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Abstract   

 

In tropical forest systems, attine ants are the dominant herbivores. They construct 

large nest structures that include foraging trails that extend to multiple plant sources 

throughout the forest. These foraging areas vary from nest to nest and they are highly 

dynamic over time and season changes. It was expected that characteristics of both the nest 

structure and the surrounding environment would affect the size of nest foraging areas. In 

this study, COMPASS survey software and ArcGIS were used to map the foraging trails 

and calculate the foraging areas of 12 attine ant nests located on the Firestone Reserve, 

over the course of 6 weeks. Data collected at the ant nest sites on nest area, flow rate, trail 

number and neighboring nest proximity were combined with data collected from previous 

studies on soil pH and light fractions in order to test correlation hypotheses between these 

factors and foraging area. The mean foraging areas differed significantly from each other 

and significant correlations were found between foraging area and trail number, flow rate, 

neighbor distance and soil pH. Understanding foraging behavior of attine ants is important 

in the field of restoration ecology because these ants are important in determining overall 

structure and nutrient distribution in tropical forests. 
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Introduction  

 

 One of the first things a person will notice upon stepping out of the airport and onto 

Costa Rican soil are the trails of leaf fragments seemingly moving by themselves. When 

examined more closely, a person will see that these leaves are in fact being carried in the 

pincers of thousands of large ants. These leaf-cutter or attine ants (Hymenoptera; 

Formicidae; Attini) are distributed throughout the Neotropics, from northern Mexico to the 

southern regions of Argentina. There are 190 known species, however the two most 

abundant species found in Costa Rica are Atta cephalotes and Atta columbica. Unlike any 

other type of ant, attine ants are uniquely fungus growers, meaning they use harvested 

living plant matter to farm fungus gardens in their nests (Hölldobler and Wilson, 1990). 

This fungus is their sole food source, and the plant fragments act as the substrate for these 

gardens.  

 Attine ant nests are amazing feats of architectural ingenuity. Their nest areas can 

range in size anywhere from 0 to over 50 m
2 

and reach depths of over 6 meters (Wirth et 

al., 2003). Generally, the size of a nest mound correlates with the age of the ant colony, 

which can persist for up to 15 years. Larger nests can contain over 1900 underground 

chambers with 250 fungus gardens and house 1 to 7 million ants, depending on the species 

(Wirth et al., 2003). The nests also tend to have multiple entrances and are situated on 

slopes, which facilitate air ventilation and water expulsion during heavy rains (Hölldobler 

and Wilson, 1990).  
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 Figure 1: Attine ant nest 

 

The foraging trails that wind through the forest are an extension of the central nest 

structure. Attine ants form very distinct foraging routes to and from harvesting sites, which 

in the case of A. cephalotes and A. columbica are canopy trees, rather than grasses. These 

trails are chemically marked with secretions from the ants’ poison gland sac that assist in 

both recruitment and orientation (Wirth et al., 2003). Actual leaf cutting is very 

energetically expensive for the ants, more so than even locomotion and therefore is 

important in determining foraging behavior (Wirth et al., 2003). This behavior includes 

things like the type of leaves they choose to harvest, the size of the fragment they cut and 

how far they are able to go before the costs outweigh the benefits. Understanding this 

behavior is vital to understanding tropical forest dynamics, considering these ants can 

consume between 12 to 17 percent of all tropical forest leaf production (Cherret, 1968). 
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Foraging trails generally consist of a main trunk trail from which multiple other 

trails branch off (Howard, 2001). The trunk trail is well established and generally persists 

for months or even years, while the diverging trails are much more dynamic. Attine ant 

colonies are able to clear trails quite rapidly, with relatively low energetic cost, which 

suggests that the persistence of these trunk trails is due to their optimal locations (Howard, 

2001), i.e. they lead to patches of high-quality plant material. The colonies also invest a lot 

of time in maintaining the trunk trails and keeping them free of debris and this effort is paid 

off in the form of decreased travel time for the foragers (Rockwood and Hubbell, 1987). 

In this study the foraging trails of 12 different attine colonies were mapped over the 

course of 6 weeks. The trails were surveyed using a Suunto compass and clinometer 

readable to 0.5 and 1 degree respectively, in order to determine the foraging areas around 

each nest. The mean nest foraging areas were compared to determine if there were any size 

differences between the nests. Lastly variations in physical nest factors (area, foraging trail 

number and flow rate) and environment factors (proximity of neighboring nests, soil pH 

and light fraction) were compared between nests in order to determine if they had any 

relationship to a nests foraging area. 

It was expected that larger nests would have larger foraging areas because they 

were older, and therefore more likely to have a large population size. It was also expected 

that larger nests would have greater flow rates because of the increased number of workers 

available to forage. Though this could be dependent on the number of foraging trails. Flow 

rates will probably be higher for a nest of a fixed population size that has 2 foraging trails 

versus 7 foraging trails because the work force is dispersed over a larger number of trails. 

However, decreasing the length of the trail, thereby shortening travel time, could 
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compensate for this decreased flow by increasing the number of potential trips an ant could 

make. So, it is important to look at how these factors come together and interact with one 

another to effect foraging area. 

This study also looked at the possible competitive effect neighboring nests could 

have on the foraging areas of nests. This was done by calculating the potential foraging 

areas around each and counting the number of neighboring nests that were within this area. 

It was expected that as the number of neighbors increased, the foraging area would 

decrease. 

Past students at the Firestone Center for Restoration Ecology (FCRE) collected data 

on canopy light fractions and soil pH. A light fraction is a measurement of the percent of 

forest area that is not occupied by canopy cover, meaning light can penetrate to the forest 

floor (Pera, 2010). Light availability is a major limiting factor in the growth and survival of 

many tropical forest plant species. Primary forests tend to have higher canopy leaf densities 

and lower light fractions than secondary and bamboo forests, indicating a lower amount of 

productivity (Pera, 2010). Since A. cephalotes and A. columbica are mainly canopy 

foragers, it was expected that there would be an increase in light fraction values around 

larger nests as a consequence of foliage loss. 

Attine ant nest construction changes the physical and chemical properties of the soil 

they are in. Studies have shown that ants are as important as earthworms in soil turnover, 

while leaf-cutters are the most important agents of soil modification in the tropics 

(Alvarado et al., 1981). The leaves carried by the attine ants to the nest are rapidly 

decomposed by the fungus rather than going through the normal multi-step leaf 

decomposition process, resulting in nutrients being more quickly returned to the soil. (Lugo 
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et al., 1973). Overall, the soil of attine ant nests is more porous, and more nutrient rich (K, 

N, K, Ca, Mg, Na) than neighboring non-nest soils and this promotes root growth on and 

around the nest site (Haines, 1975; Farji-Brener and Medina, 2000; Moutinho et al., 2003).  

Soil pH affects the solubility of plant minerals and nutrients, with most being more soluble 

in acidic soils than in neutral or slightly alkaline soils (Chen and Mahlab, 2009). Therefore 

it is beneficial to surrounding plants if the nest soil is more acidic because this means that 

the minerals that the ants are concentrating in their nest soils/refuse piles are more readily 

available for uptake by plant roots. It was expected that as trail flow rate increased, nest 

soil pH would decrease.  
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Methods 

 
Research location: 

 This study was carried out at the FCRE, a facility owned and operated by Pitzer 

College on the southwest coast of Costa Rica. This 60 hectare reserve was cleared for cattle 

grazing in the 1950s and 60s, and then later for bamboo plantations. Restoration of the land 

to its original tropical moist forest state began in 1993, and efforts were continued by Pitzer 

College when it acquired the land in 2005. For this reason much of the reserve is 

dominated by secondary growth forest, however there are also regions of primary, bamboo 

and banana forests. The area gets 4487±1003 mm of precipitation annually and has an 

annual temperature of 25°C (Firestone, 2013). The reserve is situated on a slope, with the 

west end at an elevation about 300m higher than that of the east end, which is at around sea 

level (Roberts et al., 2009). 

 

Locating the Nests: 

Previous studies conducted by Christopher Wheeler (2005) and Rachel Poutasse 

(2010) located and mapped the locations of attine ant nests throughout the FCRE. Many of 

these nests were inspected, using a Trimble Juno ST GPS unit, to ensure they were still 

active and then 12 were selected at random to conduct the study on. Two of the nest 

centers, EG10 and EGEK33, were located a few feet outside the perimeter of the reserve in 

Hacienda Barú, but they were deemed suitable to study, since their trails were primarily 

within the reserve.  



 

                   
                     Figure 2: Map of FCRE



Measuring length, incline, direction and flow rate of each foraging trail: 

Before following the foraging trails, the flow rate of each trail was recorded using a 

digital stopwatch. This ensured clear readings prior to following the trail, since the survey 

process often resulted in disturbance of the trail flow. The flow rate was recorded as the 

number of leaf fragments that passed a fixed point on the trail in 1 minute.  

                        
   Figure 3: Attine ant foraging trail 

 

Standard survey techniques were used to map the foraging trails of each ant nest. 

Equipment included a Suunto PM5 clinometer, a Suunto KB-20 compass, a Sirchie 30m tape 

measure and two 1.5m survey sticks. My partner and I followed the trails out from nest center 

to the plant source, making incremental measurements along the way. There was often no 

direct line of sight to the plant source because of intervening trees or bushes, and some of the 

trails were much longer than 30m, so generally multiple intermediate measurements were 

taken before the source was reached. Also, during light rains, or under decreased light 
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conditions it was difficult to take long distance measurements, so multiple short distance 

measurements were taken to ensure accurate reads. Plant sources were marked with tape and 

labeled with the nest name and week number. Foraging trails that were on trees that were less 

than a meter from the nest center were given zero distance measurement and their flow rates 

were recorded as usual. The nest size was calculated by measuring two perpendicular maximal 

and minimal diameters across the mound and calculating the area as an ellipsoid (Wirth et al., 

2003). 

 

Surveying the Nests: 

The 12 nests selected were surveyed once a week for 6 weeks from May 27
th

 to July 

21
st
 of 2013. Each day 2-3 nests were surveyed, depending on weather conditions, from 8:00 in 

the morning until about 12:30-1:00 in the afternoon. This ensured measurements were taken 

before the afternoon rains. However, on some days it would rain earlier in the morning or most 

of the day, which either delayed or totally prevented survey taking. This is due to the fact that 

ants seek cover and disband foraging lines while it is raining. 

Some of the nests were entirely inactive some weeks, with no trails leaving the nest 

mound. This was the case for nest EGEK87 during week 4, nest EGJB05 during weeks 4 and 5 

and nest EG10, which became totally inactive after week 3. 
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 Figure 4: Surveying a nest on the FCRE 

 

 

COMPASS Mapping, ArcGIS and Statistical Analysis: 

 Each day the field survey data were imputed into COMPASS cave survey software 

(http://www.fountainware.com/compass/) to generate a map of the foraging trails. Separate 

maps were generated each week for each of the 12 nests and then at the end of the study the 6 

weeks of data were combined into one map for each nest.  
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 Figure 5: Nest EGEK33, week 5 trails 

 

 

 

 
 Figure 6: Nest EGEK33, weeks 1-6 trails 
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In Figure 5 the nest center is indicated by the point that is labeled with the nest name: 

EGEK33. The red lines represent the trails mapped and the points along the trail are points of 

measurement. In the first figure there are five foraging trails mapped. The end points represent 

the locations of the plant sources. Figure 6 displays all six weeks of data for that particular 

nest. 

The COMPASS data were then transferred into ArcGIS. A minimum convex polygon 

formula was used to find the weekly and total foraging areas for each nest. To analyze the 

effect neighboring nests had on foraging area, the potential areas for each nest were calculated. 

This involved taking the longest foraging trail for each nest and using it as the radius for the 

potential area. Then the number of neighboring nests that fell within this area were counted 

and recorded. Additionally, the distance to the closest neighbor was also calculated for each of 

the 12 nests. Data collected from previous studies on soil pH (Chen and Mahlab, 2009) and 

canopy light penetration (Pera, 2010) were used to analyze possible environmental factors that 

may be affecting foraging area. Kernel density plots were created for each of these two factors 

and the conditions around each nest were recorded. However, since nests EG10 and EGEK33 

were offsite, they were not included in the light and pH measurements. Lastly, the vegetation 

type the nests were located in was also recorded. 

Comparing nests to each other involved multiple correlation tests using SPSS. I tested 

whether any of the nest characteristics (mound elliptical area, the flow rate, the trail number) 

had a significant relationship to the nest foraging area. I also looked for any correlations 

between foraging area and light penetration, soil pH, and neighbor proximity and number. To 

test for significant differences in foraging area size between nests, the mean foraging area over 
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the six weeks for each nest were compared using a repeated measure 1-way ANOVA test and 

Tukey’s HSD tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17

Results 

 

Six sets of foraging trail survey data were collected for each of the 12 nests. Nest EG10 

was inactive during the last 3 weeks, nest EGEK87 was inactive during week 4 and nest 

EGJB05 was inactive during weeks 4 and 6. Therefore, a total of 66 foraging areas were 

calculated. The total foraging area around each nest can be seen in the ArcGIS image in Figure 

7. The potential foraging area was calculated using the length of the longest foraging trail as 

the radius of the circle (Figure 8). The green dots represent the locations of neighboring nests. 

The number of nests that fell within the potential area were counted and recorded for each nest. 

 
 

 

Figure 7: Minimum convex polygons of total foraging areas around each nest on the FCRE 
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Figure 8: Potential foraging areas for each nest on the FCRE 

 

 

 

Kernel density plots: 

The kernel density plot displays the light fraction gradient throughout the reserve 

(Figure 9). The lighter pink color represents the area with the greatest light fraction, meaning 

that the percent canopy cover is low, and the darker red represents areas with lesser light 

fractions, meaning the canopy is denser in those locations. The light fraction region each nest 

was located in was recorded. Figure 10 is a kernel density plot of the soil pH gradient; with the 

lighter regions represent the more acidic pH’s and the darker regions representing the more 
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basic soil pH’s. The soil pH each nest was located in was recorded. Only nests EGEK33 and 

EG10 were excluded from these measurements because they were located just outside the 

boundaries of the reserve. 

 

 
 

Figure 9: Kernel density plot of light fractions on the FCRE (Pera, 2010, n=720) 
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Figure 10: Kernel density plot of soil pH on the FCRE (Chen and Mahlab, 2009) 

 

Comparisons of foraging areas between nests: 

There is a clear size disparity in foraging areas between nests as seen by Table 1.  

Total weekly foraging areas were measured as well as the overall total foraging area over the 

course of six weeks. An ANOVA test could not be performed to test if the overall total 

foraging areas were significantly different between each other. However, an ANOVA and 

Tukey’s HSD test could be performed on the mean weekly foraging area data. This is because 

each nest only had one overall total value, but 6 weekly total values. The group sample size 

has to be larger than one to perform an ANOVA test because it is an analysis of variance 
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between group means. Overall, there was a significant difference in mean foraging areas 

between nests (F=26.86, df=11,52,63, p<0.001). 

Nest EGJB19 was significantly larger than every other nest (Tukey’s, p<0.001), except 

for nest EG12 (Tukey’s, p=0.544). Nest EG12 was the second largest, but its mean foraging 

area did not differ significantly from nest EGJB68 (Tukey’s, p=0.054). The third largest nest 

was EGJB68, and this nest did not differ significantly from nest EGEK33 (Tukey’s, p=0.974). 

Lastly the fourth largest nest foraging area was for nest EGEK33, however, this nest did not 

differ significantly from nests EGEK19m (Tukey’s, p=0.079), EGEK43 (Tukey’s, p=0.191), 

EGEK87 (Tukey’s, p=0.161). The remaining 8 nests did not differ significantly from each 

other (Tukey’s, p>0.05). 

Table 1: Foraging area measurements of the 12 nests of study (n=66) 

Nest ID Average Weekly Foraging 

Area ±±±± SD (m
2
) 

Total Foraging 

Area (m
2
) 

Potential Foraging 

Area (m
2
) 

Relative 

Significance
* 

EG10 

EG12 

EGEK19M 

EGEK28 

EGEK33 

EGEK38 

EGEK43 

EGEK76 

EGEK87 

EGJB05 

EGJB19 

EGJB68 

117.02 ± 35.56 

2849.29 ± 176.41 

341.91 ± 145.22 

100.57 ± 29.78 

1364.98 ± 395.85 

47.28 ± 37.46 

466.10 ± 160.49 

185.12 ± 227.76 

395.25 ± 358.40 

83.95 ± 78.96 

3549.79 ±1601.91 

1778.51 ± 384.90 

304.79 

4216.70 

858.60 

197.21 

3052.26 

261.16 

1264.86 

1471.13 

1473.14 

375.87 

6215.59 

3354.98 

1963.50 

17671.46 

7542.96 

1256.64 

8494.87 

2463.01 

2123.72 

10568.32 

6082.12 

1809.56 

18626.50 

16286.02 

A 

B 

A 

A 

E 

A 

AE 

A 

AE 

A 

CB 

DBE 

*Tukey’s HSD, significant at p<0.05, same letter indicates no significant difference between average nest 

foraging areas 
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Correlations: 

 

Trail number vs. foraging area 

As the number of foraging trails from a nest increases, the foraging area of that nest 

significantly increases (r=0.819, p<0.001, n=66; Figure 11).  

 

Flow rate vs. foraging area 

As the flow rate of each foraging trail increases, the foraging area significantly 

increases (r=0.855, p<0.001, n=66; Figure 12). 

 

Neighbor count vs. foraging area 

As the number of neighbors within the potential foraging radius increases, the foraging 

area significantly increases (r=0.687, p<0.001, n=66; Figure 13). To reiterate, sample size is 

66, rather than 72 because a few nests were inactive during some weeks. 

 

Closest neighbor distance vs. foraging area 

For the 6 nests that had neighboring nests within their potential foraging radius: as the 

closest neighbor nest gets further away, the foraging area for the nest increases 

(r=0.697,p<0.001, n=35). The nests that had no neighbors within their potential radiuses were 

not included in this graph (Figure 14). The sample size here is 35, rather than 36 because one 

out of the 6 nests was inactive one week. 
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Soil pH vs. foraging area 

As the soil pH increases, becoming more alkaline, the foraging area significantly 

decreases (r= -0.554, p<0.001, n=55). The data for nest EG10 and EGEK33 were not included 

in this graph since their nest centers were located outside the reserve boundaries, thus sample 

size is 55, rather than 66 (Figure 15). 

 

Light fraction vs. foraging area 

There is no significant correlation between foraging area and canopy light fraction 

(r=0.113, p=0.410, n=55). 

 

Elliptical nest area vs. foraging area 

There is no significant correlation between the elliptical nest areas and the foraging 

areas of the nests (r=-0.147, p=0.647, n=66).  

 

Trail number vs. flow rate 

As the number of foraging trails from a nest increases, the flow rate of each trail 

increases (r=0.752, p<0.001, n=66; Figure 16). 

 

Flow rate vs. elliptical area 

 As the flow rate of each trail increases, the elliptical area of the nest decreases  

(r = -0.284, p=0.016, n=66; Figure 17). 

 

 



 

Flow rate vs. soil pH 

As the soil pH increases, the flow rate of each trail decreases 

n=55; Figure 18). 

Figure 11: Relationship between the number of foraging trails and the foraging area of 

the nests (m=753.06, r=0.819

 

Figure 12: Relationship between trail flow rate and foraging area (

n=66). 
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Figure 13: Relationship between the number of neighbors within the potential area of each nest 

and their respective foraging areas (

 

 

Figure 14: The distance of the closest neighbor in relation to foraging area for the six 

nests that had a neighbor fall within their potential foraging

p<0.001, n=35). 
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Figure 15: The correlation between the pH of the soil around the nest and the foraging 

area (m= -2261.50, r= -

 

 

 

Figure 16: Relationship
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Figure 17: Relationship between the foraging trail flow rate and the elliptical area of 

the nest (m= -0.21, r= -

 

 

Figure18: Relationship 
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Discussion: 

 

 Overall there were differences in foraging areas between the 12 nests, and these 

differences correlated with differences in flow rate, trail number, neighbor distance and soil 

pH. No correlations were found between foraging area and nest elliptical area or light fraction. 

Foraging area increased as expected as trail number (Figure 11) and flow rate (Figure 

12) increased. My utilizing more trails, the ants are able to divvy up and cover more ground, 

thus increasing area. From week to week the number of trails did not dramatically change for 

each nest; they tended to either gain or lose 1 trail. And this makes sense since it is more 

energetically costly to establish a new trail than to maintain an existing trail (Howard, 2001). 

Increased foraging area also corresponded with increased flow rate, thus the ants were 

covering more ground more quickly, meaning increased foraging efficiency for the colony.  

It was expected that as the number foraging trails increased, the flow rates would 

decrease because there would be fewer ants to allocate to each individual trail. However the 

correlation was strongly the opposite (Figure 16). This could be that larger, more populous 

nests had more foraging trails and thus their flow rates were high. However, no significant 

relationship was found between elliptical area and the number of foraging trails. It could also 

be that ants with larger populations have a larger scout workforce and therefore are more likely 

to spread out and find multiple suitable plant sources (Beckers et al., 1989). They could then 

recruit worker ants via pheromone markers and a trail would be established. 

The area of an ant nest mound is an indicator of the colony age, with larger nests being 

older (Wirth et al., 2003) Therefore it was expected that larger, older nests would have higher 

flow rates than smaller nests because they would have higher populations and be more efficient 

than smaller nests. This was not the case. However, the correlation between flow rate and 
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mound area was relatively weak (Figure 17). This could possibly be the result of other 

confounding factors, such as the location of the nest with regard to animal trails and human 

activity. If the trail is in an area of high disturbance, then the foraging rate will slow. 

All the nests fell within a soil pH that was between 5 and 6.5. The nests with larger 

foraging areas were situated in more acidic soils, while smaller foraging area nests were found 

in soils that were closer to a neutral pH (Figure 15). 

Reliability of the soil pH data comes into question since the researchers who conducted 

the study did not directly sample the nests selected. Rather the pH values were extrapolated 

from a kernel density plot of pH data points collected randomly across the reserve (Figure 10). 

So while a significant negative correlation between soil pH and flow rate is observed (Figure 

18), this may be more a representation of the pH of the soil within a large area around the ant 

nests. This can be fixed by performing a more focused nest-soil assay project on the reserve in 

the future, then reexamining the results. However, according to Haines (1975), pH probably 

does not significantly impact ant behavior so it may be more interesting to look nutrient levels 

in the soil. In a study done on Barro Colorado Island, Panama it was found that attine ant 

refuse piles had nitrogen concentrations and carbon concentrations that were 26 times and 12 

times greater, respectively, than the surrounding forest floor (Wirth et al., 2003). 

No significant correlation was found between light fractions and foraging area. 

However, according to Haines (1975), ants change the light conditions around the smaller 

understory cover and not in the larger canopy cover. The ants tend to clear out all understory 

vegetation growing on the nest mound, which results in understory gaps near the nests. This 

can be seen in Figure 1, where all the small saplings have had their leaves stripped. Since the 

measurements taken by Pera in 2010 were of canopy light fractions, it makes sense that there 
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were no significant differences between nests. Therefore it would be interesting to carry out a 

project measuring the understory light fractions around nest and non-nest sites to see if they 

are significantly increasing light penetration within their foraging area. 

Contrary to predictions, the number of neighboring ant nests had a positive correlation 

with foraging area. Meaning that as the number of neighbors increased the foraging area 

increased (Figure 13). However, this actually makes sense since it would be expected that 

larger foraging areas would randomly intersect more neighbors.  

Interestingly, the further away the closest neighbor was, the larger the foraging area 

was (Figure 14). This suggests that perhaps there is competition for foraging space between 

neighboring nests. Competition has not been widely studied among attine ants and there is not 

a lot of literature on it. Hölldobler and Lumsden (1980) studied territoriality in harvester ants, 

Pogonomyrmex barbatus and P. rugosus and found that trails of intraspecific neighboring 

nests never crossed. And while foraging areas of neighboring nests can overlap, there tends to 

be very little aggression since there is very little actual contact. The ants tend to stay on their 

respective trails and diverge in different directions. However, they saw that when trunk trails 

did cross there was heavy aggression until the trails diverged again. Thus neighboring nests 

influence the directionality and length of each other’s foraging trails. They also found that 

forager recruitment partly depended on the presence or absence of foreign foragers at the 

resource patch. Sites previously occupied by foreign foragers were deemed less attractive than 

unoccupied sites. It would be interesting to see if this is the case with attine ants as well. There 

is a claim that A. cephalotes deposits territorial pheromones along its trails (Jaffe et al., 1979), 

however follow-up studies have been unable to verify this (Hölldobler and Wilson, 1990).  
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Some nests ceased activity during the period of study. This could be the result of nest 

movement, which was most likely the case for nest EG10, or of nest death. Short periods of 

inactivity can be explained by sensitivity to particularly heavy rainstorms, thus making the ants 

slow to get back into an active foraging rhythm (Hölldobler and Wilson, 1990).  

In conclusion, it appears that leaf-cutter ants have a major impact on tropical forest 

dynamics and are thus an important organism to look at when discussing restoration ecology 

and secondary forest growth in Costa Rica. They are considered ecological engineers because 

they alter the availability of resources to other organisms (Jones et al., 1994). Tropical forest 

soil is relatively nutrient poor because a lot of the nutrients are contained within the standing 

vegetation. Attine ant harversting enables some of these nutrients to be recycled and 

concentrated back into the soil more rapidly and frequently (Haines, 1975). This creates an 

environment around the nests that favors new plant growth. In fact it was found that abandoned 

A. cephalotes nests had 58% greater understory diversity and 73% greater understory 

abundance than the surrounding forest (Garrettson et al., 1998).  

In a study done at La Selva, Perfecto and Vandermeer (1993) estimated the turnover 

rate and size of A. cephalotes nests. They suggested, given the abundance of leaf-cutting ants 

in tropical forests, that these ant nests could occupy the entire forest area every 200-300 years. 

If this holds true, then the Firestone Reserve, which is about 25 times smaller than La Selva, 

could have total soil turnover in a much shorter period of time. 

These ants also can affect the competitive ability of certain species. Attine ants harvest 

the flowers of many trees, thus either destroying their seeds or dispersing them somewhere 

where they are more likely to survive (Schupp, 1992; Haines 1975). Also the preferred 

individual trees can have as much as 40% of their total leaf production harvested, which 
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greatly reduce the plants ability to compete for light (Wirth et al., 2003), but improves the light 

conditions for understory vegetation (Oberbauer and Donnelly, 1986). Thus, disturbances 

caused by ants are not only assisting with secondary forest growth, but it is also helping 

maintain species richness in tropical forests (Farji-Brener and Ghermandi, 2000). 
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Appendix 

 

Appendix 1: COMPASS maps of total trails for each of the 12 nest over 6 weeks 
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