the variable importance ranking scheme from Random Forest, we permute

the product of a variable and the treatment in CERFIT, and calculate the change in the squared

Wald test statistic before and after permutation. The specified steps in finding VIMP (ζj) a

covariate Xj (j = 1, 2 · · · , p) are described in the variable importance algorithms below.

Table 2.2. The Variable Importance: Permutation Based Algorithm

Variable importance algorithm: permutation based variable importance score (VIMP)

1. Let Γb denote a tree b (b = 1, · · · , ntree) and O denote the out-of-bag sample that has

not been used in creating tree Γb.

2. Send O down tree Γb and calculate ST j(b) =
∑m

i=1 t
2(si), the summation of squared

Wald test statistics for all m splits (i = 1, 2, · · · ,m) within tree Γb.

3. Permute the product of Xj and treatment indicator T . Repeat step 2 using permuted

(XjT )∗ in place of the original XjT in O, and calculate ST j
∗ (b) with the permuted data.

4. Compute V Ijb = ST j(b)−ST j
∗ (b)

ST (b)
.

5. Repeat steps 1 to 4 for every tree in the forest and calculate the mean of the V Ijb over

the forest, ζj = (
∑ntree

b=1 V Ijb )/b.
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2.6 SIMULATION STUDIES FOR PREDICTION
ACCURACY

2.6.1 Simulation models

We simulate data with 20 covariates, among which Xj (j = 1, ..., 11) are generated

from the standard normal distribution N(0, 1), and Xj (j = 12, ..., 20) are generated from the

Bernoulli distribution with p = 0.5 as in Lu et al.[49]. Simulation of the treatment selection is

modified from the framework used by Setoguchi, Schneeweiss, Brookhart, Glynn, and Cook

[66], which has been used by several other studies [4]. We select two models from their

originally proposed seven models. We slightly modify the intercept to generate the marginal

probability of treatment assignment Pr(T = 1) ≈ 0.2, which is close to the proportion of

treated subjects in our application. The original intercept in their models was all set to 0; we

modified it to −1.8 and kept all the other coefficients the same as in their paper. In both

models, treatment selection is associated with 7 covariates: X1, X2, X3, X4, X11, X12 and

X13. The first model is an additive and linear model, and the second model is a non-additive

and non-linear model with four two-way interaction terms and one quadratic term.

Treatment selection model I Additivity and linearity.

logit(Pr(T = 1|X)) =− 1.8 + 0.8X1 − 0.25X2 + 0.6X3 − 0.4X4

− 0.8X11 − 0.5X12 + 0.7X13

(2.6)

Treatment selection model II Quadratic and interactions

logit(Pr(T = 1|X)) =− 1.8 + 0.8X1 − 0.25X2 + 0.6X3 − 0.4X4 − 0.8X11

− 0.5X12 + 0.7X13 − 0.25X2
2 + 0.8X1X3 − 0.175X2X4

− 0.2X4X12 − 0.4X12X13.

(2.7)
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The continuous outcomes are simulated based on the models proposed by Lu et al.[49].

Model I

f1(X,T ) = 2.445− I{T=0} ×m(X)− I{T=1,g(X)>0} + ε (2.8)

Model II

f2(X,T ) = 2.445− I{T=0} × sin(m(X))− I{T=1,g(X)>0} + ε (2.9)

Model III

f3(X,T ) = 2.445− I{T=0} × sin(m(X))− I{T=1,h(X)>0} + ε, (2.10)

where m(X) = 0.4X1 + 0.154X2 − 0.152X11 − 0.126X12,

g(X) = 0.254X2
2 − 0.152X11 − 0.4X2

11 − 0.126X12,

h(X) = 0.254X2
3 − 0.152X4 − 0.126X5 − 0.4X2

5 , and ε ∼ N(0, 1). Note that in Lu’s model,

the random error term was set up as ε ∼ N(0, 0.1).

The complexity of the models increases from model I to model III. In model I, Y (0)

has a linear association with covariates X1, X2, X11 and X12. In models II and III, Y (0) and

Y (1) are both nonlinear models. In addition, in model III, Y (0) is associated with

X1, X2, X11 and X12, but Y (1) is simulated with non-overlapping covariates X4 and X5. Thus

there are four confounders: X1, X2, X11 and X12 in models I and II, but six confounders in

model III with two additional confounders, X4 and X5.

2.6.2 Simulation settings and parameters

Training data with three sample sizes n = 500, n = 1000 and n = 2000 are used to

estimate the individualized treatment effect. The performance is assessed by the mean squared

error (MSE) using a test sample n′ = 1000 based on 200 simulation runs. For each scenario, a

total of 500 trees are grown and the value of mtry is set at 3.

We compare the performance of CERFIT with three other methods: synthetic random

forest (synRF) [49], Bayesian additive regression trees (BART) [29], and causal random forest
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(CRF) [77]. Both synRF and BART are separate counterfactual models, while both CFR and

CERFIT are direct models.

synRF is designed to improve the prediction accuracy of random forest (RF) through

synthetic features. Specifically, synRF grows random forests using different values for mtry

and terminal nodesize. It then calculates the predicted values based on each RF, which are the

so-called synthetic features. The prediction of the individualized treatment effect (ITE) is

based on the two separate synthetic forests fitted with synthetic features and original features

[40]. The simulation is implemented using the randomForestSRC R-package [38]. Two

separate forests are constructed for the two treatment groups, each with ntree = 1000. The

parameters for each of the trees are all the combinations of nodesize values

{1, · · · , 10, 20, 30, 50, 100} and mtry values {1, 10, 20} as recommended by Lu et al. (2018).

BART is a sum-of-tree model based on Bayesian regularized trees. Each consecutive

tree refits the residuals that are not explained by the other trees. Fitting and inference

procedures are done through the iterative Bayesian backfitting MCMC algorithm [15]. The

implementation of BART is performed through the R-package BayesTree [16] with default

settings ntree = 200 and 1000 MCMC iterations.

CRF is another type of random forest that modifies the splitting rule to maximize the

between nodes treatment effect heterogeneity. It differs from random forest of interaction

trees by choosing the split that maximizes the variance of τ̂ . In addition, different from

regular RF, CRF builds double-sample trees to obtain honest splitting rules. Specifically, a

randomly selected subset of data is first divided into two equal halves. A base learner is grown

with one half of the data, and the estimation is based on the other half of the data. The

splitting rule is honest because the treatment effect is estimated by Yi without being used for

evaluating the best split [77]. For CRF, we use the R-package grf [73] with default settings

ntree = 2000 and mtry = p/3.
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2.6.3 Simulation results

Figure 2.1 presents the box plots of MSE obtained from 200 simulation runs for the

four methods. The boxes are color coded to reflect the three different sample sizes used to

learn the model. In general, the prediction accuracy is significantly improved as sample size

increases from 500 to 2000 for all four methods. It can be seen that the proposed method,

CERFIT, outperforms the other three methods consistently under all the scenarios considered.

CFR is the runner-up under models I and II with treatment selection I, and under almost all

scenarios with moderate sample sizes (n = 500 and n = 1000). synRF’s performance is

quickly improved as sample size increases from n = 500 to n = 2000. This improvement is

especially prominent under model III. BART has the worst performance when sample size is

smaller than n = 1000, but catches up under sample size n = 2000. The MSE for BART is

similar to CRF when sample size reaches n = 2000. In addition, it is worth mentioning that,

when sample size is small, models under the direct approach are superior to the models under

separate counterfactual approach in general. One plausible explanation is that the separate

counterfactual approach models are learning with insufficient data, since the data has to be

further divided into two subsets based on treatment status. The performance of the separate

counterfactual approach models improves as sample size increases. When n = 2000, syRF

has the second best performance behind CERFIT under most scenarios considered.

Comparing the performance under two different treatment selection models, the advantage of

CERFIT is more significant under treatment selection model II, under which the treatment

selection is simulated with a quadratic regression model with interaction terms. This can be

explained by the fact that CERFIT is the only method that directly addresses the selection bias

issue in observational studies among the four methods.

2.7 SIMULATION STUDIES FOR VARIABLE
IMPORTANCE RANKING

To evaluate the variable importance algorithm outlined in Section 2.4, we simulate 8

covariates from the standard normal distribution Xi ∼ N(0, 1), i = 1, 2, · · · , 8. Treatment
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selection is based on a linear additive model using four covariates X1, X2, X5 and X6,

logit(Pr(T = 1|X)) = −1.5 + 0.8X1 − 0.25X2 + 0.6X5 − 0.4X6. (2.11)

The outcomes are simulated with two linear models with a common response model for the

control group (T = 0), but two different models for ITE, δ(X). Let

f(X,T ) = 0.5 + 0.5X3 + 0.5X4 + 0.5X5 + 0.5X6 + IT=1δ(X) + ε. (2.12)

The individual treatment effects δ(X) are determined by the two models

δA(X) = N(0, 1) (2.13)

δB(X) = 0.5 +X1 + 1.5X2 + 2X3 + 2.5X4. (2.14)

Model A, δA(X), is a null model, in which the treatment effects are random numbers

generated from the standard normal distribution. Therefore, none of the covariates in model A

have any effect on the treatment. With model B, δB(X), there are two confounding variables

(X1 and X2) that affect both treatment selection and the outcome. Two covariates (X3 and

X4) affect the outcome alone. The ITE in model B is associated with only four covariates (Xj ,

j = 1, · · · 4). The coefficients are assigned in a way that the true variable importance increases

from X1, X2, X3 to X4, with X4 having the highest predictive power. The rest of the

covariates, X5 to X8, are equally unimportant.

Simulation results based on the permutation based variable importance score with 200

simulation runs are presented in Figure 2.2. For both models A and B, CERFIT variable

importance algorithms correctly identified the variables that impact the treatment effects. The

relative variable importance measures are consistent with the underlying truth. Figure 2.2

presents the permutation based variable importance scores. The box plot on the left shows that

the distributions of the variable importance scores are similar for all the variables as they
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should be in model A. On right panel in Figure 2.2, we can see that covariate X4 is being

identified as the most important, followed by X3, X2, and X1. Although the covariates X5 and

X6 are associated with treatment selection and the outcome, they have no impact on the ITE

and therefore are identified as being equally unimportant as X7 and X8.
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Figure 2.1. Simulation results: comparison of four methods in terms of prediction accu-

racy. Training data with three sample sizes (500,1000, and 2000) are used to estimate the

individualized treatment effect (ITE). The MSE for the ITE is based on a test sample of

size 1000, and 200 simulation runs.

Figure 2.2. Simulation results: permutation based variable importance score (VIMP)

with the proposed CERFIT algorithm.

2.8 APPLICATION STUDY: ASSESSMENT OF A
VOLUNTARY SUPPLEMENTAL INSTRUCTION

COURSE

The California State University Chancellor’s Office identified Introductory Statistics

as a bottleneck course, in particular the relatively high failure and repeat rate delaying student

graduation across the system. As a first phase to addressing the issue, the CSU offered

so-called Course Redesign with Technology grants to consider alternative instructional

modalities towards improving student success. As part of one such grant, San Diego State

University introduced a one-unit supplemental instruction course. Funding was available to

offer the course to only 20% of Introductory Statistics students. Students voluntarily enrolled
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in the course and met twice per week in a small group, active learning environment to review

the topic of the week, discuss conceptual issues, and work on extra but related statistics

problem sets and data analyses. In this Section, we use CERFIT to assess this supplemental

instruction section with respect to student performance in the course. One particular

actionable outcome is to determine financial resources devoted to the section: either increase

offerings if successful, or introduce/consider an alternative intervention if not successful.

There were n = 976 students enrolled in the course, among which 182 students

(18.65%) enrolled in the one-unit supplemental instruction section (“treatment group”). A

total of 37 covariates are considered in the model besides the treatment status. There are 8

continuous variables, 18 binary variables, 7 ordinal, and 4 nominal variables. The data covers

students’ demographics, university information, course specific information, as well as

admission information; see Table 2.4 for variable descriptions and missing data information.

The outcome variable is the final exam score ranging from 0 to 300. The missing values are

imputed using the R-package mice [75]. The propensity score for each of the students is

estimated using random forest.

To evaluate the impact of the supplemental instruction course on individual students

and identify important variables that impact the treatment effect, we use a 100-fold cross

validation procedure. The original data is randomly split into 100 almost equal-sized groups,

with each group containing 9 or 10 students. Then we use data from 99 groups as training

data to grow the CERFIT and leave out one group of data as testing data to make predictions.

A total of ntree = 500 trees are constructed for each forest and 100 forests of interaction trees

are built for the 100-fold cross validation. Using our default mtry formula, mtry is set at 6.

Variable importance is measured by the average of VIMP for each variable across 100 forests.

A histogram of the predicted individualized treatment effect (ITE) is presented in

Figure 2.3. The average predicted ITE is around 10.7. This result suggests that the

supplemental instruction course has a small but positive impact on students’ performance

overall. The predicted ITE values around zero indicate no treatment effect on those students’



26

performance. There are 741 (75.92%) students with positive ITEs and the predicted

maximum score gain on the final exam is around 66. There are also 235 (24.08%) students

with negative ITEs and the minimum predicted value is −29, which indicates that the program

has no impact or even adverse impact on some of the students.

Figure 2.3. Predicted individualized treatment effect (ITE) using CERFIT. The outcome

is the final exam score in Introductory Statistics, ranging from 0 to 300. The treatment is

the one-unit, self-selected supplemental instruction course.

The variable importance rankings based on the permutation based variable importance

score (VIMP) are presented in Figure 2.4. Variables with higher importance are on the top of

the figure. Note that larger values on the permutation based variable importance score indicate

more important variables. From Figure 2.4, we can see that SAT math and verbal scores, high

school GPA, and age are identified as the most important predictors. Other important

covariates include college description proxy to major, Homework 1 time and score, indicator

of a first-generation student with parents having some college experience, low income based

on EFC, location of highest math class taken and highest math class complete, and number of

units attempted for the term. Variables with least predictive power are whether the student is

disabled, in an honor or scholarship program, or at full-time status. Although the literature is
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not consistent on how student’s academic ability impacts on the treatment effect from

academic supplemental instruction program[18], student’s academic readiness reflected by the

student’s SAT performance, high school GPA, and first homework performance are generally

considered as top factors that impact the treatment effect. In addition, student’s

socioeconomic background measured by the first-generation status and low income are also

key predictors [56]. Another interesting finding is that the number of units attempted plays a

critical role on whether a student can benefit from enrolling in the supplemental instruction

course. Lower number of units attempted associates with a higher ITE.
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Figure 2.4. Important predictors based on variable importance score.

Table 2.3 presents a profile of students with the largest and smallest predicted ITEs.

The four cases that are most negatively impacted as well as the four cases that are most

positively impacted by enrolling in the supplemental instruction course are profiled
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individually. In addition, students with the bottom 10% as well as top 10% ITE’s are profiled

as groups.

From Table 2.3 we can see that students’ with the most negative ITEs have

comparatively higher SAT math scores. Very few of them are first-generation college students.

Although a negative ITE may seem counter-intuitive, it may be that stronger students who

enroll the supplemental instruction course gain little benefit from the class material. In fact,

these students may be substituting the supplemental instruction course for study time and thus

perform worse in the course. Along these lines as well, these students who enroll in the

supplemental instruction course may be less motivated students and effectively using the

course to avoid the harder work of studying. Alternatively, although these students are

stronger on average, students with a negative ITE may find the Introductory Statistics course

material harder, thus motivated to enroll in the supplemental instruction course.

From Table 2.3 as well, we see that students with the most positive predicted ITEs

have lower SAT math scores. A large proportion of them are first-generation college students.

These latter students are also older, spent longer time to finish the first homework, and

enrolled in relatively fewer units for the term. Even though this group of students have similar

high school GPA, they are weaker in math preparation as judged by the SAT math score. One

may conjecture that by enrolling in the supplemental instruction course, they improve their

success in the course through greater time-on-task and more specifically further review of

course material and extra practice in statistical problem solving. In addition, their comparable

GPA in high school might suggest that these students with lower socioeconomic status on

average are generally good and slightly more mature students who are motivated to improve

performance in the introductory statistics course through extra efforts in the supplemental

instruction course. Students with good math readiness could not benefit from the extra

practice problems, especially when they already have a higher course load for the term. They

could even be adversely impacted by enrolling in the program since, again, they may benefit

more from studying by themselves.
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Table 2.3. Profile of Students with the Largest and Smallest Predicted ITE.

Rank ITE SATmath hsGPA Age HW1time 1stGeneration #Units
(hour) College

Bottom four −29 680 3.62 18.54 1 0 12
−28 540 3.50 18.75 1 0 15
−25 580 3.46 18.65 1 0 15
−25 570 3.50 18.70 1 0 15

Bottom 10% −13.15 616.3 3.57 18.89 1.5 0.04 14.57
Top four 54 330 3.67 18.24 1.5 1 12

56 480 4.00 18.51 2.5 1 13
58 480 3.75 18.08 2 1 12
66 490 3.93 18.27 2 1 12

Top 10% 38.53 454.1 3.47 20.41 1.65 0.76 13.54

2.9 CONCLUSIONS

Estimation of causal treatment effects, especially individualized treatment effects

(ITEs) using observational data, holds great interest in various research fields. However,

causal inference under the counterfactual framework usually requires the assumption of strong

ignorability. Without properly addressing issues of confounding when using observational

study data, the estimation of ITE can be biased and unreliable. Propensity score based

methods are theoretically appealing and are one of the most widely used methods in causal

inference involving confounders. Current machine learning methods with high prediction

accuracy may help mitigate the confounding issue significantly, however, integrating the

propensity score into machine learning methods enables us to take advantage of propensity

score methods to improve predictive performance under causal inference.

Simulation results show that CERFIT outperforms other competing methods

consistently under all the scenarios considered in the study. Unlike the models under the

separate counterfactual approach that require two separate models on two targeted responses,

CERFIT’s learning target is set as the treatment effects themselves. Fitting one model using

all of the data results in a higher prediction accuracy, as we see in CERFIT. Previous research

has found that synRF and BART have superior performance to CRF [49] even when the

sample size is moderate (n = 500). One reason might be that in this study, the error terms for
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the responses are simulated with ε ∼ N(0, 1) rather than ε ∼ N(0, 0.1) as in the previous

study. The bigger size of error terms increases the learning difficulty on the responses, but not

necessarily the treatment effects. Therefore, models under the direct approach, such as CRF

and CERFIT, have competitive edges over their competitors. In addition, we observe that

CERFIT’s superiority is especially significant when the treatment selection has a nonlinear

relationship with the covariates; in this case the benefits of adjusting confounding through

propensity scores are prominent.

The CERFIT algorithm also produces accurate variable importance ranking, which

cannot be achieved by the methods using separate counterfactual modeling. Machine learning

methods such as RF are often called “black-box” methods. Variable importance ranking is

one of the most important tools to help in interpreting the findings from the “black-box”. As

we showed in the application section, the accurate prediction of ITE is fundamental and plays

a critical role in advising students in their enrollment decisions. However, to understand why

and how a student can benefit most from an intervention program is another key question

sought by program designers and participants. For instance, based on our analysis, students

from lower socioeconomic background with higher high school GPA but lower SAT math

score should be encouraged to enroll in the statistics supplemental instruction section.

CERFIT can be applied to various areas where estimation of personalized treatment

effects using observational education data is of interest. Since CERFIT depends on IPTW, its

performance can be greatly impacted by the accuracy of the propensity score estimation. The

selection of proper prediction model for the propensity score is critical. We recommend RF or

other machine learning methods such as boosting [53] and neural networks because of their

superior prediction accuracy, rather than classic logistic regression. Currently, CERFIT can be

applied only in the setting of binary treatment groups. In addition, just as random forest

variable importance measures are in favor of variables with many possible splits [67],

CERFIT’s variable importance measures may suffer from the same bias. Since CERFIT uses

half of mtry than the Breiman random forest default, this issue is slightly mitigated. For
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studies dealing with variables of different types, approaches suggested by [67] and [11] can be

combined with the current CERFIT’s variable importance algorithms to achieve unbiased

variable selection.
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Table 2.4. Detailed Variable Description for the Application Data .

Covariates Description
Demographics
Sex Sex (Male or Female)
Age Age in years
URM Underrepresented Minority (yes or no)
Disabled Disabled (yes or no)
LowIncome Low Income based on EFC (yes or no)
PellGrant Pell Grant Recipient (yes or no)
FirstGen NCES First Generation Student based on the NCES (yes or no)
FirstGen SomeCollege First Generation with some college experience (yes or no)
Course information
SectionNum Section Number (4 levels)
Instructor Instructors Name (2 faculties)
ClassFormat Class Format (Traditional or Hybrid)
PartWK2 Week 2 Participation
HW1 Score Homework 1 Score
HW1 Time Time to complete Homework 1(minutes)
Admission information
SATmathˆ SAT math score
SATverbˆ SAT verbal score
Hsgpa High School GPA
statAP* AP Statistics taken (yes or no)
calcAP* AP Calculus taken (yes or no)
MathLoc# Location of highest math class taken (3 levels)
MathLevel# Highest math class completed
Calc Level of Calculus taken
Stat Number of statistics classes taken (0, 1 or 2)
Online Number of online unites attempted
Univerisity information
StdLvl Level of student at university(4 levels)
Enroll Enrollment Status (3 levels)
CollegeDes College description proxy to major(8 levels)
majorStat Admitted to major (yes or no)
AdmBas Admission basis (4 levels)
EOP Part of Educational Opportunity Program (yes or no)
FirstSemester First Semester (yes or no)
Dorm On-Campus Housing in Dorms (yes or no)
Honors Honors Program (yes or no)
LearningComm Learning community - specialized dorms (yes or no)
Compact Compact for Success - scholarship program (yes or no)
Fulltime Full-time status (yes or no)
TermAtt Units Attempted Number of units attempted this term
Note missing data: SAT(̂n = 149), Hsgpa(n = 89), AP*(n = 121), Math#(n = 67), Calc(n = 43) and Stat (n = 43)
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CHAPTER 3

RESIDUAL CERFIT

3.1 IMPROVE NUMERICAL STABILITY USING
RESIDUALS

One of the criticisms in interaction tree algorithm is the splitting rule, which is

determined by selecting an individual covariate to estimate the average treatment difference

without control the other covariates [1]. The concern of this criterion is that the treatment

difference might be affected by covariates other than treatment. To address this issue,

following the idea presented by [24], we propose to replace the original responses with

residuals estimated from linear regression models to improve the numerical stability of the

splitting rule. For an estimation of treatment effects, we can assume the following general

model for responses Y :

Y = α0 + g(X) + Td(X) + ε (3.1)

where α0 is the overall mean, g(X) is a function of baseline covariates affect responses, and

Td(X) is the interaction between the treatment and covariates. In the subgroup identification,

we are interested in the Td(X) only, and the baseline covariates effect g(X) can be removed.

Let us recap the splitting rule in the interaction tree. The best split s∗ is chosen by

maximizing t2s(s
∗)

argmax{t2(s)} =
ATEL − ATER

σ̂
√

1/n1 + 1/n2 + 1/n3 + 1/n4

(3.2)

where σ̂2 is the pooled estimator of the constant variance, and ATEL and ATER are the

average treatment effects for the two child nodes. The ATE under the general model as
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shown in Equation 3.1 can be expressed by

ATE = E(Y |X,T = 1)− E(Y |X,T = 0) = Td(X) (3.3)

Regardless the form of g(X), the only component that has an impact on the treatment effect is

the treatment covariate interaction term Td(X). Furthermore, similar as the work in [24], we

can show the numerical stability benefits of removing g(X) as follow:

EN(Y ) =
1

N

∑
Td(Xi) +N (

1

N

∑
h(xi),

1

n2

∑
g2(Xi)) + op(1) (3.4)

where h(X) = α0 + g(X). Both g(X) and d(X) are centered to 0. E is to calculate

sample average. When h(X)� d(X), the second term in the above equation dominates the

results. If we have a good estimator of h(X) as ĥ(X), it is easy to show that we can stabilize

the solution by eliminating the impact of h(X).

EN(Y − ĥ(X)) =
1

n

∑
Td(Xi) + op(1) (3.5)

Fu et al. [24] suggest that without an optimal h(X), a simple linear regression can

improve the numerical stability of the algorithm. In our study we propose to follow their idea

to fit a linear model with Y and X , and then, instead of using Y to evaluate the splitting rule,

we use linear residuals (Ỹ ) to determine the optimal split:

Ỹi = β0 + β1I(Ti = 1) + β2I(Xij ≤ c) + β3I(Ti = 1)I(Xij ≤ c) + β4ei + εi, (3.6)

3.2 SIMULATION STUDIES: RESIDUAL
NUMERICAL STABILITY
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3.2.1 Simulation models

We simulate 8 covariates from the standard normal distribution

Xi ∼ N(0, 1), i = 1, 2, · · · , 8. Treatment selection is based on a linear additive model using

four covariates X1, X2, X5 and X6,

logit(Pr(T = 1|X)) = −1.5 + 0.8X1 − 0.25X2 + 0.6X5 − 0.4X6; (3.7)

The response Y is simulated with three models. For the first two models, we simulate

a common linear model for individualized treatment effect Td1(X), and two separate models

for main effects hI(X) and hII(X). One is a simple linear model, and another is quadratic

regression model.

hI(X) = 2 + 0.5X3 + 0.5X4 + 0.5X5 + 0.5X6; (3.8)

hII(X) = 2 + 0.5X3 + 0.5X4 + 0.5X2
5 + 0.5X6; (3.9)

The individual treatment effects δ(X) are determined by a linear additive model

Td1(X) = I(T = 1)(0.5 +X1 + 1.5X2 + 2X3 + 2.5X4); (3.10)

To further test the performance of replacing original responses with linear residuals,

we then simulate the third linear model, a degree 3 polynomial model for the main

effect(hIII(X)). The interaction term Td2(X) is a tree type model with an interaction term:

hIII(X) = −5− 2X1 − 2X2
2 + 2X3

3 ; (3.11)

Td2(X) = I(T = 1)(−2 + 2I(X1 ≤ 0.5) + 2I(X2 ≤ 0.5)I(X3 ≤ 0.5)); (3.12)

where I(·) is the indicator function.

Y = h(X) + Td(X) + ε (3.13)
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3.2.2 Simulation results

The numerical stability benefits using linear regression residuals are measured by the

mean squared error (MSE) of individualized treatment effect. A smaller MSE indicates a

higher prediction accuracy. The simulation results presented in Figure 3.1 are obtained from

100 simulation runs with training data n = 1000 and testing data tn = 1000. For all three

simulated main effect models, using residuals generated from a simple linear regression

model to replace original responses in tree growing process greatly increased the prediction

accuracy. The benefits are significant even under the linear main effect models with second

order or third order polynomial terms.

Figure 3.1. Numerical stability benefits by replacing original responses with residuals

from linear regression model. A smaller MSE indicates a higher prediction accuracy.
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CHAPTER 4

CERFIT FOR NON-BINARY TREATMENTS

4.1 INTRODUCTION

Interventions with non-binary treatments are common in various fields. Non-binary

treatments may include more than two different treatments, multiple levels of one treatment,

or even treatment with continuous values. In medical research, comparing efficacy of several

drugs or determine effect drug doses are common. In education interventions such as

supplemental instruction, treatment level is usually measured by the number of sessions that

students attended. Under non-binary treatment setting, simple dichotomized treatment

variable with treated and untreated will introduce subjective bias and information loss [21].

Learning individualized treatment effects is a more challenging task for non-binary

treatments. While with binary treatments, it only requires learning one treatment effect

between the treated and control group to identify the optimal treatment assignment; with

non-binary treatments, it requires learning multiple treatment effects in order to achieve the

same goal.

Giving increasing interests in individualized treatment regimes (ITR), diverse

statistical methods have been developed in recent years. Because of their flexibility in

modeling with few statistical assumptions, and their ability to handle a variety of data

structures [8, 70], multiple machine learning tree based methods were proposed in ITR

research. These methods can be broadly categorized into two approaches. The first one takes a

regression-based subgroup identification approach. Through examining interactions between

treatment and covariates, subgroups with similar or adverse treatment effects are identified.

The optimal ITR can be determined by the treatment with maximized treatment benefits.

Qualitative interaction tree (QUINT) [19], causal random forest [77], and random forest of
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interaction trees [43, 69, 68] are representative methods under this approach. Interaction based

subgroups are often highly interpretable. However, methods under this approach are primarily

designed for binary treatments. The other approach in ITR learning is growing a tree by

maximizing a specified value function. While the aforementioned methods directly search for

subgroups through interactions, methods under this approach construct a tree via maximizing

a value function associated with treatment effects. Non-binary treatments and observational

data can be handled under the value function framework. For instance, Zhao, Zeng, Rush and

Kosorok [83] introduced the framework of outcome weighted learning (OWL) to directly find

the optimal treatment rule for binary treatment. Tao, Wang and Almirall [71] proposed an

adaptive contrast weighted learning (ACWL) algorithm by maximizing or minimizing an

objective function. Recently, Chen, Tian, Cai and Yu [14] proposed a general framework by

weighting and A-learning for subgroup identification to recover the optimal ITR through

minimizing convex loss functions. Minimum impurity decision assignments (MIDAs) method

[44] also falls in this category. Estimation of ITR is achieved through minimizing purity

measures in a recursive algorithm in MIDAs. Both ACWL and Chen et al.’s [14] works can be

applied for multiple treatments. MIDAs is the only method that can also be applied for

continuous treatment setting. However, value function based methods could be

model-dependent and less interpretable. The direct estimation of individualized treatment

effects may not be available. Furthermore, methods under this framework also lack the ability

of ranking variable importance with respect to treatment effects.

In this chapter, we propose algorithms to transform non-binary treatments

optimization problems into a binary like problem using Random Forest of Interaction Trees

[69]. The non-binary treatments considered in the algorithm include both multiple treatments

(nominal or ordered) and continuous treatment. For multiple treatments, through recursive

partitioning data into two subgroups with greatest treatment effects heterogeneity with respect

to two randomly selected treatment groups, the algorithm transforms the multiple learning

ITR into a binary task. Similarly, continuous treatment can be handled through recursively
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partitioning the data into subgroups with greatest homogeneity in terms of the association

between the response and the treatment within a child node. The method is flexible, and the

results are easy to interpret. Individualized treatment effects can be directly estimated along

with variable importance ranking. In addition, by integrating general propensity scores into

the tree growing process, the proposed method could be applied to both randomized and

observational studies.

The remainder of this chapter is structured as follows. In Section 4.2, we introduce the

Causal Effect RFIT (CERFIT) algorithm for non-binary treatments. In Section 4.3, we first

review the general propensity score estimation methods for the multiple treatments and

continuous treatment settings, and then present how to integrate the general propensity score

into the CERFIT algorithm. Section 4.4 and 4.5 contain simulation studies to assess the

CERFIT’s performance by prediction accuracy and variable importance ranking for multiple

and continuous treatment settings, respectively. In Section 4.6, we illustrate CERFIT’s

application under non-binary treatments through the analysis of multiple education

interventions. Section 4.7 concludes the chapter with a brief discussion.

4.2 CERFIT FOR NON-BINARY TREATMENTS
CAUSAL INFERENCE

The RFIT algorithm was developed for estimating subgroup average treatment effects

(ATEs) using data from two armed randomized trials [69]. In our previous study, we proposed

an algorithm to extend the RFIT for estimating individualized treatment effect for

observational data. Due to the recursive feature of the tree algorithm, RFIT can be easily

transformed and adapt to a multiple treatment situation. For each individual i in (1, · · · , n),

we observe (Yi, Xi, Ti). Yi is the response, Xi is a set of baseline covariates, Ti = t is the

treatment assignment (t ∈ τ ), where τ is a collection of m treatment options. Under the

potential outcomes framework, each individual has (m− 1) potential outcomes

(Y 1
i , · · · , Y m−1

i ). The individualized treatment effects (ITE) between treatment u and v is

given by the treatment difference (Y u
i − Y v

i ). The multiple treatment effects can be viewed as
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m(m−1)
2

pairwise contrasts. The interaction tree is grown by recursively splitting the data

across values of random selected covariates. The value that maximizes the difference in

treatment effects between the two binary treatments is selected as the best split. Each terminal

node retains individuals with maximized treatment difference from the other terminal nodes.

Under binary treatment, each split is based on treatment differences between the treated and

control group. Under a multiple treatments setting, pairwise contrasts among treatments can

be implemented into sequential splitting by randomly selecting a pair of treatments at each

split without modifying the splitting rule. As a tree grows bigger, each pairwise contrast has

the same chance of being selected to evaluate the splitting rule. Within a tree, different pairs

of treatments encounter different splitting depths, but these depths are randomized among all

trees in a forest. Similar to the binary treatment setting, the terminal nodes contain individuals

with maximized treatment effect heterogeneity compared with the individuals within other

terminal nodes but evaluated through multiple treatments. The ensemble of the tree yields a

smoothed estimation of treatment outcome for each treatment. The splitting rule is essentially

the same as under binary treatment setting, but with a randomly selected pair of treatments

T = tu and T = tv. For each partitioning, the evaluation of the splitting rule is through a

subset of observations received treatment assignment Tk = tu or Tk = tv, where k in

(1, · · · , nuv).

Yk = β0 + β1I(Tk = tu) + β2I(Xkj ≤ c) + β3I(Tk = tu)I(Xkj ≤ c) + εk, (4.1)

where I(·) is the indicator function. Tk is the treatment assignment for the kth subject,

I(Xkj ≤ c) is the indicator for a binary cut based on covariate Xj , and εk is iid N(0, σ).

An alternative algorithm for a multiple treatments setting is to only focus on the m− 1

contrasts, instead of viewing the problem as m(m−1)
2

pairwise contrasts. Since the estimated

ITE should be transitive, we only need the information from m− 1 pairwise ITEs to identify

the optimal ITR. The advantage of this alternative algorithm is apparent. With fewer required
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pairs of contrasts, the tree is grown more efficiently in learning the ITEs between each of the

treatments to the reference treatment. However, the accuracy might be impacted since the

algorithm only focuses on the comparison of treatment effects to one predefined reference

treatment. In terms of the variable importance ranking, under the alternative algorithm,

variable importance is ranked based on the impact of each of covariates on the treatment

differences with respect to the reference treatment only. This alternative algorithm is denoted

as CERFIT2 and the aforementioned algorithm is called CERFIT1 here after.

Under a continuous treatment setting, by slightly modifying the treatment variable Ti

in equation 2.2, we have

Yi = β0 + β1Ti + β2Zi + β3TiZi + εi, (4.2)

where Ti = t (t ∈ τ ) is the treatment received by the ith subject, Zi is the indicator for a

binary cut based on the covariate Xj , Zi = I(Xij ≤ c), and εi iid N(0, σ). A significant Wald

test for H0 : β3 = 0 from equation 4.2 indicates the association between the treatment variable

(T ) and the response (Y ) is significantly different between subgroup Xj ≤ c and Xj > c.

With sequential splitting and growing, a particular terminal node retains observations who

have similar associations between T and Y .

4.3 GENERAL PROPENSITY SCORES (GPS)

To expand the application of RFIT to observational data, we propose to integrate the

propensity score into the tree growing process to address confounding issues in observational

studies. Under a binary treatment setting, the propensity score e is defined as the probability

of the treatment conditional on a set of covariates, e = Pr(T = 1 | X). In their seminal work,

Rosenbaum and Rubin (1983) show that an unbiased estimate of the average treatment effect

can be obtained by conditioning on the propensity score alone, instead of a set of covariates:

{Y (1), Y (0)} ⊥⊥ T | e(X). This approach has been widely applied in causal inference.

Several methods based on propensity score have been proposed, such as matching,
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stratification, inverse probability of treatment weighting (IPTW), and covariate adjustment

[3, 4]. Applications of propensity score methods are usually limited to a binary treatment

setting. Recent works on general propensity scores (GPS) [25, 30, 36, 21] extend applications

of propensity score methods into a general treatment setting for causal inference.

4.3.1 GPS for multiple treatments (GPSm)

Let r(t,X) = Pr(T = t|X) as the conditional probability of receiving a particular

treatment, then GPSm can be defined as R(X) = (r(t1, X), ..., r(tm, X) [25]. In practice,

GPSm are usually estimated using multinomial logistic, multinomial probit models for

nominal treatments or proportional odds models for ordered treatments [25, 36, 48]. Causal

inference for observational data with multiple treatments can be implemented using pairwise

matching [52, 45], vector matching [48] or IPTW methods [20, 54]. For ITR study under a

multiple treatments setting, IPTW is the most frequently used method. For instance, the

ACWL method proposed by Tao et al.[71] uses multinomial logistic regression to estimate

propensity scores and form a double robust augmented inverse probability weighted estimator.

similarly, Angle-based direct learning [58] and the personalized benefit scoring system from

the general framework of subgroup identification [14] both integrate the multinomial logistic

regression based propensity scores in the value function for learning ITR in observational

studies. Similar to a binary treatment setting, the estimation of propensity score for multiple

treatments are also subject to model misspecification when using parametric multinomial

logistic regression. The problem becomes more prominent as the number of treatments

increases. To mitigate estimation errors and extreme weights in IPTW methods McCaffrey et

al. [53] proposed using a general boosted model(GBM) to estimate GPSm with a stopping

rule that maximizes the resulting covariate balance. The method was later extended to

multiple treatments [53] and continuous treatment settings [84] by modifying the stopping

rules to yield a match between the target group and the entire sample. The covariate balancing

propensity score (CBPS) method proposed by Imai and Ratkovic [35] can also be extended to
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a setting of multiple treatments. The GPSm in CBPS method [22] is estimated such that the

general covariate balancing conditions are satisfied: E(
I{Ti=tj}Xi

r(tj ,Xi)
) = E(Xi), where I(·) is the

indicator function, Ti = tj is the treatment assignment for the ith observation.

4.3.2 GPS for continuous treatment (GPSc)

Let r(t,X), t ∈ τ be the conditional density of the treatment given observed

covariates, r(t,X) = fT |X(t | X), then GPSc can be written as R = r(T,X), where T is a

random variable denotes the treatment received and t is a specific level of T . The GPSc has a

balancing property similar to the standard propensity score. The probability that a subject

received a treatment assignment T = t is independent to the value of X within strata with the

same value of r(t, x): X ⊥⊥ I(T = t) | r(t,X), where I(·) is the indicator function. Together

with the assumption of weak unconfoundedness:Y (t) ⊥⊥ T | X for all t ∈ τ , where Y (t) is a

random variable that maps a particular potential treatment t to a potential outcome. Hirano

and Imbens [30] show that GPSc can be used to eliminate any biases associated with

differences in covariates. As a popular practice, to estimate the GPSc, one could assume that

the treatment T or its transformation m(T ) is normally distributed given covariate X:

m(T ) | X ∼ N(γ′X, σ2), where the parameters γ and σ2 can be estimated by maximum

likelihood [30]. Thus GPSc can be estimated by the normal density function:

R̂i =
1√

2πσ̂2
exp(− 1

2σ̂2
(Ti − γ̂′X)2) (4.3)

The underlying assumption for this method is that the conditional distribution of the treatment

or its transformation given the observed covariates needs to be approximately normal. With

high dimensional covariates, this two-stepped parametric density estimation may suffer from

the course of dimensionality and model misspecification. To address this issue, Zhu, Coffman

and Ghosh [84] extended the GBM based propensity score estimation approach to a novel

boosting algorithm for GPSc estimation. They take a more general approach to assume

Ti = m(Xi) + ε, ε ∼ N(0, σ2), where m(X), the mean function of T given X is estimated
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using a nonparametric boosting algorithm with a stopping criterion such that the treatment

assignment and covariates are independent in the weighted sample. The degree of

independence between the treatment and each covariate can be measured by commonly used

correlation matrices, such as Pearson, Spearman, Kendall and distance. The CBPS method

can also be extended to a continuous treatment setting. Fong and Imai [21] propose a

parametric and a noneparametric versions of CBPS for a continuous treatment. The CBPS

does not involve direct estimation of GPSc but uses an empirical likelihood approach to

choose weights that achieve a sample data with zero correlations between the treatment

assignment and the covariates.

4.3.3 Incorporating GPS in the algorithm for
observational study data

In random forest (RF) or random forest of interaction trees (RFIT), each tree is grown

based on a bootstrap sample. In our proposed causal effect random forest of interaction trees

(CERFIT), each tree is built based on a weighted bootstrap sample selected using weights

wi = 1
r(t,Xi)

. By doing so, we can address the confounding issues in observational data by

growing a tree using subsamples with minimized association between treatments and baseline

covariates.

Secondly, we propose to use the GPS to adjust the RFIT splitting rule to further

control the confounding issues during the tree growing process. To this end, we use the GPS

as a control covariate in the interaction model.

IPTW using propensity scores leads to an unbiased estimation of treatment effects.

Several studies show conventional variance estimator under the IPTW method can be biased,

because using weights induces within subject correlation. Consequently, it is suggested that a

robust standard error should be considered with IPTW based regression models [28, 41].

Therefore, we propose to use a sandwich type robust standard error (RSE) to adjust the Walt

test statistics, which helps to account for the lack of independence in replications of subjects
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induced by IPTW weighting:

ts(s) =
β̂3

RSE
(4.4)

where RSE is the robust standard error estimated using

RSE = [(X ′X)−1(X ′diag(ε2
i )X)(X ′X)−1]

1
2 (4.5)

Additionally, based on our simulation studies in Chapter 3, we use residuals estimated

from the linear regression model to replace the original responses in the proposed algorithm to

improve the prediction accuracy. The best split s∗ is chosen by maximizing the squared Wald

test statistics for H0 : β3 = 0 in Equation 4.6 and 4.7.

Multiple treatments

Ỹk = β0+β1I(Tk = tu)+β2I(Xkj ≤ c)+β3I(Tk = tu)I(Xkj ≤ c)+β4r(Tk = tu, Xk)+εk,

(4.6)

where Ỹi is the linear residuals; I(·) is the indicator function. Tk is the treatment assignment

for the kth subject, k in (1, · · · , nuv) ;I(Xkj ≤ c) is the indicator for a binary cut based on

covariate Xj , and εk is iid N(0, σ).

Continuous treatments

Ỹi = β0 + β1Ti + β2Zi + β3TiZi + β4r(Ti, Xi) + εi, (4.7)

Where Ỹi is the linear residuals; Ti = t (t ∈ τ ) is the treatment received by the ith subject, Zi

is the indicator for a binary cut based on the covariate Xj , Zi = I(Xij ≤ c), and εi is

iid N(0, σ).
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4.3.4 CERFIT for Non-Binary Treatments
Algorithm

The detailed tree algorithms for settings of non-binary treatments are summarized in

the following tables. In particular, the default mtry value for the regression problem is set as

mtry = p/3 in the randomForest R package [7], where p is the number of predictors. We

recommend to use max{3, p/2} and max{3, p/6} as the default mtry value in CERFIT for

multiple treatments and continuous treatment, respectively. For multiple treatments, we

propose a larger value of mtry since randomly selecting a pair of treatments to evaluate at

each split, greatly increases the estimation variance. A bigger value of mtry helps mitigate

this impact. With the same underlying reason, we recommend using a smaller mtry for

continuous treatments, since using weighted bootstrap samples may increase the similarity of

the trees, which decreases the estimation variance among trees. A smaller mtry can help

de-correlate the trees. In particular, p/6 is half of the default mtry value in the randomForest

[7], R package and the value of 3 in our recommendation is designed to stay away from an

mtry value that is too small, when p is not very large, in order to preserve the quality of splits

and ultimately the prediction accuracy of the random forest. The default terminal node size is

set at 30.

To estimate the treatment effects for multiple treatments, within the terminal node, the

interaction effect for each treatment T = tj is estimated using a weighted averagễ
Y (tj) =

Σwi(tj)Ỹi(tj)

Σwi(tj)
, where i is the ith observation in the terminal node with treatment

assignment tj . For each subject, the final prediction for treatment tj is the average prediction

across all ntree trees.

To estimate the optimal treatment regime for continuous treatment, we model the

conditional expectation of the interaction effect Ỹi given Ti using an additive regression

model. In their original work, Hirano and Imai [30] recommend using a flexible Gaussian
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Table 4.1. The CERFIT Algorithm for Multiple Treatments

The CERFIT algorithm for multiple treatments

1. Estimate propensity score R(T,X) and inverse probability weight w.

2. Calculate residual Ỹ using linear regression model and use {Ỹ , T, R(T,X), X} as

input data.

3. Draw bootstrap samples from the data using w as sampling weights.

4. Grow an interaction tree based on each weighted bootstrap sample.

−4.1a At each node, randomly select a pair of treatment T = tu and T = tv; define tu = 1

and tv = 0, then subset the data that only contains these two treatments.

Or using step 4.1b as an alternative algorithm for 4.1a

−4.1b Predetermine a reference treatment T = tref and set tref = 0. At each node,

randomly select another treatment T = tu and define tu = 1, then subset the data that only

contains these two treatments.

−4.2 Randomly select mtry of total p covariates from which to determine a split rule. The

default value of mtry is set at p/2.

−4.3 Among the mtry covariates selected, the optimal split is identified by maximizing the

adjusted squared Wald test statistic for testing H0 : β3 = 0, in Equation (4.6) using data

generated in step 4.1a or 4.1b.

−4.4 Repeat steps 4.1 to 4.3 until reaching a pre-specified stopping rule (e.g., maximum

tree depth, minimum terminal node size).

5. Repeat steps 3 and 4 for ntree trees as desired, with a default value set at 500.

quadratic regression model:

E[Yi|Ti, r(Ti, Xi)] = η0 + η1Ti + η2T
2
i + η3r(Ti, Xi) + η4r(Ti, Xi)

2 + η5Tir(Ti, Xi) (4.8)

Where r(Ti, Xi) is the GPSc.
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Table 4.2. The CERFIT Algorithm for Continuous Treatments

The CERFIT algorithm for continuous treatments

1. Estimate GPSc and inverse probability weight wi.

2. Calculate residual Ỹ using a linear regression model and use Ỹ , T, R(T,X), X as input

data.

3. Draw bootstrap samples from the data using wi as sampling weights.

4. Grow an interaction tree based on each weighted bootstrap sample.

−4.1 At each node, randomly select a subset mtry of the total p covariates from which to

determine a split rule. The default value of mtry is set at max{3, p/6}.

−4.2 Among the mtry covariates selected, the optimal split is identified by maximizing the

squared Wald test statistic for testing H0 : β3 = 0, in Equation (4.7).

−4.3 Repeat steps 4.1 and 4.2 until reaching a pre-specified stopping rule (e.g., maximum

tree depth, minimum terminal node size).

5. Repeat steps 3 and 4 for ntree trees as desired, with a default value set at 500.

Within the terminal node of the CERFIT tree, the data structure is relatively simple

with a smaller sample size. Therefore, we use the following parsimonious yet flexible model:

E[Ỹ |T, r(Ti, Xi)] = η0 + η1Ti + η2T
2
i + η3T

3
i (4.9)

To reduce overfitting, a LASSO penalty [74] is used, where the penalization is determined by

minimizing 10-fold cross-validated prediction error. The final treatment prediction for each

subject is the average prediction across all trees.

For a discrete continuous treatment. The optimal treatment could be determined by the

treatment associated with a maximized treatment outcome. For studies with interests in

continuous treatment on the interval [a, b], within each terminal node, a standard optimization

routine [10] available in the base R function optimize can be applied to render an optimal
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treatment level within each terminal node. Then the final optimized ITR can be determined by

an ensemble results across a forest.

Variable importance ranking in CERFIT is implemented using minimal depth (MD)

procedure [39]. MD assesses the predictive power of a variable by the depth of the first split

of a variable relative to the root node of a tree. A smaller MD indicates a covariate has higher

predictive power. The specified steps in finding MD (MDj) for a covariate Xj

(j = 0, 1, 2 · · · , p) is described in the variable importance algorithm below.

Table 4.3. The Variable Importance: Minimal Depth Algorithm

Variable importance algorithm: Minimal Depth

1. Let Γb denotes tree b (b = 0, 1, 2 · · · , ntree) and Dj
i (i = 0, 1, 2 · · · , r) denotes the

distance from the root node to the nodes split on a covariate Xj for all r splits on covariate

Xj within tree Γb

2. Sort Dj
i for each covariate Xj , and find minimal depth Dj

b for Xj within tree Γb using

Min(Dj
i ).

3. For covariateXj is not used in the tree growth, defineDj = MaxDb+1, whereMaxDb

denotes the maximum tree depth for tree b.

4. Repeat steps 1 to 3 for every tree in the forest and calculate the mean of the Dj
b over the

forest MDj =
∑ntree

b=1 Dj
b

ntree
for each of the Xj .

4.4 SIMULATION STUDIES FOR MULTIPLE
TREATMENTS

We simulate data with 10 covariates Xj (j = 1, ..., 10) from the uniform distribution

from -1 to 1. Simulation of the treatment selection is modified from the framework used by

Huling and Yu [34]. Three treatments were generated in their study. In our simulation, four

treatments are generated.
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Treatment selection model.

logit(Pr(T = 1|X)) = 0.1 + 0.5X2− 0.25X3 (4.10)

logit(Pr(T = 2|X)) = 0.1− 0.5X1 + 0.25X4 (4.11)

logit(Pr(T = 3|X)) = 0.1 + 0.5X3− 0.25X1 (4.12)

Pr(T = 4|X)) = 1− Pr(T = 1|X))− Pr(T = 2|X))− Pr(T = 3|X)) (4.13)

The continuous outcomes are simulated based on the models proposed by Qi, Liu, Fu

and Liu [58] and Zhang, Laber, Davidian and Tsiatis[82]. Let Y = hm(X) + cm(X,T ) + ε,

where hm(X) is the main effect that has no contribution to define the true ITR. The second

term cm(X,T ) defines the optimal ITR for each of observations. The random error term is set

up as ε ∼ N(0, 1).

hm(X) = 2 +X1 +X3 +X5 +X7 (4.14)

cm1(X,T ) =(1 +X1 +X2 +X3 +X4)I(T = 1) + (1 +X1 −X2 −X3 +X4)I(T = 2)+

(1 +X1 −X2 +X3 −X4)I(T = 3) + (1−X1 −X2 +X3 +X4)I(T = 4)

(4.15)

cm2(X,T ) =(3I(X2 < 0)− I(X1 ≥= −0.3))I(T = 1) + (4I(X1 > 0)− 2)I(T = 2)+

(I(X1 ≤ 0)− 2)(2I(X2 ≤ −0.3)− 1)I(T = 3) + (3I(X1X2 > 0)− 1)I(T = 4)

(4.16)

cm3(X,T ) =(0.2 +X2
1 +X2

2 −X2
3 −X2

4 )I(T = 1) + (0.2 +X1
1 +X2

2 −X2
3 −X2

4 )I(T = 2)+

(0.2 +X2
1 +X2

4 −X2
2 −X2

3 )I(T = 3) + (0.2 +X2
2 +X2

3 −X2
1 −X2

4 )I(T = 4)

(4.17)
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The complexity of the modelincreases from scenario 1 to scenario 3. In scenario 1,

cm1 has a linear association with covariates X1, X2, X3 and X4. In Scenario 2, cm2

corresponds to a tree-type interaction. In scenario 3, cm3 has a degree 2 polynomial

interaction effects. Thus, there are four confounders: X1, X2, X3 and X4 for scenarios 1 and

3. And there are two confounders: X1 and X2 for scenarios 2.

Training data with two sample sizes n = 500 and n = 1000 are used to estimate the

ITR. The performance is first assessed by the average of the mean squared errors (AMSE) for

4 different treatments.

AMSE =

∑4
j=1 MSEj

4
(4.18)

where MSEj is the mean squared error for treatment T = tj ,

MSEj = 1
n

∑n
i=1[Yi(T = tj)− Ŷi(T = tj)]

2. Then we evaluate the performance of the

algorithm using the classification rate in terms of correctly identifying the optimal ITR. The

assessment is based on the independent simulated test sample nt = 500 and nt = 1000 with

100 simulation runs. For each scenario, a total of 500 trees are grown and the value of mtry is

set at 5.

The prediction is first evaluated by comparing the performance of CERFIT1 and

CERFIT2 with two other methods: Bayesian regularized trees (BART)[29] and decision list

(DL) [82, 81]. BART is a sum-of-tree model based on Bayesian regularized trees. Each

consecutive tree refits the residuals that are not explained by the other trees. Fitting and

inference procedures are using the iterative Bayesian backfitting MCMC algorithm [15]. The

implementation of BART is performed by the R-package BayesTree [16] with default settings

ntree = 200 and 1000 MCMC iterations. The optimal ITR is determined by the treatment

associated with maximum treatment effects. DL can be viewed as a special case of tree

method. It applies decision lists to learn the optimal ITR with a sequence of ”if” and ”then”

clauses. The implementation of DL is done through the R-package Listdtr [80] with default

settings. To evaluate the proposed algorithm’s learning ability in identifying optimal ITR,

beside BART and DL, we also include the other two methods: adaptive contrast weighted
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learning (ACWL)[72] and general statistical framework for subgroups identification methods

[14]. ACWL is a semiparametric regression contrasts with the adaptation of treatment effects.

Two different contrasts are used as seen in Tao et al.[72]’s study: ACWL1 (maximizes the

objective function) and ACWL2 (minimizes the expected loss).The R codes provided in the

paper’s appendix are used in the simulation. The general statistical framework for subgroups

identification method [14] uses weighting and A-learning for subgroup identification and

constructs a comparative treatment scoring system to identify the optimal ITR. The method

can be implemented using R-package personalized [34].

Simulation results are presented in the Figure 4.1 and Figure 4.2. We can see that the

CERFIT1 and CERFIT2 has competitive performance among all methods. CERFIT1’s

performance has a slight edge over CERFIT2. For estimation accuracy measured by the

AMSE, CERFIT1 has the smallest AMSE for sample size n = 500 and n = 1000 under

tree-type and polynomial interaction effects, but not under scenario 1, where linear interaction

effects are simulated. In general, for all methods, the prediction accuracy is improved as

sample size increases from 500 to 1000. For the purpose of finding the optimal ITR among a

class of available treatments, CERFIT1 outperforms all other methods under all scenarios.

Even though the AMSE of CERFIT1 is higher than DL under scenario 1, the classification

rate is similar between the two methods. All methods perform the best under the tree-type

interaction (scenario 2) and have the worst performance under scenario 3. And even under

scenario 3, CERFIT1 still correctly identifies the optimal ITR around 50% and 61% times at

sample size 500 and 1000, respectively.

The simulation results for variable importance based on minimal depth (MD) is

presented in Figure 4.3. For all three scenarios, the variable importance algorithm for

CERFIT1 and CERFIT2 correctly identify variables that are associated with treatment effects.

The MD based variable importance ranking are consistent with the underlying truth. From

Figure 4.3 we can see that under scenarios 1 and 3, covariates X1, X2, X3, X4 are identified as

important covariates associated with treatment effects reflected by their small MD values.
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Under scenarios 2, only X1 and X2 are interacted with treatment effects, and therefore these

two covariates should have relatively small MD values. Even though X3 and X4 are

associated with the treatment selection, they are not picked up as important predictors since

they are not covariates associated with treatment effects. Similarly, X5 and X7 are only

associated with the main treatment effect. They have no impact on the interaction treatment

effects and therefore are identified as being equally unimportant as X6, X8, X9 and X10.

Additionally, it is important to point out that MD values for CERFIT1 and CERFIT2 assess

the predictive power of a variable regarding different treatment contrasts. For CERFIT1, the

variable importance is ranked based on all possible pairs of contrasts. However, the

CERFIT2’s variable importance is ranked based on the treatment differences between each

treatment to the reference treatment only. In this simulation, the reference group is set as

T = 1. This explains the different patterns of variable importance ranking in Figure 4.3.

Under scenario 1, X1, X2, X3 and X4 are equality important for CERFIT1, but X2 is ranked as

the most important predictor for CERFIT2 comparing with other three important predictors.

With some simple calculation, it is not difficult to see that treatment effects between each

treatment to the reference treatment are: ITE2 = −2X2 − 2X3; ITE3 = −2X2 − 2X4 and

ITE4 = −2X1 − 2X2. And X2 is the variable with the highest predictive power in

determining the size of treatment effects with respect to reference treatment.
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Figure 4.1. Simulation results: comparison of four methods in terms of average MSE for

four treatments based on 100 simulation runs. Training and testing data with two sample

size 500 and 1000. The smaller average MSE is preferable.
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Figure 4.2. Simulation results: comparison of seven methods in terms of classification

rate for correctly identifying optimal treatment regimes based on 100 simulations runs.

Training and testing data with two sample size 500 and 1000. The higher classification

rate is preferable.
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Figure 4.3. Simulation results: minimal depth for each covariate. The smaller minimal

depth corresponding to a higher variable importance ranking. Results based 100 simula-

tion runs with sample size n=1000.
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4.5 SIMULATION STUDIES FOR CONTINUOUS
TREATMENT

The generation of observed (Y, T,X) for continuous treatment are as follow. We

generate 10 baseline covariates Xj (j = 1, ..., 10) from uniform (0, 1) and the treatment

assignment using the framework slightly modified from Zhu, Coffman and Ghosh [84].

Treatment assignment is generated using a linear additive model associated with 4 covariates:

X1, X2, X3 and X4. Then the treatment is normalized between (0, 1) before simulating

responses.

T = 0.5 + 0.3X1 + 0.65X2 − 0.35X3 − 0.4X4 + ε; (4.19)

The continuous outcomes are simulated based on the same model (Y = hc(X) + cc(X,T ) + ε)

as seen for multiple treatments. The main effect hc(X) has no contribution to define the true

ITR. The second term cc(X,T ) defines the optimal ITR for each of observations.

Similar as Zhu et al. [84], the hc(X) is simulated as follows:

hc(X) = 3.85 + 0.3X1 + 0.36X2 + 0.73X3 − 0.2X4 (4.20)

The cc(X,T ) is simulated similarly as the three models proposed by Laber et al. [44]. Let φ

and Φ denote the density and cumulative distribution of a standard normal random variable.

The three forms of cc(X,T ) are presented below. In each scenario the positive proportionality

constant is chosen so that var{cc(X,T )} = 1

cc1(X,T ) ∝ I{X1 ≥ 0.7}φ[3(Φ−1(T ) + Φ−1(0.75))]

+ I{X1 < 0.7, X2 > 0.5}φ[3Φ−1(T )]

+ I{X1 < 0.7, X2 ≤ 0.5}φ[Φ−1(T ) + Φ−1(0.25)];

(4.21)
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Where the optimal regime is treatment t = 0.25 when X1 ≥ 0.7, t = 0.5 when X1 < 0.7 and

X2 > 0.5, and t = 0.75 otherwise.

cc2(X,T ) ∝ (1− | T − 0.20 |
0.80

)I{X1 > 0.5, X3 > 0.5}

+ (1− | T − 0.40 |
0.80

)I{X1 > 0.5, X3 ≤ 0.5}

(1− | T − 0.60 |
0.80

)I{X1 ≤ 0.5, X2 > 0.25}

+ (1− | T − 0.80 |
0.80

)I{X1 ≤ 0.5, X2 ≤ 0.25};

(4.22)

The optimal regime is treatment t = 0.2 when X1 > 0.5 and X3 > 0.5, t = 0.4 when

X1 > 0.5 and X3 ≤ 0.5, t = 0.60, when X1 ≤ 0.5 and X2 > 0.25, and t = 0.80 otherwise.

cc3(X,T ) ∝ 1

1 + 10(2T −X1 −X2)2
(4.23)

For the last scenario, the optimal regime is determined by t = (X1 +X2)/2. And the

tree-based decision rule is misspecified.

The performance of the proposed algorithm is assessed in a similar process as

discussed under a multiple treatments setting. First, we evaluate the accuracy in identifying

optimal ITR. In Figure 4.4 and Figure 4.5, we visualize the true and estimated optimal

treatment regimes based on ITR model cc1(X,T ) and cc3(X,T ) defined as a function of the

covariates X1 and X2 for each testing observations (tn = 10, 000) averaged over 100

repetitions. As shown in the two figures, the predicted optimal treatment rules are roughly

similar as the true underlying structure. DL’s [82] performance greatly deteriorated as number

of treatment levels increased, therefore the results are not presented here.
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Figure 4.4. Simulation results: heatmaps of true and estimated optimal treatment

regimes as a function of X1 and X2 as defined in the ITR model cc1(X,T ).

Figure 4.5. Simulation results: heatmaps of true and estimated optimal treatment

regimes as a function of X1 and X2 as defined in the ITR model cc3(X,T ) .
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Secondly, we compare our algorithm’s prediction accuracy in terms of treatment outcomes

Yt|X with the BART algorithm using AMSE at the optimized treatment level. Specifically, we

compared the AMSE with treatment values at 0.25, 0.50 and 0.75 for cc1(X,T ); 0.2, 0.4, 0.6

and 0.8 for cc2(X,T ). For cc3(X,T ), the AMSE is calculated using 10 treatment levels

(0.1, 0.2, 0.3, · · · , 1). Results from 100 simulation runs are presented in Figure 4.6. The

CERFIT algorithm outperforms BART under three model settings in predicting the treatment

outcomes at the optimal treatment levels specified above.

Figure 4.6. Simulation Results: comparison between CERFIT and BART regarding pre-

diction accuracy using MSE based on 100 simulation runs for three proposed models

under continuous treatments setting.

Lastly, we also evaluate the variable importance using MD. The results are presented

in Figure 4.7. The smaller value of MD represents a stronger impact on the treatment effect,
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and therefore, indicates a higher rank of variable importance. In all three models, the proposed

algorithm correctly identifies the important variables that interact with treatment effects. For

both case 1 cc1(X,T ) and case 3 cc3(X,T ), only covariates X1 and X2 associated with the

treatment effects. X1 and X2 are equally important in case 3, and X2 is less important than X1

for case 1. For case 2 cc2(X,T ), X1, X2 and X3 are the important covariates that directly

interact with the treatment. Among which X1 is the most important factor since X2 and X3’s

association with the treatment effects are both conditional on the value of X1.

Figure 4.7. Simulation results: variable importance evaluated by minimal depth for three

models under continuous treatment setting based on 100 simulation runs and sample size

1000.

4.6 APPLICATION: LEARNING ITR FROM
MULTIPLE EDUCATION INTERVENTIONS

In this section, the proposed methods are illustrated using observational data collected

from the educational field. Specifically, we are looking at three intervention programs
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introduced at a large university aimed to help students to be more successful in the bottleneck

statistics introduction course. The first one is the free tutoring program (Tutor). Students

voluntarily attend any tutoring sessions at their convenience, as the tutoring program is

provided five days a week. Tutors are the graduate teaching associates who lead recital

courses as a support class to the bottleneck statistics course mentioned above. Students

receive one-on-one or group tutoring when they attend the tutoring sessions. Tutors answer

student’s specific statistical concept questions, homework questions or other course related

questions. The recitation course (RC) is the second support program. School funding was

available to offer the RC for around 20% of students. Students voluntarily enrolled in the

course and met twice per week in a small group with an active learning environment to review

the topic of the week, discuss conceptual issues, and work on extra but related statistics

problem sets and data analyses. The third one is the peer-lead supplemental instruction (SI)

academic support program. This program employs undergraduate students who have

successfully completed the course in previous years to facilitate peer-learning sessions for

current enrolling students. Students voluntarily drop into the SI session to meet SI leaders in a

small group to review the topic of the week and discuss conceptual issues. The three programs

were provided in parallel during the study semester. We apply the proposed methods to

identify the optimal treatment regimes that maximize student’s success in the course, which is

measured by the final scores of the student. At individual student level, actionable outcome is

providing students with individualized advising on selecting optimal intervention programs.

At the school level, the study results intend to assist in determining financial resources should

be devoted to which intervention programs, as well as identifying the group of students who

benefit most from the interventions.

Data was collected from students who enrolled in the course from two consecutive

Spring semesters with the same instructor. The descriptive summary of the study variables is

present in Table 4.4. Totally 16 predictors are considered covering students’ demographics,

university information, course specific information, as well as admission information. The
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response variable is the final score, which is the number of points scored out of 1030 possible

points. There were n = 1401 total students in the study, among which 842 students (60.1%)

were female. The mean age was 18.62 years old with a standard deviation 0.88 years. The

majority of students are sophomores 71.4%. In addition, there are 39.8% students who were

under-represented minorities and 23.1% of students were first generation students attending

college. The other covariates included in the study are whether students were part of the

scholarship program, in a STEM major, or living on campus. We also considered students’

academic performance covariates, such as SAT scores, high school GPA, and students’

college GPA at the beginning of the study semester, as well as the total number of units

enrolled and failed during the study semester. We consider each intervention alone and a

combination of two or three interventions. Limited by the data availability, treatments of SI

and Tutor are dichotomized using at least one attendance as the cutoff for treated and

untreated. This helps to retain an acceptable size of the treated group, but may result in a

small effect size. We intend to use this data to illustrate the proposed methods. The results

should be cautiously interpreted due to this limitation.Eight treatments are considered in the

study includingno treatment, which means those students did not participate in any of the

treatments (n = 589, [42%]). There were 15.6% (n = 219), 11.4% (n = 160) and 8.9%

(n = 125) students that took the recitation course, attended SI, or attended Tutor programs,

respectively. Only a small proportion of students had participated in more than two programs,

except for those taking both RC and attending tutoring (n = 112, [8.0%]).
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Table 4.4. Descriptive Summary for Study Variables in the Application Data.

Variable n=1401
Semester (%) 1 695 (49.6)

2 706 (50.4)
Age (mean (SD)) 18.62 (0.88)
Gender (%) Female 842 (60.1)

Male 559 (39.9)
College Levels (%) Freshman 178 (12.7)

Sophomore 1000 (71.4)
Junior 181 (12.9)
senior 42 ( 3.0)

URM (%) No 843 (60.2)
under-represented minorities Yes 558 (39.8)
First Generation at College (%) No 1078 (76.9)

Yes 323 (23.1)
EOP (%) No 1321 (94.3)
Educational Opportunity Program Yes 80 ( 5.7)
COMPACT scholar (%) No 1247 (89.0)

Yes 154 (11.0)
Scholarship Program (%) No 1334 (95.2)

Yes 67 ( 4.8)
On Campus Housing (%) No 908 (64.8)

Yes 493 (35.2)
STEM Major(%) No 964 (68.8)

Yes 437 (31.2)
Campus GPA (%) A 442 (31.5)

B 683 (48.8)
C 223 (15.9)
D 52 ( 3.7)
F 1 ( 0.1)

SAT Composite (mean (SD)) 1169.30 (130.76)
High School GPA (mean (SD)) 3.69 (0.31)
Total Units Enrolled (mean (SD)) 15.16 (2.04)
Total Units Failed (mean (SD)) 0.84 (2.37)
Treatment (Programs) (%) None 589 (42.0)
Tutoring program Tutor 125 ( 8.9)
Supplemental Instruction SI 160 (11.4)
Recitation course RC 219 (15.6)

RC+Tutor 112 ( 8.0)
RC+SI 55 ( 3.9)
Tutor+SI 72 ( 5.1)
Tutor+SI+RC 69 ( 4.9)

Grade (mean (SD)) 775.78 (173.88)
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To identify the optimal treatment levels for individual students and identify important

variables that impact treatment effects, we use 100-fold cross validation procedures. The

original data is randomly split into 100 equal-sized groups, with each group containing about

14 students (one group contains 15 students). We use data from 99 groups as training data to

grow the CERFIT and leave out one group of data as new data to make predictions. A total of

ntree = 500 trees are constructed for each forest and 100 forests of interaction trees are built

for 100-fold cross validations. Using our default mtry formula, mtry is set at 8. Variable

importance is measured by the average of MD for each variable across 100 forests. The

propensity scores and weights are estimated using GBM [54].

The analysis results are presented from two aspects. First, from the school

administration perspective, the main questions are 1) Whether and which programs provide

best results; 2) Which group of students benefit most from the provided intervention

programs. In Figure 4.6, we present the treatment benefits for each of interventions contrast to

no intervention at all. From the results we can see that for all different intervention levels, we

have a proportion of the students receiving less than 0 score benefits, which means those

students would not benefit from the specific intervention. And it is not surprising to see more

than 90% students would benefit from taking all three interventions. If the university’s budget

allows for two interventions, the combination of SI and Tutor or the combination of Tutor and

RC helps boost more than 75% students’ performance by taking two interventions. If only one

program can be provided, more than 75% of students would benefit from attending SI at least

once; therefore, it should be recommended. The tutoring program may not be recommended

since more than 50% students will not benefit from taking at least one tutoring session. In

addition, tutoring also has the largest variation of treatment benefits. There are a noticeable

number of students who could boost around 100 points by taking tutoring programs alone.
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Figure 4.8. Application: treatment benefits of each interventions reflected by the differ-

ences of expected final scores students would receive when taking corresponding inter-

vention as opposed to no intervention.

The variable importance ranking based on MD is presented in Figure 4.12. Variables with

higher importance ranking are on the top of the figure. From Figure 4.12 we can see that high

school GPA, SAT composite score, and total units enrolled are ranked as the most important

predictors. Other important predictors include student’s college GPA, age, gender,

under-represented minorities (URM) status, on-campus housing, STEM major, college level

and first Generation at College status. Variables with the least predictive power are whether a

student is in a scholarship program or Educational Opportunity Program. The results indicate
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student’s algebra readiness reflected by the student’s high school GPA and SAT performance

are top factors that impact on treatment effects. In addition, a student’s socioeconomic

background measured by the first generation college experience and under-represented

minorities are also important predictors. Another interesting finding is that the number of

units attempted also plays a role on whether a student can benefit from the intervention

programs. Table 4.5 shows descriptive summarization of the top five important variables for

each of treatments and treatment combinations. We transform the campus GPA from A to F to

1 to 5 and calculate the average to reflect the average campus GPA for each group. From

Table 4.5 we can see that the average high school GPA and SAT composite score for Tutor

group is the lowest with a mean 3.29 and 1088.03, respectively. This group also has the lowest

campus GPA at the beginning of the semester. There are 92% of students in the SI group who

have URM status. The SI and RC group also has a high proportion (81%) of students are

URM status. The average number of units enrolled in the semester are lower than sample

average (15.16 units) in the Tutor, SI and RC group, and higher than the sample average for

the rest of treatment groups. There is no clear distinction observed for the group of students

being recommended with all three treatments compared with the average characteristics of the

sample data.
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Figure 4.9. Application: summary of identified important predictors for the education

interventions.

Table 4.5. Summary of Important Variables for the Education Interventions.

HSGPA SATCOMP ]ENR CAMGPA AGE URM 1stGEN
Tutor 3.29 1088.03 14.08 2.81 18.69 55% 30%
SI 3.59 1113.00 13.70 2.05 19.35 92% 52%
RC 3.80 1140.00 13.00 2.00 19.50 50% 50%
Tutor+RC 3.72 1157.35 15.32 2.09 18.78 24% 19%
SI+RC 3.85 1128.75 16.62 1.75 18.56 81% 50%
Tutor+SI 3.71 1246.94 15.37 1.76 18.56 40% 11%
All 3 3.76 1142.28 15.31 1.80 18.59 34% 27%

Next, from the individual student’s perspective, we demonstrate how the results can be

applied in personalized academic advising of optimal ITR for individual students. We

randomly select 7 students, one from each recommended optimal treatment group. Table 4.6

presents the seven students’ profile. The overview of student’s benefits of taking each
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treatment is presented in Figure 4.6. The first student (ID=7) was a 19 years old

under-represented minority. The student had a high school GPA at 3.56 and SAT composite

score 990. The student enrolled 12 units and had a campus GPA of C at the beginning of the

semester. The optimal treatment for the student is Tutor with an estimated score gain at 83.12.

The suboptimal treatment for this student is the combination of Tutor and SI. Other

treatments, especially the treatments including RC are not recommended. The student

(ID=11) has slightly higher high school GPA and SAT scores, but same campus GPA and

same numbers of units enrolled. The most distinct differences between the two students

among these five important predictors are the age and whether the student has a URM status.

The optimal treatment recommended to the student (ID=11) is SI with a benefit score at 39.49.

The suboptimal recommendation is Tutor and SI, which is the same as student (ID=7). The

student (ID=230) and the student (ID=19) has similar high school GPA, same SAT scores,

same age and both are first generation at college, but student ID230 has URM status and only

enrolled 13 units, while student ID19 was not an URM and enrolled 16 units for the semester.

Their optimal treatments are RC (benefit score = 34.32) and both Tutor and RC (benefit score

= 44.18), respectively. Interestingly, their suboptimal treatments are both the combination of

Tutor and SI. Student (ID=148) had a good high school GPA and campus GPA. This student

enrolled in the highest numbers of units (19). Even though the optimal treatment

recommended is the combination of Tutor and SI, estimated benefits are less than 5 points

comparing the suboptimal recommendation, which is taking SI alone. Student (ID=3) has a

similar profile as student(ID=19), besides a slightly higher SAT score and a better campus

GPA. This student is recommended with Tutor and SI, but with the lowest benefits among all

7 students. And it is noteworthy that the suboptimal treatment, which includes all three

interventions has almost the same benefits as the optimal one. For the last student (ID=1), she

has the highest GPA both from high school and college. Although she would receive the

highest benefits by taking all three interventions, the suboptimal treatment (SI alone) would

provide comparable benefits (18.93). As a summary, each program’s treatment effects vary
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greatly among students, which confirms the heterogeneity of ITE. In general, the students

with lower academic status seem to benefit most from the intervention. In addition, with

multiple choices of treatments, the benefit differences between the optimal and the suboptimal

treatment could be subtle, especially when considering the estimation natures.

Recommendation with a proper consideration of financial constraints, time consuming and

other tangible costs should be considered as well.

Table 4.6. Profile of Students: For Each Intervention, Random Selected One Student Received
Optimal Treatment Recommendation with the Corresponding Intervention.

ID HSGPA SAT ] ENR CAMGPA AGE URM 1GEN TREAT BENs Grade
7 3.56 990 12 C 19 1 0 Tutor 83.12 463.00
11 3.63 1070 12 C 21 0 0 SI 39.49 800.82
230 3.84 1140 13 B 19 1 1 RC 34.32 601.49
19 3.82 1140 16 C 19 0 1 Tutor+RC 44.18 838.12
148 3.97 1100 19 B 18 1 0 SI+RC 25.17 767.27
3 3.82 1180 16 B 18 0 1 Tutor+SI 19.21 753.33
1 4.14 1210 15 A 18 1 0 All 3 22.31 965.59
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Figure 4.10. Application: dot plot of randomly selected individual student’s treatment

benefits for each of interventions. With each color corresponding to a unique student id.

Now, considering the situation that the university’s budget could only support one intervention

program, SI would be picked since the above analysis suggests that more than 75% students

would benefit by attending the SI session at least once. The treatment of SI is considered as

continuous treatment measured by the number of SI session students attended. Within the

same data, we have 25% (n = 356) students attended the SI at least once, with the highest

number of SI attendance at 20. This dataset is not ideal since only a small proportion of

students attended SI more than 12 times (1%) and the log transformation does not

significantly improve the skewness of the data. With this in mind, we intend to briefly

demonstrate how the proposed methods can be applied to identify the individualized optimal

numbers of SI attendance. Taking the same 100-fold cross validation procedure, we grow 100
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CERFIT forests, 500 trees for each forest. Because students can be involved with multiple

interventions, RC indication and number of tutoring attendance are used as the extra

covariates in the analysis. In Figure 4.6, we present treatment benefits of the 6 random

selected students. We also included the students’ detailed profile in the Table 4.7 for a

reference. From Figure 4.6 we can see that the optimal ITR for each student varied. Student

ID10, ID55 and ID15 could all benefit significantly from attending SI. However, the optimal

numbers of attendances vary. Generally, it seems that at least 5 attendances should be

recommended. Student (ID=5) does not benefit from SI. The benefits of attending the SI for

Student ID201 and ID602 are trivial. The variable importance ranking for treatment effects of

attending SI is presented in Figure 4.6. The top three important variables are SAT score, total

units enrolled and high school GPA. The number of units failed in the semester also ranked

within the top 5 predictors. The SI treatment also interacts with student’s Tutor attendance

(MSLC visits) and college levels.

Table 4.7. Profile of Students: Randomly Selected Students with Different ITR Recom-
mendations for Attending Supplemental Instruction Intervention.

ID 10 201 55 602 15 5
GRADE 919 898 748 756 336 849
GENDER Female Male Male Female Female Male
SEMESTER 2 1 2 2 1 1
COLLEGE LEV Sophomore Sophomore Sophomore Junior Junior Junior
AGE 19 18 18 19 19 19
URM Yes No Yes No Yes No
SAT COMP 1280 1210 1100 1240 1280 1180
HSGPA 4.00 3.74 3.71 3.97 3.76 3.94
FIRST GEN COLLEGE No No No Yes No No
DORM No No No No Yes No
STEM No Yes Yes Yes No Yes
CAMPUS GPA A A B B B C
TOTAL ENROLLED 16 14 15 16 15 14
UNITS FAILED 0 0 0 0 6 0
TUTOR 0 0 0 0 0 0
RC Yes No No No No Yes
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Figure 4.11. Application: sample plot of optimal ITR for randomly selected students

attending supplemental instruction.
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Figure 4.12. Application: variables importance ranking regarding treatment effects of

attending supplemental instruction.

4.7 DISCUSSION

Estimation of individualized treatment regimes using observational data holds great

interest in various research fields. In this Chapter, we propose interaction tree based methods

to estimate the optimal ITRs in multiple treatments and continuous treatment settings. By

incorporating the general propensity score in the tree growth process, the proposed method

can be applied to both random controlled and observational study data. The estimation

accuracy and stability are further improved by replacing original responses with residuals

estimated from the linear regression model. Simulation results show that CERFIT has

competitive performance among all comparing methods with respect to correctly identifying

the optimal ITR. The CERFIT algorithm also produces accurate variable importance ranking.
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Several possible extensions can be explored for future study. By using Wald test of the

interaction terms from the logistic regression model or in the Cox regression model for

survival analysis in the splitting rule, the proposed method has the potential to be extended to

binary outcomes or time to event survival data. In addition, the linear regression based

residuals are used as responses in the current study. It might be worthwhile to compare the

performance by using residuals estimated by other methods.
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CHAPTER 5

CERFIT R PROGRAMMING

5.1 OVERVIEW

Proposed methods are all programmed and implemented using R software. Since

there is no existing R Package available for building interaction trees, we develop a series of

R functions to implement all the analysis in the study. All functions for implement CERFIT

can be found at GitHub repository: https://github.com/ll120/CERFIT.

We utilize the R base function lm and vcovHC from the sandwich R package [79] for

calculating robust Wald test statistics. We use the partykit R package [33] for growing a tree

structure. The construction of a tree adopts a modified CART and RandomForest

procedure. Each tree is grown using a weighted bootstrapping sample. A tree is grown by

recursively partitioning the data into subgroups by exhaustive search of a best split. A tree

stops growing when one of the following predetermined rules is reached: 1) the number of

observations required to continue splitting goes below the predetermined minsplit; or 2) the

number of observations required in each child node goes below the minbuket; 3) the tree

depth reaches the maxdepth. A total of ntree trees form the final forest.

5.2 CONSTRUCTING CERFIT

The CERFIT function constructs the CERFIT forest. It is a wrapper function that

calls for functions to split, partition and grow trees. The usage of the function is as follows:

CERFIT (formula,

data,

ntrees,

subset=NULL,

method=c("RCT","observation"),
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PropForm=c("randomForest","CBPS","GBM"),

mtry=NULL,

nsplit=NULL,

nsplit.random=TRUE,

minsplit=30,

minbucket=round(minsplit/3),

maxdepth=30,

sampleMethod=c("bootstrap","subsample"),

useRes=TRUE)

The main arguments in the function include:

• formula: Formula to build CERFIT. Categorical predictors must be listed as a factor.
e.g., Y ∼ x1 + x2 + x3 | treatment

• data: Data use to grow a tree.

• ntrees: Number of trees grown.

• subset: Subset of data use to grow a tree.

• mtry: Number of variables randomly considered at each split.

• method: For observational study, method=“observation”; for randomized study,
method=“RCT”.

• PropForm: Methods used to generate propensity scores. Options are
“randomForest”,“CBPS” or “GBM”.

• nsplit: Number of outpoints selected for “exhaustive” search

• nsplit.random: Logical. indicates if process to select cutpts are random for “exhaustive”
search.

• minsplit: Number of observations required to continue growing tree.

• minbucket: Number of observations required in each child node.

• sampleMethod: Method to sample learning sample. Options are“bootstrap” or
“subsample”.
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• useRes: Logical, indicates whether growing a tree using linear regression residuals
instead of original responses.

All trees are of object class constparty, which allows for using the print, plot

functionality or extract elements from the tree provided by the partykit.

5.3 MAKING PREDICTION

The predict.CERFIT function can be used to make predictions of new test data using

a CERFIT subject. The usage of the function is as follows:

predict.CERFIT (cerfit,

data,

newdata,

gridval=NULL,

prediction=c("overall","by iter"),

type=c("response","ITE","node","opT"),

alpha=1,

useRes=TRUE)

The main arguments in the function include:

• cerfit: CERFIT forest subject

• data: Data use to grow a tree.

• newdata: New test data use to make prediction.

• gridval: For continuous treatment only. Specify grid values to make prediction.

• prediction: Method to return prediction using all trees or using first i trees. Options are
“overall” and “by iter”.

• type: Prediction type returned. Options are “response”,“ITE”,“node” and “opT”.
”response” returns predicted response at each treatment level. “ITE” returns the
treatment effects contrast to the first level. “node” returns node numbers. “opT” only
works for true continuous treatment.
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• alpha: The elastic-net mixing parameter α, with range α ∈ [0, 1]. α = 1 is the lasso
(default) and α = 0 is the ridge.

• useRes: Logical. indicates whether the prediction is based on trees growing using
residuals from linear regression model.

5.4 OTHERS

The variable importance can be produced using MinDepth function, with a CERFIT

subject. Fitting hundreds of trees involves calculating thousands of splitting statistics.

Computation is intense and time consuming. Software programs such as C + + would

improve the computation efficiency and will be implemented in future works. In the

meantime, parallel computing is recommended with current R codes. A CERFITparallel

function is provided in the current R program with limited options to adjust number of

processes. More flexible parallel computing can be implemented using other existing R

packages with high performance parallel functions, such as snow.
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CHAPTER 6

CONCLUSION

6.1 SUMMARY AND FUTURE WORK

Estimation of individualized treatment regimes (ITR) using observational data, holds

great interest in various research fields. ITR can be defined as a mapping between individual

characteristics to a treatment assignment. The optimal ITR is the treatment assignment that

maximizes expected individual treatment effects. However, treatment effects estimation under

the counterfactual framework usually requires the assumption of strong ignorability. Without

properly addressing issues of confounding when using observational study data, the

estimation of treatment effects can be biased and unreliable. In addition, multiple treatments

are common in many fields. Assigning treatment with optimal treatment effects among

several or even continuous treatment options is important but challenging. In this study, we

were interested in addressing these issues with proposed algorithms.

In Chapter 2, we considered a binary treatment setting. After giving an introduction of

random forest of interaction trees (RFIT) and propensity score methods, we presented the new

causal effect RFIT (CERFIT) algorithm. By integrating the propensity scores into the tree

growing process, we extended the application of RFIT to the observational study context.

Simulation studies demonstrated that CERFIT has superior performance with respect to

prediction accuracy and variable importance ranking. We also illustrated the CERFIT

algorithm for binary treatment through the assessment of a supplemental instruction course at

a large public university. In Chapter 3, we proposed a residual based CERFIT and provided

the proof of improved numerical stability by replacing original responses with residuals

estimated from the linear regression model in the CERFIT algorithm. We conducted various

simulation studies and the results demonstrated a significant improvement of prediction
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accuracy of residual based CERFIT. In Chapter 4, we proposed new CERFIT algorithms to

transform non-binary treatment effects learning into a binary type learning task. We also

proposed using general propensity score methods for non-binary treatment settings.

Moreover, we conducted extensive simulation studies to assess the CERFIT’s performance.

We also illustrated the CERFIT method through learning optimal ITR among multiple

education interventions. In Chapter 5, we introduced the main R functions we developed to

implement the proposed methods. CERFIT demonstrates competitive performance among all

competing methods in simulation studies for both binary and non-binary treatment settings.

CERFIT’s learning target is set as the treatment effects themselves. This allows the CERFIT

algorithm to produce accurate variable importance ranking in terms of treatment effects. Even

though we demonstrated the application of CERFIT with study data from the field of

education, CERFIT can be applied to various areas where the estimation of individualized

treatment regimes using observational data is of interest.

Since CERFIT depends on IPTW, its performance can be greatly impacted by the

accuracy of the propensity score estimation. The selection of a proper prediction model for

the propensity score is critical. We recommend machine learning methods such as boosting

[53] because of their superior prediction accuracy. In addition, just as random forest variable

importance measures are in favor of variables with many possible splits [67], CERFIT’s

variable importance measures may suffer from the same bias. For studies dealing with

variables of different types, approaches suggested by [67] and [11] can be combined with the

current CERFIT’s variable importance algorithms to achieve unbiased variable selection.

Due to the intensive computations, the current R functions could be time consuming in

growing a large forest. Prediction based on lasso regression with 10-fold cross validation for

continuous treatment setting also slows down the program. The next step is improving the

program efficiency by coding the splitting algorithm using C + + software program. There

are also several other possible extensions that can be explored in future studies. By using

Wald test of the interaction terms from the logistic regression model or in the Cox regression
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model for survival analysis in the splitting rule, the proposed method has the great potential to

be extended to binary outcomes or time to event survival data. In addition, the linear

regression based residuals are used as responses in the current study. It might be worthwhile

to compare the performance by using residuals estimated by other methods.



84

BIBLIOGRAPHY

[1] D. ALEMAYEHU, Y. CHEN, AND M. MARKATOU, A comparative study of subgroup
identification methods for differential treatment effect: performance metrics and
recommendations, Statistical Methods in Medical Research, 27 (2018), pp. 3658–3678.

[2] C. ALLEGRA, J. JESSUP, M. SOMERFIELD, S. HAMILTON, E. HAMMOND,
D. HAYES, P. MCALLISTER, R. MORTON, AND R. SCHILSKY, American society of
clinical oncology provisional clinical opinion: testing for kras gene mutations in patients
with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor
receptor monoclonal antibody therapy, Journal of Clinical Oncology, 27 (2009),
pp. 2091–2096.

[3] P. C. AUSTIN, An introduction to propensity score methods for reducing the effects of
confounding in observational studies, Multivariate Behavioral Research, 46 (2011),
pp. 399–424.

[4] P. C. AUSTIN AND E. A. STUART, The performance of inverse probability of treatment
weighting and full matching on the propensity score in the presence of model
misspecification when estimating the effect of treatment on survival outcomes, Statistical
Methods in Medical Research, 26 (2015), pp. 1654–1670.

[5] T. BOWLES AND J. JONES, An analysis of the effectiveness of supplemental instruction:
the problem of selection bias and limited dependent variables, Journal of College
Student Retention, 5 (2003), pp. 235–243.

[6] L. BREIMAN, Bagging predictors, Machine Learning, 24 (1996), pp. 123–140.

[7] L. BREIMAN, A. CUTLER, A. LIAW, AND M. WIENER, RandomForest: Breiman and
Cutler’s Random Forests for Classification and Regression, 2018. R package version
4.6-14.

[8] L. BREIMAN, J. FRIEDMAN, R. OLSHEN, AND C. STONE, Classification and
regression trees, Wadsworth, Belmont,CA, 1984.

[9] L. BREIMEN, Random forest, Machine Learning, 45 (2001), pp. 5–32.

[10] R. P. BRENT, Algorithms for Minimization Without Derivatives, Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[11] G. CAFRI, P. CALHOUN, AND J. FAN, High dimensional variable selection with
clustered data: an application of random multivariate survival forests for detection of
outlier medical device components, Journal of Statistical Computation and Simulation,
89 (2019), pp. 1410–1422.



85

[12] R. CARUANA, N. KARAMPATZIAKIS, AND A. YESSENALINA, An empirical evaluation
of supervised learning in high dimensions, JInternational Conference on Machine
Learning, 08 (2008), pp. 96–103.

[13] R. CARUANA AND A. NICULESCU-MIZIL, An empirical comparison of supervised
learning algorithms., International Conference on Machine Learning, 06 (2006),
pp. 161–168.

[14] S. CHEN, L. TIAN, T. CAI, AND M. YU, A general statistical framework for subgroup
identification and comparative treatment scoring, Biometrics, 73 (2017), pp. 1199–1209.

[15] H. CHIPMAN, E. GEORGE, AND R. MCCULLOCH, Bart: bayesian additive regression
trees, The Annals of Applied Statistics, 4 (2010), pp. 266–298.

[16] H. CHIPMAN AND R. MCCULLOCH, BayesTree: Bayesian Additive Regression Trees,
2016. R package version 0.3-1.4.

[17] S. R. COLE AND M. A. HERNAN, Constructing inverse probability weights for
marginal structural models, American Journal of Epidemiology, 168 (2008),
pp. 656–664.

[18] P. DAWSON, J. VAN DER MEER, J. SKALICKY, AND K. COWLEY, On the effectiveness
of supplemental instruction: A systematic review of supplemental instruction and
peer-assisted study sessions literature between 2001 and 2010, Review of Educational
Research, 84 (2014), pp. 609–639.

[19] E. DUSSELDORP AND I. VAN MECHELEN, Qualitative interaction trees: a tool to
identify qualitative treatmentsubgroup interactions, Statistics in Medicine, 33 (2014),
pp. 219–237.

[20] P. FENG, X. H. ZHOU, Q. M. ZOU, M. Y. FAN, AND X. S. LI, Generalized propensity
score for estimating the average treatment effect of multiple treatments, Statistics in
Medicine, 31 (2012), pp. 681–697.

[21] C. FONG, C. HAZLETT, AND K. IMAI, Covariate balancing propensity score for a
continuous treatment: application to the efficacy of political advertisements, Annals of
Applied Statistics, 12 (2018), pp. 156–177.

[22] C. FONG AND K. IMAI, Covariate balancing propensity score for general treatment
regimes, 2014.

[23] J. C. FOSTER, J. M. TAYLOR, AND S. J. RUBERG, Subgroup identification from
randomized clinical trial data, Statistics in Medicine, 30 (2011), pp. 2867–2880.

[24] H. FU, J. ZHOU, AND D. E. FARIES, Estimating optimal treatment regimes via
subgroup identification in randomized control trials and observational studies, Statistics
in Medicine, 35 (2016), pp. 3285–3302.



86

[25] I. G., The role of the propensity score in estimating dose-response functions,
Biometrika, 87 (2000), pp. 706–710.

[26] M. HAMBURG AND F. S. COLLINS, The path to personalized medicine, New England
Journal of Medicine, 363 (2010), pp. 301–304.

[27] F. HARRELL, R. CALIFF, D. PRYOR, K. LEE, AND R. ROSATI, Evaluating the yield of
medical tests, JAMA, 247 (1982), pp. 2543–2546.

[28] M. HERNN, B. BRUMBACK, AND J. ROBINS, Marginal structural models to estimate
the causal effect of zidovudine on the survival of hiv-positive men, Epidemiology, 11
(2000), pp. 561–570.

[29] J. L. HILL, Bayesian nonparametric modeling for causal inference, Journal of
Computational and Graphical Statistics, 20 (2011), pp. 217–240.

[30] K. HIRANO AND G. W. IMBENS, The Propensity Score with Continuous Treatments,
John Wiley and Sons, Ltd, 2004, ch. 7, pp. 73–84.

[31] T. HO, Random decision forest, in Proceedings of the Third International Conference on
Document Analysis and Recognition, G. V. Avery, ed., vol. 1, ICDAR, 1995,
pp. 278–282.

[32] P. W. HOLLAND AND D. B. RUBIN, Causal inference in retrospective studies,
Evaluation Review, 12 (1988), pp. 203–231.

[33] T. HOTHORN AND A. ZEILEIS, partykit: a modular toolkit for recursive
partytioning in r, Journal of Machine Learning Research, (2015), pp. 1–7.

[34] J. D. HULING AND M. YU, Subgroup identification using the personalized package,
(2018).

[35] K. IMAI AND M. RATKOVIC, Covariate balancing propensity score, Journal of the
Royal Statistical Society, 76 (2014), p. 243263.

[36] K. IMAI AND D. A. VAN DYK, Causal inference with general treatment regimes,
Journal of the American Statistical Association, 99 (2004), pp. 854–866.

[37] H. ISHWARAN, T. GERDS, U. KOGALUR, R. MOORE, S. GANGE, AND B. LAU,
Random survival forests for competing risks, Biostatistics, 15 (2004), pp. 757–773.

[38] H. ISHWARAN AND U. KOGALUR, Fast Unified Random Forests for Survival,
Regression, and Classification (RF-SRC), 2018. R package version 2.5.1.

[39] H. ISHWARAN, U. KOGALUR, A. GORODESKI, AND M. MINN, High-dimensional
variable selection for survival data, JASA., 105 (2010), pp. 205–217.



87

[40] H. ISHWARAN AND J. D. MALLEY, Synthetic learning machines, BioData mining, 7
(2014), p. 28.

[41] M. JOFFE, T. TEN HAVE, H. FELDMAN, AND S. KIMMEL, Model selection,
confounder control, and marginal structural models: review and new applications, The
American Statistician, 58 (2004), p. 272279.

[42] A. P. JONES, F. G. HAPP, F. GILBERT, S. BURNETT, AND E. VIDING, Feeling, caring,
knowing: different types of empathy deficit in boys with psychopathic tendencies and
autism spectrum disorder, Journal of Child Psychology and Psychiatry, 51 (2010),
pp. 1188–1197.

[43] J. KANG, X. SU, L. LIU, AND M. L. DAVIGLUS, Causal inference of interaction
effects with inverse propensity weighting, g−computation and tree based
standardization, Statistical Analysis and Data Mining, 7 (2014), pp. 323–336.

[44] E. B. LABER AND Y. Q. ZHAO, Tree-based methods for individualized treatment
regimes, Biometrika, 102 (2015), pp. 501–514.

[45] M. LECHNER, Program heterogeneity and propensity score matchin An application to
the evaluation of active labor market policies, Review of Economics and Statistics, 84
(2002), p. 205220.

[46] B. K. LEE, J. LESSLER, AND E. A. STUART, Improving propensity score weighting
using machine learning, Statistics in Medicine, 29 (2010), pp. 337–346.

[47] B. K. LEE, J. LESSLER, AND E. A. STUART, Weight trimming and propensity score
weighting, PLoS One, 6 (2011), p. 18174.

[48] M. LOPEZ AND R. GUTMAN, Estimation of causal effects with multiple treatments: a
review and new ideas, Statistical Science, 32 (2017), pp. 432–454.

[49] M. LU, S. SADIQ, D. J. FEASTER, AND H. ISHWARAN, Estimating individual
treatment effect in observational data using random forest methods, Journal of
Computational and Graphical Statistics, 27 (2018), pp. 209–219.

[50] J. LUDWIG AND J. WEINSTEIN, Biomarkers in cancer staging, prognosis and treatment
selection, Nature Review Cancer, 5 (2005), p. 845856.

[51] J. K. LUNCEFORD AND M. DAVIDIAN, Stratification and weighting via the propensity
score in estimation of causal treatment effects: a comparative study, Statistics in
Medicine, 23 (2004), pp. 2937–2960.

[52] L. M., Identification and estimation of causal effects of multiple treatments under the
conditional independence assumption, vol. 13, 2001, pp. 43–58.

[53] D. MCCAFFREY, G. RIDGEWAY, AND A. MORRAL, Propensity score estimation with



88

boosted regression for evaluating causal effects in observational studies, Psychological
Methods, 9 (2004), pp. 403–425.

[54] D. F. MCCAFFREY, B. A. GRIFFIN, D. ALMIRALL, M. E. SLAUGHTER,
R. RAMCHAND, AND L. F. BURGETTE, A tutorial on propensity score estimation for
multiple treatments using generalized boosted models, Statistics in Medicine, 32 (2013),
pp. 3388–3414.

[55] J. PEARL, Causes of effects and effects of causes, Sociological Methods & Research, 44
(2015), p. 2149164.

[56] K. PELAEZ, R. LEVINE, J. FAN, M. GUARCELLO, AND M. LAUMAKIS, Using a
latent class forest to identify at risk students in higher education, Journal of Educational
Data Mining, 11 (2019), pp. 18–46.

[57] A. PETERFFEUND, . RATH, S. XENOS, AND F. BAYLISS, The impact of supplemental
instruction on students in stem courses: results from san francisco state university,
Journal of College Student Retention: Research, Theory and Practice, 9 (2008),
pp. 487–503.

[58] Z. QI, D. LIU, H. FU, AND Y. LIU, Multi-armed angle-based direct learning for
estimating optimal individualized treatment rules with various outcomes, Journal of the
American Statistical Association, 115 (2018), pp. 1–35.

[59] X. QIU AND Y. WANG, Composite interaction tree for simultaneous learning of optimal
individualized treatment rules and subgroups, Statistics in Medicine, 38 (2019),
pp. 2632–2651.

[60] J. RABITOY, E.AND HOFFMAN AND D. PERSON, Supplemental instruction: the effect
of demographic and academic preparation variables on community college student
academic achievement in stem-related fields, Journal of Hispanic Higher Education, 14
(2015), pp. 244–255.

[61] . . RATH, S. P. PETERFREUND, A. R.AND XENOS, F. BAYLISS, AND N. CARNAL,
Supplemental instruction in introductory biology i: enhancing the performance and
retention of underrepresented minority students, CBE−Life Sciences Education, 6
(2007), pp. 203–216.

[62] J. M. ROBINS, M. HERNAN, AND B. BRUMBACK, Marginal structural models and
causal inference in epidemiology, Epidemiology, 11 (2000), pp. 550–560.

[63] P. R. ROSENBAUM AND D. B. RUBIN, The central role of the propensity score in
observational studies for causal effects, Biometrika, 70 (1983), pp. 41–55.

[64] D. B. RUBIN, Estimating causal effects of treatments in randomized and
non-randomized, Journal of Educational Psychology, 66 (1974), pp. 668–701.



89

[65] D. B. RUBIN, Causal inference using potential outcomes, Journal of the American
Statistical Association, 100 (2005), pp. 322–331.

[66] S. SETOGUCHI, S. SCHNEEWEISS, M. BROOKHART, R. GLYNN, AND E. COOK,
Evaluating uses of data mining techniques in propensity score estimation: a simulation
study, Pharmacoepidemiol Drug Safe, 17 (2008), pp. 546–555.

[67] C. STROBL, A.-L. BOULESTEIX, A. ZEILEIS, AND T. HOTHORN, Bias in random
forest variable importance measures: illustrations, sources and a solution, BMC
Bioinformatics, 8 (2007), pp. 1471–2105.
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Learning individualized treatment regimes (ITR) using observational data holds great

interest in various fields, as treatment recommendations based on individual characteristics

may improve individual treatment benefits with a reduced cost. It has long been observed that

different individuals may respond to a certain treatment with significant heterogeneity. ITR

can be defined as a mapping between individual characteristics to a treatment assignment. The

optimal ITR is the treatment assignment that maximizes expected individual treatment effects.

Rooted from personalized medicine, many studies and applications of ITR are in medical

fields and clinical practice. Heterogeneous responses are also well documented in educational

interventions. However, unlike the efficacy study in medical studies, educational interventions

are often not randomized. Study results often suffer greatly from self-selection bias. Besides

the intervention itself, the efficacy and effectiveness of interventions usually interact with a

wide range of confounders.

In this study, we propose a novel algorithm to extend random forest of interaction trees

to Casual Effect Random Forest of Interaction Trees (CERFIT) for learning individualized

treatment effects and regimes. We first consider the study under a binary treatment setting.

Each interaction tree recursively partitions the data into two subgroups with greatest

heterogeneity of treatment effect. By integrating propensity score into the tree growing
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process, subgroups from the proposed CERFIT not only have maximized treatment effect

differences, but also similar baseline covariates. Thus it allows for the estimation of the

individualized treatment effects using observational data. In addition, we also propose to use

residuals from linear models instead of the original responses in the algorithm. By doing so,

the numerical stability of the algorithm is greatly improved, which leads to an improved

prediction accuracy. We then consider the learning problem under non-binary treatment

settings. For multiple treatments, through recursively partitioning data into two subgroups

with greatest treatment effects heterogeneity with respect to two randomly selected treatment

groups, the algorithm transforms the multiple learning ITR into a binary task. Similarly,

continuous treatment can be handled through recursively partitioning the data into subgroups

with greatest homogeneity in terms of the association between the response and the treatment

within a child node. For all treatment settings, the CERFIT provides variable importance

ranking in terms of treatment effects. Extensive simulation studies for assessing estimation

accuracy and variable importance ranking are presented. CERFIT demonstrates competitive

performance among all competing methods in simulation studies. The methods are also

illustrated through an assessment of a voluntary education intervention for binary treatment

setting and learning optimal ITR among multiple interventions for non-binary treatments

using data from a large public university.
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